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Abstract. LetG be an unramified reductive group over a local field. We consider the matrix
describing the Satake isomorphism in terms of the natural bases of the source and the target.
We prove that all coefficients of this matrix which are not obviously zero are in fact positive
numbers. The result is then applied to an existence problem ofF -crystals which is a partial
converse to Mazur’s theorem relating the Hodge polygon and the Newton polygon.

1. Introduction

LetF be a local field andG a connected reductive group overF which is quasisplit
and which splits over an unramified extension. LetA be a maximal split torus inG.
The centralizerT ofA is a maximal torus contained in a Borel subgroupB = T .U .
LetK be a hyperspecial maximal compact subgroup ofG(F)which fixes a vertex in
the apartment corresponding toA in the Bruhat–Tits building ofGad . We consider
the constant term mapping between Hecke algebras with coefficients inC,

b : H(G(F )//K) −→ H(T (F )//T (F ) ∩K)
f 7−→ b(f )(t) = δ

1/2
B (t) ·

∫
U(F)

f (tu)du.
(1.1)

HereδB denotes the modulus function and the Haar measures are normalized so
thatK, T (F )∩K andU(F)∩K all get volume 1. The Hecke algebra on the right in
(1.1) can be identified with the group algebraC[X∗(A)]. The theorem on the Satake
isomorphism ([9], comp. also [3]) asserts that the image ofb lies in the invariant
ring under the relative Weyl groupW0 = N(A)(F )/T (F ) and thatb induces an
isomorphism of algebras

H(G(F )//K) ∼−→ C[X∗(A)]W0. (1.2)

That (1.2) is an isomorphism is proved as follows. AC-basis for the space on
the right of (1.2) is given by

mµ = |W0,µ|−1 ·
∑
w∈W0

w(µ), µ ∈ X∗(A) ∩ C. (1.3)
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HereC denotes the closed Weyl chamber inX∗(A)R corresponding toB andW0,µ
is the stabilizer ofµ in W0. On the other hand, by the Cartan decomposition of
G(F) with respect toK, aC-basis for the space on the left of (1.2) is given by

fλ = charK$λK, λ ∈ X∗(A) ∩ C. (1.4)

Here$λ = λ($), where$ is a fixed uniformizer ofF . Let

C = M(b(f•),m•) (1.5)

be the matrix describing the map (1.2) in terms of these bases, i.e.C = (Cλµ) with

b(fλ) =
∑
µ

Cλµ ·mµ. (1.6)

From the definition ofb it follows that Cλµ ≥ 0. The fact that (1.2) is an
isomorphism now follows from the statement that the matrixC is upper triangular
with strictly positive entries on the diagonal, i.e.

Cλλ > 0 and ifCλµ 6= 0, thenλ
!≥µ. (1.7)

Here
!≥ denotes the usual partial order onX∗(A) ∩ C, i.e.,

λ
!≥µ ⇐⇒ λ− µ =

∑
nα · α∨, nα ∈ Z≥0. (1.8)

The sum on the right is over the simple relative coroots.1 The exclamation mark is
meant to stress that the coefficientsnα are non-negativeintegersrather than non-
negative real numbers. The purpose of the present note is to show that the converse
to the statement (1.7) holds.

Theorem 1.1.If λ
!≥µ, thenCλµ > 0.

This is the positivity statement referred to in the title. The proof of the theorem
is contained in Sect. 2. It proceeds by induction on the semi-simple rank ofG, as
suggested to me by Waldspurger who also communicated to me the induction step.
In Sect. 3 the case ofGLn is considered. It is shown how the positivity assertion
above can be deduced from the theory of symmetric functions [7]. In the final Sect. 4
we give an application of Theorem 1.1 to an existence problem ofF -crystals.

Positivity statements on matrices describing a change of basis between natural
bases have become a common phenomenon, starting with the seminal paper of
Kazhdan and Lusztig, comp. [6].They are also well-known for base change matrices
between natural bases for the space of symmetric functions, comp. [7]. But the
particular statement we prove here does not seem to have been pointed out before.
A geometric interpretation of it would of course be very desirable.

In a companion paper [2] to the present one, T. Haines gives a different proof
of Theorem 1.1 in the case of a split group by reducing it to a result of Dabrowski
[1]. He also relates the matrixC to Kazhdan–Lusztig polynomials for the extended
affine Weyl group ofG.

