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Abstract

We study Borel subsets of the real line up to continuous reducibility.

We firstly show that every quasi-order of size ω1 embeds into the quasi-

order of Borel subsets of the real line up to continuous reducibility. We

then prove that at least all the types of gaps in P(ω)/fin appear and

determine several cardinal characteristics of this quasi-order. We also

begin an analysis of the Fσ subsets of the real line by characterizing the

sets reducible to Q and constructing the least non-trivial set below Q.

∗The first author and the second author would like to thank the European Science Founda-

tion for support through the grants 3925 and 3749 (respectively) within the INFTY program.
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1 Introduction

Reducibility is a very useful concept in several contexts. The Wadge order for

the Baire space and continuous (and Lipschitz) reducibility are important for

describing the complexity of subsets of the Baire space.1 Borel reducibility is a

useful tool for studying Borel equivalence relations.

In this paper, we study Borel subsets of the real line up to continuous re-

ducibility. Already the most basic structural results known for the Baire space

fail in this setting: The Borel subsets of the real line up to continuous re-

ducibility are ill-founded [3] and not semi-linear [12]. The aim of this paper

is to describe the quasi-order of the Borel sets up to continuous reducibility.

Roughly stated, our results show that continuous reducibility for the real line is

much finer than for zero-dimensional Polish spaces. For zero-dimensional Polish

spaces, the complexity of a Borel set is closely tied with continuous reducibility,

but this is not true for the real line.

The first main result shows that P(ω)/fin can be embedded into this quasi-

order. To prove this, we attach Borel sets to scattered countable linear orders

so that a reduction between the sets attached to two linear orders induces an

isomorphism of the first linear order onto a convex subset of the second linear

order. The second main result shows that there is a least non-trivial set below

Q. The proof is based on a characterization of the Fσ sets reducible to Q and

uses back-and-forth constructions of continuous maps.

In the next section, we collect basic facts about Fσ subsets of R up to

continuous reducibility. In the third section, we construct an embedding of

P(ω)/fin into the Borel subsets of R up to continuous reducibility, prove the

existence of gaps, and determine several cardinal characteristics. In the last

section, we characterize the Fσ sets reducible to Q and construct the least non-

trivial set below Q.
1Basic results on continuous reducibility for the Baire space can be found in [13].
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2 Basic results

Let us quickly review our notation and the basic definitions. For the Borel

hierarchy and terminology in descriptive set theory, see [6].

Definition 2.1. Let X be a topological space and A,B ⊆ X.

1. cl(A) denotes the closure of A in X.

2. A is non-trivial if A 6= ∅ and A 6= X.

3. A is continuously reducible (Wadge reducible) to B (A ≤ B) if there is a

continuous function f : X → X such that f−1(B) = A.

4. A and B are equivalent (Wadge equivalent) (A ≡ B) if A ≤ B and B ≤ A.

5. A is strictly continuously reducible (strictly Wadge reducible) to B (A < B)

if A ≤ B but B � A.

6. A is comparable (Wadge comparable) to B if A ≤ B or B ≤ A.

Notice that ≤ is a quasi-order (i.e. a reflexive, transitive relation) and ≡ is an

equivalence relation on P(X). Moreover ∅, X are the only ≤-minimal elements

of P(X) and ∅, X are incomparable if X 6= ∅. We will focus on continuous

reducibility for the real line.

2.1 Fσ sets

In this section we collect facts about Fσ subsets of R.

Lemma 2.2 (Selivanov [11]). Any two non-trivial open subsets of R are equiv-

alent. The same holds for non-trivial closed sets.

Suppose that A0, ..., An ⊆ R. We say that An is minimal above A0, ..., An−1

if there is no set A ⊆ R with A0, ..., An−1 < A < An. We say that A is minimal

if it is minimal above ∅,R. Non-trivial open or closed sets are examples for sets

of this kind, and these two types of sets are incomparable. We now consider

sets which are not comparable to sets of one of these types.
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Definition 2.3. For a set A ⊆ R, we consider the following conditions:

1. (I1) Every point in A is an accumulation point in A from both sides, i.e.

for any point x in A any open set U with x ∈ U , there are points y, z in

A such that y < x < z.

2. (I2) If A contains a bounded interval (a, b), then a, b belong to A.

We say that A satisfies (I) if satisfies both (I1) and (I2).

For example, any countable dense subset and its complement satisfy (I). Let

us show that this does not happen for complexities strictly below Fσ.

Proposition 2.4. For any non-trivial set A ⊆ R the following are equivalent:

1. A satisfies (I1).

2. R \A satisfies (I2).

3. No non-trivial closed set is continuously reducible to A.

Proof. The equivalence of (1) and (2) is immediate. Suppose that (2) holds for

A but (3) fails. Let f : R→ R be a continuous reduction of a non-trivial closed

set B to A. We may assume that R \ B = (0, 1) by Lemma 2.2. Since f is

continuous and 0, 1 /∈ B, f((0, 1)) is an interval contained in R \A and at least

one of its end points is not in A, contradicting (2). Suppose that (3) holds for

A but (2) fails. Let a ∈ A and (a, b) ⊆ R \A. We obtain a reduction of [0, 1] to

A which maps [0, 1] to a, contradicting (3).

Hence a set A which satisfies (I) if and only if is incomparable with every

non-trivial open set and every non-trivial closed set. Moreover, the complement

and any continuous preimage of a set which satisfies (I) again satisfies (I).

Proposition 2.5. (I) fails for every non-trivial ∆0
2 set A ⊆ R.

Proof. Let A be a non-trivial set satisfying (I) and B = cl(A) ∩ cl(R \ A), i.e.

the boundary of A. By results of Kuratowski [7, p. 98, 99, 258, 417] it suffices
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to show that B ∩A and B \A are dense in B. Since A and R \A satisfy (I) by

Proposition 2.4, it is sufficient to show that B \A is dense in B.

Suppose that B \ A is not dense in B. Then there is an open interval (a, b)

with B ∩ (a, b) 6= ∅ and B ∩ (a, b) ⊆ A. Then A∩ (a, b) 6= ∅, (a, b), and A∩ (a, b)

is relatively closed in (a, b) because B∩ (a, b) ⊆ A and B∩ (a, b) is the boundary

of A ∩ (a, b) in (a, b). Therefore A ∩ (a, b) does not satisfy (I1) and so neither

does A.

Let us first consider Fσ subsets of the Baire space.

Lemma 2.6. Every Fσ subset of the Baire space can be written as a disjoint

union of countably many closed sets.

Proof. Suppose that A =
⋃
n∈ω An where each An is closed. Let An = [Tn]

where each Tn is a tree on ω. Let S0 = T0. Let (sn,i | i < an) with an ≤ ω

enumerate the minimal nodes in Tn \
⋃
j<n Tj . Let Sn,i = {t ∈ Tn | t ⊆ sn,i

or sn,i ⊆ t} for i < an. Then
⋃
i≤n[Ti] =

⊔
i≤n, j<ai [Si,j ]. Hence

⋃
n∈ω[Tn] =⊔

n∈ω, i<an [Sn,i].

It is easy to see that a (nonempty bounded) open interval cannot be written

as a disjoint union of countably many closed sets. However, such a decomposi-

tion can be done for any Fσ set satisfying condition (I2).

Lemma 2.7. If a non-trivial Fσ set A ⊆ R satisfies (I2), then it is a disjoint

union of countably many closed sets.

Proof. We will construct a continuous reduction of A which collapses all non-

degenerate subintervals of A (if they exist). Let (Bn | n ∈ ω) be a disjoint

family of closed intervals or singletons with the following properties:

(a) (Bn | n ∈ ω) contains all the maximal closed non-degenerate subintervals

in A,

(b) for every n, either Bn ⊆ A or Bn ⊆ R \A,

(c)
⋃
n∈ω Bn is dense, and
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(d) for allm and n with max(Bm) < min(Bn), there is a k such that max(Bm) <

min(Bk),max(Bk) < min(Bn) and Bk ⊆ R \A.

