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A MINIMAL PRIKRY-TYPE FORCING

FOR SINGULARIZING A MEASURABLE CARDINAL

PETER KOEPKE, KAREN RÄSCH, AND PHILIPP SCHLICHT

Abstract. Recently, Gitik, Kanovei and the first author proved that for a classical

Prikry forcing extension the family of the intermediate models can be parametrized by

Pp!q{finite. By modifying the standard Prikry tree forcing we define a Prikry-type forcing

which also singularizes a measurable cardinal but which is minimal, i.e. there are no

intermediate models properly between the ground model and the generic extension. The

proof relies on combining the rigidity of the tree structure with indiscernibility arguments

resulting from the normality of the associated measures.

§1. Introduction. The classical Prikry forcing first appeared in Prikry’s dis-
sertation [9] in 1970. It gave a positive answer the following question of Silver
and Solovay:

Is there a forcing preserving all cardinals while some cofinality changes?

In fact, the singularization of regular cardinals by some forcing is necessarily
connected with Prikry forcing. In such an extension there must be a Prikry
generic filter over an inner model with a measurable cardinal by the covering
theorem of Dodd and Jensen (see [1]).

Prikry forcing is equivalent to a Prikry tree forcing where conditions are trees
with trunks, where the splitting sets above the trunk are always large with respect
to the chosen normal measure. Many variants of Prikry forcings are known, see
[2].

Let us give some examples for the analogous situation when a forcing adds a
subset of ! instead of �. It is easily seen that Cohen forcing adds a perfect set
of mutually generic reals. On the other hand several forcings adding reals are
minimal. Here a generic extension is called minimal if it has only trivial inter-
mediate models. Furthermore, a forcing is said to be minimal if every generic
extension by it is minimal. The first known forcing with this property was Sacks
forcing introduced in [11]. Also plain Laver forcing is minimal, see [4]. Mathias
forcing, the analog of the classical Prikry forcing for !, is not minimal, as the
subsequence of even digits generates a proper intermediate model. This holds
as well for plain Mathias forcing as for Mathias forcing with an ultrafilter asso-
ciated. In contrast to plain Laver forcing, the version with a Ramsey ultrafilter
associated is not minimal, because it is equivalent to Mathias forcing with the
same ultrafilter, see [6].
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Classical Prikry forcing is not minimal. The main result of Gitik, Kanovei and
the first author in [3] reads:

Theorem 1.1. Let V rGs be a generic extension by classical Prikry forcing
for some normal measure on a measurable cardinal �. Then every intermediate
model is a Prikry extension by this forcing and is generated by some subsequence
of the associated Prikry sequence. Moreover, the intermediate models of V and
V rGs ordered by inclusion are isomorphic to Pp!q{finite ordered by almost in-
clusion.

Other Prikry-type forcings also have many intermediate models. Gitik showed
in [2] that for a 2�-supercompact cardinal � and a normal measure on P�p2

�q
every   �-distributive forcing of size � is a subforcing of the associated super-
compact Prikry forcing. Thus all results in this context so far have shown that
generic extensions by Prikry-type forcings have many intermediate models.

In contrast with the above results, this paper provides a minimal Prikry-type
forcing preserving all cardinals while singularizing a measurable cardinal from
the ground model. Inspired by the classical Prikry tree forcing, we introduce the
partial order PU , where U is a sequence of �-complete nonprincipal ultrafilters
over �. The conditions of PU are U-trees whose splitting sets are large with
respect to certain ultrafilters in U . In Section 3 we prove a Ramsey theorem for
such trees and a Prikry lemma for PU , which justifies calling it a Prikry-type
forcing. Thereafter, in Section 4, we are going to investigate the intermediate
models of generic extensions by PU if U is sequence of pairwise distinct normal
measures. The minimality of PU is a direct consequence of:

Theorem 1.2. Let V rGs be a generic extension by PU where U is �-sequence
of pairwise distinct normal measures on �. Then for every X P V rGs either X
was already in the ground model or X generates the whole generic extension,
i.e., V rXs � V rGs.

Since the proof heavily uses the normality of the associated measures, we
discuss the situation in the more general setting without the requirement of
normality in Section 5. This may be helpful to gain information about generic
extensions by the classical Prikry tree forcing.

The results of this paper have grown out of the diploma project of the second
author under supervision of the first. In the diploma thesis [10] only a part of
the previous theorem was proved. For the remaining part the correspondence
with the third author was of indispensible importance.

§2. Setting. The notation follows common conventions. We will typically
think of u, v P r�s ! as strictly increasing sequences of ordinals in �. By u P v
we mean that u is an initial segment of v. Moreover, we will use the typical
operations on sequences, namely concatenation denoted by the symbol ⌢ and
the restriction of the domain to some subset of ! denoted by æ . In addition �
corresponds to the operation z , i.e., thinking of sequences remove the one range
from the other and enumerate the result increasingly. By a tree we understand a
non-empty subset of r�s ! which is closed under initial segments. If T is a tree
and k P !, then we denote by LevkpT q the k-th level of T , which consists of all
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elements of T of length k. In this paper ultrafilters will be indexed by maxima
of finite sequences in trees. For convenience, we agree that maxp∅q � 0.