1 Throughout the paper, roots, coroots etc. are meant to berelativeroots,relativecoroots
etc.
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2. Proof of the theorem

We introduce the map

inv : G(F)/K ×G(F)/K −→ X∗(A) ∩ C (2.1)

which comes about by identifying the set ofG(F)-orbits,

G(F) \ (G(F )/K ×G(F)/K) = K \G(F)/K = X∗(A) ∩ C. (2.2)

Our aim is to prove thatλ
!≥µ implies either of the following equivalent statements

K$λK ∩$µU(F) 6= ∅ ⇔ K$λK ∩ U(F)$µ 6= ∅
⇔ ∃u ∈ U(F) : inv(u$µ · x0, x0) = λ.

(2.3)

Herex0 ∈ G(F)/K denotes the base point.
The proof of this implication will proceed by reduction to the case of semi-

simple rank equal to one. We first make a remark on the center. Letπ : G → Gad
be the natural homomorphism into the adjoint group. Assume Theorem 1.1 proved

forGadand let us deduce it forG. Fromλ
!≥µwe deduce for their images inX∗(Aad)

thatλad
!≥µad and hence there existsu ∈ Uad(F )with invad(u$

µad ·x0, x0) = λad.
The homomorphismπ induces an isomorphismU(F) ' Uad(F ) and henceu
may be considered as an element ofU(F). Let us compare the two elements of
X∗(A) ∩ C,

inv(u$µ · x0, x0) and λ. (2.4)

By hypothesis both have the same image inX∗(Aad). Hence they differ by an
element ofX∗(Z0), whereZ0 = Z ∩A denotes the split center ofG. On the other
hand, we have a natural inclusion into the cocharacter group of the maximal abelian
factor group,

X∗(Z0) ↪→ X∗(Gab). (2.5)

But the images of the elements in (2.4) inX∗(Gab) areµab andλab respectively
which are equal sinceλ−µ ∈ X∗(Ader). Hence the elements in (2.4) are identical,
as had to be shown.

A. The case of rank one

By the above remark we may assume thatG is adjoint of relative rank one. It follows
thatG is of the formG = RE/FG

′, whereE is an unramified extension and where

G′ = PU3, resp.G′ = PGL2, (2.6)

(quasisplit forms). HerePU3 is the adjoint unitary group for a quasisplit hermitian
form on a 3-dimensional vector space over anunramifiedquadratic extension of
E. SinceE/F is unramified, a uniformizer ofF is also one ofE. Hence we may
replaceF byE andG byG′ in proving the assertion.
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A1. CaseG = PU3

We identifyG(F)/K with the set of hyperspecial vertices of the Bruhat–Tits build-
ing of G, which is a tree. We choose an identificationX∗(A) = Z such that
X∗(A) ∩ C = Z≥0. Then the corootα∨ for the unique simple rootα corresponds

to 2 ∈ Z. Our hypothesisλ
!≥µ is therefore equivalent to

λ− µ ∈ 2 · Z≥0. (2.7)

Let A be the apartment corresponding toA and lety = $µ · x0 ∈ A. Let z be the
point inA at distance1

2(λ− µ) from x0 in the direction opposite toy (Fig. 1).

uy

z=uz
0

x y

Fig. 1.

Note thatz is a hyperspecial vertex. We indicated by larger dots the hyperspecial
vertices and by smaller dots the non-hyperspecial vertices.

Now chooseu ∈ U(F)which fixesz and the unique edge inA containingz and
pointing away fromx0, but which acts non-trivially on the other edges containingz.
Then the unique geodesic fromx0 touy passes throughz and hence for the distance
we get

d(uy, x0) = d(uy, z)+ d(z, x0)

= d(y, z)+ d(z, x0)

= d(y, x0)+ 2 · d(z, x0)

= µ+ (λ− µ)

= λ.

(2.8)

Here we normalized the distance so that hyperspecial vertices have distance one,
which allows us to identify the distance function with the inv function. The claim
in this case follows therefore from (2.8).
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A2. CaseG = PGL2

In this caseX∗(A) = Z andα∨ = 2 ∈ Z, and again our hypothesis isλ−µ ∈ 2·Z≥0.
The argument is identical, except that in the drawing above the larger dots have to
be interpreted as vertices and the smaller dots as midpoints of edges.

B. The general case

To present Waldspurger’s argument in the general case, we need a few lemmas.

