
A rough outline of the proof of the K-theoretic
Farrell-Jones conjecture for CAT(−1) groups

Henrik Rüping
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An axiomatic view of algebraic K -theory

We will view the algebraic K -groups as a functor from the category
AddCat of small additive categories to the category of Z-graded,
Abelian groups. The n-th K -group Kn(A) is defined as the n-th
stable homotopy group of the non-connective algebraic K -theory
spectrum of A. However, during this talk we will only make use of
the following properties:

1 Equivalences of additive categories induce isomorphisms;

2 There is a natural long exact sequence associated to a
Karoubi-filtration of additive categories.

3 If an additive category A is flasque, i.e. there is an
endofunctor F : A → A and a natural isomorphism
F ⊕ Id ∼= F , then K∗(A) = 0.

4 The natural inclusions induce isomorphisms⊕
i K∗(Ai ) ∼= K∗(

⊕
i Ai ). This is also called continuity of

algebraic K -theory.
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Karoubi-filtrations

Let A ⊂ U be a full additive subcategory. An A-filtration of U
consists of the following data: For each U ∈ Obj(U) we have a
family of decompositions (fi : U ∼= Ei ⊕ Ui )i∈IU with Ei ∈ A. Note
that if we define

i ≤ j :⇔ Ei ⊂ Ej and Ui ⊃ Uj ,

we obtain a partial order on each of the sets IU . Furthermore we
require that

1 any two elements in IU have an common upper bound,
2 every map g : A→ U from an object A ∈ A factors through

one of the decompositions, i.e. there is an i ∈ IU and an

g ′ ∈ HomA(A,Ei ) such that g : A
g ′→ Ei ↪→ Ei ⊕ Ui

fi→ U;
3 every map g : U → A to an object A ∈ A factors through one

of the compositions;
4 For U,V ∈ U the posets IU⊕V and IU × IV are equivalent (i.e.

cofinal in each other as subposets of all decompositions).
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Karoubi-filtrations : quotients

Now we can define a quotient category U/A whose objects are the
same as the objects from U , but whose morphism sets
HomU/A(U,U ′) is the quotient of HomU (U,U ′) by the subgroup
of all morphisms that factor through some A ∈ A, i.e. that have
the form:

U
fi→ Ei ⊕ Ui

pr→ Ei
f ′→ E ′j ↪→ E ′j ⊕ U ′j

fj→ U ′

for some i ∈ IU , j ∈ IU′ , f
′ ∈ HomA(Ei ,E

′
j ).

Exercise

Show that equivalent choices of decompositions give the same
quotient category.
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A small example

Let (Ai )i∈N be a family of additive categories.

Exercise

Find decompositions that turn
⊕

i Ai ⊂
∏

i Ai into a
Karoubi-filtration.

If all Ai are equal, then we could also allow morphisms that mix
the degree. This will be a very important example.
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An example

Let B be any additive category;

let U be the category whose objects are collections (Bi )i∈N of
objects from B;

its morphisms HomU ((Bi )i∈N, (Ci )i∈N) are families of
morphisms (ϕi ,j : Bi → Cj) such that there is some natural
number r with |i − j | ≥ r ⇒ ϕi ,j = 0. We can think of those
morphisms as band matrices indexed over N;

composition is given by matrix multiplication;

let A be the full subcategory consisting of all objects (Bi )i∈N
where almost all Bi are zero;

let for a subset S of N and an object U = (Bi )i∈N the
restriction U|S be the object with (U|S)i = Ui for i ∈ S and
(U|S)i = 0 otherwise.
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An example

Exercise

We have:

1 The inclusion B ↪→ A is a equivalence;

2 the family of decompositions U = U|1,...,n ⊕ U|n+1,... indexed
over n ∈ N gives an A-filtration of U ;

3 the endofunctor (aka Eilenberg-swindle)

F : U → U (Bi )i∈N 7→ (
⊕
j<i

Bi )i∈N

shows that U is flasque.

Remark

Thus KnB = Kn+1(U/B) and hence we could use these
constructions to define negative K -theory in terms of K0 of other
categories.