2.1. Normal measures. For our construction we shall fix a measurable car-
dinal �, and we shall assume that there is a sequence U � xU� : �   �y of
pairwise distinct normal measures on �. By the following result of Kunen and
Paris this assumption has the consistency strength of ZFC�“there exists a mea-
surable cardinal”.

Theorem 2.1 (Kunen-Paris forcing, [7]). Assume that V is a model of GCH
and let � be a measurable cardinal and � ¡ �� a regular cardinal. Then in
some generic extension with the same cardinals and cofinalities there are � many
pairwise distinct normal measures on �.

In our minimality proof we will use a family xA� : �   �y of pairwise disjoint
subsets of � with A� P U�. In the case of normal measures such a sequence
always exists:

Lemma 2.2. Let � be a measurable cardinal carrying �-many pairwise distinct
normal measures xU� : �   �y. Then there is a family xA� : �   �y of pairwise
disjoint subsets of � with A� P U�.

Proof. For ordinals �, � P �, �   � pick X�,� � � such that X�,� P U� zU� .
Moreover define X�,� :� � zX�,� and X�,� :� �. Let

A� :� p △
� �

X�,� q z p�� 1q.

By the normality we have A� P U�. Assume that there is � P A� X A� . Then
� ¡ maxp�, �q and therefore � P X�,� XX�,� – a contradiction. 


2.2. Intermediate models of generic extensions. Every intermediate
ZFC-model of a generic extension V rGs is generated by a single set, namely
a Q-generic filter H for some forcing Q over V , see [5, pp 247-248]. We may
further assume H � � for some cardinal �. Hence, we restrict our attention to
all sets of ordinals in V rGs in the minimality proof. The smallest inner model
N of ZFC with V � N � V rGs and H P N for a set of ordinals H P V rGs can
be defined without reference to forcing as

�
z�Ord,
zPV

Lrz,Hs (such a model need

not exist for arbitrary sets in V rGs). It is easy to check that this is a model of
ZFC for any H P V rGs. We say X is V -constructibly equivalent to Y , in short
X �V Y , if V rXs � V rY s.

§3. Tree Prikry Forcing for Sequences of Ultrafilters. We now define
and study a Prikry-type forcing PU where U � xU� : �   �y is a sequence of
ultrafilters and the conditions are trees whose branching sets are controlled by
U . This generalizes the classical situation where all branching sets are controlled
by a single ultrafilter. Nevertheless the forcing satisfies several properties of
classical Prikry forcing, in particular the Prikry lemma. In the next section we
shall let U be a sequence of pairwise distinct normal measures and obtain the
desired minimality result.

For the rest of this section let U � xU� : �   �y denote some fixed sequence
of �-complete nonprincipal ultrafilters over the measurable cardinal �.



4 PETER KOEPKE, KAREN RÄSCH, AND PHILIPP SCHLICHT

3.1. U-trees and the partial order PU . The conditions in the forcing are
trees of the following type.

Definition 3.1. A set T � r�s ! is called U-tree with trunk t if

(T1) xT,Py is a tree.
(T2) t P T and for all u P T we have u P t or t P u.
(T3) For all u P T if t P u then

SucT puq :� t �   � : u⌢x�y P T u P Umaxpuq.

Note that each such tree has a unique trunk.

P U�

�

Figure 1. An image of a U-tree.

Definition 3.2. Let PU :� t xt, T y : T is a U-tree with trunk t u.
Furthermore for xs, Sy, xt, T y P PU define

xs, Sy ¤ xt, T y :ðñ S � T

xs, Sy ¤� xt, T y :ðñ S � T and s � t

In the latter case we call xs, Sy a direct extension of xt, T y.

Note that xs, Sy ¤ xt, T y implies s Q t.
The following lemma introduces several possibilities to alter a U-tree to obtain

a new one, namely to restrict it, to remove an initial part or to attach the U-tree
on top of some finite strictly increasing sequence of ordinals in �.

Lemma 3.3 (and Definition). Let T be a U-tree with trunk t.

(1) If u P T , u Q t then Tæu :� t v P T : u P v _ v P u u is a U-tree with
trunk u and xt, T y ¥ xu, Tæuy. The case u P t is not of interest since then
Tæu � T .

(2) For u P T let TQu :� tv P r�s ! : u⌢v P T u. This is a U-tree with trunk
t� u if SucT puq P U0 or t� u � ∅.

(3) If u P r�s ! and maxpuq � maxptq then u� TQt :� tu⌢v : t⌢v P T u is a
U-tree with trunk u.

Proof. In every case all properties are evident from the respective definition.
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What is essentially needed in (3) are the two properties SucT ptq P Umaxpuq and
maxpuq   minpSucT ptq q.

Lemma 3.4. Let xT� : �   �y, �   �, be a sequence of U-trees with the same
trunk t. Then

�
� � T� is again a U-tree with trunk t.

Proof. This is obvious as U� is �-complete for every �   �. 


Let us now characterize compatibility.

Lemma 3.5. Let xs, Sy, xt, T y P PU . Then xs, Sy∥xt, T y iff ps P T and t P S q.
In particular xs, Sy∥xt, T y implies s P t or t P s.