Lemma 2.1.Letλ,µ ∈ X∗(A) andw ∈ W0. Then

K$λK ∩ U(F)$µ 6= ∅ ⇐⇒ K$λK ∩ U(F)$w(µ) 6= ∅.
Proof. In the notation of the Introduction this says

b(fλ)($
µ) 6= 0 ⇐⇒ b(fλ)($

w(µ)) 6= 0. (2.9)

This is obvious sinceb(fλ) ∈ C[X∗(A)]W0. ut
We denote byR∨ resp.R∨+ resp.1∨ the set of coroots resp. of positive coroots

resp. of simple coroots. They are in bijection with the setsR of roots,R+ of positive
roots and1 of simple roots.

Lemma 2.2.Letβ∨ ∈ R∨. Then there existsw ∈ W0, α∨ ∈ 1∨ andn ∈ Z, n ≥ 1,
such thatw(β∨) = nα∨.

Proof. This is just Prop. 15 in Bourbaki: Groupes et Algèbres de Lie, ch. VI, 1.5.

The next lemma is due to Stembridge [10], Cor. 2.7. The following proof due
to Waldspurger is even simpler than the alternative one by Steinberg reproduced in
loc.cit.

Lemma 2.3 (Stembridge). Let λ,µ ∈ X∗(A) ∩ C with λ
!≥µ andλ 6= µ. Then

there existsβ ∈ R∨+ such thatµ+ β∨ ∈ X∗(A) ∩ C andλ
!≥µ+ β∨.

Proof (Waldspurger). Letλ = µ+6α∈1nα ·α∨. Consider the setX of β∨ ∈ R∨+
whereβ∨ = 6α∈1mαα∨ with mα ≤ nα for all α. Sinceλ 6= µ there existsα with

nα 6= 0 and henceα∨ ∈ X , henceX 6= ∅. Let us partially orderX by
!≥. Let

β∨ = 6mαα
∨ be a maximal element ofX . Then

λ = µ+ β∨ +6α∈1(nα −mα)α
∨, (2.10)

with nα − mα ≥ 0 for all α. Hence it suffices to show thatµ + β∨ ∈ C. Let
α ∈ 1. We want to show that〈α,µ+β∨〉 ≥ 0. Sinceβ∨ is maximal inX , we have
β∨ + α∨ 6∈ X . Hence there are two possibilities.

(i) β∨ + α∨ 6∈ R∨.
(ii) mα = nα.
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However, for any root system we have

γ ∨
1 , γ

∨
2 ∈ R∨+ with 〈γ1, γ

∨
2 〉 < 0 H⇒ γ ∨

1 + γ ∨
2 ∈ R∨. (2.11)

Under hypothesis (i) we have therefore〈α, β∨〉 ≥ 0. Hence

〈α,µ+ β∨〉 = 〈α,µ〉 + 〈α, β∨〉 ≥ 0. (2.12)

Under hypothesis (ii) we have

〈α,µ+ β∨〉 = 〈α, λ−6γ∈1\{α}(nγ −mγ ) · γ ∨〉. (2.13)

But〈α, λ〉 ≥ 0 and forγ ∈ 1\{α} we have〈α, γ ∨〉 ≤ 0. Hence again〈α,µ+β∨〉 ≥
0. ut

We can now complete the proof of the theorem. Fixλ ∈ X∗(A) ∩ C. Let Y
be the set ofµ ∈ X∗(A) ∩ C such thatλ

!≥µ andK$λK ∩ U(F)$µ = ∅. We
want to prove thatY = ∅. Let us assumeY 6= ∅ and deduce a contradiction. Let

µ ∈ Y be a maximal element with respect to
!≥. Since$λ ∈ K$λK ∩ U(F)$λ,

we haveµ 6= λ. By Lemma 2.3 we findβ∨ ∈ R∨+ with µ + β∨ ∈ X∗(A) ∩ C
andλ

!≥µ+ β∨. Sinceµ+ β∨ !≥µ, by the maximality ofµ we haveµ+ β∨ 6∈ Y,
hence

K$λK ∩ U(F)$µ+β∨ 6= ∅. (2.14)

By Lemma 2.2 we findw ∈ W0 andα∨ ∈ 1∨ such thatw(β∨) is a positive multiple
of α∨. By Lemma 2.1 we conclude from (2.14) that

K$λK ∩ U(F)$w(µ)+w(β∨) 6= ∅. (2.15)

Letu ∈ U(F) such thatu·$w(µ)+w(β∨) ∈ K$λK. LetP be the standard parabolic
subgroup corresponding toα with Levi subgroupM containingA. ThenM has
semisimple rank 1. LetUP be the unipotent radical ofP andUM = U ∩M. Then

U(F) = UP (F )U
M(F). (2.16)

Let us writeu = uP ·uM according to this decomposition. LetC
M

be the analogue
of C for M, i.e.

