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Introduction

Other than in previous years, this term’s Arbeitsgemeinschaft will not cover a single topic,
but will rather have sessions with different subjects and varying organizers.
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Session 1: Algebraic K-theory of finite fields (October 11, 2012)
organized by Steffen Sagave

In his influential work [Qui72], Quillen computed the algebraic K-theory groups of finite
fields Fq with q elements. This is a very important calculation of higher K-theory groups which
(according to Quillen) partly motivated the definition of higher algebraic K-theory.

The strategy of Quillen’s proof is to show that the algebraic K-theory space of Fq is homotopy
equivalent to a certain space FΨq that can be defined in terms of an Adams operation. The
homotopy groups of FΨq can easily be computed and give the desired K-theory groups.

Talk 1: Adams operations and the cohomology of FΨq (Karol Szumilo). The first talk
should start with a review of Adams operations and the definition of FΨq. After the (simple)
computation of the homotopy groups of FΨq, the speaker should give the computation of the
cohomology and homology of FΨq.
References: [Qui72, §2 - §6] and [Ada62].

Talk 2: The Brauer lifting and K(Fq) (Marcus Zibrowius). The second talk should
begin with a construction of the Brauer lifting. This can be used to compute

⊕
nH∗(GLn(Fq)).

Moreover, the Brauer lifting induces an isomorphism H∗(BGL(Fq)) → H∗(FΨq). After a brief
review of the plus construction, this isomorphism provides the main step in the computation of
K∗(Fq).
References: [Qui72, §7 - §12]

References for Session 1

[Ada62] J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR0139178 (25 #2614)

[Qui72] Daniel Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of
Math. (2) 96 (1972), 552–586. MR0315016 (47 #3565)

Session 2: Smoothing theory I (October 25, 2012)
organized by Tibor Macko and Martin Olbermann

The aim of these two sessions is to elucidate the statement and to indicate the proof of the
main theorem of smoothing theory whose one version is as follows.

Theorem 0.1. Let M be a PL-manifold. Then M admits a smooth structure if and only if its
stable “PL tangent microbundle” reduces to a vector bundle.

Microbundles were invented by Milnor who also showed that they possess a lot of familiar
properties of vector bundles. In particular, there exists a classifying space for n-dimensional
PL-microbundles denoted BPL(n). Also, it turns out that n-dimensional vector bundles give rise
to n-dimensional PL-microbundles and this is reflected in the forgetful map BO(n) → BPL(n).
Also the PL-microbundles can be stabilized analogously to the stabilization for vector bundles.
Hence existence of the reduction in the theorem can be stated homotopy theoretically as the
existence of a lift
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The main technical tool in the proof of Theorem 0.1 is the Product Structure Theorem (PST):

Theorem 0.2. Let M be a PL-manifold and s ≥ 1. Then the set concordance classes of smooth
structures onM is in bijection with the set of concordance classes of smooth structures onM×Rs.

http://www.ams.org/mathscinet-getitem?mr=0139178
http://www.ams.org/mathscinet-getitem?mr=0139178
http://www.ams.org/mathscinet-getitem?mr=0315016
http://www.ams.org/mathscinet-getitem?mr=0315016
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The first two talks cover the PST. The third and fourth talk will be about microbundles, their
classifying spaces and about the proof of the main theorem using the PST.

There are various sources available for this theory. There are also different versions of the
above statements. We hope to elucidate some of these differences in the lectures as well. The
published references are the books [HM74] and [KS77] and the paper [Mil64]. However, we find
the notes [Lur09] very useful and readable. Therefore we develop the program mainly along these
notes, which we believe are sufficient for the purposes of this AG.

Talk 1: Definitions and Product Structure Theorem I. (Martin Olbermann). Follow
[Lur09, Lectures 19-20]. At the beginning take plenty of time to discuss carefully the necessary
definitions, analogously to [HM74, pages 7-9]. Also [HM74, pages 10-12] has a nice discussion of
concordance versus isotopy versus diffeomorphism.

The proof of the PST is by considering the PL projection map pr2 : M × R → R for some
smooth structure on M × R. Define the PD analogue of a smooth submersion and show that
if pr2 has this property, the PST follows. Show that pr2 satisfies the “submersion” property
away from an isolated set of points. Sketch the proofs of [Lur09, Lecture 19, Lemma 7 and
Propositions 8] quickly (instead of working with epsilons). You should at least reduce the PST
to [Lur09, Lecture 20, Problem 5].