Proof. Clearly xr,Ry ¤ xs, Sy, xt, T y implies s, t P r and therefore we have
s, t P R � S, T .
If s P T , t P S and s P t, then xt, pSæ tq X T y P PU is a common extension of
xs, Sy and xt, T y. 


3.2. Ramsey properties of U-trees. In this subsection we are going to
prove that for every coloring of some U-tree one can find a sub-U-tree which
is homogeneous in the sense that all elements on the same level have the same
color. This is a version of the Rowbottom-Theorem for colorings of r�s !. We
will use this to prove a slightly more involved property of this sort, namely that
every graph on a U-tree can be restricted to a sub-U-tree such that whether two
nodes are connected only depends on the order configuration of the ordinals in
the two nodes.

Lemma 3.6. Let T be a U-tree and c : T Ñ � with �   �. Then there is a
U-tree T̄ � T with the same trunk homogeneous for c, i.e. every two elements
of T̄ on the same level have the same color.

Proof. We show by induction on n that for every coloring of a U-tree T with
trunk t with less than � many colors there is a U-tree Tn � T with the same
trunk such that the coloring is constant on all Levels of Tn up to |t| � n. By
letting T̄ :�

�
n ! Tn where for all n we know that c is constant on LevkpTnq

for all k ¤ |t| � n we obtain a U-tree homogeneous for c.
The assertion is obvious for n � 0. Thus let c : T Ñ � with �   � be a

coloring of a U-tree T . Consider for every � P SucT ptq the coloring cæ pTæ t⌢x�y q.
By the induction hypothesis there are U-trees S� � Tæ t⌢x�y such that c is
constant on LevkpS�q for all k ¤ |t| � n � 1. Further, S :�

�
�PSucT ptq

S� is a

U-tree and for every � P SucSptq � SucT ptq and all u, v P Sæ t⌢x�y � S� with
|u| � |t| � |v| � |t| ¤ n � 1 we obtain cpuq � cpvq. Denote this value of c by

�,|u|�|t|. Then by the �-completeness of Umaxptq there is H � SucSptq in Umaxptq

such that all � P H have the same sequence x
�,k : k ¤ n � 1y and hence c is
constant up to Level |t| � n� 1 on Tn�1 :�

�
�PH S�. 


Now we establish partition results for colorings of T 2. The colors of a pair
xu, vy in T 2 may depend on the type of u, v, i.e., the way in which the sequences
u and v are interlaced. We shall prove that on a sub-U-tree the color of each
pair only depends on its type.

Definition 3.7. Let u, v be finite strictly increasing sequences of ordinals.
Then typepu, vq P 3|ranpuqYranpvq| denotes the order configuration of u and v, i.e.,
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enumerate uY v strictly increasing as t �i : i   n u and define

typepu, vqpiq �

$&
%

0 if �i P u z v
1 if �i P v zu
2 if �i P uX v

For example x0, 2, 0, 0, 1y tells us that u has four and v has two elements, that
the first element of v is the same as the second element of u, and that the second
element of v is bigger than all elements of u. This is depicted in Figure 2.

0
2
0
0
1

u v

Figure 2. The type x0, 2, 0, 0, 1y.

Theorem 3.8. Let T be a U-tree and c : T 2 Ñ � for some �   � where all
the U� are normal measures on �. Then there is a U-tree T̄ � T with the same
trunk such that for all u, v P T̄ the value of c only depends on the type of u, v.

This is an immediate consequence of the following.

Lemma 3.9. Let S, T be U-trees and c : S � T Ñ � for some �   � where all
the U� are normal measures on �. Then there are U-trees S̄ � S and T̄ � T
with the same trunks, respectively, such that for all u P S̄, v P T̄ the value of c
only depends on the type of u, v.

Proof. In order to show this, we conclude by induction on xm,ny:

Let S, T be U-trees with the trunks s and t, respectively. Further let
c : S � T Ñ � for some �   �. Then there are U-trees Sm � S with
trunk s and Tn � T with trunk t such that for all u P Sm, v P Tn with
|u| � |s| ¤ m, |v| � |t| ¤ n the value of c only depends on the type of
u, v.

We prove this by induction along the order on !�! defined by xk, ly   xm,ny
iff k ¤ m and l ¤ n, and k   m or l   n.

Since the cases where m � 0 or n � 0 follow from the previous lemma, let us
assume m,n � 0. We may first apply the induction hypothesis and hence assume
that c on S � T behaves as required for u, v with x|u| � |s|, |v| � |t|y   xm,ny.
Now we will successively thin out both trees in three ways to cover the different
arrangements of the largest elements of u and v.

To deal with the case maxpuq � maxpvq, we define another coloring c1 on
S � T by c1pu,wq � cpu,w⌢x�yq if maxpuq � � and w⌢x�y P T , and c1pu,wq � 0
otherwise. By the induction hypothesis we can thin out S, T so that c1pu,wq
depends only on typepu,wq for u,w with x|u| � |s|, |w| � |t|y   xm,ny. Then
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cpu, vq is constant for all u, v with |u| � |s| ¤ m, |v| � |t| ¤ n and the same type
t if the last entry of t is 2 since then cpu, vq � c1pu, v � xmaxpvqyq.