C
M = {ν ∈ X∗(A)R ; 〈α, ν〉 ≥ 0}. (2.17)

Noww(β) = cα with c > 0. Hence

〈α,w(µ)〉 = c−1〈w(β),w(µ)〉 = c−1〈β,µ〉 ≥ 0, (2.18)

sinceβ ∈ R+ andµ ∈ C. Hencew(µ) ∈ CM . Sincew(β∨) is a positive multiple
of α∨ we conclude that

w(µ)+ w(β∨) ∈ CM, w(µ)+ w(β∨)
!≥
M

w(µ), (2.19)
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where
!≥
M

is the analogue of
!≥ withG replaced byM. By the Cartan decomposition

for M we findν ∈ X∗(A) ∩ CM with

uM ·$w(µ)+w(β∨) ∈ KM$νKM, whereKM = K ∩M(F). (2.20)

By the converse of Theorem 1.1, the relation (2.20) impliesν
!≥
M

w(µ) + w(β∨).

Hence a fortioriν
!≥
M

w(µ). Applying now the statement of the Theorem forM
which is of semisimple rank 1, we conclude

UM(F)$w(µ) ∩KM$νKM 6= ∅. (2.21)

From (2.20) and (2.21) we deduce that there existsuM0 ∈ UM(F) andk1, k2 ∈
KM such that

uM0 ·$w(µ) = k1 · uM ·$w(µ)+w(β∨) · k2. (2.22)

Let u0 = k1uP k
−1
1 · uM0 . Sincek1 ∈ M(F) we havek1uP k

−1
1 ∈ UP (F ), hence

u0 ∈ U(F). Then

u0$
w(µ) = k1uP k

−1
1 · k1u

M ·$w(µ)+w(β∨)k2

= k1u$
w(µ)+w(β∨)k2 ∈ K$λK.

(2.23)

HenceU(F)$w(µ) ∩K$λK 6= ∅. By Lemma 2.1 this contradicts the hypothesis
thatµ ∈ Y, and this contradiction proves the theorem.ut

The following variant ofTheorem 1.1 was pointed out to me by Kottwitz. Denote
by v : B(F) → X∗(A) the composition of the following homomorphisms

B(F) −→ T (F ) −→ X∗(A). (2.24)

Here the first map comes from identifyingT (F ) with B(F)/U(F ). The second
map is the restriction toT (F ) of the canonical valuation map fromT (E) toX∗(T ),
whereE is an unramified extension ofF that splitsT ; this restriction obviously
takes values in the subgroup of Galois invariants inX∗(T )which may be identified
with X∗(A). Let λ,µ ∈ X∗(A) be dominant. Then, obviously,

Cλµ 6= 0 ⇐⇒ v−1(µ) ∩K$λK 6= ∅. (2.25)

Theorem 2.4.Letλ
!≥µ. Then for anyb ∈ v−1(λ) there existsb′ ∈ B(F) ∩KbK

with v(b′) = µ.

Proof. We first note this statement implies Theorem 1.1. Indeed, applying the as-
sertion tob = $λ we findb′ = k1$

λk2 of the formb′ = k3·$µ ·uwith k1, k2 ∈ K
andk3 ∈ T (F ) ∩K, u ∈ U(F). Hence

k−1
3 · k1$

λk2 = $µ · u, (2.26)

as desired, cf. (2.3).
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Now let us deduce Theorem 2.4 from Theorem 1.1. Letb ∈ v−1(λ). Let λ′ ∈
X∗(A) ∩ C with

b ∈ v−1(λ) ∩K$λ′
K. (2.27)

By the converse to Theorem 1.1 we haveλ′ !≥ λ. Hence a fortiori we haveλ′ !≥µ.
By Theorem 1.1 there existsb′ ∈ B(F) ∩ K$λ′

K with v(b′) = µ, cf. (2.3). But
thenb′ ∈ B(F) ∩KbK hasv(b′) = µ. ut

3. The case ofGLn

In this section we show that the positivity statement in Theorem 1.1 follows in the
case ofGLn from facts on symmetric functions contained in Macdonald’s book
[7], which will be quoted “loc. cit.” in this section. In the case ofGLn, with the
usual choices ofA = T = Gn

m andB (diagonal resp. upper triangular matrices)
we have

X∗(A) ∩ C = {λ = (λ1, . . . , λn) ∈ Zn; λ1 ≥ λ2 ≥ . . . ≥ λn}. (3.1)

We identifyH(T (F )//T (F ) ∩ K) = C[X∗(A)] with the ring of Laurent polyno-
mialsC[x±1

1 , . . . , x±1
n ].