Talk 2: Product Structure Theorem II. (Moritz Rodenhausen.) This talk should cover
[Lur09, Lectures 21-22]. We are reduced to a local question: removing one isolated singular
point of the projection pr2 : M ×R→ R by a local isotopy of the smooth structure. Reduce the
problem to more and more special cases, apply induction and use the Alexander trick (which as
usual highlights the difference between the smooth and PL categories). For [Lur09, Lecture 21,
Lemma 3] replace Lurie’s proof by the one in [HM74, Theorem 4.3 on p.13]. This talk is a bit
technical, but there should be enough time to follow the references closely.

Session 3: Smoothing theory II (November 15, 2012)

Talk 1: Microbundles and their classifying spaces. (Tibor Macko). Develop the theory
of microbundles and provide the construction of their classifying space. The speaker may follow
[Mil64, §2,3,4,6,7] for the basic definitions and properties. Alternatively start in [Lur09, Lecture
10] just before Definition 6 and continue in [Lur09, Lecture 11]. Give the construction of the
classifying space in [Lur09, Lecture 12].

Mention without proof the Kister-Mazur theorem relating microbundles to euclidean bundles
[Lur09, Lectures 13,14].

Give one proof of Theorem 0.1 following Theorem 5.12. in [Mil64, §5]

Talk 2: The classification theorem. (Wolfgang Steimle). In this talk first the unstable
space version (Theorem 1 in [Lur09, Lecture 16]) of Theorem 0.1 should be proved. A space
version means that we will consider the space Smooth(M) of smooth structures on M . The
unstable version says that this space is homotopy equivalent to the space XM of vector bundle
reductions of the unstable PL-tangent microbundle. The speaker should follow the proof in
[Lur09, Lectures 15-17]. A corollary is the unstable version of Theorem 0.1 which is then that
Smooth(M) is non-empty if and only if XM is non-empty.

After this is done, use the PST to obtain Theorem 0.1 from the unstable version [Lur09,
Lecture 18]. Another reference for this is [KS77, Essay V].

References for Sessions 2 and 3

[HM74] Morris W. Hirsch and Barry Mazur, Smoothings of piecewise linear manifolds, Princeton University Press,
Princeton, N. J., 1974. Annals of Mathematics Studies, No. 80. MR0415630 (54 #3711)

http://www.ams.org/mathscinet-getitem?mr=0415630
http://www.ams.org/mathscinet-getitem?mr=0415630
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[KS77] Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings,
and triangulations, Princeton University Press, Princeton, N.J., 1977. With notes by John Milnor and

Michael Atiyah, Annals of Mathematics Studies, No. 88. MR0645390 (58 #31082)

[Lur09] Jacob Lurie, Topics in geometric topology, 2009. Lecture notes, available at http://www.math.harvard.

edu/~lurie/937.html or at http://www.maths.ed.ac.uk/~aar/surgery/lurie2009.pdf (as one file).

[Mil64] J. Milnor, Microbundles. I, Topology 3 (1964), no. suppl. 1, 53–80. MR0161346 (28 #4553b)

Session 4: Computations of THH (November 29, 2012)
organized by Justin Noel

Topological Hochschild homology and cohomology (THH) [Böc86] are the spectrum level
analogues of ordinary Hochschild homology and cohomology (HH)1 Here are some reasons people
are interested in (T )HH:

(1) It is a homology/cohomology theory on associative rings/ring spectra [Qui67,Sch01].
(2) It is a first approximation to (topological) cyclic homology, which is in turn, an approx-

imation to algebraic K-theory [DGM10].
(3) Its groups appear as the higher homotopy groups of the space of A∞ structures on a

spectrum [Laz03]
(4) It is a source of algebraic invariants that are rich enough to be interesting while simulta-

neously being computable with existing technology (see the computations of Angeltveit,
Ausoni, Gephardt, Hill, and Lawson).

Existing THH calculations inevitably depend on the original computations of THHS
∗ (Z/p)

and THHS
∗ (Z) due to Bökstedt. Unfortunately these computations have never appeared in print.

In this session we will try to present an independent computation of these groups in the former
case, which the organizer learned from Vigleik Angeltveit. In the latter case we fall back on the
original computation of Bökstedt [Bök85], which is quite similar.

Talk 1: THH(Z/p) (Herman Stel). Below we expand a bit on the arguments presented in
[Ang06, pg. 52,59] which can be applied to make some of the computations of [Bök85].

Suppose R is a strictly associative ring spectrum in some symmetric monoidal model category
of spectra. For our purposes2 it suffices to set

THHS(R) := R ∧Re R,

where Re = R ∧ Rop [EKMM97, Ch. IX]. Of course, we really want everything in sight to be
suitably derived for this to be homotopy invariant. So we should assume that Re is a cofibrant
ring spectrum and R is a cofibrant (or flat) module over Re.

