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Abstract. Let G be an unramified reductive group over alocal field. We consider the matrix
describing the Satake isomorphism in terms of the natural bases of the source and the target.
We prove that all coefficients of this matrix which are not obviously zero are in fact positive
numbers. The result is then applied to an existence problefaf/stals which is a partial
converse to Mazur’s theorem relating the Hodge polygon and the Newton polygon.

1. Introduction

Let F be alocal field and; a connected reductive group ov@which is quasisplit
and which splits over an unramified extension. Adie a maximal split torus it.
The centralizef” of A is a maximal torus contained in a Borel subgrdip- T.U.
Let K be a hyperspecial maximal compact subgrou@ @f ) which fixes a vertexin
the apartment correspondingAan the Bruhat-Tits building o7 ,;. We consider
the constant term mapping between Hecke algebras with coefficie@ts in

b:H(G(F)|K) — H(T(F)//T(F)NK)

1.1
frobHo =620 [ rewde. Y
U(F)

Hereép denotes the modulus function and the Haar measures are normalized so
thatK, T(F)NK andU (F)NK all getvolume 1. The Hecke algebra on the right in
(2.1) can be identified with the group algel@gX . (A)]. The theorem on the Satake
isomorphism ([9], comp. also [3]) asserts that the imagg ks in the invariant

ring under the relative Weyl groufo = N(A)(F)/T (F) and thaty induces an
isomorphism of algebras

H(G(F)/K) —> C[X.(A)]". (1.2)

That (1.2) is an isomorphism is proved as followsCAbasis for the space on
the right of (1.2) is given by

my = Woul™t Y w), ueX.(4)NC. (1.3

we W
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HereC denotes the closed Weyl chambein(A)r corresponding t@ and Wo,
is the stabilizer ofu in Wp. On the other hand, by the Cartan decomposition of
G (F) with respect tak, aC-basis for the space on the left of (1.2) is given by

fi =charKw*K, ie X.(A)NC. (1.4)
Herew? = A(w), wherew is a fixed uniformizer of~. Let
C=M®Ob(fs), me) (1.5
be the matrix describing the map (1.2) in terms of these base€, +e(C),,) with
b(fi) =Y Coyu-my. (1.6)
n

From the definition of it follows that Cy,, > 0. The fact that (1.2) is an
isomorphism now follows from the statement that the matris upper triangular
with strictly positive entries on the diagonal, i.e.

!
Cu. >0 andifC,, #0, theni>pu. 1.7)
! —
Here> denotes the usual partial order &p(A) N C, i.e.,

!
)»Z,u{z})»—u:Zna-av, ny € Z>0. (1.8)

The sum on the right is over the simple relative cordothie exclamation mark is
meant to stress that the coefficientsare non-negativetegersrather than non-
negative real numbers. The purpose of the present note is to show that the converse
to the statement (1.7) holds.

|
Theorem 1.1.If A > u, thenCy,, > O.

This is the positivity statement referred to in the title. The proof of the theorem
is contained in Sect. 2. It proceeds by induction on the semi-simple ra@ik a$
suggested to me by Waldspurger who also communicated to me the induction step.
In Sect. 3 the case @ L, is considered. It is shown how the positivity assertion
above can be deduced from the theory of symmetric functions [7]. In the final Sect. 4
we give an application of Theorem 1.1 to an existence probleftofystals.

Positivity statements on matrices describing a change of basis between natural
bases have become a common phenomenon, starting with the seminal paper of
Kazhdan and Lusztig, comp. [6]. They are also well-known for base change matrices
between natural bases for the space of symmetric functions, comp. [7]. But the
particular statement we prove here does not seem to have been pointed out before.
A geometric interpretation of it would of course be very desirable.

In a companion paper [2] to the present one, T. Haines gives a different proof
of Theorem 1.1 in the case of a split group by reducing it to a result of Dabrowski
[1]. He also relates the matriX to Kazhdan—Lusztig polynomials for the extended
affine Weyl group ofG.