A rough outline of the proof of the K-theoretic Farrell-Jones conjecture for CAT(−1) groups July 17th, 2014 7 / 64



Pictures of the swindle

B1 B2 B3 B4
B

0 B1 B1 ⊕ B2 B1 ⊕ B2 ⊕ B3

S(B)

B1 B1 ⊕ B2 B1 ⊕ B2 ⊕ B3

B1 ⊕ B2 ⊕ B3 ⊕ B4S(B)⊕ B
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A remarkable remark

We could drop the finite propagation condition on U . Let us call
the resulting additive category U ′. We would still get a
Karoubi-filtration and a long exact ladder:

. . . // K∗(B) //

��

K∗(U) //

��

K∗(U/B) //

��

. . .

. . . // K∗(B) // K∗(U ′) // K∗(U ′/B) // . . .

The full subcategories of objects with compact support are the
same. Thus the left arrow is an isomorphism. The middle arrow is
an isomorphism since both categories are flasque. Thus the third
arrow is also an isomorphism. This is not obvious! The underlying
functor is not a equivalence of additive categories.
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Controlled algebra

The last example is really important. We can construct a lot
of additive categories that way. We will define an additive
category C(X ,A) depending on a space X and an additive
category A (thought of as coefficients). In the last example
the space was N.

An object in C(X ;A) is a collection of objects (Ax)x∈X of
objects of A such that its support {x | Ax 6= 0} is locally
finite.

A morphism ϕ : (Ax)x∈X → (By )y∈Y is a collection of
morphisms ϕx ,y : Ax → By such that its support
{(x , y) | ϕx ,y 6= 0} is row and column finite.
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Generic picture of a morphism

Figure: Sketch of a morphism

The figure on the left hand side
shows a morphism. Its source is
indicated by the red dots; at
every red dot there should be a
nonzero module attached. The
range is indicated by the green
points. We draw an arrow
between x , y whenever ϕx ,y is
nonzero.
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Object control conditions

We can also generalize the notion of having compact support
(that appeared in the example). An object control condition
on a space X is a collection of subsets of X such that for any
two such subsets we can find a third that contains their union.

Examples of such object control conditions are the compact
support condition Fc , or all subsets of a metric space which
have bounded distance to a fixed set. If there is also a
G -action on X we also have the cocompact support condition
FG−c .

Object control conditions can be pulled back. The
intersection of two object control conditions F ,F ′ consists of
all subsets of the form F ∩ F ′ for some F ∈ F ,F ′ ∈ F ′.
Now we can look at the subcategory of C(X ,A) that consists
of all objects such that their support is contained in a subset
of our object condition.
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Morphism control conditions

We can also impose conditions on the morphisms (analogous
to the condition |i − j | < r from the example). A morphism
control condition E on a space X is a collection of subsets of
X × X such that

1 For all E ,E ′ ∈ E there is a E ′′ ∈ E with E ∪ E ′ ⊂ E ′′;
2 For all E ,E ′ ∈ E there is a E ′′ ∈ E with

E ◦ E ′ = {(x , z) | ∃y : (x , y) ∈ E and (y , z) ∈ E ′} ⊂ E ′′;
3 There is some E ∈ E with ∆(X ) ⊂ E .

An example of such a morphism control condition is the
metric control condition Ed . Morphism control conditions are
also known as coarse structures. Pull backs and intersections
of morphism control conditions work the same way.

Now we can look at the subcategory C(X , E ,F ;A) of C(X ;A)
that consists of all objects such that their support is contained
in a set in our object control condition F and of all
morphisms whose support is contained in a subset of our
morphism control condition E .
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The equivariant version

A G -action on X induces an action on all object (morphism)
control conditions. Suppose now we have

1 a G -action on the space X ;

2 a G -invariant object control condition F ;

3 a G -invariant morphism control condition E ;

4 an additive category A with a strict (right) G -action (could
be trivial).

Then C(X , E ,F ;A) also has a strict (right) G -action via

(g∗C )x := g∗Cgx ; (g∗ϕ)x ,y := (g∗ϕgx ,gy ).

Let C(X , E ,F ;A)G denote the fixed point category, i.e. the
subcategory with Ax = g∗Agx for all x ∈ X and
(g∗ϕ)x ,y := (g∗ϕgx ,gy ).
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Free RG -Modules

1

t2

tZ

Z

Z2

22

1 1

1 Let us examine what
C(G ;A)G is for A the
additive category of (f.g.)
free R-Modules. The
action is transitive, thus
by G -invariance we have
to attach at every point
the same module. The
arrows going out of some
point also look the same
at every point. On the
right you can see the
endomorphism given by
1 + 2t.
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Free RG -modules

Then C(G ;A)G is equivalent to the category of free RG -modules.
The functor F sends A = (Ag )g ∈ G to

⊕
g∈G Ag equipped with

the G -action that permutes the coordinates. To see that we really
hit all morphisms write an element f ∈ HomRG (F (A),F (A′)) in
the form

∑
g∈G fg · g . The preimage is given by the morphism ϕ

with ϕg ,g ′ := fg−1g ′ .
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What is this good for ?