Notice that by condition (I2) for A, all the end points of subintervals of A belong

to A.

We define a sequence of weakly increasing continuous maps fn : R → R by

induction. Let {qn | n ∈ ω} be an enumeration of Q without repetitions. Let

f0 map R to q0.

To define fn+1, choose the least kn+1 so that qkn+1 is not in the range of

fn �
⋃
i≤nBi and the union of fn �

⋃
i≤nBi and the constant map on Bn+1

with value qkn+1 is weakly increasing. Let us call this union to be f ′n. Let

Cn+1 = R \
⋃
i≤n+1Bi. We extend the map f ′n to a continuous map fn+1 on

R which is affine on the bounded connected components of Cn and constant on

the unbounded connected components of Cn (if they exist).

By the construction of (fn | n ∈ ω), for every k there is some n with qk ∈

range(fn �
⋃
i≤nBi). Since the union

⋃
n∈ω Bn is dense and each fn is weakly

increasing, the sequence (fn | n ∈ ω) converges uniformly on every bounded

interval. Hence its pointwise limit f is continuous and weakly increasing. It

follows from the construction of (Bn | n ∈ ω) that f(x) < f(y) for all x < y

with (x, y) ∈ (A × (R \ A)) t ((R \ A) × A). Hence A = f−1(f(A)), i.e. f is a

reduction from A to f(A), and R \ f(A) is dense.

Since A is Fσ and R is σ-compact, f(A) is Fσ. We write f(A) =
⋃
n∈ωDn

where each Dn is closed. Let D ⊆ R \ f(A) be countable and dense in R. Since

R \ D is homeomorphic to a closed subset of the Baire space, we can write

f(A) =
⊔
n∈ω En where each En is closed by Lemma 2.6. Moreover the proof

of Lemma 2.6 shows that we can choose each En so that En ⊆ Dm for some m.

Hence each En is closed in R and A = f−1(f(A)) =
⊔
n∈ω f

−1(En).

2.2 Semi-linearity

The Wadge order for zero-dimensional spaces has a quite simple structure: It is

well-founded and semi-linear.
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Definition 2.8. Let X be a nonempty set. A quasi-order ≤ on a class Π of

subsets of X is semi-linear if A ≤ B or B ≤ X \A for all A,B ∈ Π.

Lemma 2.9. Suppose that X is a zero-dimensional Polish space.

1. (Wadge, see [13, 6]) The quasi-order of continuous (and of Lipschitz) re-

ducibility on the Borel subsets of X is semi-linear.

2. (Martin-Monk, see [6, Theorem 21.15]) The quasi-order of continuous (and

of Lipschitz) reducibility on the Borel subsets of X is well-founded.

It is stated in [1, 12, 14] that the first part of this Lemma fails for the real

line.

Example 2.10 ([12]). Let A ⊆ R be any non-trivial open set. Then A 6≤ Q

and Q 6≤ R \A.

Let Γ denote the class of sets A ∩ B where A is an open and B is a closed

subset of R. Let ∆ denote the class of subsets A of R such that both A and its

complement are in Γ. We will see below that the failure of Wadge’s Lemma (the

first item of Lemma 2.9) for the real line occurs already at the level of ∆ sets.

Note that the failure of the second part of Lemma 2.9 for ∆ sets was proved in

[3].

Let us now consider a small class of reductions on R which induce a well-

founded semi-linear quasi-order on the Borel subsets of R.

Definition 2.11. A function f : R → R is right (left) continuous if f(x) =

limn→∞ f(xn) for every decreasing (increasing) sequence (xn) with limn→∞ xn =

x.

Proposition 2.12. The Borel subsets of R up to right continuous (left contin-

uous) reductions form a well-founded semi-linear quasi-order.

Proof. We will define an isomorphism from (ωω,<lex) to ([0, 1), <). Notice that

any such isomorphism is continuous. We fix a bijection g : ω → Z and define a

continuous bijection f : ωω → R as follows.
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Let L be the set of words w = w0w1..wn0∞ in the alphabet ω. We equip

L with the right lexicographical order, i.e. v < w if v(i) < w(i) for the least i

with v(i) 6= w(i). Let Ln = {w = w0w1...wm0∞ ∈ L | w0 = n}. We choose an

order isomorphism fn : Ln → [g(n), g(n) + 1) ∩ Q for each n. Let f : ωω → R

be the unique continuous map with f(w0w1...wn0∞) = fw0(w1w2...wn0∞) for

all w = w0w1...wn0∞ ∈ ωω. Then the restriction of f is an order isomorphism

between {x ∈ ωω | x(0) = n} and [g(n), g(n) + 1) for each n.

Notice that f ◦h◦f−1 is right continuous for every continuous h : ωω → ωω.

This shows that f−1(A) ≤ f−1(B) implies A ≤ B for all Borel sets A,B ⊆ R.

We obtain semi-linearity by combining this observation with the first item of

Lemma 2.9.

Let us show that A < B implies f−1(A) < f−1(B) for all Borel sets

A,B ⊆ R. Since B � A, the previous argument shows f−1(B) � f−1(A)

and it is enough to see that f−1(A) ≤ f−1(B). If this fails then the first item

of Lemma 2.9 implies that ωω \ f−1(B) ≤ f−1(A) and hence R \B ≤ A. With

A < B we obtain R \B ≡ B and A ≡ B, contradicting A < B.

The well-foundedness now follows from the second part of Lemma 2.9. The

proof for left continuous reductions is analogous.

Let us again consider the function f in Proposition 2.12. Since f−1 � (R\Q)

is continuous, it follows that f is a (3, 3)-isomorphism.23 Hence we obtain the

statement of Proposition 2.12 for simultaneously right continuous, (2, 1), and

(3, 3)-functions. Note that this is optimal, since there are uncountable antichains

in the quasi-order of the Borel subsets of R up to (2, 2)-reducibility (see [8]). It

is open whether this quasi-order is well-founded.
2A function f : R → R is a (m,n)-function if f−1(A) ∈ Σ0

m for every A ∈ Σ0
n. The Baire

class 1 functions are the (2, 1)-functions.
3The existence of a (3, 3)-isomorphism between R and ωω also follows from the result

of Jayne-Rogers [5] that there are (3, 3)-isomorphisms between any two uncountable finite-

dimensional Polish spaces.
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3 Embedding results and characteristics

Let us now describe some global features of the quasi-order (Borel(R),≤). We

first show that (P(ω),⊆∗) and hence every quasi-order of size ω1 embeds into

(Borel(R),≤). We then use variants of this result to prove the existence of gaps

and to determine several cardinal characteristics of (Borel(R),≤).

3.1 Embeddings

Let ⊆∗ denote inclusion up to finite error on P(ω). It is known that every poset

of size ω1 embeds into (P(ω),⊆∗) by Parovičenko’s Theorem [9]. Let us write

P(ω)/fin for the quotient of P(ω) by the ideal fin of finite subsets of ω. We

will construct an embedding of (P(ω),⊆∗) into (Borel(R),≤), generalizing the

construction in [4, Theorem 5.1.2].

We will embed a given scattered linear order L into R and attach a Borel set

to this embedding such that every continuous reduction between two of these

sets induces an isomorphism of L onto a convex4 subset. This property will be

used to encode (P(ω),⊆∗) into continuous reducibility.

Let us consider embeddings of the following kind.

Definition 3.1 (Gaps and discrete embeddings). Suppose that Q is a quasi-

order and L is a linear order.

1. If X,Y ⊆ Q are nonempty, then (X,Y ) is a gap in Q if

a. a < c for all a ∈ X and c ∈ Y and

b. there is no b ∈ Q such that a < b < c for all a ∈ X and all c ∈ Y .

2. We call an embedding f : L → R discrete if for all gaps (X,Y ) in L,

sup(f(X)) < inf(f(Y )) if and only if Y has a minimum.

