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Abstract

Let us consider a positive-dimensional metric space, i.e. at some point

there is no clopen local base. We construct a family of size continuum of

Borel subsets of the metric space so that any two sets are incomparable

with respect to continuous reducibility.

1 Introduction

In various contexts, instead of analyzing a given structure on a metric space, it is
useful to describe how it relates to other structures via reducibility. The notion
of reducibility is given by a class of functions, for example, Borel measurable,
Lebesgue measurable, or ω-universally Baire measurable reducibility of equiva-
lence relations on Polish spaces, continuous reducibility (Wadge reducibility) of
subsets of the Baire space, Turing reducibility or polynomial time reducibility
of sets of natural numbers.

Reducibility of Borel subsets of zero-dimensional Polish spaces is well under-
stood for Lipschitz functions, continuous functions, ∆0

α-functions, Borel mea-
surable functions, and other interesting classes of Borel measurable functions
[1, 6]. The results for Borel measurable functions hold for all uncountable Pol-
ish spaces via Borel isomorphisms. Let us consider continuous reductions on
metric spaces.

Definition. Suppose that X is a metric space and A, B ⊆ X.

• A is continuously reducible to B (A ≤X B or A ≤ B) if there is a
continuous map f : X → X with A = f−1(B).

• A and B are equivalent (A ≡X B or A ≡ B) if A ≤ B and B ≤ A.
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• A and B are incomparable (A ⊥X B or A ⊥ B) if A 6≤ B and B 6≤ A.

Let us consider the class BorelX of Borel subsets of X up to continuous
reducibility. A key result for zero-dimensional Polish spaces is

Lemma (Martin-Wadge). Suppose that X is a zero-dimensional Polish space.

• A ≤ B or B ≤ X \ A for all Borel sets A, B ⊆ X, i.e. BorelX is semi-
linearly ordered.

• There are no three pairwise incomparable Borel subsets of X.

The first part follows from Borel determinacy, but notice that Louveau
proved Wadge determinacy in second-order arithmetic. So we obtain a lin-
ear order by identifying equivalent sets and complements. This fails for the real
line.

Lemma (Andretta [1]). There are three pairwise incomparable Borel subsets of
R.

In this paper, we extend this to all positive-dimensional metric spaces. Let
Γ denote the class of intersections of an open set and a closed set. Let us call
A ⊆ P(X) an antichain if its elements are pairwise incomparable.

Theorem 1.1. (ZF) For every positive-dimensional metric space, there is an
antichain in Γ of size continuum.

We prove this in the next section. In the last section, we prove that for any
locally compact metric space, there is an antichain of subsets of size the power
set of the continuum.

2 The construction

To prove Theorem 1.1, let X denote a metric space of positive dimension and
suppose that there is no clopen local base at b ∈ X. There is an open neigh-
borhood U of b such that no clopen neighborhood of b is contained in U . We
choose r ∈ R+ with Br(b) ⊆ U and strictly increasing sequences (rn)n∈N with
r0 = 0, rn < rn+1 for all n, and supn rn = r.

Definition 2.1. • Let Bn = Br2n+1(b) \Br2n(b).

• Let Cn = Br2n+1(b) \Br2n
(b).
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• If s = (mi)i is a strictly increasing sequence of natural numbers, let

– si = [mi, mi+1) ∩ N for i ∈ N,

– s↑ =
⋃
i∈2N si,

– s↓ =
⋃
i∈2N+1 si,

– Ds
n = Bn if n ∈ s↑,

– Ds
n = Cn if n ∈ s↓,

– Us
n = Br2n+3 \ (Br2n

∪Ds
n ∪Ds

n+1),

– As =
⊔
n∈N Dn.

The sets As and At will be incomparable for appropriately chosen sequences
s = (mi) and t = (ni). To see when As is reducible to At, we will capture
combinatorial information about potential reductions of As to At by sets of
graph reductions.

Notation and Definition 2.2. Suppose that G, H are graphs.

• The vertex and edge sets of G are denoted by VG, EG.

• Ḡ = VG ∪ EG.

• A graph homomorphism f : G → H is identified with the induced map on
Ḡ.

• A graph G together with a 2-coloring cG: Ḡ→ 2 is called a colored graph.

• A reduction f : G → H of colored graphs is a graph homomorphism with
cG(t) = cH(f(t)) for all t ∈ Ḡ.

• A colored graph G is good if

– VG ∈ N and

– EG = {(n, n + 1) | n + 1 ∈ VG}.

• A colored graph G is nice if

– VG = N,

– EG = {(n, n + 1) | n ∈ N},

– cG((n, n + 1)) = 1 if and only if n is even and n + 1 ∈ VG, and

– if n is even, then either cG(n) = 1 or cG(n + 1) = 1.
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• If G is a colored graph, we define G∗ by attaching an additional 0-colored
loop at every vertex of G.

• Suppose that F,G are nice. An unfolding of F,G is a a pair f : H → F ∗,
g: H → G∗ of reductions of colored graphs, where H is good.