To compute THHS
∗ (R) = π∗R∧ReR we use the Tor spectral sequence of [EKMM97, Ch. IV.1]:

E2
s,t = Torπ∗R

e

s (π∗R, π∗+tR) =⇒ THHS
s+t(R).

In the case R = HZ/p we are computing Tor over the dual Steenrod algebra with field
coefficients, which is an elementary computation. When p = 2 the E2 term is an exterior algebra
on terms in bidegree (1, 2 · 2i− 1) for i ≥ 0, and there is no room for differentials, although there
is a family of non-trivial multiplicative extensions.

When p is odd, the exterior portion of the dual Steenrod algebra gives rise to a divided power
algebra in the E2 term. Most of the indecomposables from this algebra support a dp−1 making
the Ep page a truncated polynomial algebra on generators in bidegree (1, 2 · pi − 1) for i ≥ 0.

1 Unfortunately both the homological and cohomological variations admit the same abreviation; the homolog-
ical variation is distinguished by the use of subscript, as opposed to superscript, indexing.

2We do not need a cyclotomic model of THH.

http://www.ams.org/mathscinet-getitem?mr=0645390
http://www.ams.org/mathscinet-getitem?mr=0645390
http://www.math.harvard.edu/~lurie/937.html
http://www.math.harvard.edu/~lurie/937.html
http://www.maths.ed.ac.uk/~aar/surgery/lurie2009.pdf
http://www.ams.org/mathscinet-getitem?mr=0161346
http://www.ams.org/mathscinet-getitem?mr=0161346
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Again every possible non-trivial multiplicative extension is there. In both cases the final answer
is

THHS
∗ (HZ/p) ∼= Z/p[x],

where |x| = 2.
Both the differentials in the odd primary case and the multiplicative extensions can be ex-

plained by power operations. Our spectral sequence is a bar type spectral sequence and con-
sequently non-trivial Massey product formulae in π∗R

e are a source of differentials in spectral
sequences of this type (see [McC01, p. 309] for a special (cohomological) case of this). In partic-
ular we have the following p-fold Massey product formula

〈τ̄i, · · · , τ̄i〉 = −βQp
i

τ̄i = −ξ̄i+1

[Ang06, pg. 52,59] which is the source of our differentials in the odd primary case.
To show that we obtain a polynomial algebra on one generator, we will show that the generator

in total degree 2 is connected to the other classes by iterated pth powers. We give the argument
at odd primes, since the even primary case is essentially the same. The power operation formula

[BMMS86] tells us Qp
i

Qp
i−1

. . . Qpτ̄0 = τ̄i mod decomposables. The same formula holds after
replacing τ̄i with στ̄i, which are the corresponding elements in our E2 term, by a naturality
argument [Ang06, p. 59]. For degree reasons, the iterated power operation acts by taking iterated
pth powers of στ̄0 demonstrating the existence of this non-trivial extension.

Talk 2: THH(Z) (Justin Noel). In this talk we will follow Bökstedt’s proof [Bök85] that

THHS(HZ) ' HZ ∨
∨
i≥1

Σ2i−1HZ/i.

First we note that if R is a commutative ring spectrum (E2 suffices) then THHS(R) is an
R-module. In particular, if R is an Eilenberg-MacLane spectrum associated to a commutative
ring then, THHS(R) is an HZ-module and consequently a wedge of Eilenberg-MacLane spectra.

To compute the rational homotopy groups we smash with HQ, which commutes with the
geometeric realization of the standard simplicial spectrum modeling R ∧Re R. When R = HZ
we obtain a simplicial model for

HQ ∧HQ∧HQop HQ ' HQ.
As the geometric realization of a simplicial connective spectrum THHS(HZ) is connective

and we see that THHS(HZ) has one torsion free Eilenberg-Maclane spectrum in degree 0. Now
we must determine the torsion summands. We will do this by identifying the mod p homology
of this spectrum as comodule over the dual Steenrod algebra and as an algebra.

Recall that

HZ/p∗HZ/p ∼=A∗
HZ/p∗HZ ∼=A∗�A(0)∗Z/p

HZ/p∗HZ/pi ∼=A∗�A(0)∗Z/p⊕ ΣA∗�A(0)∗Z/p (i > 1).

Here A(0)∗ is the exterior algebra on ξ1. In the last equation the two copies of the homology of
HZ are connected by an ith order Bockstein operation.