Finally we want to show that the so-called assembly map

HG
∗ (EVCycG ;K)→ K∗(RG )

is an isomorphism. The goal is to find an additive category, such
that the left hand side is the K-theory of this additive category. At
first glance this might have made things worse; it will turn out that
the assembly map appears in the long exact sequence associated to
a Karoubi-filtration. Thus we have to focus on the third term.
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Excision via Continuous control

We do not have excision on K∗(C(−;A)G ). The equivariant
continuous control condition can be used to fix this. For a G -space
X let EG−cc denote the collection of those subsets E of
(X × [1,∞))2 such that

1 E is symmetric and invariant under the diagonal G -action;

2 pr[1,∞)2 has bounded (Euclidean) distance to the diagonal;

3 For every x ∈ X and any G -invariant neighborhood U of
(x ,∞) in X × [1,∞) there is a (smaller) G -invariant
neighborhood V such that

(Uc × V ) ∩ E = ∅ ∧ (V c × U) ∩ E = ∅.
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Continuous control

X × {1}

X × {∞}
(x ,∞)

U
V

Figure: A morphism satisfying the
continuous control condition

The figure on the left hand side
shows a continuously controlled
morphism. The support of the
source is indicated by the red
points and the support of the
range by the green points.

Note that there is no arrow
connecting a point inside V
with a point outside U.
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G -homology theories

A G -homology theory is a covariant functor H∗ from the category
of G -CW-pairs to the category of Z-graded abelian groups
satisfying:

Excision,.i.e. for a G -CW-pair (X ,A) and a G -subcomplex
B ⊂ A◦ we have H∗(X \ B,A \ B) ∼= H∗(X ,A) induced by the
inclusion;

G -homotopy invariance;

The long exact sequence associated to a G -CW-pair;

Continuity, i.e. H∗(qiXi ) ∼=
⊕

i H∗(Xi ).
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Construction of the homology theory

Let us now use controlled algebra to construct a homology theory.
Let Y be a G -CW complex and A be any additive category. Let
DG (Y ;A) be the following controlled category:

The underlying space is G × Y × [1,∞);

every object should be G -cocompactly controlled over G × Y ,
i.e. we pull the cocompact control condition on G × Y back
along the projection;

every morphism should be metrically controlled over G with
respect to some word metric

and it should satisfy the equivariant continuous control
condition over Y .

Furthermore we want to take germs at infinity, which means
that we take the Karoubi-quotient by the full subcategory
T D(Y ) of objects with cocompact support over the whole of
G × Y × [1;∞). Or in one line:

CG (G×Y×[1,∞), p−1
Y×[1,∞)(EYG−cc)∩p−1

G (EGdG ), p−1
G×Y (FG×Y

G−c );A)∞.
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Computing the coefficients

Let us first examine, what happens for a homogeneous space G/H.

Since G × G/H is discrete, we can consider by cocompactness
the (equivalent) subcategory consisting of all objects, whose
support lies above the orbit of (1,H) ∈ G × G/H. This
subcategory could also be written as CG (G ; . . .) where we pull
back the control conditions.

We can simplify the continuous control condition. For a given
point (gH,∞) we can choose U of the form {gH} × [C ,∞).
The resulting V is WLOG also of the form {gH} × [C ′,∞).
Thus for any point gH we can find a bound C ′.

By G -equivariance we can even assume that there is a uniform
bound C ′ such that all arrows ϕ(g ,gH,t),(g ′,g ′H,t′) that start or
end above C ′ have gH = g ′H.
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Computing the coefficients: Pictures

Here we see how any ob-
ject (whose support is red) is
isomorphic to an object sup-
ported at the orbit (yellow)
of (1, 1H). We need to put
the modules at different spots,
such that the morphism con-
trol holds. Think of a third
[1,∞)-direction coming out of
the board; very far away the
red arrows would violate the
continuous control. However
the yellow arrows do the job.

