A NEW CONDENSATION PRINCIPLE

THORALF RASCH AND RALF SCHINDLER

ABSTRACT. We generalize V(A), which was introduced in [Schoo],
to larger cardinals. For a regular cardinal Kk > Ny we denote by
V«(A) the statement that A C k and for all regular § > &,

{X € [Lg[A]]< : XNk € rAotp(X NOrd) € Card ANy

is stationary in [Lg[A] <.

It was shown in [Schoo] that Vy, (4) can hold in a set-generic
extension of L. We here prove that Vy, (A) can hold in a set-generic
extension of L as well. In both cases we in fact get equiconsistency
theorems. This strengthens results of [R400] and [R&oo].

Vi, (0) is equivalent with the existence of 0%.

1. INTRODUCTION.

The current paper is concerned with condensation properties of mod-
els of the form L[A] where A is a set of ordinals. If V. =L (or just if
0% does not exist) and if

(1) 7 : Lo — Lg

is an elementary embedding then 7[Card (o) = id (cf. [Je78, Lemma
32.12]; in fact, 7[Card"(a) = id unless o < Ry, cf. [Fr00, Theorem 3.13
(1)]); in particular, o cannot be a cardinal > Ry unless 7 = id. On
the other hand it is consistent that 0% does not exist and there is a
non-trivial elementary embedding as in (1) with a € Card® N R, (and
then V # L); this is the kind of situation that will be studied here.

Let A C wy. In [Schoo] the second author introduced the assertion,
denoted by V(A), that

{X € [Ly,[A])”: Ja < B € Card™™ 37 7: Lg[ANa] 2 X < Ly, [A]}

be stationary in [ L,,[A]]. We shall consider generalizations of V(A)
to larger cardinals.
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Definition 1. Let k and 6 both be reqular cardinals, Ry < k < 6. Then
by VY(A) we denote the statement that A C k and

{X € [Ly[A]]¥ : XNk e rAotp(X NOrd) e CardMANXN#1}

is stationary in [Lg[A]|¥. By V.(A) we denote the statement that
VO(A) holds for all regular 6 > k.
Moreover, we write V¢ for V9(0), and V. for V(D).

It is clear that V(A) is ng (A). The principles V?(A) come up
naturally in several contexts.

Suppose that 0% does not exist and that V? holds for regular car-
dinals £ and @ with # > k (Theorem 2 and Theorem 4 will say that
this is consistent for kK = ¥; and for kK = Wy). It is then easy to see
that there can be no closed unbounded set C' C [Ly|<" such that for
all X € C,if L, = X and § € (Ord \ o) U {Ord} is largest such that
Ls and L, have the same bounded subsets of « then the ultrapower of
Ls by (the long extender derived from) the uncollapsing map is well-
founded. Therefore, a certain version of Jensen’s Frequent Extensions
of Embeddings Lemma has to fail. Such situations are discussed in the
first author’s papers [R400] and [Réoo].

The formulation of V?(A), though, as has already been indicated,
arose out of the second author’s work on the strength of L(R) abso-
luteness for proper forcings (cf. [Sch00] and [Schoo]). The following
theorem is established by the proofs in [Schoo].

Theorem 2 ([School). Equiconsistent are:

(a) ZFC+ “L(R) is absolute for proper forcings,”
(b) ZFC+ “V =L[A] + Vy,(A),” and
(c) ZFCH+ “there is a remarkable cardinal.”

Let us repeat the definition of a remarkable cardinal for the conve-
nience of the reader.

Definition 3 ([Sch00, Definition 0.4]). A cardinal x is called remark-
able iff for all reqular cardinals 0 > K there are w, M, K, o, N, and 0
such that the following hold:

m: M — Hy is an elementary embedding,

M is countable and transitive,

(k) = K,

o: M — N is an elementary embedding with critical point K,
N s countable and transitive,

e 0 = M NOrd is a reqular cardinal in N, o(R) > 0, and

o M = Hév, i.e., M € N and N = “M is the set of all sets which

are hereditarily smaller than 0.”
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FIGURE 1. Maps witnessing the remarkability of x

The first author had obtained his results of [R400] and [Réoc] by
forcing over L and exploiting the existence of 0% in the outer universe.
The use of 0% could not be necessary for this purpose, of course, and
the second author realized that the assumption of the existence of a
remarkable cardinal would be enough for deriving the conclusions of
[R400] and [Réocc]. Along these lines we shall arrive at the following.