1 Throughout the paper, roots, coroots etc. are meant telagve roots, relative coroots
etc.



A positivity property of the Satake isomorphism 155

2. Proof of the theorem

We introduce the map
inv: G(F)/K x G(F)/K — X,(A)NC (2.1
which comes about by identifying the set@f F)-orbits,

G(F)\ (G(F)/K x G(F)/K) = K \ G(F)/K = X+(A)NC. (2.2)

. . . . .
Our aim is to prove that > u implies either of the following equivalent statements

Ko*KNwhU(F) # 0 < KoK NUF)o* # ¢

. (2.3)
& JuecUF): invluom” - xg, x0) = A.

Herexp € G(F)/K denotes the base point.
The proof of this implication will proceed by reduction to the case of semi-
simple rank equal to one. We first make a remark on the centerr L& — Gaqg
be the natural homomorphism into the adjoint group. Assume Theorem 1.1 proved
!

for Gagand letus deduce it faF. Fromi > u we deduce for theirimages i, (Aaq)

!
thatiaq> agand hence there exisise Uag(F) With invag(uo “ad- xq, xg) = Aad.
The homomorphismr induces an isomorphisity (F) ~ Ua¢(F) and hence:
may be considered as an elementigfF). Let us compare the two elements of
X.(A)NC,
inviuw" - xg, xo) and . (2.4)

By hypothesis both have the same imageXinAaqg). Hence they differ by an
element ofX . (Zg), whereZy = Z N A denotes the split center 6f. On the other
hand, we have a natural inclusion into the cocharacter group of the maximal abelian
factor group,

X(Zo) = X+(Gap). (2.5)
But the images of the elements in (2.4)Xq(G,p) areu,, andi,, respectively

which are equal since— € X.(Ager). Hence the elements in (2.4) are identical,
as had to be shown.

A. The case of rank one

By the above remark we may assume ttiés adjoint of relative rank one. It follows
thatG is of the formG = Rg,rG’, whereE is an unramified extension and where

G' = PUs, resp.G' = PGLy, (2.6)

(quasisplit forms). Heré Us is the adjoint unitary group for a quasisplit hermitian
form on a 3-dimensional vector space overusmamifiedquadratic extension of
E. SinceE/F is unramified, a uniformizer of is also one off. Hence we may
replaceF by E andG by G’ in proving the assertion.
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Al. CaseG = PU3

We identifyG (F)/K with the set of hyperspecial vertices of the Bruhat-Tits build-
ing of G,_Which is a tree. We choose an identificati®ia(A) = Z such that
X.(A) N C = Z-¢. Then the corook" for the unique simple roat corresponds

!
to 2 € Z. Our hypothesis. > u is therefore equivalent to
A—pe2-Zsg. 2.7

Let A be the apartment correspondingd@nd lety = w# - xg € A. Letz be the
point in A at distance} (A — u) from xg in the direction opposite to (Fig. 1).

Oy
/’/
i,
e
Jo)
//

. . . O
z=uz X, y
Fig. 1.

Note that; is a hyperspecial vertex. We indicated by larger dots the hyperspecial
vertices and by smaller dots the non-hyperspecial vertices.

Now chooser € U (F) which fixesz and the unique edge ia containing; and
pointing away fromxg, but which acts non-trivially on the other edges containzing
Then the unique geodesic fromto uy passes throughand hence for the distance
we get

d(uy, xo) = d(uy, z) + d(z, x0)
=d(y, z) +d(z, x0)

=d(y, x0) +2-d(z, x0) (2.8)
=pu+G—un
= A

Here we normalized the distance so that hyperspecial vertices have distance one,
which allows us to identify the distance function with the inv function. The claim
in this case follows therefore from (2.8).



A positivity property of the Satake isomorphism 157

A2. CaseG = PGL>

Inthis caseX,(A) = Zanda" = 2 € Z, and again our hypothesisis-u € 2.Z~¢.
The argument is identical, except that in the drawing above the larger dots have to
be interpreted as vertices and the smaller dots as midpoints of edges.