Lemma 3.1.Letq be the number of elements in the residue field ofF . Then

b(fλ) = q〈%,λ〉 · Pλ(x1, . . . , xn; q−1).

Here〈 , 〉 is the standard scalar product onRn, and% = 1
2(n−1, n−3, . . . ,1−n).

By Pλ(x1, . . . , xn; t) we denote the Hall–Littlewood polynomial corresponding
to λ (loc. cit., p. 104).

Proof. It is proved in loc. cit., p. 161, that there is an algebra homomorphism
b′ : H(G(F )//K) → C[x±1

1 , . . . , x±1
n ]Sn with

b′(fλ) = q−n(λ) · Pλ(x1, . . . , xn; q−1). (3.2)

Here
n(λ) =

∑
i

(i − 1)λi = 〈σ, λ〉 with σ = (0,1, . . . , n− 1). (3.3)

Let us first check that the right hand side in Lemma 3.1 indeed defines an algebra
homomorphismbS . First note that

〈%, λ〉 = −n(λ)+ 1

2
(n− 1) · |λ|. (3.4)

We therefore have forλ, λ′ ∈ X∗(A) ∩ C,

bS(fλ) · bS(fλ′) = q〈%,λ〉 · Pλ · q〈%,λ′〉 · Pλ′

= q
1
2 (n−1)(|λ|+|λ′|) · (q−n(λ) · Pλ) · (q−n(λ′) · Pλ′)

= q
1
2 (n−1)(|λ|+|λ′|) · b′(fλ) · b′(fλ′)

= q
1
2 (n−1)(|λ|+|λ′|) · b′(fλ ∗ fλ′),

(3.5)
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where we used thatb′ is an algebra homomorphism. On the other hand,

fλ ∗ fλ′ =
∑

g
µ

λ,λ′fµ (3.6)

(loc. cit., p. 160), where the sum runs only overµ with |µ| = |λ| + |λ′|, cf. loc.
cit., p. 88. Hence the RHS in (3.5) is equal tobS(fλ ∗ fλ′).

To prove the Lemma it now suffices to check thatbandbS coincide on the algebra
generators given by the fundamental coweightsλr = (1r ,0n−r ) (r = 1, . . . , n).
But

〈%, λr 〉 = 1

2
r(n− r) and bS(fλr ) = q

1
2 r(n−r) · er = b(fλr ). (3.7)

Hereer = eλr is ther-th elementary symmetric function.ut
From the expression in Lemma 3.1 we see that the transition matrixC =

M(b(f•),m•) is of the form

C = D ·M(P•(q−1),m•), (3.8)

whereD is the diagonal matrix with entryq〈%,λ〉 in the place(λ, λ) and where
M(P•(q−1),m•) is the transition matrix between the Hall–Littlewood symmetric
functionsPλ(q−1) and the monomial symmetric functionsmµ. Therefore the next
lemma gives the desired positivity statement.

Lemma 3.2.The matrixM(P•(q−1),m•) is unitriangular with all coefficients
above the diagonal positive.

Proof. We have by loc. cit., p. 128

M(P•(q−1),m•) = K(q−1)−1 ·K = K(q−1)−1 ·K(1), (3.9)

where
K(t) = M(s•, P•(t)) (3.10)

is the transition matrix between the Schur symmetric functionssλ and the Hall–
Littlewood polynomialsPµ(t). ObviouslyK(0) = Id andK(1) = K is the Kostka
matrix expressing the Schur symmetric funtionssλ in terms of the monomial sym-

metric functionsmµ. However, forλ
!≥µ,

(K(t)−1 ·K)λµ =
∑
T

ψT (t) (3.11)

where the sum runs over all tableauxT of shapeλ and weightµ, cf. loc. cit., p. 126.
Note that this sum is non-empty. The polynomialψT (t) is a product of polynomials
of the form

