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Abstract. We study infinite time Turing machines that attain a special state at a given
class of ordinals during the computation. We prove results about sets that can be recognized
by these machines. For instance, the recognizable sets of natural numbers with respect to
the cardinal-detecting infinite time Turing machines introduced in [Hab13] are contained in
a countable level of the constructible hierarchy, and the recognizable sets of natural numbers
with respect to finitely many ordinal parameters are constructible.

1 Introduction

Since the introduction of Infinite Time Turing Machines in [HL00], a variety of machine
models of infinitary computability has been introduced: Turing machines that work with
time and space bounded by an ordinal α, or with tape of length α but no time limit, or
with tape and time both of length On; register machines that work in transfinite time and
can store natural numbers or arbitrary ordinals in their registers; and so on.

A common feature to all these machine models of infinitary computations is that
they are strongly linked to Gödel’s constructible universe L. Since their operations are
absolute between V and L, all objects that are writable by such machines are constructible.
However, as was shown in [CSW], these machines can in a sense deal with objects far
beyond L when one considers recognizability instead of computability, i.e. the ability of
the machine to identify some real number x given in the oracle instead of producing x on
the empty input. The model considered in [CSW] were Koepke’s ordinal Turing machines
(OTMs) with ordinal parameters.

A natural next step is then to determine how strong a machine type has to be to allow
the recognizability of non-constructible real numbers.This motivates the question whether
other of these models also have such strong properties.

It is relatively easy to deduce from Shoenfield’s absoluteness theorem that, without
ordinal parameters, recognizability for all machine types is restricted to a certain countable
level Lσ of Gödel’s constructible hierarchy L. The question must hence be what happens
when we equip the other models with ordinal parameters. For OTMs, an ordinal parameter
α is given to the machine by simply marking the αth cell of the working tape.

For ITTMs with the tape length ω, ordinal parameters cannot be introduced in this
way. However, there is a rather natural way to make ITTMs work with ordinal parame-
ters, first introduced in [Hab13]. Namely, we introduce a new inner machine state that is
assumed whenever the current time is an element of a given class X of ordinals, and one
hence marks one or several points of time instead of tape cells. In this way, an ITTM can
be made to work relative to an arbitrary class of ordinals, where singletons correspond
to single ordinal parameters. In this case, we will speak of X-ITTMs or ordinal-detecting
ITTMs. For the class of cardinals X, these are the cardinal-detecting ITTMs studied in
[Hab13].



In this paper, we study the recognizability strength of cardinal detecting ITTMs and
more generally of ordinal-detecting ITTMs. We show that every recognizable set of natural
numbers with respect to cardinal-detecting ITTMs is an element of Lσ, the first level of
the constructible hierarchy where every Σ1-statement that is true in L is already true
(Theorem 9). However, these machines can recognize more real numbers than mere ITTMs
(Lemma 12). Moreover, we show that every recognizable set of natural numbers with
respect to ITTMs with finitely many ordinal parameters is constructible (Theorem 21
). However, these machines recognize some sets of natural numbers outside of Lσ for
certain ordinals α (Lemma 19). We conclude that even with ordinal parameters, ITTM -
recognizability does not lead out of L.

2 Basic Notions and Results

Infinite Time Turing Machines, introduced by Hamkins and Kidder (see [HL00]), gen-
eralize Turing computability to transfinite working time. Their computations work like
ordinary Turing computations at successor times, while the tape content at limit times is
obtained as a cell-wise inferior limit of the sequence of earlier contents and the inner state
at limit times is a special limit state. For details, we refer to [HL00].

There are various notions of computability associated with ITTMs.

Definition 1. Suppose that x and y are subsets of ω.

1. x is writable in the oracle y if and only if there is an ITTM -program P such that
P y ↓= x, i.e. P , run in the oracle y, halts with x on the output tape.

2. x is eventually writable in the oracle y if and only there is an ITTM -program P such
that P , when run in the oracle y on the empty input, eventually has x on its output
tape and never changes it again.

3. x is accidentally writable in the oracle y if and only there is an ITTM -program P such
that P , when run in the oracle y on the empty input, has x on its output tape at some
point, but may overwrite it later on.

The ITTM -recognizable sets are defined as follows.

Definition 2. Suppose that x and y are subsets of ω.