The remainder of the talk will require separate arguments for even and odd primes. To prove
the result we will identify the homology ring and count summands to determine in which degrees
we have a finite Eilenberg-Maclane spectrum. This is not difficult given the results of the previous
talk and a clear understanding of the induced map

THHS(HZ;HZ/p)→ THHS(HZ/p)
in homology.
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Determining the size of the groups is now equivalent to determining the connecting Bocksteins,
which is equivalent to running the Bockstein spectral sequence. By Bökstedt’s arguments, using,
the filtration of the elements, known relations between power operations and Bocksteins, and the
Cartan formula, one can reduce to this to checking a single power operation on a single element
is trivial [Bök85, Lemma 1.5]. This vanishes because it is the ‘suspension’ of a decomposable
class.

References for Session 4

[Ang06] Vigleik Angeltveit, Noncommutative ring spectra, Ph.D. Thesis, 2006.

[AS69] M. F. Atiyah and G. B. Segal, Equivariant K-theory and completion, J. Differential Geometry 3

(1969), 1–18. MR0259946 (41 #4575)
[BMMS86] R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, H∞ ring spectra and their applications,

Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR836132 (88e:55001)
[Böc86] Marcel Böckstedt, Topological Hochschild homology, 1986.

[Bök85] Marcel Bökstedt, The topological Hochschild homology of Z and Fp, 1985. Bielefeld.

[DGM10] B. Dundas, T. Goodwillie, and R. McCarthy, The local structure of algebraic K-theory, http://www.
uib.no/People/nmabd/b/b.pdf, 2010.

[EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable

homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society,
Providence, RI, 1997. With an appendix by M. Cole. MR1417719 (97h:55006)

[Laz03] A. Lazarev, Hoschschild cohomology and moduli spaces of strongly homotopy associative algebras,

Homology Homotopy Appl. 5 (2003), no. 1, 73–100. MR1989615 (2004k:16018)
[McC01] John McCleary, A user’s guide to spectral sequences, Second, Cambridge Studies in Advanced Math-

ematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR1793722 (2002c:55027)

[Qui67] Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag,
Berlin, 1967. MR0223432 (36 #6480)

[Sch01] S. Schwede, Stable homotopy of algebraic theories, Topology 40 (2001), no. 1, 1–41. MR1791267
(2002d:55026)

Session 5: The Atiyah-Segal completion theorem (December 13, 2012 )
organized by Stefan Schwede

Talk 1 by Irakli Patchkoria and Talk 2 by Stefan Schwede.

Session 6: Classifying spaces for surgery (January 10, 2013)
organized by Diarmuid Crowley

The aim of these two lectures is to give a survey on what is known and open concerning the
spaces and maps appearing in the following braid of infinite loop spaces and infinite loop maps:

(0.1) Ω(G/PL)

%%KKKKKK

&&

PL/O

%%KKK
KKK

%%

BO

%%KKKKKKK
%%

BG

PL

99ssssss

%%KKKKKKKK G/O

%%KKK
KKK

99ssssss
BPL

%%KKKKKK

99sssssss

O

99ssssssss
99 G

99sssssss
88
G/PL

99ssssss

88
B(PL/O)

Here O := limn→∞O(n) is the stable orthogonal group, PL := limn→∞ PL(n) is the stable
group of piecewise linear homeomorphisms of Euclidean space and G := limn→∞G(n) is the
stable monoid of homotopy self equivalences of the sphere.

One motivation to look at this braid is the following: Suppose that M is a PL-manifold
with stable tangent micro-bundle classified by a map M → BPL, in the Smoothing Theory

http://www.ams.org/mathscinet-getitem?mr=0259946
http://www.ams.org/mathscinet-getitem?mr=0259946
http://www.ams.org/mathscinet-getitem?mr=836132
http://www.ams.org/mathscinet-getitem?mr=836132
http://www.uib.no/People/nmabd/b/b.pdf
http://www.uib.no/People/nmabd/b/b.pdf
http://www.ams.org/mathscinet-getitem?mr=1417719
http://www.ams.org/mathscinet-getitem?mr=1417719
http://www.ams.org/mathscinet-getitem?mr=1989615
http://www.ams.org/mathscinet-getitem?mr=1989615
http://www.ams.org/mathscinet-getitem?mr=1793722
http://www.ams.org/mathscinet-getitem?mr=1793722
http://www.ams.org/mathscinet-getitem?mr=0223432
http://www.ams.org/mathscinet-getitem?mr=0223432
http://www.ams.org/mathscinet-getitem?mr=1791267
http://www.ams.org/mathscinet-getitem?mr=1791267
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lectures of this AG we will see that M admits a smooth structure if and only if the composite
M → BPL→ B(PL/O) is null-homotopic.