B. The general case

To present Waldspurger’s argument in the general case, we need a few lemmas.

Lemma2.1.LetA, u € X.(A) andw € Wy. Then
KoK NUF)o" £ 0 < Ko*K NUF)m"W £ §.
Proof. In the notation of the Introduction this says

b(f)(@") # 0 <= b(fi) (@™ ™) £ 0. (2.9)
This is obvious sincé(f;) € C[X.(A)]"°. o

We denote byRY resp.RV* resp.A" the set of coroots resp. of positive coroots
resp. of simple coroots. They are in bijection with the gets roots,R™ of positive
roots andA of simple roots.

Lemma 2.2.LetBY € RY. Thenthere exist® € Wo,a” € AV andn € Z,n > 1,
such thatw(BY) = na”.

Proof. This is just Prop. 15 in Bourbaki: Groupes et Algébres de Lie, ch. VI, 1.5.

The next lemma is due to Stembridge [10], Cor. 2.7. The following proof due
to Waldspurger is even simpler than the alternative one by Steinberg reproduced in
loc.cit.

_ !
Lemma 2.3 Stembridge Let i, u € X.(A) N C with A >p andA # u. Then
_ !

there existg € RVT such thatu + 8Y € X,.(A)NC andi > + BY.

Proof (Waldspurgex. Letd = u+ Zycang -aV. Consider the set of ¥ € RV
wheregY = Tyecamga with my, < n, for all «. Sincex # u there exists: with

1

ne # 0 and hencerV e X, henceX # @. Let us partially ordert’ by >. Let
BY = Tmya” be a maximal element of. Then

A=pu+ :3\/ + Xoea(ng — ma)()lv, (2.10)

with n, — mg > 0 for all . Hence it suffices to show that + 8¥ € C. Let
a € A.We want to show thalr, u + 8Y) > 0. Sinces" is maximal inX’, we have
BY +aV ¢ X. Hence there are two possibilities.

() B +a” ¢RY.

(i) my = ng.
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However, for any root system we have
v v2 € RV with (v, y)) <0= ' + 15 e R”. (2.11)
Under hypothesis (i) we have therefdre 8V) > 0. Hence
(o, i+ BY) = (o, 1) + (@, B7) = 0. (212
Under hypothesis (ii) we have
(0, u+BY) = (@, 2 = Syeay(n, —my) -yY). (213

But (e, A) > Oandfory € A\{a}wehavee, yV) < 0.Hence agaifw, n+8) >
0. O
We can now complete the proof of the theorem. Fix X.(A) N C. LetY

_ !
be the set ofx € X.(A) N C such that. > andK@*K N U(F)wH = @. We
want to prove thaly = . Let us assum@ # ¢ and deduce a contradiction. Let

!
€ Y be a maximal element with respectto Sincew* € KoK NU(F)w*,
we haveu # A. By Lemma 2.3 we fing3¥ € Rt with u + 8Y € X, (A)NC

! !
andi > u + BY. Sincen + B > u, by the maximality of. we haveu + 8Y ¢ ),
hence
Ko*K NUF)ow"tF £ 9. (2.14)

By Lemma 2.2 wefindv € Woanda” € AY suchthatv(8") is a positive multiple
of ¥. By Lemma 2.1 we conclude from (2.14) that
K"K NU(F)oWtwE") L g (2.15)

Letu € U(F)suchthati-?W+w(#") ¢ Ka* K. Let P be the standard parabolic
subgroup corresponding to with Levi subgroupM containingA. ThenM has
semisimple rank 1. Lel/p be the unipotent radical af andUY = U N M. Then

U(F) = Up(F)UM(F). (2.16)

Letus writeu = up -uM according to this decomposition. L&t be the analogue
of C for M, i.e.