1 − tm, m ≥ 0, (3.12)

cf. loc. cit., p. 120. Insertingq−1 for t we seeψT (q−1) > 0 and the claim follows.
ut
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Remark 3.3.A deep fact (due to Lascoux and Schutzenberger) mentioned on p. 129
of loc. cit. is thatKλµ(t) is of the form

Kλµ(t) =
∑
T

tc(T ); (3.13)

in particular all coefficients above the diagonal aremonicpolynomials of positive
degreen(λ) − n(µ) with non-negative integer coefficients. However, there seems
to be no connection between this statement and that of Lemma 3.2.

4. An application

In this section we return to the situation considered in the Introduction. LetL be the
completion of the maximal unramified extension ofF and letσ denote the relative
Frobenius automorphism. Recall Kottwitz’s set [4]

B(G) = G(L)/σ − conjugacy. (4.1)

Kottwitz has classified this set. We shall only use a weak form of his result. We
recall theNewton map[5]

ν : B(G) −→ C. (4.2)

We also recall the algebraic fundamental group ofG, which can be identified with
the character group of the center of the Langlands dual group,

π1(G) = X∗(Z(Ĝ)). (4.3)

Let π1(G)0 be the coinvariants for the action of the absolute Galois group0 =
Gal(F/F ). The second ingredient of the classification is theKottwitz map[4]

κ : B(G) −→ π1(G)0. (4.4)

The maps (4.2) and (4.4) combine into aninjective map

(ν, κ) : B(G) −→ C × π1(G)0. (4.5)

Remark 4.1.In the case ofGLn the first component of (4.5) determines the second.
Indeed, if b̃ ∈ GLn(L) is a representative ofb ∈ B(G), thenν(b) is the slope
vectorλ = (λ1, . . . , λn) of the isocrystal(Ln, b̃σ ). On the other hand,κ(b) =∑
λi ∈ Z = π1(GLn)0. At the other extreme, ifG = T is a torus, the second

component of (4.5) determines the first. In fact,ν(b) is the image ofκ(b) under the
composition of maps

π1(T )0 → π1(T )0 ⊗ Q = X∗(T )0Q = X∗(A)Q → X∗(A)R = C. (4.6)
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By the Bruhat–Tits theory the hyperspecial maximal compact subgroupK of
G(F) determines a unique hyperspecial compact subgroupK̃ of G(L) with K̃ ∩
G(F) = K. In analogy with (2.1) we have the map

inv : G(L)/K̃ ×G(L)/K̃ −→ X∗(T ) ∩ C(T ). (4.7)

HereC(T ) denotes the closed Weyl chamber inX∗(T )R corresponding toB. This
map is equivariant for the action ofσ on the source and the target. We note that
C = C(T )0 = C(T )〈σ 〉.

Let nowµ ∈ X∗(T ) ∩ C(T ). By [8] we have associated toµ its image in
π1(G)0,

µ\ ∈ π1(G)0 (4.8)

and its mean value over the Galois group

µ = [0 : 0µ]−1 ·
∑
0/0µ

γµ ∈ C. (4.9)

The group-theoretic version of Mazur’s theorem proved in [8] may now be stated
as follows:

Letb ∈ B(G) and letb̃ ∈ G(L) be a representative ofb. Letx ∈ G(L)/K̃ and put
µ = inv(x, b̃σ (x)). Then
(i) µ\ = κ(b) (4.10)
(ii) ν(b) ≤ µ.

Here we use the partial order≤onC coarser than
!≤, where in (1.8) the integrality

condition is dropped and arbitrary coefficientsnα ∈ R≥0 are allowed. If the derived
group is simply connected, then both partial orders coincide onX∗(A).

We now give the application of Theorem 1.1 which is a converse to (4.10) in
special circumstances. Note that in the following statement the roles ofλ andµ
have changed as compared to the previous sections.

Proposition 4.2.Letλ,µ ∈ X∗(A)∩C with λ
!≤µ. Let b̃ = $λ. Then there exists

x ∈ G(L)/K̃ with

inv(x, b̃σ (x)) = µ.

Proof. By Theorem 1.1 there existsu ∈ U(F) such that

inv(x0, ub̃x0) = µ.