1. x is ITTM-recognizable or simply recognizable relative to y if and only if there is an
ITTM -program P such that, for all subsets z of ω, P z⊕y ↓= δz,x, where δ is the
Kronecker symbol.

2. x is non-deterministically ITTM-recognizable if and only if there is a subset y of ω such
that x⊕ y is ITTM -recognizable.

3. The recognizable closure, denoted byR, is the closure of the empty set under relativized
recognizability.

We will call sets of natural numbers reals. The following alternative characterization
of the recognizable closure works rather generally for models of infinite computation.

Lemma 3. The non-deterministically ITTM -recognizable reals are exactly those in R.

Proof. If x ⊕ y is ITTM -recognizable, then clearly x ∈ R. Suppose on the other hand
that x ∈ R. Then there is a sequence 〈x0, . . . , xn〉 with x = x0 such that xn is ITTM -
recognizable and xi is ITTM -recognizable relative to xi+1 for all i < n. It is easy to see
that the join

⊕
i≤n xi is ITTM -recognizable by first identifying the last component and

then successively the previous components.
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It was observed in [CSW, Lemma 3.2] that R = Lσ, where σ is least with the property
that Lσ ≺Σ1 L or equivalently least with the property that every Σ1-statement that it
true in L is already true in Lσ.

We will need the following results.

Theorem 4. Suppose that y is a subset of ω.

1. [Wel09, Fact 2.4 & Fact 2.5 & Fact 2.6] There are countable ordinals λy, ζy, Σy with
the following properties for all subsets x of ω.
(a) x is writable if and only if x ∈ Lλy [y].
(b) x is eventually writable if and only if x ∈ Lζy [y].
(c) x is accidentally writable if and only if x ∈ LΣy [y].

2. [Wel14, p.11-12] An ITTM-program in the oracle y will either halt in strictly less than
λy many steps, or it will run into an ever-repeating loop, repeating the sequence of
configurations between ζy and Σy, that is of order-type Σy, from Σy on.

3. [Wel09, Theorem 1 & Corollary 2] [Wel14, Theorem 3] The triple 〈λy, ζy, Σy〉 is the
lexically least triple 〈α, β, γ〉 of distinct ordinals with Lα ≺Σ1 Lβ ≺Σ2 Lγ .

Remark 5. An important result for ITTMs, and many other models of infinite com-
putation, is the existence of lost melodies, i.e. real numbers that are writable, but not
ITTM -recognizable. The existence of lost melodies for ITTMs was proved in [HL00]. For
more on lost melodies for other machine types, see [Car14a,Car14b,Car15,CSW].

We now define how an infinite time Turing machine works relative to a class of ordinals.

Definition 6. For classes X of ordinals, an X-ITTM works like an ITTM with the
modification that the machine state is a special reserved state if and only if the running
time is an element of X. If an ITTM -program P is run relative to a class X, we will
write X-P instead of P . When X consist of the ordinals in α = 〈α0, . . . , αn〉, we will
write α-ITTM for the machine with special states at times in α, and for α = 〈α〉 simply
α-ITTM.

We thus obtain the cardinal-detecting ITTMs of [Hab13], called cardinal-recognizing
ITTMs there, for the class of all cardinals. Note that there are several variants of ITTMs,
for instance the original definition in [HL00] with three tapes of input, output and scratch,
that we use here, its variant with only one tape, and the variant where at limit times, the
head is set to the inferior limit of the previous head positions, instead of moving to the
first tape cell. All proofs in this paper can be easily modified to work for each of these
variants.

We take the opportunity to answer in the negative [Hab13, Question 10], which asked
whether every real number accidentally writable by a cardinal-recognizing ITTM is also
accidentally writable by a plain ITTM.

Theorem 7. There is a cardinal-recognizing ITTM -program that writes a code for Σ.