Notice that every scattered5 countable linear order can be discretely embed-

ded into R.
4A set X ⊆ L is convex if a, b ∈ X and a ≤ x ≤ b imply that x ∈ L.
5A linear order is scattered if it has no subset isomorphic to (Q, <).
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Definition 3.2. Suppose that L is a countable scattered linear order. We

consider the lexicographical ordering on L × 4. Suppose r : L × 4 → R is a

discrete embedding. Let us write ui = r(u, i). Let

Ax = AL,rx =
⊔

u∈L
[u0, u1) t

⊔
u∈L\x

[u2, u3] t {u2 | u ∈ x}

for x ⊆ L. Let us identify L with L×1 so that u0 = u. Notice that r � (L×1) is

discrete. If π : L→ L is any function, let r(π) denote the induced map r◦π◦r−1

on r(L). If f : R→ R is a function with f(r(L)) ⊆ r(L), let r−1(f) denote the

induced map r−1 ◦ f ◦ r on L.

The sets AL,rx in Definition 3.2 are Γ subsets of R. For this it is essential

that r is discrete.

Lemma 3.3. Each set Ax is rigid in the following weak sense. Let I be a

(possibly unbounded) open interval with Ax ⊆ I such that sup(Ax) = sup(I),

and inf(Ax) ∈ I if and only if Ax has a minimum. Then for any continuous

reduction f of Ax to a set B ⊆ R, there is a (possibly unbounded) open interval

J such that (J, f(Ax)) = (J,B ∩ J) is homeomorphic to (I, C), where C is

the set Ax minus (possibly) some of the sets [u2, u3] and {u2}. Moreover, the

reduction induces an isomorphism of L onto a convex subset of L.

Proof. If f(u0) < f(u1) for some u ∈ L, it follows that [u0, u1) is mapped onto

[f(u0), f(u1)). If u has direct successor v ∈ L, then f(v0) is the minimum of the

least half-open interval in f(Ax) above f(u1), and if u has a direct predecessor

w ∈ L, then f(w1) is the supremum of the largest half-open interval below

f(u0). The situation is symmetric in the case f(u0) > f(u1). If follows by

induction on the rank of L that f is either order-preserving or order-reversing on

r(L). Let us assume that f is order-preserving on r(L). Since f is a continuous

reduction, it follows that f(Ax) comes from a discrete embedding. This implies

that there is an open interval J so that (J, f(Ax)) = (J,B∩J) is homeomorphic

to (I, Ax).

Lemma 3.4. Suppose that L is a scattered countable linear order and that

r : L× 4→ R is a discrete embedding.
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1. Suppose that K ⊆ L is convex and π : L→ K is an isomorphism. More-

over suppose that x, y ⊆ L and π(x) ⊆ y. Then there is a weakly increasing

continuous reduction f : R → R of Ax to Ay extending r(π). If moreover

K = L, then f can be chosen to be surjective.

2. Suppose that f : R → R is a continuous reduction of Ax to Ay. Then

f(r(L)) ⊆ r(L) and r−1(f) is an isomorphism of L onto a convex subset

K ⊆ L. If f is surjective, then K = L.

Proof. 1. Suppose that K ⊆ L is convex and π : L → K is an isomorphism.

Moreover suppose that x, y ⊆ L and π(x) ⊆ y. We define f in the following

cases:

- Let f map [u0, u1) onto [πu 0, πu 1) and [u1, u2) onto [πu 1, πu 2) by strictly

increasing maps.

- Suppose that u ∈ L. Let s = infu<v v and t = infu<v πv. If u ∈ x ⊆

π−1(y), let f map [u2, u3] onto [πu 2, πu 3] and [u3, s] onto [πu 3, t] by strictly

increasing maps. If u /∈ x and πu /∈ y, let f map [u2, u3] onto [πu 2, πu 3] by

strictly increasing maps. If u /∈ x and πu ∈ y, let f map [u2, u3] to πu 2 and

[u3, s] onto [πu 2, t] by a strictly increasing map.

- If (A,B) is a gap in L, A has infinite cofinality, and B has a minimum, let

a = sup(r(A)), b = inf(r(B)), s = sup(r(π(A))), and t = inf(r(π(B))). Then

a < b and s < t, since r is discrete. Let f map [a, b] onto [s, t] by a strictly

increasing map.

- If (A,B) is a gap in L and B has infinite coinitiality, let a = sup(r(A)) and

s = sup(r(π(A))). Let f map a to s.

- If r(L) has a lower bound, let M = {u ∈ L : ∀v ∈ K(u < v)}. Let s =

sup(r(M)), where sup(∅) = −∞ (so s = −∞ if K is coinitial in L) and

t = inf(r(K)). Let f map (−∞, inf(r(L))] onto (s, t] by a strictly increasing

map.
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- If r(L) has an upper bound, let M = {u ∈ L : ∀v ∈ K(v < u)}. Let s =

sup(r(K)) and t = inf(r(M)), where inf(∅) = ∞ (so t = ∞ if K is cofinal in

L). Let f map [sup(r(L)),∞) onto [s, t) by a strictly increasing map.

Then f is a reduction of Ax to Ay with the desired properties.

2. To prove the second claim, let us suppose that f : R → R is a continuous

reduction of Ax to Ay. It follows from Lemma 3.3 that r−1(f) is an isomorphism

of L onto a convex subset of L.

Lemma 3.5. Let L be the set of ω-words u = u0u1... in the alphabet Z such

that un is eventually 0. Let u � v if u(i) < v(i) for the largest i with u(i) 6= v(i)

for u, v ∈ L, or u = v. Then (L,�) is a scattered linear order. We fix a discrete

embedding r : L→ R as in Lemma 3.4. Let x̄ = {u ∈ L | u � 0∞ or u = 0n10∞6

for some n ∈ x} for x ⊆ ω. Let us consider the sets Ax̄ defined in Lemma 3.4.

Then for all x, y ⊆ ω

1. If x ⊆∗ y, then there is a weakly increasing continuous surjective reduction

f : R→ R of Ax̄ to Aȳ.

2. If Ax̄ ≤ Aȳ, then x ⊆∗ y.

Proof. If x ⊆∗ y, then π(u0...un0∞) = u0...um−1(um − 1)um+1...un0∞ for n >

m = max(x\y) defines an automorphism of L with π(x̄) ⊆ ȳ. The claim follows

from the previous lemma.

If Ax̄ ≤ Aȳ, then there is an automorphism π : L → L with π(x̄) ⊆ ȳ by

the previous lemma. If π0∞ = u0...um0∞, then by induction on n ≥ m, for all

u = u0...un0∞ there is some v = v0...vn0∞ with πu = v. Now π(x̄) = ȳ implies

x ⊆∗ y.

Notice that the linear order in Lemma 3.5 is the union of Zn equipped

with the lexicographical orders. Hence every isomorphism of L onto a convex

subset is surjective. If the embedding r is chosen with image unbounded in both
6I.e. 0n1 followed by an infinite string of 0.
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directions and f is a continuous reduction of Ax̄ to Aȳ, then the proof of Lemma

3.5 shows that f is onto.

Note that as in the second part of Lemma 3.5, if f is a continuous reduction

of Ax̄ to any set, then f(Ax̄) is equal to Aȳ defined relative to some discrete

embedding of L for some y ⊆ ω with x ⊆∗ y. This follows from Lemma 3.3.

It follows from Lemma 3.5 that

Theorem 3.1. (P(ω),⊆∗) embeds into (Γ,≤). Moreover:

1. Every quasi-order of size ω1 embeds into (Γ,≤).

2. CH implies that (Γ,≤) is maximal with respect to embeddability among

quasi-orders of size ω1.

3. There is a model of ZFC in which 2ω is arbitrarily large and (Γ,≤) is

maximal with respect to embeddability among quasi-orders of size 2ω.

Proof. The second claim follows from Parovičenko’s Theorem [9]. The third

claim follows from the analogous result for P(ω)/fin [2].