T = v e X.(A)r; (o v) >0}, (2.17)

Now w(8) = ca with ¢ > 0. Hence
(o, w(w)) = cHw(B), w(w) = c"HB, u) >0, (2.18)

sincef € RT andy € C. Hencew(w) € C. Sincew (") is a positive multiple
of ¥ we conclude that

| M
w() +wB”) e TV, ww) + wEH> ww), (2.19



A positivity property of the Satake isomorphism 159

1 M !
where> isthe analogue of with G replaced by . By the Cartan decomposition
for M we findv € X,(A) N C" with

uM ) ¢ gMepv M - where KM = K N M(F). (2.20)
M
By the converse of Theorem 1.1, the relation (2.20) imphies w(u) + w(B8Y).
M
!

Hence a fortioriv>  w(w). Applying now the statement of the Theorem fr
which is of semisimple rank 1, we conclude

UM(F)w® ™ N KMoV KM £ ¢. (2.21)

From (2.20) and (2.21) we deduce that there exi§tss UM (F) andk1, k> €
KM such that
ugl c P = gy M WY g, (2.22

Letuo = kaupky® - ull. Sinceks € M(F) we havekiupk;* € Up(F), hence
ug € U(F). Then
ugw VW = klupkl_l kqu™ . ww(“Hw(ﬂv)kz

y (2.23)
= ko *WTEI L, ¢ Ko K.

HenceU (F)w ™ N Kw*K # ¢. By Lemma 2.1 this contradicts the hypothesis
thatu € Y, and this contradiction proves the theorem.

The following variant of Theorem 1.1 was pointed outto me by Kottwitz. Denote
by v : B(F) - X.(A) the composition of the following homomorphisms

B(F) —> T(F) — X.(A). (2.24)

Here the first map comes from identifyirfgy ) with B(F)/U(F). The second
map is the restriction t@ (F) of the canonical valuation map frof(E) to X, (T),
whereE is an unramified extension df that splitsT’; this restriction obviously
takes values in the subgroup of Galois invariant¥ i7" ) which may be identified
with X, (A). LetA, u € X.(A) be dominant. Then, obviously,

Cip #0 = v X NKo*K # 0. (2.25)

!
Theorem 2.4.Letx > . Then for anyy € v—1(1) there exist$’ € B(F) N KbK
withv(d') = pu.

Proof. We first note this statement implies Theorem 1.1. Indeed, applying the as-
sertiontoh = w* wefindb’ = kiow*ky ofthe formb’ = kz-w*-uwith kg, ko € K
andkz € T(F)NK,u € U(F). Hence

k3t kotke =@t -u, (2.26)
as desired, cf. (2.3).
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Now IEt us deduce Theorem 2.4 from Theorem 1.1.A etv—1(%). Let) €
X.(A) N C with /
beviMNKo*K. (2.27)

! !
By the converse to Theorem 1.1 we have- 1. Hence a fortiori we have’ > .
By Theorem 1.1 there exists € B(F) N Ko K with v(b') = p, cf. (2.3). But
thend’ € B(F) N KbK hasv(b’) = pu. O

3. The case ofGL,

In this section we show that the positivity statement in Theorem 1.1 follows in the
case ofG L, from facts on symmetric functions contained in Macdonald’s book
[7], which will be quoted “loc. cit.” in this section. In the case Gf.,,, with the
usual choices oA = T = G}, and B (diagonal resp. upper triangular matrices)
we have

X,(ANC={A=0A1 ..., ) €Z" M1 >Ao>...> Ay} (3.1

We identify H(T (F)//T(F) N K) = C[X.(A)] with the ring of Laurent polyno-
mialsC[x;t, ..., x5,

Lemma 3.1.Letg be the number of elements in the residue field 6Then

b(f) =qM  Pi(x1, .. xs g7,

Here(, ) isthe standard scalar productf, andp = %(n —-1,n-3,...,1—n).
By Py(x1,...,x,; t) we denote the Hall-Littlewood polynomial corresponding
to A (loc. cit., p. 104).