Proof. Let U denote an ITTMprogram that simulates al ITTM -programs simultaneously.
The configuration c of U at time ω1, when the special state is assumed for the first time,
is the same as at time Σ and at time ζ [Wel14, p.11-12]. If c would occur prior to ζ,
then U would start looping before time ζ, contradiction the assumption that U simulates
all ITTM -programs. Hence c is accidentally writable, but not eventually writable. The
L-least code for Σ is ITTM -writable from every real that is accidentally writable, but
not eventually writable by the proof of [CH11, Proposition 4.6], Hence there is an ITTM -
program P that computes a code for Σ from c. We now run P on the tape content of U
when the special state is assumed for the first time. This program will halt with a code
for Σ on the output tape, as required.
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3 Recognizable reals relative to cardinals

In this section, we will determine the recognizable closure for cardinal-detecting ITTMs.
It is easy to see that the parameter ω does not add recognizability strength. We begin by
considering ITTMs with uncountable parameters.

Theorem 8. Every subset x of ω that is ω1α-recognized by P for some ordinal α is an
element of Lσ.

Proof. Suppose that P is a program that recognizes x and P x halts with the final state s.
Suppose that y is a subset of ω. The state of P y at time ω1 will be the same as at time Σy

by Theorem 4. Moreover, between Σy and ω1, the computation repeats a loop of length Σy

by Theorem 4. Thus the state of P y at time ω1 is the same as at time Σy. Consequently,
the computation will continue exactly the same whether the new inner state s is assumed
at time ω1α or at time Σy. Since P recognizes x, ω1-P y and Σy-P y both halt with the
same output and the same final state s.

Let cy,α denote the L[y]-least code for α, if α is countable in L[y]. We argue that the
halting time of Σy-P y is strictly less than λy⊕c for c = cy,Σy . The tape content z of P y at
time Σy is accidentally writable in y and hence z is an element of LΣy [y]. Therefore z is
writable from y ⊕ c and λz ≤ λy⊕c. Then the halting time of Σy-P y is strictly less than
λy⊕c.

We can thus characterize x as the unique real y with φ(x), where φ(y) is the statement
that Σy-P y ↓= 1 holds in L

λ
y⊕cy,Σy [y]. To see that φ(y) is a Σ1-statement, we call a triple

α = 〈α0, α1, α2〉 a y-triple if α0 < α1 < α2 and Lα0 [y] ≺Σ1 Lα1 [y] ≺Σ2 Lα2 [y]. Then φ(y)
is equivalent to the Σ1-statement that there is some γ such that in Lγ , the lexically least
y-triple α = 〈α0, α1, α2〉 and the lexically least y ⊕ cy,α2-triple β = 〈β0, β1, β2〉 exist and
α2-P y ↓= 1 holds in Lβ1 [y].

Since φ(x) holds, there is some y ∈ L such that φ(y) holds in L by Shoenfield abso-
luteness. Then there is some z in Lσ such that φ(z) holds. This implies that ω1−P z ↓= 1,
so z = x and x ∈ Lσ.

Theorem 9. If x is a subset of ω that is recognized by an X-ITTM, where X is a proper
class of ordinals of the form ω1α, then x ∈ Lσ. In particular, this holds for subsets of ω
recognized by a cardinal-detecting ITTM.

Proof. The proof is a variation of the proof of Theorem 8. Suppose that X-P recognizes x.
A computation by P in the oracle x will assume its special state at the times 〈αi | i < γ〉
for some ordinal γ. Let xi denote the tape contents at time αi. Between the times αi and
αi+1, we have an ordinary ITTM -computation in the oracle x with input xι on the tape.
Such a computation will either halt or cycle from the time Σx⊕xi with a loop of length
Σx⊕xi . Now any αi for i ≥ 1 is a multiple of Σy for all reals y. In particular, the tape
contents at time αi +Σx⊕xi will be the same as at time αi+1.

We can hence characterize x as the unique real y with φ(y), where φ(y) is the following
statement. There is an ordinal δ, a sequence 〈αi | i < δ〉 of ordinals and a sequence
〈yi | i < δ〉 of real numbers such that for all i with i+ 1 < δ, yi+1 is the tape contents of
the computation of P with oracle y and input yi at time Σy⊕yi , and the computation P y

with special state at the elements of the sequence 〈αi | i < δ〉 halts with output 1.
As in the proof of Theorem 8, φ(y) is a Σ1-statement. Since φ(x) is valid, φ(y) holds

for some real y in Lσ. Then y = x and x ∈ Lσ.