Notice that we have not used the axiom of choice in the construction. Since

every countable partial ordering on ω embeds into (P(ω),⊆) by mapping n to

the set of its predecessors, we obtain an embedding of any countable poset into

(P(ω),⊆∗) via a bijection from ω to ω×ω and hence an embedding into (Γ,≤)

without the axiom of choice.

It is also possible to prove that (P(ω),⊆) embeds into (∆,≤) by consider-

ing unions of order type ω of half-open intervals, closed intervals, and points

unbounded upwards. However, we do not know whether P(ω)/fin embeds into

(∆,≤).

Another natural question is whether the quasi-order of embedability of count-

able structures in a countable language embeds into (Borel(R),≤).

Remark 3.6. (Smaller classes of reductions) Do similar embeddings exist when

we consider reducibility with respect to smaller classes of functions? Let us write

ru = infu<v v for u ∈ L, where L and r are as in Lemma 3.5.
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1. (Differentiable reductions) If the embedding r is chosen so that

lim
n→∞

un3− un2
rn − un1

= 0

for every increasing sequence (un) such that (un)n∈ω has an upper bound and

for every decreasing sequence (un) such that (un)n∈ω has an lower bound,

then it is easy to see that for all x ⊆∗ y there is a weakly increasing differen-

tiable Lipschitz reduction of Ax̄ to Aȳ.

2. (ε-Lipschitz reductions) Suppose r is chosen as we have just described and

with bounded image. Let us choose a family of affine images (Aix̄)i∈Z of Ax̄

for each x ⊆ ω such that min(Aix̄) = min(Aiȳ) < min(Ai+1
x̄ ) = min(Ai+1

ȳ )

for x, y ⊆ ω and i ∈ Z (and such that Aix̄ has the same orientation as

Ax̄). Moreover, let us assume that the diameter of Aix̄ is 2i and the distance

between Aix̄ and Ai+1
x̄ is 2i for all i ∈ Z. Let Cx̄ =

⋃
i∈Z A

i
x̄. Then Cx̄ ≤ Cȳ

implies x ⊆∗ y for all x, y ⊆ ω. If x ⊆∗ y then for every ε ∈ R+, there is a

weakly increasing ε-Lipschitz reduction of Cx̄ to Cȳ. Note that Cx̄ ∈ Γ for

all x ⊆ ω.

3. (C1-reductions) We do not know if (P(ω),⊆∗) embeds into the Borel subsets

of R up to C1-reducibility. Notice that it is not difficult to see by a variation

of the previous arguments that (P(ω),⊆) embeds into the Borel subsets of

R up to C∞-reducibility, but we do not know if (P(ω),⊆) embeds into the

Borel subsets of [0, 1] up to C1-reducibility.

4. (Polynomial reductions) It is easy to see that ω∗ (i.e. ω with the reverse

order) embeds into ∆ up to reducibility by polynomial functions by working

with finite unions of half-open intervals, However, we do not know if ω∗

embeds into the closed sets up to reducibility by polynomial functions, or if

(P(ω),⊆) embeds into the Borel subsets of R up to reducibility by polynomial

functions or power series.
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3.2 Gaps and cardinal characteristics

It is natural to ask how much (Borel,≤) resembles (P(ω),⊆∗) as a quasi-order.

Let us show that there are gaps in (Borel,≤), answering a question of Jörg

Brendle. To this end, we again consider the family (Ax̄)x⊆ω from Lemmas 3.4

and 3.5.

Proposition 3.7. Suppose that the range of the embedding r : L → R in

Lemma 3.4 is unbounded in both directions. Let F (x) = Ax̄ for x ⊆ ω. If

(X,Y ) is a gap in P(ω)/fin, then (F (X), F (Y )) is a gap in (Borel(R),≤).

Proof. Suppose that AL,rx̄ ≤ B ≤ AL,rȳ for all x ∈ X and all y ∈ Y . Let

fx : R→ R be a continuous reduction of AL,rx̄ to B for each x ∈ X. Then there

are open intervals I, J and a set C as in Lemma 3.3 with (J, f(Ax)) = (J,B∩J)

homeomorphic to (I, C).

Since B ≤ AL,rȳ for some y ⊆ ω, f(AL,rx̄ ) = B is unbounded in both direc-

tions. It follows that there are z ⊆ ω and a discrete embedding s : L × 4 → R

with unbounded range in both directions such that B = f(AL,rx̄ ) = AL,sz̄ . Since

AL,rz̄ and AL,sz̄ differ only in the choice of the embedding and both r and s are

discrete and their ranges are unbounded in both directions, there is a homeo-

morphism h of R with h(AL,sz̄ ) = AL,rz̄ . Since AL,rx̄ ≤ AL,rz̄ for all x ∈ X, we

have x ⊆∗ z for all x ∈ X by Lemma 3.5. Since AL,rz̄ ≤ AL,rȳ for all y ∈ Y , we

have z ⊆∗ y for all y ∈ Y by Lemma 3.5. However, there can be no such z since

(X,Y ) is a gap.

Hence there are gaps in (Borel(R),≤) of at least all the types of the gaps

that appear in P(ω)/fin. In particular, it follows from the existence of Hausdorff

gaps and Rothberger gaps (see [10]) that

Corollary 3.8. There are gaps of the types (ω1, ω
∗
1), (ω, b∗), and (b, ω∗) in

(Borel(R),≤), where b denotes the bounding number.

We do not know if (Borel(R),≤) has exactly the same types of gaps (κ, λ)

as P(ω)/fin, for infinite cardinals κ, λ.
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Some global features of the quasi-order B = (Borel(R),≤) are described by

the following cardinal characteristics.

Definition 3.9. Let min(ϕ) = min({|X| | X ⊆ Borel(R), ϕ(X,≤)} where ϕ is

any property, and similarly for sup. The bounding number, dominating number,

depth, and length of B are defined as

1. bB = min(unbounded),

2. dB = min(dominating),

3. dpB = sup(linearly ordered), and

4. lB = sup(well-ordered).

The bounding and dominating numbers and the depth can be calculated in

ZFC.

Proposition 3.10. 1. bB = ω1.

2. dB = 2ω.

3. dpB = 2ω.

Proof. 1. To see that bB ≥ ω1, let us suppose that X is a countable family of

Borel subsets of R. We can choose homeomorphisms hB between R and disjoint

open intervals for B ∈ X. Then
⋃
B∈X hB(B) is an upper bound for X.

To see that bB ≤ ω1, let r : β × 2 → R be a discrete embedding for β < ω1.

Let αi = r(α, i) for (α, i) ∈ β × 2 and let Aβ =
⊔
α<β [α0, α1]. Then each Aβ is

rigid in the sense of Lemma 3.3 by the proof of Lemma 3.3.

Let us show that there is no upper bound for (Aβ | β < ω1). If B ⊆ R

is an upper bound, let Iβ , Jβ be open intervals and let hβ : Iβ → Jβ be a

homeomorphism between (Iβ , Aβ) and (Jβ , B ∩ Jβ) for each β < ω1. Let us

assume that every hβ is increasing. Let E ⊆ ω1 be the set of additively closed

countable ordinals. There is an interval H with rational end points and an

unbounded set F ⊆ E such that H ⊆ Jβ for all β ∈ F . Hence Jα ∩ Jβ 6= ∅ for
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all α, β ∈ F . Then sup(Jα) < sup(Jβ) for all α, β ∈ F with α < β by the proof

of Lemma 3.4. This is impossible since F is uncountable.

2. We will construct a family (Ax | x ⊆ ω) of sets in Γ such that for every

B ⊆ R there are only countably many x ⊆ ω with Ax ≤ B. For x ⊆ ω

let rx : ωω × 4 → R be order-preserving, continuous at ωn for all n ∈ x, and

discontinuous at ωn for all n ∈ ω \ x. Let x̄ = ωω \ {ωn : n ∈ x} and

Ax =
⊔

α∈ωω\x̄

[α0, α1) t
⊔
α∈x̄

(α0, α1)

for x ⊆ ω. It is easy to see that each Ax is rigid in the sense of Lemma 3.3.