Theorem 4. Equiconsistent are:
(a) ZFC+ “V =L[A] + Vy,(A),” and
(b) ZFC+ “there is a remarkable cardinal.”

We shall also consider V,(A) for regular x > N3. We shall see that
for a regular x > R, V,. holds if and only if 07 exists.

2. THE PROOFS.

[Schoo, Lemma 1.6] gave an important characterization of remark-
able cardinals.

Definition 5 ([Schoo, Definition 1.5]). Let x be a cardinal. Let G be
Col(w, < k)-generic over V, let @ > k be a regular cardinal, and let
X e [H,,Y[G}]“’. We say that X condenses remarkably if X = ran(w) for
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some elementary
r: (HY ™M) e HY, G nHY) - (H)' ¢, HY, G)

where o = crit(m) < B < k and [ is a reqular cardinal (in 'V ).

Lemma 6 ([Schoo, Lemma 1.6]). A cardinal k is remarkable if and
only if for all reqular cardinals 8 > k we have that

Il—gol(% @) 1XE [H;/[G}]“’: X condenses remarkably} is stationary.”

Here is a sufficient criterion for being remarkable in L:

Lemma 7. Let k be a regular cardinal, and suppose that V. holds.
Then k is remarkable in L.

PROOF. It is easy to see that Vf implies that x is an inaccessible
cardinal of L.

Fix 6 > k, a regular cardinal. By Vf, we may pick some 7: L, —
L+ such that v < k is a (regular) cardinal in L. Let 7(a) = k and
7(B) = 6. Let G be Col(w, < a)-generic over V and let G D G be
Col(w, < k)-generic over V. Then 7 extends, in V]G], to some

T LV[G] — L9+[G].

Let 9t € L, [G] be a model of finite type with universe L[G]. We have
that

TILg[G] : M — 7(M).
Notice that v < k, and therefore Lg[G] is countable in L[G]. By
absoluteness (cf. [Schoo, Lemma 0.2]), there is hence some o € Ly+|G]
such that o : 9 — 7(M).

Therefore, H—Iéf;(w, ) there is some countable X' < 7 (9) such that

X Nk €k and otp(X N Ord) is a cardinal in L[G N Lyn,].”

Pulling this assertion back by ¢ yields that Il—éj)l(wy <) “there is some
countable X < 9t such that X N € a and otp(X NOrd) is a cardinal
in L[G NLxna).” As 9T was arbitrary, we thus have H—éj)l(w’@) “the set

of all X € [Lg[G]]” such that X condenses remarkably is stationary.”
Lifting this up by 7 yields H—Iéol(w,«) “the set of all X € [Ly[G]]* such
that X condenses remarkably is stationary.”

We have shown that  is remarkable in L, using Lemma 6.
O (Lemma 7)

It is easy to see that for no x can V*' hold in L. We shall now
consider the task of forcing V,(A) to hold in a set-generic extension

of L. As to Vy,(A), Con(3) = Con(2) in Theorem 2 is shown by
proving that if x is remarkable in L and G C & is (induced by some)
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Col(w, < k)-generic filter over L (via some simple coding) then V. (G)
holds in L[G]. Let us now turn towards Vy,(A).

Theorem 8. Let k be remarkable in L, and suppose that there is no
A < k such that L, = “)\ is remarkable”. There is then a forcing P € L
with the property that in VT there is some A such that Vy,(A) holds.

Proor. Let Nm denote Namba forcing. Let # > ws be regular. By
CNy we shall denote the forcing

Col(ws, ) x Nm.