Theorem 10. The recognizable closure both for ω1α-ITTMs for any ordinal α and for
cardinal-detecting ITTMs is Lσ.
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Proof. We first argue that the recognizable closure is contained in Lσ. Suppose that y
is an element of Lσ and x is ITTM -recognizable from y in either machine type. By a
relativization of the proofs of Theorem 8 and Theorem 9, x has a Σ1-characterization in
the parameter y. Since y is an element of Lσ, it is Σ1-definable in L without parameters
and hence can be eliminated from the definition of x. It follows that there is a Σ1-formula
φ such that x is the only witness for φ in L. Hence x ∈ Lσ.

Moreover, Lσ is contained in the recognizable closure for plain ITTMs by [CSW,
Lemma 3.2] and hence recognizable closures for both machine types are equal to Lσ.

The recognizability strength of cardinal-detecting ITTMs is strictly higher than that of
ITTMs by the next results. The next lemma shows that not every real in the recognizable
closure for ITTMsis itself recognizable.

Lemma 11. If x ∈ LΣ \ Lλ, then x is not ITTM -recognizable.

Proof. Suppose that x ∈ LΣ and x is ITTM -recognizable. We consider an ITTM -program
P which writes every accidentally writable real at some time. If x is ITTM -recognizable
by a program Q, we can write x by letting P run and checking in each step with Q whether
the contents of the output tape is equal to x, and in this case stop. Then x is writable
and hence x ∈ Lλ.

Lemma 12. There is a real number that is ITTM -recognizable by a cardinal-detecting
ITTM and by an α-ITTM for every α ≥ λ, but not ITTM -recognizable.

Proof. Let 0O = {ϕ | ϕ(0) ↓} denote the halting problem or jump for ITTMs. Since 0O is
Σ1-definable over Lλ, but certainly not ITTM -writable, we have 0O ∈ LΣ \Lλ and hence
0O is not ITTM -recognizable. We now argue that 0O is writable by a cardinal-detecting
ITTM and α-ITTM -writable, hence it is recognizable with respect to these machines.
This was already observed in [Hab13] for cardinal-detecting machines. We can simulate
all ITTM -programs simultaneously and write 1 in the n-th place of the output tape when
the n-th program has stopped. As all halting times are countable, the output tape will
contain 0O at time α, and the special state at time α allows us to stop.

4 Recognizable reals relative to finitely many ordinals

In this section, we consider what happens when we allow the machine to enter a special
state at an ordinal time α. We first determine the writability strength of such machines.
The next result follows from [CH11, Proposition 4.6]. We give a short proof from the λ-ζ-Σ
theorem for the reader.

Lemma 13. Let λα denote the supremum of the halting times of α-ITTMs.

1. λx > Σ for every real x with λx ≥ ζ.
2. λα > Σ for every α ≥ ζ.

Proof. To prove the first claim, we first suppose that Σ = Σx. Since ζ ≤ λx < ζx, this
implies Lζ ≺Σ2 Lζx ≺Σ2 LΣ and this contradicts the minimality of Σ. Second, suppose
that Σ < Σx. Then there is a triple 〈α, β, γ〉 in LΣx with Lα ≺Σ1 Lβ ≺Σ2 Lγ , namely
〈λ, ζ,Σ〉. Since Lλx [x] ≺Σ1 LΣx [x], we have Lλx ≺ LΣx and therefore, there is such a triple
in Lλx . Since Σ is the least value for γ for such triples 〈α, β, γ〉, we have Σ ≤ γ < λx.

The second claim is clear if α ≥ Σ. If α < Σ, we can write an accidentally writable
real x with an α-ITTM that is not eventually writable. Since we can search for an L-level
containing x and halt, it follows that λx ≥ ζ. Hence λα ≥ λx > Σ by the first claim.
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We remark that the assumption of Lemma 13 cannot be weakened to λx > λ by the
following counterexample. Let x be the L-minimal code for λ. Then clearly λx > λ. On
the other hand, x is eventually writable, the L-minimal code for λx is writable relative
to x and the eventually writable reals are closed under writability. Hence the L-minimal
code for λx is eventually writable and therefore λx < ζ < Σ.

Lemma 14. The following statements are equivalent for a real x.

1. x is α-ITTM -writable for some ordinal α.
2. x is ITTM -writable from some accidentally writable real number.
3. x is ITTM -writable from every accidentally writable real number that is not eventually

writable.
4. x is an element of Lλz , where z is the L-least code for ζ.