Suppose that there is an uncountable set E ⊆ P(ω) with Ax ≤ B for all

x ⊆ ω. Let us choose an uncountable set F ⊆ E so that x4y = (x \ y)∪ (y \ x)

is finite for all x, y ∈ F with x 6= y. Let Ix be an open interval with Ax ⊆ Ix and

sup(Ix) = sup(Ax) and let hx : Ix → Jx be a homeomorphism between (Ix, Ax)

and (Jx, B∩Jx) for all x ∈ F . Let us assume that every hx is increasing. There

is an interval H with rational end points and an uncountable set G ⊆ F such

that H ⊆ Jx for all x ∈ G, so Jx ∩ Jy ∩B 6= ∅ for all x ∈ G. A similar proof as

in Lemmas 3.4 and 3.5 shows that x4y is finite for all x, y ∈ G with x 6= y.

3. It is sufficient to embed the linear order (ω2,≤lex) into (P(ω × ω),⊆∗) by

Proposition 3.1. Let ≤∗ denote eventual domination on ωω, i.e. f ≤∗ g if there

is an m so that f(n) ≤ g(n) for all n ≥ m. Then F : ω2 → ωω, F (x)(n) =∑
0≤i≤n 2n−ix(i), is an order-preserving injection of (ω2,≤lex) into (ωω,≤∗),

and G : ωω → P(ω × ω), G(x) = {(n,m) | m < x(n)}, is an order-preserving

injection of (ωω,≤∗) into (P(ω × ω),⊆∗).

Proposition 3.10 answers a question of Stefan Geschke. Note that the sets

in the above proof are in Γ, so the characteristics for (Γ,≤) are the same as for

(Borel(R),≤). Hence there are no maximal elements in (Σ0
α,≤) and in (Π0

α,≤)

for all countable ordinals α ≥ 2. This contrasts the situation for continuous

reducibility for the Baire space where any proper Σ0
α set is maximal in (Σ0

α,≤)
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and the same holds for (Π0
α,≤).

Let us now consider the length lB. Notice that ω1 ≤ lB ≤ 2ω by Proposition

3.1. We will need

Lemma 3.11. Suppose that κ is an infinite cardinal with αω < κ for all α < κ.

Let Cκ denote the finite support product of κ many copies of Cohen forcing.

Then in V Cκ , the length of any quasi-order on P(ω) definable from a real and

an ordinal is less than κ.

Proof. Suppose that p 
Cκ ϕ(x, y, ẋ, γ̌) defines the strict part of a quasi-order

on P(ω), where ẋ is a nice name for a subset of ω. Suppose that (ẋα | α < ω1)

is a sequence of nice Cκ-names for subsets of ω with p 
 ẋα <ϕ ẋβ for all

α < β < ω1. We may assume that p = 1 and ẋ is a name for an element of V

by passing to an intermediate extension.

Let sα = supp(ẋα) =
⋃

(ň,p)∈ẋα supp(p) ⊆ κ for each α < κ. Note that each

sα is countable. We can assume that (sα) forms a ∆-system by thinning out,

and that the root is empty by passing to an intermediate extension. Thus we

assume that (sα) is a disjoint family.

Let Cκ(s) = {p ∈ Cκ | supp(p) ⊆ s} for s ⊆ κ. The function collapsing sα to

an ordinal induces an isomorphism between Cκ(sα) and Cβα for some βα < ω1.

This maps ẋα to a nice Cω1 -name π(ẋα) for a subset of ω. Since there are only

2ω < κ many such names and since κ is regular, there is an unbounded set I ⊆ κ

with π(ẋα) = π(ẋβ) for all α, β ∈ I.

Let us consider α, β ∈ I with α 6= β. Since sα ∩ sβ 6= ∅ and π(ẋα) = π(ẋβ),

there is an automorphism σ of Cκ with σ(ẋα) = ẋβ and σ(ẋβ) = ẋα. Hence

1 
 ẋα <ϕ ẋβ if and only if 1 
 ẋβ <ϕ ẋα, contradicting the assumption that ϕ

defines a quasi-order.

Proposition 3.12. There are models of ZFC with

1. lB = 2ω > ω1,

2. lB = ω1 < 2ω, and
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3. ω1 < lB < 2ω.

Proof. 1. Note that Martin’s axiom (applied to almost disjoint forcing) implies

that the tower number t of (P(ω),⊆∗) is 2ω. Since there is a well-ordered

sequence of length t in (P(ω),⊆∗), any model of MA+¬CH works by Proposition

3.1.

2. Let us force with Cω2 over a model of GCH. Then lB < ω2 and hence lB = ω1

in V Cω2 by Lemma 3.11.

3. We force MAω1 over a model of GCH with the standard finite support c.c.c.

iteration of length ω2. In the extension 2ω = 2ω1 = ω2, 2ω2 = ω3, and lB = ω2

by MAω1 . We further force with Cω3 to obtain a model of 2ω = ω3 and lB = ω2

by Lemma 3.11.

4 Below Q

In this section we study (Fσ,≤). We first characterize the Fσ sets below Q and

show that P(ω)/fin embeds into (Fσ,≤). We then construct the least non-trivial

set below Q.

4.1 A dichotomy for Fσ sets

We aim to prove

Theorem 4.1. The following conditions are equivalent for any Fσ set A ⊆ R:

1. A satisfies (I).

2. There are no non-trivial closed or open sets B with B ≤ A.

3. A ≤ Q.

This directly follows from Lemma 2.4 and
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Lemma 4.1. A non-trivial Fσ subset of R reduces to Q if and only if it satisfies

(I).

Proof. Notice that any continuous preimage of Q satisfies (I). Suppose that

A ⊆ R is a non-trivial Fσ set satisfying (I). Then A =
⊔
n∈sAn, where each An

is closed and s ⊆ ω, by Lemma 2.7. Let Q = {qn | n ∈ ω}. Let {pn | n ∈ ω} be

a dense subset of R\Q. Let (Bn | n ∈ t) enumerate all maximal closed intervals

in R \A, where t ⊆ ω. Note that any point in the interior of R \B is contained

in Bn for some n by property (I1) for A.

We can assume that s ∩ t = ∅ and that there are a < b with

1. An ⊆ (a, b),

2.
⋃
j∈s, j<nAn ∩ (a, b) = ∅, and

3.
⋃
j∈t, j<nBn ∩ (a, b) = ∅

by changing the indexing and partitioning the sets into finitely many closed

pieces. Let A =
⋃
j<nAn, B =

⋃
j<nBn, and f =

⋃
j<n fj .

We will construct a sequence (fn) of partial functions by induction. Let

fn = f if n /∈ s ∪ t. Now we suppose that n ∈ s ∪ t. Let an = min((A ∪ B) ∩

(−∞,min(An)) and bn = max((A ∪ B) ∩ (max(An),∞) where min(∅) = −∞

and max(∅) =∞. Let cn = f(an), if this is defined, and cn = −∞ if an = −∞.

Let dn = f(bn), if this is defined, and dn =∞ if bn =∞. Let us extend f to fn

in the following cases:

1. Suppose that cn < dn. If n ∈ s let kn be minimal with qkn ∈ (cn, dn).

Then we extend f to fn by mapping An to qkn . If n ∈ t let kn be minimal

with pkn ∈ (cn, dn). Then we extend f to fn by mapping Bn to pkn .

2. Suppose that dn < cn. This is symmetric to the previous case.

3. Suppose that cn = dn. Let In = (an, bn). We choose d̄n > cn so that for

Jn = (cn, d̄n) and m < n

a. d̄n − cn < 1
2n .,
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b. qm /∈ Jn,

c. qkm /∈ Jn, and

d. cl(Jn) ⊆ Jm if cn = dn and In ⊆ Im.

Notice that cn 6= cm by the third condition in step m. Hence we can

choose d̄n such that Jn satisfies the fourth condition.

If n ∈ s let k be minimal with qkn ∈ (cn, d̄n). Then we extend f to fn by

mapping An to qkn . If n ∈ t let kn be minimal with pkn ∈ (cn, d̄n). Then

we extend f to fn by mapping Bn to pkn .