Now we handle the case maxpuq ¡ maxpvq. For each pair xw, vy P S � T let

Xw,v :� t � P SucSpwq : cpw⌢x�y, vq � 
w,v u

where 
w,v   � is chosen so that Xw,v P Umaxpwq. Let us define a coloring c2

on S � T by c2pw, vq � 
w,v. We can assume that S, T are thinned out so that
c2pw, vq depends only on typepw, vq for w, v with x|w| � |s|, |v| � |t|y   xm,ny
by the induction hypothesis. Let Xw � △vPTXw,v for w P S, i.e., � P Xw iff
� P Xw,v for all v P T with maxpvq   �. Then Xw P Umaxpwq by normality. We
restrict SucSpwq to Xw for each w P S with |w|� |s| � m�1. To see that cpu, vq
is constant for all u, v with |u| � |s| ¤ m, |v| � |t| ¤ n and the same type t if
the last entry of t is 0, note that in this case maxpuq P Xu�xmaxpuqy,v and hence
cpu, vq � c2pu� xmaxpuqy, vq.

The procedure for the remaining case maxpuq   maxpvq is similar. 


It is possible to generalize Theorem 3.8 to arbitrary colorings of n-products of
U-trees.

3.3. Forcing with PU . Now we investigate whether several properties of
Prikry forcings also apply to PU . For example we discuss a Prikry lemma to
show the preservation of all cofinalities but �’s and the reconstruction of the
generic filter from the Prikry sequence.

Lemma 3.10. Let G be generic on PU , then

fG :�
�
t t : DT xt, T y P G u

is an !-sequence cofinal in �. Hence in V rGs we have cfp�q � ℵ0. We call fG a
Prikry sequence for U .

Proof. For every �   � the set

D� :� t xt, T y P PU : �   maxptq u

is dense and hence we know that fG is cofinal in �. By Lemma 3.5 all trunks of
elements of G are totally ordered by P. Accordingly, fG is an !-sequence. 


Lemma 3.11. PU satisfies the ��-cc. Thus it preserves cofinalities and cardi-
nals greater than �.

Further, xPU ,¤
�y is �-closed.

Proof. The first claim is an immediate conclusion from the fact that there
are only � many possible trunks and Lemma 3.4. The second statement is a
direct consequence of the same lemma. 


For the next result we convey the proof of the Prikry lemma for the classical
Prikry forcing but use Lemma 3.6 as the analog of Rowbottom’s Theorem. It is
also possible to copy the proof given in [2] for the classical Prikry tree forcing.

Lemma 3.12 (Prikry lemma). Let xt, T y P PU and ' a statement in the forcing
language. Then there is a direct extension xs, Sy P PU of xt, T y deciding '.
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Proof. Let xt, T y and ' as stated above. We apply Proposition 3.6 to the
coloring on T defined by

u ÞÑ

"
0 if there exists a U-tree X with trunk u such that xu,Xy , '
1 otherwise

and obtain a U-tree T̄ � T with trunk t homogeneous for this coloring. Then
xt, T̄ y decides '. 


Corollary 3.13. The forcing PU does not add bounded subsets of �.

In fact, V� � V
V rGs
� holds.

Proof. This follows from the previous two lemmas by standard methods. 


Corollary 3.14. The forcing PU preserves cofinalities of ordinals less than
�. Hence it also preserves all cardinals less or equal to �.

The following theorem sums up the preceding results.

Theorem 3.15. Let G be a generic filter on PU . Then in V rGs

(1) � is singular with cfp�q � ℵ0,
(2) all cardinals are preserved and also all cofinalities but �.

Furthermore V� � V
V rGs
� .

As for the classical Prikry forcing it is possible to reconstruct the generic filter
from the Prikry sequence.

Lemma 3.16. Let G be a generic filter on PU and f :� fG the associated Prikry
sequence. Then G � Gf where

Gf :� t xt, T y P PU : @n   ! fæn P T u.

Also the other direction works: If f is an !-sequence of ordinals in � and Gf
is generic on PU , then fGf � f .

Proof. It is enough to show G � Gf and that every two elements in Gf are
compatible. Let xt, T y P G. For every n   ! there is some xs, Sy P G with
fæn P s and we can assume xs, Sy ¤ xt, T y which yields fæn P S � T and hence
xt, T y P Gf .
For the second requirement let xs, Sy, xt, T y P Gf . According to the definition
of Gf we have s � fæ |s|, t � fæ |t| and thus s P T and t P S. Hence we
finally obtain xs, Sy ∥ xt, T y by Lemma 3.5. The second assertion is easily seen
as xt, r�s !æ ty P Gf for every t P f . 


It would be nice to have a characterization of Prikry sequences for PU as there
is of Prikry sequences for the classical Prikry forcing in form of the Mathias
criterion (see [8]). Although we do not know of such a characterization, we have
the following proposition:

Proposition 3.17. Let f � fG for some generic filter G on PU and let f̃
be a strictly increasing !-sequence equal to f on all but finitely many natural
numbers. Then f̃ also is a Prikry sequence for U .

Proof. We will show that Gf̃ is a generic filter on xPU ,¤y because Gf is.
From the proof of Lemma 3.16 we already know that every two conditions in Gf̃
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are compatible. Further, from xt, T y ¤ xs, Sy and xt, T y P Gf̃ it directly follows

that xs, Sy P Gf̃ .