The emphasis of these lectures is to review the start of the art, applications to concrete problems
and to outline open problems. Hence we plan to give at most sketches of proofs, sometimes just
indications of proofs and sometimes no proof. Hence many sources and references will be used.
For surgery theory and the identification of the homotopy braid of the above braid with the
Kervaire-Milnor braid we will use [Lüc02, Ch. 6.6]. For the homotopy type of G/PL, [Sul05], for
the homotopy type of PL/O [May77,Lan00], for the homotopy type of G and G/O [May77], for
the map G→ G/PL localised at 2 [BMM73].

Talk 1: The Kervaire-Milnor braid. Let the dimension of manifold n be greater than 4. Be-
gin by using the Generalised Poincaré Conjecture and smoothing theory to identify πn(PL/O) ∼=
Θn where Θn is the group of oriented diffeomorphism classes of smooth homotopy spheres.
Review the Kervaire-Milnor braid from [Lüc02] and sketch the proof that it is isomorphic to
the homotopy braid induced by (0.1). During this proof you should consider each of the four
homotopy long exact sequences of the braid:

(0.2) · · · → πi+1(PL/O)→ πi(O)→ πi(PL)→ πi(PL/O)→ . . .

(0.3) · · · → πi+1(G/O)→ πi(O)→ πi(G)→ πi(G/O)→ . . .

(0.4) · · · → πi+1(PL/G)→ πi(PL)→ πi(G)→ πi(G/PL)→ . . .

(0.5) · · · → πi+1(G/PL)→ πi(PL/O)→ πi(G/O)→ πi(G/PL)→ . . .

For (0.2) state Milnor’s result [Mil64] that this sequence splits as a short exact sequences and
also Brumfiel’s computations of πi(PL) [Bru68,Bru70]. For (0.3) give Adam’s results on the J-
homomorphism [Ada66] as well as the out-come of the solution of the Adams’ Conjecuture. For
(0.4) given the computation of πi(G/PL) using the PL surgery exact sequence for the sphere and
recall Brumfiel’s computation of πi(PL/O). Identify (0.5) with the surgery long exact sequence
of the sphere and review the proof of [KM63] that πi(PL/O) is finite.

Give the computations of the Kervaire-Milnor braid in dimension n = 5, . . . , 12 and interpret
this geometrically.

Finally, give the Kirby-Siebenmann result that TOP/PL ' K(Z/2, 3) [KS77] and hence ex-
plain that the above can be repeated with PL replaced by TOP with little change.

Talk 2: G/PL(2), G/PLodd, PL/Oodd and open problems. This talk is a very fast review of
a large amount of material.

Begin by stating the equivalences in [May77, Ch V Thm. 4.7 and Thm 4.8]. If possible, define
the maps in the equivalences and explain as much of the J-theory diagram in [May77, Ch V] as
possible.

Odd-primary results: state the equivalences in [May77, Ch V Theorem 6.8]. Compare with
[Lan00, Thm. 7.5]. Give some consequences for computing [M,PL/O]odd.

2-local results: Give Sullivan’s computation of G/PL(2) as in [MM79, Ch. 4]. As an example
compute the structure set of CPn. Then move onto the map

G(2) → G/PL(2)

and its analysis in [BMM73, Ch. 9]. Give the consequence [BMM73, Thms. 9.6, 9.9 & 9.17] and
state some consequences for smoothing theory and surgery theory.
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State some open problems regarding the sequence PL(2) → G(2) → G/PL(2) and the action of

πS∗ on π∗(PL/O).

References for Session 6

[Ada66] J. F. Adams, On the groups J(X). IV, Topology 5 (1966), 21–71. MR0198470 (33 #6628)

[BMM73] G. Brumfiel, I. Madsen, and R. J. Milgram, PL characteristic classes and cobordism, Ann. of Math.
(2) 97 (1973), 82–159. MR0310881 (46 #9979)

[Bru68] G. Brumfiel, On the homotopy groups of BPL and PL/O, Ann. of Math. (2) 88 (1968), 291–311.

MR0234458 (38 #2775)
[Bru70] , The homotopy groups of BPL and PL/O. III, Michigan Math. J. 17 (1970), 217–224.

MR0271938 (42 #6819)

[KM63] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963),
504–537. MR0148075 (26 #5584)
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Session 7: tba (January 24, 2013)
organized by nn
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