Let us consider sequences s = (mi)i∈N and t = (ni)i∈N in N in the next
definitions.

Definition 2.3. • Let Gs denote the unique nice graph with cG(2n) = 1 if
and only if cG(2n + 1) = 0 if and only if n ∈ s↑ (analogously for Gt).

• Let Dn = Ds
n, En = Et

n, Un = Us
n, Vn = U t

n.

• Let dsn = {2n, (2n, 2n + 1)} if n ∈ s↑ and dsn = {(2n, 2n + 1), 2n + 1} if
n ∈ s↓. Let dn = dsn and en = dtn. We define usn, un, vn analogously.

Notice the exact correspondences for the pairs Dn, dn and Un, un. We assume
from now on that h: X → X is a continuous reduction of As to At.

Definition 2.4. (Matching points) Let l ∈ N.

• if f : H → G∗s, g: H → G∗t is an unfolding, let Matchlf,g denote the set of
x ∈ X such that

– there is n with f(n) = 0 and g(n) = l,

– if x ∈ Dm, then there are k ∈ N, v ∈ H̄ with h(x) ∈ Ek, f(v) ∈ dm,
and g(v) ∈ ek,

– if x ∈ Um, then there are k ∈ N, v ∈ H̄ with h(x) ∈ Vk, f(v) ∈ um,
and g(v) ∈ vk,

In this case we say that x, f, g, l match.

• Let Matchl denote the union of Matchlf,g where f, g is an unfolding of
G∗s, G

∗
t .

Lemma 2.5. Matchl is relatively clopen in Br(b) for all l ∈ N.

Proof. It follows from the definition that Matchl is relatively open in Br(b).
To show that Matchl is relatively closed in Br(b), suppose that x = limi→∞ xi,

xi ∈ Matchl for all i, and x, xi ∈ Br(b) for all i. We can assume that there is
n with xi ∈ Dn for all i or xi ∈ Un for all i. There is an unfolding f0, g0 such
that x0, f0, g0, l match.
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If xi ∈ Dn for all i, then it is easy to see that x, f0, g0, l match. Let us
suppose that xi ∈ Un for all i. If x ∈ Un, then it is again easy to see that
x, f0, g0, l match.

Suppose that x ∈ Dn ∩ Sr2n+1 , h(x) ∈ Sr2k+1 , and 2k + 1 /∈ f0(g−1
0 (2n + 1)).

Then 2k + 2 ∈ f0(g−1
0 (2n + 1)). We define g from g0 by unfolding a 0-colored

loop at 2n + 1 into two edges. We define f from f0 by mapping those edges to
(2k + 2, 2k + 1) and (2k + 1, 2k + 2). It follows that x, f, g, l match.

The remaining cases are symmetric.

Let ∆ni = ni+1 − ni if (ni)i∈N is a sequence in N. Let us now suppose that
(mi)i, (ni)i, (∆mi)i, and (∆ni)i are strictly increasing.

Definition 2.6. (Unfolded pairs) Let ufl denote the set of pairs (n, k) such that
there is an unfolding f, g of Gs, Gt and m, i with f(i) = 0, f(m) = n, g(i) = l,
and g(m) = k.

Lemma 2.7. If l ∈ N, there are j ∈ N, m ∈ Z so that for all k ∈ N and n ≥ j,
(n, k) ∈ ufl if and only if k = n + m.

Proof. Let i be least with l < ni. Since (∆mi), (∆ni) are strictly increasing,
it is easy to see that there is j with (j, ni) ∈ ufl. Let j be the least such. It
follows that j = nk for some k. Let m = ni − j. Since the sequences and their
differences are strictly increasing, it is easy to check that j,m have the desired
property.

Let Ft denote the tail equivalence relation on ωω, i.e. (x, y) ∈ Ft if there are
m and n with x(m + i) = x(n + i) for all i.

Lemma 2.8. If As ≤ At, then (∆mi), (∆ni) are tail equivalent.

Proof. We consider a continuous reduction h: X → X of As to At as above.
Suppose that h(b) ∈ El. Then b ∈ Matchl. Recall that b has no clopen neigh-
borhood V ⊆ U by the choice of U and that Matchl is relatively clopen in
Br(b) by Lemma 2.5. So we may choose xn ∈ Matchl∩Srn and witnesses fn, gn

for every n. It follows from the previous lemma that (∆mi), (∆ni) are tail
equivalent.

Notice that the set S of strictly increasing sequences (ni)i is closed in ωω.
Since the equivalence classes of Ft are countable, there is a perfect subset of S

of Ft-inequivalent sequences. Let T denote the set of sequences of partial sums
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of sequences in the perfect set. Then As 6≤ At for all s 6= t in T . This completes
the proof of Theorem 1.1.

We do not know if the result can be improved to sets in Γ with complements
in Γ.

Remark 2.9. 1. There is a compact connected metric space X ⊆ R3 whose
subsets 6= ∅, X form an antichain [2, Theorem 11], so more assumptions
are necessary to embed other posets (see [4] and Corollary 3.3).