Suppose fpiq � f̃piq for all i ¥ m and let t � fæ pm � 1q, t̃ � f̃æ pm � 1q, so
maxptq � maxpt̃q. Let p :� xt, r�s !æ ty and p̃ :� xt̃, r�s !æ t̃y. Further, define

ℎ : t q P PU : q ¤ p u Ñ t q P PU : q ¤ p̃ u, xt⌢u, T y ÞÑ xt̃⌢u, t̃⌢u� TQt⌢uy.

It is easy to see that ℎ is an isomorphism. Since p P Gf �G, we observe that G
is PU -generic below p. Thus, ℎrGf X t q P PU : q ¤ p us is PU -generic below p̃ and
moreover ℎrGf X t q P PU : q ¤ p us � Gf̃ X t q P PU : q ¤ p̃ u by the definition
of Gf̃ . 


§4. Intermediate Models of Generic Extensions by PU . In this section,
we show that the Prikry tree forcing for a sequence of pairwise distinct normal
measures is minimal. Let us consider the relation �V introduced in the first
section. The result can be stated as follows:

Theorem 4.1. Let V rGs be a generic extension by PU where U is sequence of
pairwise distinct normal measures on �. Then for every set X P V rGs of ordinals
either X P V or X �V fG.

For the rest of this section we will refer to U as a sequence of pairwise distinct
normal measures on � and as we have seen in the first section in Lemma 2.2 with
this comes a sequence xA� : �   �y of pairwise disjoint subsets of � such that
A� P U�. Fix such a sequence xA� : �   �y.

The proof is split into two parts where the first one only handles new subsets
of � and the second part uses this to obtain a general result for all sets of ordinals
in the generic extension. We prove both results in separate subsections dedicated
to the particular step in the proof.

4.1. Subsets of � in the generic extension. This subsection shows how
to deal with Pp�qV rGs. More precisely, we are going to prove the following
theorem.

Theorem 4.2. Let V rGs be a generic extension by PU where U is sequence of
pairwise distinct normal measures on �. Then for every X P Pp�qV rGs either
X P V or X �V fG.

Before we start to prove the theorem we provide a helpful lemma.

Lemma 4.3. Let T be a U-tree. Then there is a U-tree T̄ � T with the same
trunk such that for all u, v P T with upnq � vpnq for some n   mint|u|, |v|u, we
have upmq � vpmq for all m ¥ n below mint|u|, |v|u.

Proof. Let T be a U-tree with trunk t and shrink T to a U-tree T̄ in which
all sets of successors have been restricted to the appropriate A� as follows

T̄0 :� tu P T : u P t u

T̄n�1 :� tu P T : D �   � D v P T̄n

p v Q t ^ � P SucT pvq XAmaxpvq ^ u � v⌢x�y q u

T̄ :�
¤
n !

T̄n.
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Note that Lev|t|�npT̄ q � T̄n for all n ¡ 0. Obviously T̄ is as required. 


Since we have proved that the set of all U-trees with the property from the
lemma is dense, we also have the following proposition which introduces a proof
idea for Theorem 4.2.

In our terminology, a subsequence of a sequence f is simply a subset of f .

Proposition 4.4. Let f � fG for some generic filter G on PU and let d P V rGs
be a subsequence of f . Then either d is finite or d �V f .

Proof. Let d be a subsequence of some Prikry sequence f , i.e. d � f , and
suppose d is infinite. Let ℎ be the function mapping every �   � to the unique �
with � P A� if � P

�
� �A� and to 0 otherwise. As we have seen in the previous

lemma, the set

D :� t xt, T y P PU : @u P T pu Q t Ñ SucT puq � Amaxpuq q u

is dense in PU . The density yields some condition xt, T y P D XG.
We will now reconstruct f from d. This construction works recursively al-

though the idea is quite simple since from knowing dpn � 1q � fpn � 1q we
also know fpnq � ℎpfpn � 1qq. The latter is true because fæm P T for all m,
hence it makes sense to consider SucT pfæ pn � 1qq which is a subset of Afpnq
for n � 1 ¥ domptq and therefore ℎp�q � fpnq for all � P SucT pfæ pn � 1qq, in
particular for fpn� 1q. We define

f0 :� d

fn�1 :� fn Y t pk, �q P ! � � : k � 1 P dompfnq ^ ℎpfnpk � 1qq � � u

and conclude f � t⌢p
�
n ! fn æ p! zdomptqq q.

The inclusion from left to right follows by showing fnæ p! zdomptqq � f � t
for all n   !. Clearly this is true for f0 � d and the argument for the induction
step has been explained already.

Let us finally check f z t �
�
n ! fn. Since d is infinite dompdq is unbounded

in ! and hence for every k   ! there is lk P dompdq greater than or equal to k.
Now it is easy to prove pk, fpkqq P flk�k by induction on lk � k for k ¥ domptq.

Since f war recursively defined from d, using ℎ P V , we have f P V rds. 


Proof of Theorem 4.2. Let xt, T y P PU and 9X be a name for some subset
of �. We will show that there is p ¤ xt, T y such that

p , p 9X P V _ 9X �V 9f q

where 9f denotes the obvious name for the associated Prikry sequence.
By the Prikry lemma, we may assume that for every u P T the condition

xu, Tæuy already decides 9X up to maxpuq. For u P T define

Xu :� t �   maxpuq : xu, Tæuy , �̌ P 9X u.