G/H

G

A rough outline of the proof of the K-theoretic Farrell-Jones conjecture for CAT(−1) groups July 17th, 2014 23 / 64



Computing the coefficients

Since we took germs at infinity, our category is equivalent to
the category, where no propagation in the G/H- direction is
allowed.

The K-theory of this category is (as in our example above)
just the shifted K -theory of the following category: Its objects
are given by collections (Ag )g∈G with A1 = Ag for all g . Thus
its objects are just the objects from A. Its morphisms are
G -invariant collections (ϕg ,g ′)(g ,g ′)∈G2 with

g−1g ′ /∈ H ⇒ ϕg ,g ′ = 0.

Now we have simplified the situation as far as possible; if we
assume that A was the category of f.g., free R-modules, then
this category is equivalent to the category of f.g. free
RH-modules, i.e.

K∗+1(DG (G/H;A)) = K alg
∗ (RH).
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Computing the coefficients: Pictures

After moving the support to
one orbit the G-equivariant
control condition ensures
that nonzero morphisms
ϕ(g ,gH,t),(g ′g ,g ′gH,t′) can only
appear for g ′ ∈ H for t, t ′

large.

G/H

G
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A relative version

In order to verify the Eilenberg-Steenrod axioms, we should first
define a relative version. Recall that the inclusion of C({0};A) into
C(N;A) is not a Karoubi-filtration; we have to take all objects
isomorphic to an object from C({0};A). Let (Y ,Z ) be a G -
CW-pair. The same happens for DG (Z ;A)→ DG (Y ;A). Let
DG (Y ,Z ;A) denote the quotient.

Thus we have a long exact sequence of a pair.
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Excision

Let Y be a G -CW- complex and let A ⊂ B ⊂ Y be two open
subsets with A ⊂ B. We want to show that the canonical map
DG (Y \ A,B \ A)→ DG (Y ,B;A) is an equivalence. For an object
M in DG (Y ,B;A) we can delete all modules sitting over A. For a
morphism we can set those arrows to 0 which start or end at a
point in A.

Exercise

Show that this functor is a equivalence.

The crucial idea is that the continuous control ensures that if we
fix a morphism in DG (Y ,B) and go far enough in the
[1,∞)-direction, any arrow starting in A will end in B.
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Homotopy Invariance

We first claim that it suffices to show that both inclusions
i0 : X → X × {0} ⊂ X × [0, 1] and i1 induce isomorphisms
K∗(DG (X ))→ K∗(DG (X × [0, 1])).

Given a homotopy H : X × [0, 1]→ Y between f , g and let
F ,G : X × [0, 1]→ Y denote the maps (x , t) 7→ f (x) resp.
g(x).

X
i0 //

i0
��

X × [0, 1]

H
��

X
i1 //

i1
��

X × [0, 1]

H
��

X × [0, 1]
F // Y X × [0, 1]

G // Y

After applying K∗(DG (−)) the maps i0 and i1 turn into
isomorphisms and thus F ,H,G induce the same maps.

f∗ = (i0 ◦ F )∗ = (i0 ◦ G )∗ = g∗ and thus homotopy invariance
follows.
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Homotopy invariance

We have to show that DG (X )→ DG (X × [0, 1]) is an
isomorphism. We can view the left category as a full subcategory
of the right category and after fattening (replacing it by the
subcategory of all objects isomorphic to something on the left) we
obtain a Karoubi-filtration.
Recall that objects are modules over G × X × [0, 1]× [1,∞). Let
me sketch an Eilenberg-swindle on the quotient. Suppose a
module sits over (g , x , t, h). In the Eilenberg-swindle S we glue the
same module over the sequence of points k 7→ (g , x , t − k

h , h). Of
course we stop if t − k/h < 0.
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Homotopy invariance: Pictures

0 1

∞

Figure: red: A , green: S(A), both:
A⊕ S(A), black: S(A)⊕ A→ S(A),
blue: S(A)→ S(A)⊕ A

Making the steps arbitrarily
small for h→∞ we obtain
equivariant continuous control.
One composition is the identity,
the other one is identity
everywhere except on the
leftmost dots. The difference to
the identity factors through an
object over X × {0} and thus it
is also the identity in the
Karoubi-quotient. We obtain a
well defined natural
isomorphism S ⊕ ID ∼= S .
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Continuity

It follows immediately from the definition that
DG (qiXi ) ∼=

⊕
i DG (Xi ) as additive categories. Continuity of the

algebraic K -theory then gives the result.
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Identifying the assembly map

The obstruction category OG (X ;A) differs from DG (X ;A) only a
bit. Namely we will not take germs at infinity. We will show now,
that the K-theory of OG (X ) vanishes if and only if the map
DG (X ;A)→ DG (∗;A) is an isomorphism.