Proof. It is proved in loc. cit., p. 161, that there is an algebra homomorphism
b H(G(F)JK) — Clxi, ..., x5 with
b'(fi)=q "™ . Py (x1,....x0: ¢ Y. (3.2)

Here

n(h) = Z(i — D = (o, ) witho = (0,1,...,n—1). (3.3)
Let us first check that the right hand side in Lemma 3.1 indeed defines an algebra
homomorphisnbg. First note that

1
(0, A) = —n(A) + E(n —1)- | (3.9
We therefore have for, ' € X,.(A)NC,

bs(f) - bs(fi) = g™ - P, - q'e*) . py

Lin— ' - —n(

= g2 DD (=) py L (gD L pyy 35
L ' '
_ q2(" DArM+IAD -b’(fx) -b/(f,v)

1., ’
= q2 VIR (f o fio),
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where we used that is an algebra homomorphism. On the other hand,

Hoxfur=> gl fu (3.6)

(loc. cit., p. 160), where the sum runs only oyewith || = |A| + |A/], cf. loc.
cit., p. 88. Hence the RHS in (3.5) is equalig( f * f/).

To prove the Lemma it now suffices to check thahdb s coincide onthe algebra
generators given by the fundamental coweights= (1", 0"") (r = 1, ... ,n).
But

1 1
(0, Ar) = Er(” —r) and bs(f;,) = q2" ") e, = b(f3,)- (3.7
Heree, = e,, is ther-th elementary symmetric functionoo

From the expression in Lemma 3.1 we see that the transition m@trix
M(b(f,), m,) is of the form

C=D- Mg Y. md), (3.8)

where D is the diagonal matrix with entry{@*) in the place(x, A) and where
M(P.(q~1), m,) is the transition matrix between the Hall-Littlewood symmetric
functionsP; (3~1) and the monomial symmetric functions,. Therefore the next
lemma gives the desired positivity statement.

Lemma 3.2.The matrix M (P.(¢ 1), m,) is unitriangular with all coefficients
above the diagonal positive.

Proof. We have by loc. cit., p. 128
M(Po(g™h.m) =K@ H ™t K=K(gH™ KQ), (3.9
where
K(t) = M(se, Pu(2)) (3.10

is the transition matrix between the Schur symmetric functignand the Hall—

Littlewood polynomialsP,, (¢). ObviouslyK (0) = Id andK (1) = K is the Kostka

matrix expressing the Schur symmetric funtien$n terms of the monomial sym-
|

metric functionsn,,. However, fori > p,

(KO K=Y _ Y7 (0) (3.11)
T

where the sum runs over all tabledlif shape. and weighiu, cf. loc. cit., p. 126.
Note that this sum is non-empty. The polynomjal(r) is a product of polynomials
of the form

1-/", m=>0, (3.12

cf. loc. cit., p. 120. Inserting‘l for r we seepT(q‘l) > 0 and the claim follows.
O
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Remark 3.3A deep fact (due to Lascoux and Schutzenberger) mentioned on p. 129
of loc. cit. is thatK . (¢) is of the form

Ko@) = 1D (3.13)
T

in particular all coefficients above the diagonal arenicpolynomials of positive
degreen(1) — n(u) with non-negative integer coefficients. However, there seems
to be no connection between this statement and that of Lemma 3.2.

4. An application

In this section we return to the situation considered in the Introductiorl. betthe
completion of the maximal unramified extensionfofind leto denote the relative
Frobenius automorphism. Recall Kottwitz's set [4]

B(G) = G(L)/o — conjugacy 4.2

Kottwitz has classified this set. We shall only use a weak form of his result. We
recall theNewton mag5]

v:B(G) — C. (4.2)

We also recall the algebraic fundamental grougzgfvhich can be identified with
the character group of the center of the Langlands dual group,

11(G) = X*(Z(G)). (4.3)