Let f =
⋃
n∈ω fn.

Claim 4.2. f is continuous.

Proof. Let B =
⋃
n∈tBn. It suffices to show that f preserves the limit of any

strictly increasing (decreasing) sequence (xn) in A∪B converging to x ∈ A∪B.

Let us consider the following cases:

1. If there is m with xn ∈ Am for all n or with xn ∈ Bm for all n, then we

are done.

2. If xn ∈ Amn for all m and sup(Amn) < inf(Amn+1) for all n, then

limn→∞ f(xn) = limn→∞ qkmn = f(x), since in the construction we al-

ways choose qk and pl with the least possible index as the next value:

Assuming that qk, pl ∈ (limn→∞ qkmn , f(x)) for some k and l leads to a

contradiction.

3. If xn ∈ Bmn for all m and sup(Bmn) < inf(Bmn+1) for all n, then again

limn→∞ f(xn) = limn→∞ pkmn = f(x), since in the construction we al-

ways choose qk and pl with the least possible index as the next value.

All other cases reduce to one of these. The argument for decreasing sequences

is symmetric.

Claim 4.3. There is a unique continuous extension g : R→ R of f .

21



Proof. Suppose (xn) and (yn) are strictly increasing (or decreasing) sequences

in A ∪ B converging to x ∈ R \ (A ∪ B). We need to see that limn→∞ f(xn) =

limn→∞ f(yn).

Let us consider the following cases:

1. Suppose that sup(An) < x or x < inf(An). for all n. In this case the argu-

ment is similar as for the previous claim: Assuming that there are qk, pl ∈

(limn→∞ f(xn), limn→∞ f(yn)) or qk, pl ∈ (limn→∞ f(yn), limn→∞ f(xn))

leads to a contradiction, since in the construction we always choose qk and

pl with the least possible index as the next value.

2. Suppose that there is an infinite sequence (ni) such that x ∈ Ini and

Inj ⊆ Ini for all i < j. Then cl(Jnj ) ⊆ Jni for all i < j. It follows

from the choice of Jni that the diameter of Jni converges to 0. Hence

limn→∞ f(xn) = limn→∞ f(yn) is the unique element of
⋂
i∈ω Jni .

The other cases reduce to one of these. Note that g is unique since A∪B is

dense in R.

Claim 4.4. A = g−1(Q).

Proof. We have g(A) ⊆ Q and g(B) ⊆ R \Q by the construction. It remains to

show that g(R \ (A ∪B)) ⊆ R \Q. Suppose that x ∈ R \ (A ∪B)).

Let us consider the two cases of the previous claim. In the first case, some

An is mapped to qk. If x > sup(An) then g(x) > qk and if x < inf(An) then

g(x) < qk by the construction. In the second case f(x) ∈
⋂
n∈ω Jni . Hence

g(x) /∈ Q by the choice of the sets Jn.

This completes the proof of Lemma 4.1.

Note that any nontrivial countable set A ⊆ R which satisfies (I) is contin-

uously reducible to Q by Proposition 4.1. If A is not equivalent to Q, then its

closure is nowhere dense, and any two such sets are equivalent by a back-and-

forth construction.

We will now study (Borel(R,≤) below Q. It is well known that
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Lemma 4.5. If A ⊆ R is countable and dense in R, then there is a homeomor-

phism h of R with h(A) = Q. Hence A ≡ Q.

Proof. There is an order isomorphism f between (A,<) and (Q, <) by a stan-

dard back-and-forth argument. We define g : R→ R by

h(r) = sup{f(a) | a ∈ A and a < r}.

This is a well-defined homeomorphism, since the topology of the real line is the

order topology of (R, <). Clearly h(A) = Q.

Lemma 4.6. Q is not minimal.

Proof. We will define a continuous function fC : R → R such that R \ A is

nowhere dense for A = f−1
C (Q). It is easy to see that this implies that Q 6≤ A

and hence A < Q. Let f denote the Cantor function, i.e. f : [0, 1]→ [0, 1] is the

unique continuous function such that

f(
∑
n≥1

2an
3n

) =
∑
n≥1

an
2n

on the Cantor set (see [6, Exercise 3.4]) for (an) ∈ ω2 and f is constant on

each open interval disjoint from the Cantor set. Note that the preimage of the

irrationals under f is a subset of the Cantor set and hence is nowhere dense.

Let the continuous extension fC : R→ R of f obtained by translation

fC(x) = f(x− n) + n if n ≤ x < n+ 1 for some integer n

is as desired.

Let us further define gC = fC+
√

2. To see that A = f−1
C (Q) and B = g−1

C (Q)

are incomparable, let us suppose that h reduces B to A. Then h is not constant

and hence its range contains an open interval. In particular, it contains an open

subset of A, and hence B would contain an open subset. But B is nowhere

dense. The argument for A 6≤ B is symmetric.

To see that the quasi-order (Borel(R,≤) is quite complex below Q, we will

now embed P(ω)/fin.
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Proposition 4.7. There is an embedding of (P(ω),⊆∗) to (Borel(R,≤) below

Q.

Proof. We will construct a family (Ax)x⊆ω of Fσ subsets of R by attaching

homeomorphic images of the sets A and B in the previous paragraph. Let

r : ωω × 2→ R be a continuous order-preserving embedding, where the ordinal

ωω carries the order topology and ωω × 2 carries the lexicographic ordering. we

write u+ = u+ 1 and ui = r(u, i).

Let Iu = (u0, u1) and Ju = (u1, u+0). Let gu : R → R denote a homeomor-

phism with gu(0) = u0 and gu(1) = u1. Let hu : R → R denote a homeomor-

phism with hu(0) = u1 and gu(1) = u+0. Let Cu = gu(A∩(0, 1))∪hu(B∩(0, 1)).

Let

Ax =
⊔
u∈ωω

Cu t {u1: u ∈ ωω} t {u0: u = ωn + 1 for some n ∈ ω \ x}.

These sets satisfy (I) and hence they are reducible to Q by Proposition 4.1. If

m = max(x \ y) + 1, then there is a continuous reduction f of Ax to Ay with

f(0) = ωm 0. The intervals (u0, u1), (u1, u+0), and (u+1, u++0) are folded into

(u0, u1) for all n ∈ y \ x with n > m. If x 6⊆∗ y, then there is no continuous

reduction of Ax to Ay by a similar argument as in Lemma 3.4.

Problem 4.8. Are the sets reducible to Q up to surjective continuous reducibil-

ity (or up to weakly increasing continuous reducibility) well-founded?

4.2 The least set below Q

In this section, we will construct a minimal set below Q and show that it is

unique.

An end point of a set A ⊆ R is an x ∈ A such that there is a y < x with

(y, x) ∩ A = ∅ or a y > x with (x, y) ∩ A = ∅. Let C ⊆ [0, 1] denote the Cantor

set (see [6, Exercise 3.4]). Let D0 be the set of end points of C. Let D1 be a

countable dense subset of C\D0. Let D2 be a countable dense subset of [0, 1]\C.

Let D = D0 tD1 tD2.
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For any countable dense set D ⊆ [0, 1] with 0, 1 ∈ D, let us fix an increasing

homeomorphism hD : [0, 1] → [0, 1] with D = hD[{m2n ∈ [0, 1] | m,n ∈ ω}]. Let

fC : [0, 1]→ [0, 1] denote the Cantor function. Let A = (hD ◦ fC)−1(C). Then A

is obtained from C by blowing up each d ∈ D to a closed interval. Note that it

is not necessary to blow up the points in D2 for our purposes, but we do this in

order to be able to work with the Cantor function.

Lemma 4.9. Suppose C ⊆ R is a nonempty compact set. Then there is a

continuous function f : R → R with f(0) = min(C), f(1) = max(C), and

A = f−1(C).