2. The proof of Theorem 1.1 works for continuity instead of sequential conti-
nuity; instead of metrizability it is sufficient to assume that X is normal,
but in this case DC is used to choose the sequence of neighborhoods of b.

3. There is an infinite-dimensional countable quasi-Polish space X such that
BorelX is almost well-ordered [7, Remark 5.33]. Hence Theorem 1.1 fails
for some non-normal spaces.

3 Corollaries

Let us conclude with three corollaries to the proof.

Corollary 3.1. The following are equivalent for a Polish space X:

1. X is zero-dimensional.

2. BorelX is semi-linearly ordered.

3. BorelX contains no infinite antichains.

4. BorelX contains no uncountable antichains.

5. BorelX is well-quasi-ordered, i.e. it contains no infinite decreasing se-
quences and no infinite antichains.

Proof. Continuous reducibility for Borel subsets of zero-dimensional Polish spaces
is well-founded by a result of Martin-Monk [5, Theorem 21.15].

Corollary 3.2. Suppose that X is a locally compact metric space of positive
dimension. Then P(X) contains an antichain of size the power set of the con-
tinuum.
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Proof. We choose a positive-dimensional open set V ⊆ X with compact closure.
Let z ⊆ X denote the set of points in X with no clopen local base and let
nz = X \ z. Let zV denote the set of points in V with a clopen neighborhood
W ⊆ V and nzV \ zV .

Notice that the closure cl(nz)∩V is uncountable; otherwise V is the union of
a countable family of zero-dimensional disjoint closed subsets, but this cannot
be the case since V has positive dimension (see [3, Theorem II.2]).

Let us choose C ⊆ cl(nz) ∩ V nowhere dense and homeomorphic to the
Cantor space. We further choose bn ∈ nz \ C and (rn)n∈N in R+ so that for
B = {bn | n ∈ N} and for all m 6= n

• Brn(bn) ⊆ V ,

• Brm(bm) ∩Brn(bn) = ∅,

• Brn(bn) ∩ C = ∅,

• bn ∈ nzBrn (bn), and

• cl(B) ⊇ C.

Then limn rn = 0 since cl(V ) is compact. Let (tn)n∈N denote a sequence
of distinct elements of the set T in the previous section. As in Definition 2.1,
we now choose rn,i with rn,i < rn,i+1 and supi∈N rn,i = rn and define Atn ⊆
Brn

(bn). Suppose that f : ωω → C is injective and define for x ⊆ ωω

Ax = f [x] t
⊔
n∈N

Atn .

Claim. If x 6= y, then Ax 6≤ Ay.

Proof. Suppose that h: X → X is a continuous reduction of Ax to Ay and n ∈ N.
Our aim is to show that f(a) ∈ Atm for some m and some a ∈ nzBrn (bn). Then
m = n by the proof of Theorem 1.1. Since cl(B) ⊇ C, this implies h � C = id � C

and hence x = y.
To show the existence of a, let zBr(b) =

⋃
i∈N Ui with Ui ⊆ Brn

(bn) clopen
and the radii converging to 0.

Let us argue that there is no clopen in cl(nzBrn (bn)) neighborhood U ⊆
nzBrn (bn) of bn. Otherwise we can separate U and nzBrn (bn)\U by disjoint open
sets I, J ⊆ V and cl(I) ⊆ V using compactness. Then W = U ∪

⋃
Ui∩I 6=∅ Ui is

closed in V by the choice of I. So W ⊆ Brn
(bn) is a clopen neighborhood of

7



bn, contradicting the assumption on bn. Hence nzBrn (bn) contains points in all
distances < rn to bn.

Towards a contradiction, assume that there is no a ∈ nzBrn (bn) with f(a) ∈
Atm for some m. Then f(bn) ∈ C and f−1(X) ∩ Srn,1(bn) 6= ∅ for all clopen in
C neighborhoods X ⊆ C of f(bn) in C by the preceding argument. Since Srn,1

is compact, there is a ∈ Srn,1 with f(a) = f(bn). Since bn ∈ Ax if and only if
a /∈ Ax by Definition 2.1, this contradicts our assumption that f is a reduction
of Ax to Ay.

This completes the proof of Corollary 3.2.

We do not know if local compactness is necessary in Corollary 3.2. We refer
to [4] for embedding results for continuous reducibility for the real line but note
that we obtain

Corollary 3.3. Suppose that X =
⊔
n∈N Xn is metric and each Xn is clopen

in X and positive-dimensional. Then ⊆P(ω) embeds into ΓX .

Proof. We choose distinct sn ∈ T and define Asn
⊆ Xn as in the previous

section.
Let Ax =

⊔
n∈x Asn

for x ⊆ ω. Then Ax ≤ Ay implies x ⊆ y as in the
proof of Lemma 2.8. Moreover, it is easy to construct a continuous reduction
for Ax ≤ Ay if x ⊆ y.
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