Let 71(G)r be the coinvariants for the action of the absolute Galois gioup
Gal(F/F). The second ingredient of the classification is Kodtwitz mag4]

k : B(G) — m1(G)r. 4.4
The maps (4.2) and (4.4) combine intoiajective map

(, k) : B(G) — C x m1(G)r. (4.5

Remark 4.1In the case o6 L, the first component of (4.5) determines the second.
Indeed, if> € GL,(L) is a representative df € B(G), thent(b) is the slope
vectorr = (A1,...,A,) of the isocrystalL", bo). On the other hands(b) =

> & € Z = m1(GLy,)r. At the other extreme, iG = T is a torus, the second
component of (4.5) determines the first. In fagh) is the image ok (b) under the
composition of maps

mU(T)r = 7(T)r ® Q = Xu(T)g = X4(A)g = X«(A)r =C. (4.6)
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By the Bruhat-Tits theory the hyperspecial maximal compact subgkoop
G (F) determines a unique hyperspecial compact subgfouh G (L) with K N
G(F) = K. In analogy with (2.1) we have the map

inv: G(L)/K x G(L)/K —> X.(T)NC(T). 4.7)

HereC(T) denotes the closed Weyl chamberin(T)r corresponding t@. This
map is equivariant for the action ef on the source and the target. We note that
C=C(M" =c().
Let now i € X,(T) N C(T). By [8] we have associated {0 its image in
71(G)r,
€ m1(G)r (4.8)

and its mean value over the Galois group

E=I[r:T,)" Y yueC. (4.9)
T/Ty

The group-theoretic version of Mazur’s theorem proved in [8] may now be stated
as follows:

Letb € B(G) and leth € G(L) be a representative & Letx € G(L)/K and put
w = inv(x, bo (x)). Then

(i) u'=rxb) (4.10)
(i) v(b) <.

|
Here we use the partial orderonC coarser thar:, where in (1.8) the integrality
condition is dropped and arbitrary coefficienise R-g are allowed. If the derived
group is simply connected, then both partial orders coincid& g).
We now give the application of Theorem 1.1 which is a converse to (4.10) in
special circumstances. Note that in the following statement the rolesanfl 1
have changed as compared to the previous sections.

— ! ~
Proposition 4.2.Letx, u € X, (A)NC withA <. Letb = w™. Then there exists
x € G(L)/K with
inv(x, bo (x)) = u.

Proof. By Theorem 1.1 there exisise U (F) such that
inv(xo, ubxg) = .

Here as beforeg € G(F)/K denotes the base point. However, the two elements
b andub of B(L) areo-conjugate, [5], 3.6,

ub =g tbo(g), g€ B(L). (4.12)

Hencex = gxg satisfies the desired identityd
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Remark 4.3Under the hypotheses of the corollary we have
k(b) = At = ut (4.12)

and
) =A< p=n (4.13)

Hence the Proposition is indeed a converse to (4.10). However, we have shown
this converse only under special circumstances: namely, we essentially impose on
u to beTl-invariantand onb € B(G) to haveintegral image under the Newton
map. This is implied by the following lemma which brings into focus the content
of Proposition 4.2.

Lemma 4.4.Let Gger be simply connected. Lete B(G) withv(b) € X.(A) ncC.
Letu € X.(A) N C and assume the conditions (i) and (ii) of (4.10) satisfied. Then
b is thes-conjugacy class ab* whereix = v(b).

Proof. Since Gger is simply connected, the condition (ii) of (4.10) implies that

!
A <u. But theni and . have the same image i@, and hencet” = uf. Put
b = w*. Thenv(b) = A = v(b) andk (b) = A" = u* = k(b). We conclude by the
injectivity of (4.5). O

In the end of this section we state (in the simplified setting of this section)
the general problem to which Proposition 4.2 gives a solution in a special case.
Let K € G(F) be a parahoric subgroup which fixes a facet of the Bruhat-Tits
building of G .4 over F inside the apartment corresponding4pand letK be the
corresponding parahoric subgroup®(L). Let T (L) be the subgroup of units of
T (L) and let