Proof. Let us assume that min(C) = 0 and max(C) = 1. We enumerate by

- (An)n<ω all maximal closed intervals in A,

- (Bn)n<ω all maximal open intervals in (0, 1) \A,

- (Cn)n<M all maximal closed intervals in C and all end points of C which are

not contained in a maximal closed interval in C, and

- (Dn)n<N all maximal open intervals in (0, 1) \ C,

where M,N ≤ ω. Since there are infinitely many sets An whose end points are

not end points of A, by choice of D1, we can choose an enumeration such that

m < n whenever An and cl(Bm) share an end point.

In step n we will define a partial map fn : R→ R with the properties

- dom(fn) is a union of finitely intervals, including all Am and Bm with m < n,

- Am ⊆ dom(fn) or Am ∩ dom(fn) = ∅ for all m,

- Bm ⊆ dom(fn) or Bm ∩ dom(fn) = ∅ for all m,

- dom(fn) is closed,

- the end points of dom(fn) are in A,

- a, b /∈ dom(fn) for all a, b with (a, b) ∩ dom(fn) = ∅,
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- range(fn) is a union of finitely many sets of the form Cm or Dm, including all

Cm and Dm with m < n,

- range(fn) is closed,

- the end points of range(fn) are in C,

- fn is increasing on the end points of dom(fn),

- fn maps the end points of dom(fn) onto the end points of range(fn), and

- fn � Am and fn � Bm are affine for all Am ⊆ dom(fn) and all Bm ⊆ dom(fn).

Moreover, fn+1 will be an extension of fn for each n, and
⋃
n<ω dom(fn) and⋃

n<ω range(fn) will be dense in R.

To define f0, let a be maximal with [0, a] ⊆ A and let b be minimal with

[b, 1] ⊆ A. Moreover, let ā be maximal with [0, ā] ⊆ C and let b̄ be minimal

with [b̄, 1] ⊆ C. We define f0 by mapping [−∞, a] onto [−∞, ā] by a translation

and [b,∞] onto [b̄,∞] by a translation.

Let us assume that fn satisfies the above properties. We will successively

define extensions gi of fn for i < 4 such that

- An ⊆ dom(g0),

- Bn ⊆ dom(g1),

- Cn ⊆ range(g2),

- Dn ⊆ range(g3),

and gi satisfies the above properties of fn for each i < 4, except the conditions

stating that certain Am, Bm, Cm, Dm are contained in dom(fn) or range(fn).

We will then define fn+1 = g3.

Step 4.9.1. Let g0 = fn if An ⊆ dom(fn). Note that if An contains an end point

of A, then there is some m < n such that An and cl(Bm) have a common end

point, by choice of the enumeration of the sets An. In this case, An ⊆ dom(fn)

by Step 4.9.2.
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Otherwise, we define g0 by extending dom(fn) to An. Let b = min(An) and

c = max(An). Let a < b be maximal with a ∈ dom(fn). Let d > c be minimal

with d ∈ dom(fn).

We consider the following cases:

1. Suppose that (fn(a), fn(d))∩C 6= ∅. Let [c̄, d̄] be a maximal closed subin-

terval of (fn(a), fn(d)) ∩ C. We define g0 by mapping [c, d] onto [c̄, d̄] by

an increasing affine map.

2. Suppose that (fn(a), fn(d))∩C = ∅. Let (e, h) be a maximal open subin-

terval of (a, d) \ A. We define g0 by mapping [e, h] onto [fn(a), fn(b)] by

an increasing affine map. In addition, let ε = 2−n|fn(a)− fn(d)|, g0(x) =

fn(a) + εminy∈A |x− y| for x ∈ [a, e], and g0(x) = fn(d)− εminy∈A |x− y|

for x ∈ [h, d].

Step 4.9.2. Let g1 = g0 if Bn ⊆ dom(g0). Otherwise, we define g1 by extending

dom(g0) to Bn. Let c = min(Bn) and d = max(Bn). There are b < c and e > d

with [b, c] ⊆ A and [d, e] ⊆ A by the choice of D0. Let b be minimal and

e maximal with these properties. Note that [b, c] ∩ dom(g0) = ∅ and [d, e] ∩

dom(g0) = ∅ by the choice of the enumeration of the sets Am. Let a < b be

maximal with a ∈ dom(g0) and let h > e be minimal with h ∈ dom(g0).

We consider the following cases:

1. Suppose (g0(a), g0(h)) ∩ C has at least 2 connected components. Then

there is some m such that [c̄, d̄] ⊆ (g0(a), g0(d)) for c̄ = inf(Dm) and

d̄ = sup(Dm). Let b̄ ≤ c̄ be minimal with [b̄, c̄] ⊆ C and let ē ≥ d̄ be

maximal with [d̄, ē] ⊆ C. Notice that g0(a) < b̄ and c̄ < g0(e), since

range(g0) is a union of sets of the form Cm and Dm. We define g1 by

mapping [b, c] onto [b̄, c̄], [c, d] onto [c̄, d̄], and [d, e] onto [d̄, ē] by increasing

affine maps.

2. Suppose (g0(a), g0(h))∩C has exactly one connected component Cm. Let

b̄ = min(Cm) and c̄ = max(Cm). We define g1 by mapping [b, c] onto
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[b̄, c̄] and [c, d] onto [c̄, g0(h)] by increasing affine maps. Moreover, let

ε = 2−n|g0(a)−g0(h)| and let g1(x) = g0(h)−εminy∈A |x−y| for x ∈ [d, h].

3. Suppose (g0(a), g0(h)) ∩ C = ∅. We define g1 by mapping [c, d] onto

[g0(a), g0(d)] by an increasing affine map. Moreover, let ε = 2−n|g0(a) −

g0(h)|, g1(x) = g0(a) + εminy∈A |x− y| for x ∈ [a, c], and g1(x) = g0(h)−

εminy∈A |x− y| for x ∈ [d, h]

Step 4.9.3. Let g2 = g1 if Cn ⊆ range(g1) or n ≥M . Otherwise, we define g2

by extending range(g1) to Cn. Let b̄ = min(Cn) and c̄ = max(Cn). Let ā < b̄

be maximal with ā ∈ range(g1) and d̄ > c̄ minimal with c̄ ∈ range(g1). Let a be

the unique end point of dom(g1) with g1(a) = ā and d the unique end point of

dom(g1) with g1(d) = d̄. We choose m such that Am ⊆ (a, d). We define g2 by

mapping Am onto Cn by an increasing affine map.

Step 4.9.4. Let g3 = g2 if Dn ⊆ range(g2) or n ≥ N . Otherwise, we define g3

by extending range(g2) to Dn. Let c̄ = inf(Dn) and d̄ = sup(Dn). There are

l,m with c̄ = max(Cl) and d̄ = min(Cm). Let b̄ = min(Cl) and c̄ = max(Cm).

We consider the following cases:

1. Suppose that range(g2) ∩ Cl = ∅ and range(g2) ∩ Cm = ∅. Let ā < b̄ be

maximal with ā ∈ range(g2) and h̄ > ē minimal with h̄ ∈ range(g3). Let a

and h be the unique end points of dom(g2) with g2(a) = ā and g2(h) = h̄.

There is i with Bi ⊆ (a, h). Let c = inf(Bi) and d = sup(Bi). We choose

j and k with max(Aj) = c and min(Ak) = d. The conditions on g2 imply

dom(g2) ∩ Aj = ∅ and dom(g2) ∩ Ak = ∅. We define g3 by mapping Aj

onto Cl, Bi onto Dn, and Ak onto Cm by increasing affine maps.

2. Suppose that range(g2) ∩ Cl = ∅ and Cm ⊆ range(g2). Let ā < b̄ be

maximal with ā ∈ range(g2). Let a and d be the unique end points of

dom(g2) with g2(a) = ā and g2(d) = d̄. There is i with Bi ⊆ (a, d). Let

b = inf(Bi) and c = sup(Bi). We choose j with max(Aj) = c. Then

dom(g2) ∩ Aj = ∅ by the conditions on g2. We define g3 by mapping

Aj onto Cl by an increasing affine map, if Cl is non-degenerate, and by
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by a constant map if Cl consists of a point. We map Bi onto Dn by

an increasing affine map. Moreover, let ε = 2−n|c̄ − d̄| and let g3(x) =

g2(d)− εminy∈A |x− y| for x ∈ [c, d].