Lemma

OG (∗;A) is flasque. Hence its K-theory vanishes.
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Proof of the lemma

The continuous control condition is an empty condition for
X = pt. For this reason the naive Eilenberg swindle given by

((g , pt, t), k) 7→ (g , pt, t + k)

works.
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Proof of the equivalence

Let T G (X ;A) be the full subcategory of OG (X ;A) whose objects
have compact support over [1,∞). Thus we have (by definition) a
Karoubi-filtration T G (X ;A) ⊂ OG (X ;A) with quotient DG (X ;A).

Exercise

Show that T G (X ;A)→ T G (∗;A) is an equivalence of categories.

Thus we obtain the following natural ladder:

. . . //

��

Kn(OG (X )) //

��

Kn(DG (X )) //

��

Kn−1(T G (X )) //

∼=
��

. . .

��. . . // Kn(OG (∗)) // Kn(DG (∗)) // Kn−1(T G (∗)) // . . .

Thus the five lemma implies that the middle map is an
isomorphism everywhere if and only if K∗(OG (X );A) vanishes.
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Recapitulation

So we have now found an additive category whose K-theory
vanishes if and only if the Farrell-Jones assembly map is an
isomorphism. If you could show that the K -theory of OG (EVCycG )
vanishes in general (say just using Karoubi-filtrations and long
exact ladders), then you would have shown the Farrell-Jones
conjecture in general. Still at some point one has to use the
universal property of a classifying space. Life is complicated.
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More flexibility

For a metric space (Z , d) with free (left) G -action define

OG (Y ,Z , d ;A) := CG (Z × Y × [1,∞), EYG−cc ∩ EZd ,FZ×Y
G−c ;A).

For a sequence (Zn, dn) of metric spaces we can consider the
product category ∏

n

OG (X ,Zn, dn;A)

For a morphism ϕ we can consider its n-th coordinate. There is a
bound αn such that if ϕn has a nonzero arrow going from (y , z , t)
to (y ′, z ′, t ′) then d(z , z ′) < αn. Let

OG (X , (Zn, dn)n∈N;A)

denote the lluf subcategory consisting of those morphisms that
admit a uniform bound α.
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Functoriality in Z

A sequence of maps fn : Zn → Z ′n induces a functor

OG (X , (Zn, dn)n∈N;A)→ OG (X , (Z ′n, d
′
n)n∈N;A),

if for every α there is a β(α) such that
dn(zn, z

′
n) < α⇒ d ′n(fn(zn), fn(z ′n)) < β(α).
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The diagram

⊕
nOG (E ,G × |U(n)|, d1)

(3)
��

OG (E , (G × X , dC(n)))n∈N)
(2) //

inc
��

OG (E , (G × |U(n)|, d1
n )n∈N)

inc
��∏

∈NOG (E ,G × X , dC(n)))

∏
n FU(n)//

prk
��

∏
∈NOG (E ,G × |U(n)|, d1

n )

prk
��

OG (E )

(1)

55

id // OG (E )
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The diagram:Step 1

⊕
nOG (E ,G × |U(n)|, d1)

(3)
��

OG (E , (G × X , dC(n)))n∈N)
(2) //

inc
��

OG (E , (G × |U(n)|, d1
n )n∈N)

inc
��∏

∈NOG (E ,G × X , dC(n)))

∏
n FU(n)//

prk
��

∏
∈NOG (E ,G × |U(n)|, d1

n )

prk
��

OG (E )

(1)

55

id // OG (E )

The map (1) exists after applying K-theory and it is a section of
prk ◦ inc for all k . Morally this means that (1) is a kind of a
diagonal embedding.
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The diagram:Step 3

⊕
nOG (E ,G × |U(n)|, d1)

(3)
��

OG (E , (G × X , dC(n)))n∈N)
(2) //

inc
��

OG (E , (G × |U(n)|, d1
n )n∈N)

inc
��∏

∈NOG (E ,G × X , dC(n)))

∏
n FU(n)//

prk
��

∏
∈NOG (E ,G × |U(n)|, d1

n )

prk
��

OG (E )