Moreover, consider the following coloring

c : T � T Ñ 2, xu, vy ÞÑ

"
1 if Xu Xmaxpvq � Xv Xmaxpuq
0 otherwise

By Theorem 3.8 there is T̄ � T with trunk t such that the values of c on T̄ � T̄
only depend on the type of the arguments.
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Further, we may also assume by employing Lemma 4.3 that for all u, v P T
with upnq � vpnq for some n   mint|u|, |v|u, we have upmq � vpmq for all m ¥ n
below mint|u|, |v|u. Note that we have not changed the coloring by thinning out
T .

Claim. For every s P T̄ and n   ! the coloring c is constant on the set

txs⌢u, s⌢vy : u, v P LevnpT̄Qsq with up0q � vp0qu.

Assume there are u, v P LevnpT̄Qsq with up0q � vp0q and cps⌢u, s⌢vq � 1. We
may further assume that maxpuq   maxpvq.

To begin with, we show that all u1, v1 P LevnpT̄Qsq with typepu1, v1q � talt
satisfy cps⌢u1, s⌢v1q � 1, where talt :� x0, 1, . . . , 0, 1y denotes the alternating
type of two sequences of length n. By our assumptions the type of u and v
only consists of 0’s and 1’s and hence is of length 2n. Furthermore, it ends with
1. We succeed by constructing three sequences w0, w1, w2 P LevnpT̄Qsq with
typepw0, w1q � typepw2, w1q � typepu, vq and typepw0, w2q � talt.

To understand the procedure look at Figure 3. There n � 3 and the exemplary
situation in which typepu, vq � x1, 0, 0, 1, 0, 1y is on the left side, where the
squares stand for u and the dots for v. The right side shows what we are going
to construct.

u v

w0 w1 w2

Figure 3. x1, 0, 0, 1, 0, 1y ; talt.

We proceed by recursion on i   2n. Let ℓpiq � |tj   i : typepu, vqpjq � 0u|
denote the number of 0’s in typepu, vq up to component i. If typepu, vqpiq � 0,
then let us pick �0

ℓpiq ¡ maxp�1
i�ℓpiq�1, �

2
ℓpiq�1q in SucT̄ ps

⌢�0
0
⌢� � �⌢ �0

ℓpiq�1q and

�2
ℓpiq ¡ �0

ℓpiq in SucT̄ ps
⌢�2

0
⌢� � �⌢ �2

ℓpiq�1q. If typepu, vqpiq � 1, then we pick

�1
i�ℓpiq ¡ �2

ℓpiq�1 in SucT̄ ps
⌢�1

0
⌢� � �⌢ �1

i�ℓpiq�1q. Of course if ℓpiq � 0 or i�ℓpiq � 0,

then there are less requirements on the choice of �0
ℓpiq, �

2
ℓpiq or �1

i�ℓpiq.

Clearly w0 :� �0
0
⌢� � �⌢ �0

n�1, w1 :� �1
0
⌢� � �⌢ �1

n�1 and w2 :� �2
0
⌢� � �⌢ �2

n�1 are

as required. Therefore cps⌢w0, s
⌢w2q � 1 because

Xs⌢w0
� Xs⌢w1

Xmaxpw0q

� Xs⌢w1
Xmaxpw2q Xmaxpw0q � Xs⌢w2

Xmaxpw0q.
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Now we continue by showing cps⌢u1, s⌢v1q � 1 for all u1, v1 P LevnpT̄Qsq with
typepu1, v1q � tsuc, where tsuc :� x0, . . . , 0, 1, . . . , 1y denotes the successive type
of two sequences of length n, i.e. the case in which all values of the first sequence
are smaller than all values of the second sequence. Similar to what we did so far,
we construct sequences w0, w1, . . . , wn P LevnpT̄Qsq with typepwj , wj�1q � talt
for all j   n and typepw0, wnq � tsuc.

Again we first look at the special case n � 3 and Figure 4 illustrates how we
are going to proceed.

w0 w1 w2 w3

Figure 4. talt ; tsuc for n � 3.

We proceed by recursion on the Cantorian well-ordering of !�! restricted to
n � pn � 1q. Pick �0

0 P SucT̄ psq. For pi, jq P n � pn � 1q with p0, 0q   pi, jq, we

distinguish two cases. If i � 0, then pick �j0 P SucT̄ psq with �j0 ¡ �0
j�1. If i � 0,

then pick �ji P SucT̄ ps
⌢�j0

⌢ � � �⌢ �ji�1q with �ji ¡ �j�1
i�1 .

As before it is easy to see that w0, . . . , wn with wj :� �j0
⌢� � �⌢ �jn�1 are as

required and hence the above argument shows cps⌢w0, s
⌢wnq � 1.

Finally, we obtain cps⌢u1, s⌢v1q � 1 for all u1, v1 P LevnpT̄Qsq, because for such
u1, v1 there is w P LevnpT̄Qsq with typepu1, wq � typepv1, wq � tsuc. For n � 3
and typepu1, v1q � x1, 0, 0, 0, 1, 1y this can be seen in Figure 5.