The key idea will be to iterate this 2-step forcing iteration. Notice that
Col(wy, 0) turns the cofinality of each cardinal £ € [wo, #] with former
cofinality > ws into wy, and therefore CNy turns the cofinality of each
such cardinal into w. _

We shall now define a suitable RCS iteration ((P;,Q;) : i < k) as
follows. We let Py := 0, we let Py = P; x Q; for i < &, and for limit
ordinals A < « we let P, be the revised limit (Rlim) of ((P;, Q;): i < ).
The definition of @Q; splits into two cases according to whether 7 is
even or odd. Let us deal with the odd case first. In order to apply
the theory of RCS iterations introduced in [Sh98, XI:§1] we shall set
Quit1 = Col(wy, < 2IPz+1+il) for 4 < k. Let us now discuss the even
case, i.e., let us define Qy; for i < k. It will be easy to verify that
inductively, H—IIF;% G C wy. (Here and in what follows we confuse generic
objects with sets of ordinals obtained via some simple coding.) By
Lemma 7 and our assumption that no A < k is remarkable in L, for
each p € Py; there is some (least) #, < x such that

= (plFg, VR(G)).
Letting 6* :=sup {6, | p € Py; } < k, we then obviously have that
IFE,, V%, (G).

Now let Q% be a name for CNy. as being defined in L2 In particular,
CNy- satisfies Shelah’s condition that we need for applying the relevant
theorems about RCS iterations. The definition of this condition can be
found in [Sh98, XI:§2] (especially Definition 2.4). Although Shelah’s
condition is not in general preserved under iterations we are able to
prove it for our forcing iteration due to the results in [Sh98, XI:§4,85].
More precisely, the proof of [Sh98, Lemma 4.4] which shows that Nm
satisfies the desired condition will yield that in fact every CNy satisfies
it as well (cf. [Sh99]).

We finally let P be the revised limit of ((P;,Q;) : i < k). Let G
be P-generic over L. We have G C k and moreover by how we have
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defined our forcing iteration we can apply the theorems of [Sh98, XI|

to see that P has the x-c.c. and w{“[G] = wl. Tt is moreover easy to see

that x = wy'®. We are left with having to verify that V,(G) holds in
L[G].

Suppose not. In fact suppose that there are p € P and some (least)

6 such that
- (plFE V&, (G)).

Because « is remarkable in the ground model, inside L we may pick
n: L, — Lg+ and 0: L, — Lj such that v < ¥ < wy, & € ran(m),
a = 7 (k) is the critical point of o, o(a) > 7 and 7 is a regular
cardinal in L.

Let P := 77'(P) and P = o(P). It is easy to see that P = Pla (with
the obvious meaning). Let § := 7~'(f). Notice that, using 7, there is
some ¢ € P such that 3 is least with

- (qIF5 VE(@)).
Therefore, there is some 3* > [ such that forcing with CNg., as defined
in L],I:;, is the next step right after forcing with P in the iteration P.
Let G € L be P-generic over L, (and hence over Ls, too) such

that ¢ € G, and let G D G be P-generic over Ly. Then o lifts to

o: L,[G] — Ls[G]. In order to derive a contradiction it now suffices to
prove that V2 (@) holds in L, [G].

Let M € L,[G] be a model of finite type with universe Lg[G]. We

have 6[Lg[G] : M — (M) and we would now like to build a tree
T € L;[G] searching for an embedding like this one.

Claim 1. In L;[G], Ls[G] = U,n<w Xn, where for each n < w,
X, C X,11, X, € L,[G], and Card(X,,) = « in L [G].

PROOF. Let F: a« — 3, F € Lﬁ[é], be surjective, and let f: w — «,
f € Ls[G], be cofinal, where F, f are the objects adjoined by forcing
with CNg., as defined in LY. Let

X :=F7f(n), for n < w.
Notice that F[¢ € Ls[G] (and hence € L,[G]) for each £ < . In

particular, X € L,[G] for each £ < a. The rest is easy. [ (Claim 1)

Now fix (X,,: n < w) as provided by Claim 1. We may and shall
assume that furthermore X,, < 9 for all n < w.

Claim 2. ¢[X,, € L;[G] for each n < w.
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PROOF. Let f: @ — X,, be bijective, f € L,[G]. For z € X,, we'll
then have that y = &(x) iff there is some £ < o with z = f(§) Ay =
&(f)(€). But f and (f) are both in Ls[G]. Therefore, 5]X, € Ls[G].