(1)

55

id // OG (E )

The inclusion (3) is an equivalence on K-theory for a sequence
|U(n)| of simplicial complexes of dimension at most N
(independent of n) and metrics on G × |U(n)| with certain
properties. This is the crucial step!
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The diagram:Step 2 ⊕
nOG (E ,G × |U(n)|, d1)

(3)
��

OG (E , (G × X , dC(n)))n∈N)
(2) //

inc
��

OG (E , (G × |U(n)|, d1
n )n∈N)

inc
��∏

∈NOG (E ,G × X , dC(n)))

∏
n FU(n)//

prk
��

∏
∈NOG (E ,G × |U(n)|, d1

n )

prk
��

OG (E )

(1)

55

id // OG (E )

Now we need maps FU(n) to simplicial complexes. Given a locally
finite open cover U of a metric space Z , we obtain a continuous
(with l1-topology) map
FU : Z → |U(n)| z 7→ [[

∑
U∈U ,z∈U d(z ,Uc)U]].

The conditions above on the functoriality in the sequence of open
covers give rise to certain conditions on those covers.
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Details on (3)

First: again more notation. For a quasi-metric space (∞ is
allowed) (X , d) define a metric d̃ on G × X via
d̃(g , x , g ′, x ′) = dG (g , g ′) + d(x , x ′). Let (Xn, dn)n be a sequence
of N-dimensional metric simplicial complexes. Now abbreviate:

L⊕((Xn, dn)n∈N) :=
⊕
n∈N
OG (E ,G × Xn, d̃n);

L((Xn, dn)n∈N) := OG (E , (G × Xn, d̃n)n∈N).

Let L((Xn, dn)n∈N)>⊕ denote their Karoubi-quotient (Exercise:
The inclusion is a Karoubi-filtration).
Let (Yn, d

∞
n ) be the disjoint union of the N-simplices where the

distance is the n-times the l1-distance, if the two points lie in the
same simplex and infinite otherwise.
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Theorem ([BLR08, Theorem 7.2])

Given N ∈ N and a sequence (Xn, dn)n∈N of simplicial complexes
of dimension at most N equipped with a simplicial, cell preserving,
isometric G -action with isotropy in F such that
dn(x , y) ≥ n · d1(x , y) with equality whenever x , y ∈ |Xn| lie in a
common (closed) simplex. Then the inclusion

L⊕((Xn, dn)n∈N) ↪→ L((Xn, dn)n∈N)

induces an equivalence on the level of K -theory; equivalently, the
K -theory of L((Xn, dn)n∈N)>⊕ vanishes.
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Proof

by Induction on N. The attaching of N-simplices gives a diagram

L((∂Yn, d
∞
n )n∈N)>⊕ //

��

L((Yn, d
∞
n )n∈N)>⊕

��
L((XN−1

n , dn)n∈N)>⊕ // L((Xn, dn)n∈N)>⊕,

After fattening both categories on the left (as before) both rows
turn into Karoubi-filtrations. The induced map on the quotient will
be an equivalence (�1). Furthermore the K-theory of
L((Yn, d

∞
n )n∈N)>⊕ vanishes (�2). By induction assumption the

K-theory of both left entries vanish. Applying the 5-Lemma to the
long exact ladder gives the result.
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At �1

Given an object either of the two quotient categories, we can
delete all modules sitting over ∂Yn (resp. XN−1

n ) without changing
the isomorphism type.
The functor is injective on morphism sets since the metric in the
top row is larger and thus there are stronger conditions on the
morphisms.
To see the surjectivity let us pick a morphism in L((Xn, dn)n∈N)>⊕.
Wlog we may assume that the objects have no modules sitting
over ∂Yn (resp. XN−1

n ). We have to show that it is the sum of a
morphism from the top and a morphism from the left. The
morphisms from the top are exactly those which only connect
modules sitting over the same N-simplex. Subtracting those gives
a morphism which connects only different simplices. We have to
show that this one factors though an object from the left.
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At �1 (continued)

Exercise

For any two points x , y in different N-simplices of a simplicial
complex there is a point z in an n − 1-simplex with
d1(x , z) ≤ 2d1(x , y) (and thus d1(y , z) ≤ 3d1(x , y)).

x
f

y

f
z

id

The idea to factorize a morphism is shown in the picture above;
glue the modules over y at z = z(x , y). The estimations from the
lemma give the control conditions.
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At �2

Now we have to construct an Eilenberg swindle on
L((Yn, d

∞
n )n∈N)>⊕. We will construct in each degree

OG (E ,Yn, d̃n
∞

) separately. It will not change the Yn-coordinate at
all. Thus those swindles combine to an Eilenberg-swindle on
L((Yn, d

∞
n )n∈N).