Claim. The condition xt, T̄ y forces 9X P V _ 9X �V 9f .
Let G be generic over PU with xt, T̄ y P G. We first prove that for all k

XfGæ pk�1q � 9XG X fGpkq.

Let k   !. Since xfGæ pk� 1q, T̄æ p fGæ pk� 1q qy P G holds, we obviously obtain

XfGæ pk�1q � 9XG X fGpkq. Now let � P 9XG X fGpkq. Then there is a U-tree

S with trunk v P fG of length greater than k such that xv, Sy , �̌ P 9X and
xv, Sy P G. Since the conditions xv, Sy and p :� xfGæ pk � 1q, T̄æ p fGæ pk � 1q qy
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u1 w v1

Figure 5. tsuc ; x1, 0, 0, 0, 1, 1y.

are compatible and p decides 9X up to fGpkq ¡ �, also p , �̌ P 9X. Thus
� P XfGæ pk�1q.

An even easier observation is that Xu � Xv Xmaxpuq for all u P v in T̄ . This

holds because xu, T̄æuy decides 9X up to maxpuq and will be useful in the end.

The rest of the proof describes a way to construct fG from 9XG if 9XG R V . Of
course t P fG.

Now assume we already have constructed s :� fGæm for somem   !. Starting
from s we now obtain fGæ pm � 1q. Assume there is n ¡ 0 such that the only
value of c on txs⌢u, s⌢vy : u, v P LevnpT̄Qsq with up0q � vp0qu is 0. Then the
sequence u :� fGæ pm� nq � s P LevnpT̄Qsq satisfies

Xs⌢u � XfGæ pm�nq � 9XG X fGpm� n� 1q � 9XG Xmaxpuq

and therefore Xs⌢v � 9XGXmaxpvq holds for all v P LevnpT̄Qsq with up0q � vp0q.
It is clear that this uniquely determines fGpmq.

By the previous claim the other case is that for all n ¡ 0 the only value of c
on txs⌢u, s⌢vy : u, v P LevnpT̄Qsq with up0q � vp0qu is 1. In this case 9XG equals�
�PSucT̄ psq

Xs⌢x�y P V . In order to see this, we show Xs⌢x�y � 9XG X � for all

� P SucT̄ psq. Let � P SucT̄ psq. Then there is k such that fGpkq ¡ � and by letting
n :� k � 1�m we can find u P LevnpT̄Qsq with upmq � � and maxpuq ¡ fGpkq.
By our assumption Xs⌢u X fGpkq � XfGæ pk�1q and hence

Xs⌢x�y � Xs⌢u X � � XfGæ pk�1q X �.

By the preliminary observation this is all we had to show.

This completes the proof of Theorem 4.2. 


4.2. Arbitrary sets in the generic extension. Now we will apply the
above to obtain a result about arbitrary sets in generic extensions by PU following
[3].

Theorem 4.5. Let V rGs be a generic extension by PU where U is a sequence
of pairwise distinct normal measures on �. Then for every set X P V rGs of
ordinals there exists Y � � in V rGs such that X �V Y .
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Proof. Let G be a PU -generic filter over V and X P V rGs a set of ordinals.
We proceed by induction on the least ordinal 
 having X as a subset. Since the
case 
 ¤ � obviously holds, we may assume 
 ¡ �.

Because of Theorem 3.15, in the following case distinction there is no need to
specify where to compute 
’s cofinality.

Case 1: cfp
q ¤ �.
If 
 is the successor of some ordinal �, then by the assumption X X � is

constructibly equivalent over V to some subset of �. But since X is equal to
pX X �q Y t�u the same subset of � works for X.

Let us assume that 
 is a limit ordinal. In V rXs fix an increasing cofinal
sequence x
� : �   cfp
qy of ordinals in 
. For every �   cfp
q consider the set
X X 
� for which there is Y� � � such that X X 
� �V Y� by our assumption.
Therefore we may also assume xY� : �   cfp
qy P V rXs. Then X X 
� P V rY�s
and thus there is a set of ordinals z� P V such that XX
� P Lrz�, Y�s. Moreover,
let �� be an ordinal such that X X 
� is the ��-th element in Lrz�, Y�s regarding
 Lrz�,Y�s. Since PU has the ��-cc and cfp
q   �� we can find sets Z,A P V
which have size � in V and approximate xz� : �   cfp
qy and x�� : �   cfp
qy,
respectively, i.e., for every �   cfp
q the pair xz�, ��y is in Z�A. But then there
is a bijection ℎ : � Ñ Z � A in V . Furthermore, we denote by #Xp�q the least
ordinal # such that the pair xz, �y :� ℎp#q has the property that in V rXs

X X 
� is the �-th element in Lrz, Y�s regarding  Lrz,Y�s .

The pair xz�, ��y P Z � A has the required property and hence the function
#X : cfp
q Ñ � is well-defined and clearly an element of V rXs. Additionally,

think of our sequence xY� : �   cfp
qy as Ỹ :� tx�, �y : � P Y�u � cfp
q � �.

Now code #X and Ỹ into a subset Y of � which lies in V rXs then.
Eventually, #X , ℎ and xY� : �   cfp
qy are elements of V rY s and hence so is

the sequence xX X 
� : �   cfp
qy and its union X.
Note that we used nothing more but the fact that PU satisfies the ��-cc in V .