3. Suppose that Cl ⊆ range(g2) and range(g2) ∩ Cm = ∅. This is symmetric

to the previous case.

4. Suppose that Cl ⊆ range(g2) and Cl ⊆ range(g2). Let c and d be the

unique end points of dom(g2) with g2(c) = c̄ and g2(d) = d̄. There is i with

Bi ⊆ (c, d). Let a = inf(Bi) and b = sup(Bi). Then a, b /∈ dom(g2) by the

conditions on g2. We define g3 by mapping Bi onto Dn by an increasing

affine map. Moreover let ε = 2−n|c̄− d̄|, g3(x) = g2(c) + εminy∈A |x− y|

for x ∈ [c, a], and g3(x) = g2(d)− εminy∈A |x− y| for x ∈ [b, d].

Let f∞ =
⋃
n∈ω fn. An argument similar to the proof of Claim 4.4 shows

that f has a unique continuous extension f : R→ R and that A = f−1(C).

Remark 4.10. Suppose a, b /∈ A and (a, b) ∩ A 6= ∅.Then (R, A ∩ (a, b)) is

homeomorphic to (R, A).

Proof. Let fC : [0, 1] → [0, 1] denote the Cantor function. Notice that (R, C ∩

(fC(a), fC(b))) is homeomorphic to (R, C) since fC(a) /∈ C. A back-and-forth

constructionshows that there is such a homeomorphism which preserves Di ∩

(fC(a), fC(b)) for all i < 3. Since the Cantor map is weakly increasing, this

implies the claim.

Let

d(C) = sup
x,y∈C

|x− y|

denote the diameter of a set C. Let (En)n∈ω be a sequence of disjoint subsets

of R with

- (R, A) is homeomorphic to (R, En) for each n,

- d(En) < 1 for each n,

- limn→∞ d(En) = 0, and
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- E =
⊔
n∈ω En is dense in R,

where A is the set defined in the beginning of this section.

Lemma 4.11. Suppose that a0, a1 are in the interior of E and E ∩ (a0, a1) has

infinitely many connected components. Moreover, suppose that F ⊆ [b0, b1] is

a non-trivial Fσ set with b0 < b1, bi ∈ F for i < 2, and F satisfies (I). Then

there is a continuous function f : [a0, a1] → R with f(ai) = bi for i < 2 and

E ∩ [a0, a1] = f−1[F ].

Proof. We proved in Lemma 2.7 from (I2) that there is a family (Fn)n∈ω of

disjoint closed sets Fn with F ∩ [b0, b1] =
⊔
n∈ω Fn. Let us partition the sets

En ∩ [a0, a1] into finitely many pieces to obtain a sequence (Cn : n < ω) of

disjoint closed sets with

- E ∩ [a0, a1] =
⊔
n∈ω Cn,

- limn→∞ d(Cn) = 0, and

- (R, Cn) is homeomorphic to (R, A) for each n.

We will define a sequence of partial functions fn : R→ R such that

- dom(fn) and range(fn) are closed,

- Cm ⊆ dom(fn) for all m < n, and

- Fm ⊆ range(fn) for all m < n.

Moreover, fn+1 will be an extension of fn for all n and
⋃
n∈ω dom(fn) will be

dense in [a0, a1]. We will then define f∞ =
⋃
n∈ω fn and show that there is a

unique continuous extension f : [a0, a1]→ R and that E ∩ [a0, a1] = f−1(F ).

To define f0, let a > a0 be maximal with [a0, a] ⊆ E and let b < a1 be

minimal with [b, a1] ⊆ E. This is where we use that a0 and a1 are in the interior

of E. Let further ā ≥ b0 be maximal with [b0, ā] ⊆ F and b̄ ≤ b1 minimal with

[b̄, b1] ⊆ F . We define f0 by mapping [a0, a] to [b0, ā] by an increasing affine

map, if b0 < ā, and a constant map otherwise. We further map [b, a1] to [b̄, b1]

by an increasing affine map, if b̄ < b1, and by a constant map otherwise.
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We will extend fn to fn+1 in two steps.

Step 4.11.1. Let g0 = fn if En ⊆ dom(fn). Otherwise, we will define g0 by

extending dom(fn) to Cn.

Since dom(fn) is closed, we can partition Cn into finitely many nonempty

closed pieces so that for each piece C, there are a, b ∈ dom(fn) with C ⊆ (a, b).

Notice that each piece has infinitely many connected components. The partial

map g0 is defined by extending dom(fn) to all such sets C in the following cases.

1. Suppose fn(a) < fn(b). Let m be least with Fm ⊆ (fn(a), fn(b)). We map

C onto Fm as in Lemma 4.9.

2. Suppose fn(b) < fn(a). Let m be least with Fm ⊆ (fn(b), fn(a)). We map

C onto Fm as in Lemma 4.9, but in reversed order.

3. Suppose fn(a) = fn(b). Let us choose ε ≤ 2−n with range(fn)∩(fn(a), fn(a)+

ε) = ∅. Let m be least with Fm ⊆ (fn(a), fn(a) + ε). We can partition C

into closed sets B0 and B1 such that (R, Bi) is homeomorphic to (R, A)

for each i and max(B0) < min(B1). We map B0 onto Fm as in Lemma

4.9. We further map B1 onto Fm as in Lemma 4.9, but in reverse order.

Step 4.11.2. We will extend g0 to g1 by mapping certain sets to Fn.

Since range(g0) is closed, we can partition Fn into finitely many nonempty

closed pieces so that for each piece G, there are r, s ∈ range(g0) with G ⊆ (r, s).

Let us assume that each piece G is a maximal subsets of Fn with this property.

We will extend g0 for each such set G.

Let us now consider such a set G and all pairs a < b such that

- G ⊆ (g0(a), g0(b)) or G ⊆ (g0(b), g0(a)), and

- (a, b) is minimal with this property.

Such pairs exist since G is closed, and there are only finitely many pairs by the

continuity of g0.

Let us extend g0 in the following cases.
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1. Suppose that G ⊆ (g0(a), g0(b)). Let m be least with Cm ⊆ (a, b). We

map Cm onto G as in Lemma 4.9.

2. Suppose that G ⊆ (g0(b), g0(a)). Let m be least with Cm ⊆ (a, b). We

map Cm onto G as in Lemma 4.9, but with reversed orientation.

The extensions of dom(g0) for different sets G are compatible by the choice of

the sets G. This defines a partial function g1. We complete Step 4.11.2 by

defining fn+1 = g1.

Let f∞ =
⋃
n∈ω fn. By a similar argument as in Claim 4.3, f∞ has a

unique continuous extension f : R→ R. By a similar argument as in Claim 4.4,

E ∩ [a0, a1] = f−1(F ).

Theorem 4.2. If a non-trivial Fσ set F ⊆ R satisfies (I), then there is a

continuous function f : R → R with E = f−1[F ]. Hence E is least among the

sets below Q.

Proof. Let g : Z → R be an order-preserving map such that range(g) is un-

bounded in both directions and g(z) is in the interior of E for all z ∈ Z. Since

F is non-trivial and satisfies (I), there is an order-preserving map h : Z → R

such that h(z) ∈ F and [h(z), h(z+1)] 6⊆ F for all z ∈ Z. We define f separately

on the intervals [g(z), g(z + 1)] for z ∈ Z using the previous lemma.

Towards a further analysis of Borel subsets of R up to continuous reducibility,

the following problems appear.

Problem 4.12. 1. Is there a minimal Fσ set A with A 6≤ Q?

2. Is there a minimal Σ0
3 set?

Continuous reductions on R are close to continuous surjective reductions,

leading to the following problem.

Problem 4.13. Describe the structure of the Borel subsets of ωω and R up to

continuous surjective reducibility.
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