Recall that objects in this category are modules over
Yn × E × [1,∞).
The naive idea just to shift in the [1,∞) direction (without
changing the other ones) fails - the equivariant control condition is
violated. We are already in the situation where arrows cannot
connect different simplices. Thus we have to make simplices
smaller.
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The swindle

Let Rn be the set of N-simplices of Yn, i.e. Yn =
⋃

i∈Rn
∆N and let

p : Yn → Rn be the projection. Fix a G -map i : Rn → E := EFG .
By the universal property of E := EFG there is a homotopy

H : [0, 1]× Yn × E → E

such that
H0(y , e) = e; H1(y , e) = i(p(y))
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The swindle

Now define for every point (g , y , e, t) in G × Yn × E × [1,∞) a
sequence of points

(y ,H k
k+t

(y , e), t + k)k∈N

and define an Eilenberg swindle along those; i.e. if we consider an
object A and some module M sits over a point (y , e, t) we define
put in S(A) that module over all those points in that sequence.
The natural isomorphism S ⊕ Id ∼= S is given by shifting along
those lines.
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The swindle

The only problem is to show that the continuous control conditions
are satisfied - to show that S is a functor and that the shift defines
a natural transformation S ⊕ Id → S . Let us pick a sequence of
arrows such that the [1,∞)-coordinate of the source (which is of
the form ti + ki ) converges to ∞, and whose E -coordinate of the
source converges, then we get:

By cocompact control, we can pass to a subsequence where
the Yn coordinates lie in one orbit of a simplex rn ∈ Rn;

If ti is bounded, then the E -coordinate of the endpoints
converges to i(rn). Thus continuous control holds.

Otherwise use that the morphism that we started with is
continuously controlled and that H is continuous.

This completes the proof of �2 and thus the proof that (3) is an
equivalence in K-theory.
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Excursion:Geometry

Definition

A geodesic metric space is CAT(-1), if triangles are thinner than in
H2.

Definition

A group is called CAT(-1), if it acts geometrically (proper,
isometrically and cocompact) on a CAT(-1)-space.

Example

The free group is CAT(-1) as it acts on a tree; Surface groups are
CAT(-1) as the universal cover of a surface with the hyperbolic
metric is H2.
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Excursion:Geometry

Definition

The boundary of a CAT(-1) space X (works also for CAT(0)) is
the set of equivalence classes of geodesic rays under the
equivalence relation given by having bounded distance. It may as
well be thought of as lim← S(∗, r) the inverse limit of spheres of
radius r around a basepoint x .

Definition

The compactification of X is the inverse limit of the system of
balls around some basepoint (x).

The compactification inherits an Isom(X )-action although the
point x is not a fixed point. Furthermore since it is an inverse limit
of metric spaces, it is metrizable. And of course it is compact.
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G -covers

Let X be a G -space and F be a family of subgroups of G . A
G -cover of X is a collection U of open sets such that:

For g ∈ G , u ∈ U we have gU ∈ U ;

If gU ∩ U 6= ∅, then gU = U;

For every U we have that the subgroup {g ∈ G | gU = U}
lies in the family F ;
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Constructing Covers

Now let G be a group acting geometrically on a CAT(-1)-space X
(for example G = F2). Let X be its compactification. For (2) to
hold, we have to construct the following:

A natural number N such that we can find for every β > 0:

An N-dimensional G - cover U (left action on G , trivial action
on X ) of G × X such that we can find for every (g , x) an
open set U ∈ U with

{(gh−1, hx) | |h| ≤ β} ⊂ U.