Proof. Suppose that x is α-ITTM -writable for some ordinal α by a computation of a
program P . Up to time α, this computation is just an ordinary ITTM -computation and
hence at time α, the tape will contain some accidentally writable real number y. The rest
of the computation will again be an ordinary ITTM -computation with the input y and
thus the output will be ITTM -writable from y.

Suppose that x is ITTM-writable by a program P from some accidentally writable real
number y. Suppose that Q is a program that has y on its tape at time α. If we run Q up
to time α and then run P , this will write x.

The L-least code z for ζ is accidentally writable and hence the remaining implications
follow from Lemma 13.

We obtain the following generalization of Lemma 14.

Lemma 15. The following statements are equivalent for a real x.

1. x is α-ITTM -writable for some sequence α of length n.
2. x is ITTM -writable from xn−1 for some sequence x = 〈x0, . . . , xn−1〉, where xj is

accidentally writable from
⊕

i<j xi for all j < n.
3. x is an element of Lλzn−1 , where z0 = 0 and zi+1 is the L-least code for ζzi for all
i < n− 1.

Proof. The implications follow by iterated application of Lemma 14.

To show that the recognizability strength of ITTMs with arbitrary ordinal parame-
ters is beyond Lσ, we need the next definition and two well-known results. For technical
convenience, we work with Jensen’s J-hierarchy instead of Gödel’s L-hierarchy. Note that
Jα = Lα if α takes one of the values λ, ζ, Σ or σ.

Definition 16. An ordinal α is an index if there is a real in Jα+1 \ Jα.

Lemma 17. (Jensen) If α is an index, then there is a surjection from ω onto Jα that is
definable over Jα and hence there is a code for Jα in Jα+1.

Proof. This follows from the fact that 〈Jα | α ∈ Ord〉 is acceptable by [Zem02, Lemma
1.10.1].

Lemma 18 (folklore). There are unboundedly many admissible indices α below ωL1 .
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Proof. There are unboundedly many indices below ωL1 , since there are ωL1 many reals in
L. Suppose that α is an index. Let c denote the L-least code for α. Since α is an index,
c ∈ Jα+1 by Lemma 17. Suppose that β = ωc1 is the least c-admissible ordinal. Then β is
admissible and it remains to show that β is an index. Since c ∈ Jβ and Jβ is the Skolem
hull of c in Jβ , there is a surjection from ω onto Jβ that is definable over Jβ . There is a
real in Jβ+1 that codes this surjection. Since Jβ is admissible, c cannot be an element of
Jβ and hence β is an index.

The next result shows that there are ITTM -recognizable reals with respect to ordinal
parameters beyond Lσ.

Lemma 19. Suppose that α = ωβ is an index and c is the L-least code for Jα in Jα+1\Jα.
Then c is α-ITTM -recognizable.

Proof. The claim is easy to see for α = ω, so we assume that α > ω. Suppose that the input
is x. We first check whether x codes a set with an extensional relation and otherwise reject
x. We then count through the ordinals of the set coded by x, i.e. in each step we search
for the least next ordinal, while simultaneously searching for infinite strictly decreasing
sequences of ordinals above. This is possible by keeping markers at all previous ordinals
in every step. If we have exhausted the ordinals or if we find an infinite strictly decreasing
sequence of ordinals in the structure coded by x before time α, then we reject x. This
algorithm is carried out up to time α. After time α, we check if the structure coded by
x is well-founded, and reject x if this is not the case. If the structure is well-founded, we
check whether it is isomorphic to some Jβ . In this case, we write a code for Jβ+1 and check
whether it contains a code for Jβ . If it does, we determine the least such code in Jβ+1 \Jβ
and check if it is equal to c. If it is equal to c, then we accept x, and otherwise reject x.
There is a code for Jα in Jα+1 \ Jα by Lemma 17. Therefore this algorithm accepts a real
x if and only if x = c.

To show that every real that is ITTM -recognizable relative to finitely many ordinal
parameters is in L, we need the following result.

Lemma 20. Suppose that x is an ITTM -recognizable subset of ω from n ordinal param-
eters. Then x is ITTM -recognizable from finitely many ordinal parameters strictly below
ω1 · (n+ 1).