Case 2: cfp
q ¡ �.
By the induction hypothesis for every �   
 we have a subset of � constructibly

equivalent to X X � over V and we may assume that either X X � P V or
X X � �V fG by Theorem 4.2.

If there is �   
 such that X X � �V fG, then obviously X �V fG. The
remainder of the proof handles the case X X � P V for all �   
.

Claim. Suppose X X � P V for all �   
. Then X P V .
Let 9X be a name for X. For every �   
 we define

P� :� t p P PU : p , 9X X q� � �pXX�q u
which is non-empty and in V . Note that � ¤ � implies P� � P� . We distinguish
two cases in order to prove X P V .

If
�
� 
 P� � ∅, let p P

�
� 
 P�. Then for every �   
 let �   
 be an ordinal

greater than � and obtain

p , q� P 9X iff p , q� P 9X X q�
iff p , q� P �pXX�q iff � P X.



A MINIMAL PRIKRY-TYPE FORCING 15

Hence X is definable in V .

If
�
� 
 P� � ∅, then construct a sequence xp� : �   
y which has an antichain

as subsequence of length greater than � in V rXs. This contradicts the ��-cc of
PU in V rXs and hence this case cannot arise.
The definition of the sequence makes use of the whole sequence xP� : �   
y
and therefore the construction takes place in V rXs. In case we have P��1 � P�,
pick p P P� zP��1 and let p� ¤ p such that

p� , 9X X�p��1q � �pXXp��1qq.

Otherwise, we choose p� to be an arbitrary element of PU . Since the unbounded
set Ξ :� t �   
 : P��1 � P� u is in V rXs, also xp� : � P Ξy P V rXs. The fact
cfp
q ¡ � tells us that |Ξ| ¡ � and therefore it remains to prove that for distinct
�, � P Ξ the conditions p� and p� are incompatible in PU .
Fortunately, this is an immediate consequence of the construction. If �   � are

in Ξ, then p� P P� � P��1 wich implies p� , 9X X�p��1q � �pXXp��1qq and on

the other hand we have p� , 9X X�p��1q � �pXXp��1qq.

This part of the proof used only that PU satisfies the ��-cc in V rXs. We have
completed the proof of Theorem 4.5. 


§5. Further Remarks. Let us return to the general setting, where the U�
are just �-complete non-principal ultrafilters over �. We explain why this is not
sufficient for the minimality and state partial results in this setting.

5.1. Why we require normality. We will now look at a situation in which
a generic extension by PU (without normality), or more generally by any forcing
which singularizes a regular cardinal, has many proper intermediate models. For
this we force over LU , where LU denotes the Silver model for the normal measure
U . With our definition in Section 2 we have LU � LrU s. Note that in LU there
is a sequence xU� : �   �y of �-complete non-principal ultrafilters over � such
that there is as sequence of pairwise disjoint sets xA� : �   �y with A� P U�,
i.e., we only dropped the normality. To see the existence of such a sequence in
LU simply partition � into �-many parts of size � such that the first one is in U .
Then use appropriate bijections of � onto itself to obtain the other ultrafilters
as images of U .

On the other hand the Dodd-Jensen Covering Theorem for LU tells us the
following.

Theorem 5.1 (Covering for set-generic extensions of LU , [1]). Let LU rGs be
a set-generic extension of the Silver model LU and let � be the measurable car-
dinal in LU . Then exactly one of following holds

(1) LU rGs is covered by LU , i.e., for every set X P LU rGs there is a set Y in
LU such that X � Y and |Y | � maxt|X|,ℵ1u in LU rGs.

(2) There exists an !-sequence f P LU rGs cofinal in � which is a Prikry
sequence for the classical Prikry forcing in LU and LU rGs is covered by
LU rf s.
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Now, let G be PU -generic over LU . Then the first alternative of the Covering
Theorem is false. To see this, note that � is regular in LU and moreover � has
cofinality ! in LU rGs.

However, the above theorem now yields an !-sequence f P LU rGs cofinal in
� which is a Prikry sequence for the classical Prikry forcing in LU . By the
Theorem about the intermediate models of generic extensions by the classical
Prikry forcing, which was cited in the introduction, LU rf s � LU rGs has a great
variety of intermediate models and therefore LU rGs cannot be minimal.

But this means that the forcing PU for the above sequence U adds a subset of
� which does not correspond to a subsequence of the Prikry sequence. In this
sense the behavior of this forcing is much worse than for PU with U consisting of
normal measures or the classical Prikry forcing.

5.2. Partial results without normality. Even without normality it is pos-
sible to prove that every subsequence of the Prikry sequence constructs the whole
Prikry sequence (see Proposition 4.4) and moreover it is possible to reduce the
question about intermediate models to subsets of �. This may be helpful for
investigating the classical Prikry tree forcing.

If one shows that every subset of � reduces to a subsequence of the Prikry
sequence, then the proof in [3] for showing that under this assumption every set
in the generic extension by the classical Prikry forcing reduces to a subsequence
of the Prikry sequence can be adapted. In comparison to the original proof we
lack a characterization in the sense of the Mathias criterion for Prikry sequences
coming from PU . However, it is possible to prove some weak analog and together
with Proposition 3.17 the proof works. For more details consult [10].
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