Here as beforex0 ∈ G(F)/K denotes the base point. However, the two elements
b̃ andub̃ of B(L) areσ -conjugate, [5], 3.6,

ub̃ = g−1b̃σ (g), g ∈ B(L). (4.11)

Hencex = gx0 satisfies the desired identity.ut
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Remark 4.3.Under the hypotheses of the corollary we have

κ(b) = λ\ = µ\ (4.12)

and
ν(b) = λ ≤ µ = µ. (4.13)

Hence the Proposition is indeed a converse to (4.10). However, we have shown
this converse only under special circumstances: namely, we essentially impose on
µ to be0-invariant and onb ∈ B(G) to haveintegral image under the Newton
map. This is implied by the following lemma which brings into focus the content
of Proposition 4.2.

Lemma 4.4.LetGder be simply connected. Letb ∈ B(G) with ν(b) ∈ X∗(A)∩C.
Letµ ∈ X∗(A)∩C and assume the conditions (i) and (ii) of (4.10) satisfied. Then
b is theσ -conjugacy class of$λ whereλ = ν(b).

Proof. SinceGder is simply connected, the condition (ii) of (4.10) implies that

λ
!≤µ. But thenλ andµ have the same image inGab and henceλ\ = µ\. Put

b̃ = $λ. Thenν(b̃) = λ = ν(b) andκ(b̃) = λ\ = µ\ = κ(b). We conclude by the
injectivity of (4.5). ut

In the end of this section we state (in the simplified setting of this section)
the general problem to which Proposition 4.2 gives a solution in a special case.
Let K ⊂ G(F) be a parahoric subgroup which fixes a facet of the Bruhat–Tits
building ofGad overF inside the apartment corresponding toA, and letK̃ be the
corresponding parahoric subgroup ofG(L). LetT (L)1 be the subgroup of units of
T (L) and let

W̃ = N(L)/T (L)1 (4.14)

be the Iwahori Weyl group. Let

W̃K = N(L) ∩ K̃/T (L)1. (4.15)

The analogue of (4.7) in this more general situation is a map

inv : G(L)/K̃ ×G(L)/K̃ −→ W̃K \ W̃/W̃K. (4.16)

If K = I is an Iwahori subgroup, then the target set of (4.16) istW̃ .
For b̃ ∈ G(L) we introducethe generalized affine Deligne–Lusztig variety

associated tow ∈ W̃K \ W̃/W̃K

Xw(b̃σ ) = {x ∈ G(L)/K̃; inv(x, b̃σ (x)) = w}. (4.17)

An elementb̃′ ∈ G(L) which isσ -conjugate tõb yields a set which is in bijection
with the one corresponding tõb. In the case of an Iwahori subgroup we call this
set the affine Deligne–Lusztig variety associated tow ∈ W̃ . The reason for this
terminology suggested by Kottwitz is that̃W is the affine analogue of the Weyl
group of a reductive group over a finite field andb̃σ is the analogue of the Frobenius
automorphism in that case. However, in contrast to that caseXw(b̃σ ) may well be
empty.
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Problem 4.5.Determine the pairs(b̃, w) for whichXw(b̃σ ) 6= ∅.

It is likely that the setXw(b̃σ )may be given the structure of an algebraic variety
locally of finite type over the residue field ofL. Going further than Problem 4.5,
one may ask for the dimension ofXw(b̃σ ). I do not even have a conjecture.

We conclude this section by establishing a link of Problem 4.5 with a result
of Dabrowski [1]. For this assume thatG is split overF . For a suitableIwahori
subgroupI of G(F) (comp. the companion paper of Haines [2]) we consider the
two disjoint sum decompositions,

G(F) =
∐
w∈W̃

U(F )wI, G(F) =
∐
w∈W̃

IwI. (4.18)

Assume now that̃b ∈ G(F) and letx = x(b̃) ∈ W̃ be such that̃b ∈ U(F)xI . The
proof of Proposition 4.2 shows

U(F)xI ∩ IwI 6= ∅ H⇒ Xw(b̃σ ) 6= ∅. (4.19)

On the other hand, by [1], Prop. 3.2, the condition on the LHS of (4.19) is equivalent
to

x ∈ G(w) (4.20)

(the set of terminal elements of good subexpressions ofw, comp. [2]). However, this
is not the kind of answer one would like to Problem 4.5. Just as for Proposition 4.2,
one would like an answer which involvesν(b) andκ(b), whereb ∈ B(G) denotes
theσ -conjugacy class of̃b.
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