Proof. Suppose that x is ITTM -recognizable from α = 〈α0, . . . , αn−1〉 and α is strictly
increasing. We can assume that αn−1 is uncountable. Suppose that α∗

i is the remainder of
the division of αi by ω1 for i < n. Suppose that k = 〈k0, . . . , kl〉 is the unique sequence
such that k0 ≤ n is least such that αk0 is uncountable and for all i < l, ki+1 < n is least
such that the unique ordinal α with αki +α = αki+1

is uncountable. Let βi = αi for i < k0,
βi = ω1j + α∗

i for kj ≤ i < kj+1 and j < l, and let βi = ω1l + α∗
i for kl ≤ i < n.

Suppose that a program P recognizes x from the parameters α0 < · · · < αn. For every
input x̄, P x̄ will cycle from time Σx̄ between multiples of Σx̄ by [cite Welch]. This implies
that for every input x̄, P x̄ will halt with the same state for the parameters α0, . . . , αn and
the parameters β0, . . . , βn. Hence P recognizes x from the parameters β0, . . . , βn.

Theorem 21. Every subset of ω that is ITTM -recognizable from finitely many ordinal
parameters is an element of L.

Proof. Suppose that x is ITTM -recognizable from finitely many ordinal parameters. Then
x is recognized by a program P from finitely many ordinal parameters strictly below
ω1 · (n+ 1) by Lemma 20.
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We can assume that x is recognized by a single ordinal parameter δ with ω1 ≤ δ < ω12.
The proof of the general case is analogous. Suppose that P x with the special state at time
δ halts at time η. Let δ = ω1 + δ∗ and η = ω1 + η∗. We consider the Σ1-statement ψ(x̄)
stating that P x̄ with the special state at time Σx̄+δ∗ halts at time Σx̄+η∗ and accepts x̄.
Since the program will cycle from time Σx̄ in intervals of length Σx̄ by Theorem 4, ψ(x̄)
is equivalent to the statement that P x̄ with the special state at time Σx̄ · α+ δ∗ halts at
time Σx̄ · α+ η∗ for some α ≥ 1, or equivalently for all α ≥ 1.

The statement ψ(x) holds in V and in every generic extension of V . In particular, ψ(x)
holds in every Col(ω, ζ)-generic extension V [G] of V , where ζ is a countable ordinal with
δ∗, η∗ ≤ ζ. Moreover ∃x̄ψ(x̄) holds in L[G] by Shoenfield absoluteness, since ∃x̄ψ(x̄) is a
Σ1-statement and the parameters δ∗ and η∗ are countable in L[G].

Suppose that θ is an L-cardinal such that Lθ is sufficiently elementary in L. Suppose
that M ≺ Lθ is countable with ζ+ 1 ⊆M and M̄ is the transitive collapse of M . Suppose
that g, h are mutually Col(ω, ζ)-generic over M̄ in V . The statement ∃x̄ψ(x̄) is forced
over Lθ and M̄ and therefore holds in M̄ [g] and in M̄ [h], witnessed by some reals xg and
xh. Since P recognizes x with the special state at time δ, the uniqueness of x implies that
xg = xh = x. Since g and h are mutually generic over M̄ , we have M̄ [g] ∩ M̄ [h] = M̄ and
hence x ∈ M̄ . Since M̄ is a subset of L, this implies x ∈ L.

This allows us to determine the recognizable closure with respect to ordinal parameters.

Theorem 22. The recognizable closure for ITTMs with single ordinal parameters and
for ITTMs with finitely many ordinal parameters is P (ω)L.

Proof. This follows from Lemma 18, Lemma 19 and Theorem 21.

Note that Theorem 21 cannot be extended to countable sets of ordinal parameters,
since it is easy to see that every real is writable from a countable set of ordinal parameters.
The previous results suggest the question whether the number of ordinal parameters is
relevant for the recognizability strength. The next result shows that this is the case.

Theorem 23. For every n, there is a subset x of ω that is ITTM -recognizable from n+ 1
ordinals, but not from n ordinals.