W = N(L)/T(L)1 (4.14)

be the lwahori Weyl group. Let
WK =N@L)NK/T(L)1. (4.15)
The analogue of (4.7) in this more general situation is a map
inv:G(L)/K x G(L)/JK — WX\ w/wk. (4.16)

If K = I is an Iwahori subgroup, then the target set of (4.16)ist
Forb e G(L) we introducethe generalized affine Deligne—Lusztig variety
associated tav € WK \ w/wk

Xy (bo) = {x € G(L)/K; inv(x, bo (x)) = w}. (4.17)

An elementy’ € G(L) which isc-conjugate td yields a set which is in bijection
with the one corresponding # In the case of an Iwahori subgroup we call this
setthe affine Deligne—Lusztig variety associateditoe W. The reason for this
terminology suggested by Kottwitz is th#t is the affine analogue of the Weyl
group of a reductive group over a finite field @nrdis the analogue of the Frobenius
automorphism in that case. However, in contrast to that 8a5é0 ) may well be
empty.
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Problem 4.5. Determine the pairéh, w) for which X, (bo') # ¥.

Itis likely that the sek,, (bo) may be given the structure of an algebraic variety
locally of finite type over the residue field @f. Going further than Problem 4.5,
one may ask for the dimension &f, (o). | do not even have a conjecture.

We conclude this section by establishing a link of Problem 4.5 with a result
of Dabrowski [1]. For this assume thét is split over F. For a suitablelwahori
subgroupl of G(F) (comp. the companion paper of Haines [2]) we consider the
two disjoint sum decompositions,

GF)=|Jurwr GF) =] 1wl (4.18)
weWw

IUEW

Assume now thak € G(F) and letx = x(b) € W be such thab € U(F)xI. The
proof of Proposition 4.2 shows

UF)xI N Iwl # @ = Xy (bo) # 0. (4.19)

Onthe other hand, by [1], Prop. 3.2, the condition on the LHS of (4.19) is equivalent
to
x € G(w) (4.20)

(the set of terminal elements of good subexpressions cbmp. [2]). However, this

is not the kind of answer one would like to Problem 4.5. Just as for Proposition 4.2,
one would like an answer which involvesb) andx (b), whereb € B(G) denotes
theo-conjugacy class df.

Acknowledgementd. wish to thank J.-L. Waldspurger for his help with the proof and his
permission to reproduce his argument. | also thank E. Landvogt for his help in handling
the theory of Bruhat—Tits buildings. | furthermore thank T. Haines and R. Kottwitz for very
interesting discussions, and P. Schneider for pointing out to me the paper of Dabrowski.
Finally I thank the referee for his remarks.

References

[1] Dabrowski, R.: Comparison of the Bruhat and the lwahori decompositiong eddic
Chevalley group. J. Algebrb67, 704—723 (1994)

[2] Haines, T.: On matrix coefficients of the Satake isomorphism: complements to the
paper of Rapoport. manuscripta matbl, 167-174 (2000) (same issue, next paper)

[3] Kottwitz, R.: Shimura varieties and twisted orbital integrals. Math. At69, 287-300
(1984)

[4] Kottwitz, R.: Isocrystals with additional structure. Comp. M&ih, 210-220 (1985)

[5] Kottwitz, R.: Isocrystals with additional structure II. Comp. MatB9, 255-339 (1997)

[6] Lusztig, G.: Singularities, character formulas ardanalogue of weight multiplicities.
Astérisquel01-102 208—-229 (1983)

[7] Macdonald, I.: Symmetric functions and Hall polynomials. New York: Oxford U. Press,
1979

[8] Rapoport, M., Richartz, M.: On the classification and specializatioR-ggocrystals
with additional structure. Comp. Matth03 153-181 (1996)



166 M. Rapoport

[9] Satake, I.: Theory of spherical functions on reductive algebraic groups jpasiic
fields. Pub. Math. IHES8, 5-69 (1963)
[10] Stembridge, J.: The partial order of dominant weights. Adv. ME&6, 340—-364 (1998)