The normalizers of the open sets in the cover lie in F (Here
F = VCyc).
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Big isotropy causes problems

Let x ∈ X be a point and let H be its isotropy subgroup.
Pick β so large a generating system S of H lies in Bβ(1) and
which is symmetric under inversion.
Thus we find an open set U ∈ U such that
{(h−1, hx) | |h| ≤ β} ⊂ U.
Recall that U was a G -cover under the left action and thus
s(s−1, x) = (1, x) ∈ sU ∩ U.
A G -cover satisfies by definition gU ∩ U 6= ∅ ⇒ gU = U.
Thus we see that the normalizer of U is the whole of H. Even
if we drop that condition from above we get that
{hU | h ∈ Bβ(H)} has cardinality at most N, i. e. one set U
is fixed by a finite index subgroup of H.
Luckily for a CAT (−1) group all point stabilizers in X are
virtually cyclic and thus there is some hope that this approach
works.
For CAT(0)-groups there can be fixed points in X and a lot of
the diagram has to be reworked.
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The flow space

Definition

For a CAT(-1) space X define

FS(X ) := {f : R→ X | ∃ −∞ ≤ a ≤ b ≤ ∞ :

f[a,b] is a unit speed geodesic, f(−∞,a], f[b,∞) are constant}.

The function d(f , f ′) :=
∫
R

dX (f (t),f ′(t))

2e|t|
defines a metric on it

which generates the compact open topology. A (geometric)
G -action on X induces a (geometric) G -action on FS(X ).
Furthermore precomposition with translations gives a R-action Φ
on FS(X ) commuting with the G action.
The evaluation map f 7→ f (0) is proper with compact, contractible
fibers; Heuristically the flow space wants to mimic the unit ball
bundle in the tangent bundle of a Riemannian manifold.
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�3: long covers of the flow space

Theorem (Bartels-Lück-Reich)

Let G act geometrically on a CAT (−1)-space X . There is a
natural number N such that for any R > 0 there is an ε > 0 and a
VCyc cover of FS(X ) of dimension at most N such that for every
f ∈ FS(X ) there is an open set containing Bε(Φ[−R,R]f ).

The goal is now to define a map G × X → FS(X ) such that every
set of the form {(gh−1, hx) | |h| ≤ β} gets mapped into one of the
sausages Bε(Φ[−R,R]f ).
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The map to the flow space

Choose a basepoint x0 ∈ X and define a map

ix0 : G×X → FS(X ), ix0(g , x)(t) :=


gx0 t ≤ 0

gx t ≥ d(x , y)

cgx0,gx(t) else

,

where cgx0,gx : [0, d(x , y))→ X denotes the unique geodesic
connecting gx0 to gx . This map is G -equivariant, i. e.
ix0(g ′g , x)(t) = g ′i0(g , x). If we insert a point of the form
(gh, h−1x) we get the geodesic connecting ghx0 to gx . Let

R := max{d(gx0, ghx0) | h ∈ Bβ(1)} = max{d(x0, hx0) | h ∈ Bβ(1)}.

The key idea is now to postcompose with flowing by a large
enough number T towards x .
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Flowing makes things better

Let us just consider the harder case where x ∈ ∂X . There is for
every ε > 0 a T ∈ R such that for any two points p, q of distance
at most R (here gx0 and ghx0) we have that the two generalized
geodesics f , f ′ starting at time 0 at p and q and going towards x
satisfy

dFS(ΦT f ,ΦT+r (f ′)) < ε,

where r := Bx(p)− Bx(q) is the difference of the Busemann
function at x and y . We would first have to relate the metric on
the flow space to the metric on X , then relate the metric on X to
the metric on H2 using comparison triangles and then finally use
geometry in H2 to get this result. Or we can just draw a picture...
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Picture of the flow

p

q

Φr (q)

ΦT (p) Φr+T (q)
A picture in the Poincaré -
half plane of a generic
ideal triangle. Recall that
in this model points of the
same y coordinate (i.e. of
with the value of the
Busemann function of the
point at infinity of the
triangle) get arbitrarily
close together if we move
them upwards.
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Those sets around (1, x) with x ∈ ∂X

x0

ε-ball around the interval

The green dots are the set
B = {hx0 | h ∈ Bβ(1)}, then
ix0({(h−1, hx) | h ∈ Bβ(1)})
consists of those geodesics that
start at some point in B at time
0 and go towards the point at
infinity x . Two elements f , f ′ in
the flow space are close, if
supt∈[−R,R]dX (f (t),f ′(t)) is small.
Basically d(f (0), f ′(0)) has the
highest weight
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Those sets around (1, x) with x ∈ ∂X

ε-ball around the interval

x0

If you let the interval flow long
enough before taking the
ε-neighborhood, the resulting set
will be much bigger in the
horizontal direction. This comes
from the Poincare-halfplane
model.
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Thank you for your attention.
The whole talk is based on the following papers:
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