Proof. We define xn = 〈x0, . . . , xn〉, λn = 〈λ0, . . . λn〉, ζn = 〈ζ0, . . . ζn〉, and Σn =
〈Σ0, . . . Σn〉 as follows for all n. Let ζ0 = ζ and ζi+1 = ζxi , where x0 is the L-least
code for ζ and xi+1 is the L[xi]-least code for ζi+1. Moreover, let λ0 = λ, λi+1 = λxi ,
Σ0 = Σ and Σi+1 = Σxi . Then λxi > Σi+1 for all i by the relativized version of Lemma
13. Moreover, let λyn, ζyn and Σy

n denote the relatived versions of λn, ζn and Σn for any
real y.

Claim 24. A Cohen real x over LΣn+1 is not ITTM -recognizable from n ordinals.

Proof. Suppose that x is recognized by a program P in the parameter γ = 〈γ0, . . . , γn−1〉,
where γ is strictly increasing. We define γ∗ = 〈γ∗0 , . . . , γ∗n−1〉 as follows. Let γ∗0 = γ0 if
γ0 < Σ and γ∗0 = ζ0 + δ0 if γ0 ≥ Σ, where δ0 is the remainder of the division of γ0 by
Σ. For all i with i + 1 < n, let γ∗i+1 = γi+1 if γi+1 < Σi+1 and γ∗i+1 = ζi+1 + δi+1 if
γi+1 ≥ Σi+1, where δi+1 is the remainder of the division of γi+1 by Σi+1. A computation
with input y cycles from ζy in intervals of length Σy by Theorem 4. Since P x with special
states at γ accepts x, this implies that P x with special states at γ∗ accepts x as well.

For every Cohen real y over LΣn+1, λ
y
n = λn, ζ

y
n = ζn and Σy

n = Σn by the variant
of [CS, Lemma 3.12] for Cohen forcing (see also [Wel99, p.11]).
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Since LΣn [y] is a union of admissible sets by the variant of [CS, Lemma 2.11] for Cohen
forcing, the run of P y is an element of LΣn [y].

Let σ be a name in LΣn+1 for the run of P x with special states at γ∗. The statement
that P x with special states at γ∗ accepts x is forced for σ by a condition p in Cohen
forcing over LΣn by the variant of [CS, Lemma 2.7] for Cohen forcing. Suppose that y is
a Cohen generic over LΣn+1 with x 6= y that extends the condition p. Then P y accepts y
by the truth lemma in the variant of [CS, Lemma 2.8] for Cohen forcing. This contradicts
the uniqueness of x.

Claim 25. The L-least Cohen real over LΣn+1 is writable from ζn.

Proof. By the relativized version of Lemma 13 applied to x0, . . . , xn, we can successively
compute x0, . . . , xn from ζn. We can then compute codes for Σn, LΣn , LΣn+1 and hence
the L-least Cohen real over over LΣn in LΣn+1 from xn.

Remark 26. For finitely many parameters, the writability and recognizability strength
does not change if we allow more than one special state, since such a program can be
simulated with a single special state by coding the special states into tape cells.

5 Conclusion and open questions

We have seen that equipping ITTMs with the power to recognize one particular or all
uncountable cardinals increases the set of ITTM -recognizable real numbers, but not the
recognizable closure, which remains Lσ. Moreover, certain ordinals parameters enable an
ITTM to recognize real numbers outside of Lσ, but ITTM -recognizability with finitely
many ordinal parameters does not lead out of the constructible universe.

We conclude with the following open questions. Theorem 9 suggests the question
whether the claim holds for all nonempty class of multiples of ω1.

Question 27. If x is a subset of ω that is recognized by an X-ITTM, where X is any
class of ordinals of the form ω1α, then is x ∈ Lσ?

It is open whether the ordinals in Lemma 20 can be chosen to be countable.

Question 28. Is every real x that is ITTM -recognizable from an ordinal already ITTM -
recognizable from a countable ordinal?

Let Rα denote the recognizable closure with respect to ITTMs with the parameter α
and let σ(α) denote the last ordinal γ > α with Lγ ≺Σ1 L. It is open what is Rα and
whether there is a relationship between Rα and Lσ(α).

Question 29. What is Rα for arbitrary ordinals α?

The notion of semi-recognizable reals is defined by asking that the program halts for
some input x and diverges for all other inputs. The notion of anti-recognizable reals is
defined by asking the the program diverges for some input x and halts for all other inputs.
The following question seems fundamental.

Question 30. Are there semi-recognizable reals and anti-recognizable reals that are not
recognizable?

9
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