O (Claim 2)

Now let T' be the tree of height w consisting of all (X, 7), where
n <wand7: X, — (M) is elementary, ordered by (X,,7) < (X, ')
if and only if n > m and 7 D 7. Of course, T € Ls[G]. Claim 2
witnesses that 7' is illfounded in V. T is hence illfounded in Ls[G] as
well. This buys us that in Ls[G], there is some elementray

T M— a(M).

We thus have that L;[G] E “there is some X < &(9M) such that
Card(X) < o(a), XNo(a) € o(a), and otp(XNOrd) € CardMEnXne(@) »
Pulling this back by & gives that L,[G] = “there is some X < 90 such
that Card(X) < o, X N € @, and otp(X N Ord) € Card"@xNal »
yielding the desired contradiction. B B
As 9 was arbitrary, this shows that V?(G) holds in L, [G].
O (Theorem 8)

The forcing iteration P which leads to the proof of Theorem 8 can
also be reorganized along the lines of [R400]. In that paper the task
is divided into two parts: in the first part we iterate the collapse forc-
ing using ideas of the Easton forcing construction, and in the second
part we shoot reasonable countable sequences through certain ordinals
using Namba forcing combined with the above-mentioned Levy col-
lapse, again by an RCS iteration—in this case we know that Shelah’s
condition holds for Namba forcing (cf. [Sh98, XI:§1]). Nevertheless,
this simplified construction from [R&00] and the construction used in
the current paper are in a sense equivalent. Following the approach
of [R&00] would lead to many tedious though elementary details which
would have to be checked; this is why we chose the present construction
for this paper.

Our Theorem 8 strengthens a result which is proved in Chapter 7 of
[Réoc] and which (in the terminology provided by Definition 1) shows

that if 0% exists then there is a set-generic forcing extension V of L in
+(w+1)

which there is some A C w; such that V = L[A] and V§, holds for
arbitrary Silver indiscernibles ~.

We get the following corollary to Lemma 7 and Theorem 8, which is
just a restatement of Theorem 4.

Corollary 9. FEquiconsistent are:
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(a) ZFC+ “V =L[A] + Vy,(A),” and
(b) ZFC+ “there is a remarkable cardinal.”
We finally turn towards V, for k > Ns.

Lemma 10. Let k be a reqular cardinal, k > N3. Suppose that VQJF
holds. Then 0% exists.

PROOF. Suppose not. Pick m: Lg — L+ such that wy, < o =
crit(m) < k and (3 is a cardinal of L. We have that P(«a) N L C L,
and we may hence define the ultrapower Ult(L; U), where X € U iff
X € Pla)NLAac n(X). As 0# does not exist, cf¥ (o) > w as a
consequence of Jensen’s Covering Lemma for L. By standard methods
this implies that Ult(L; U) is well-founded (cf. the proof of [Fr00, 3.13
(i)]). So 0% does exist after all. Contradiction! O (Lemma 10)

Lemma 11. Suppose that 0% exists. Then V. holds for every reqular
cardinal k > V.

PROOF. We consider 0# as a subset of w. Fix . Let 9 := (L,; F)
be a model of finite type with universe L,. Let 6 > k be regular, and
let

m: (Lg[0#]; €, Ly, 0%, G) — (Ly[0#]; €, Ly, 0%, F)
be such that § < k and ran(r) Nk € k. It is then straightforward
to check that for all v < 8, vt < 3. Therefore, 3 € Card™. As
9N = (L,; F') was arbitrary, this means that VY holds. O (Lemma 11)
Corollary 12. Let k > N3 be a reqular cardinal. Equivalent are:
(a) V., holds, and

(b) 0% exists.

We conclude with a few remarks. Suppose that k > N3 is a regular
cardinal. It can be shown that V = L[A] A V*'(A) implies that every
element of H, has a sharp (but of course, A# doesn’t exist in L[A]).
Moreover, if A C k is such that HEAT — HEM then L{A] E V. (A).
In particular, if V = L[E] = L# (= the least extender model which is

closed under sharps) then for all regular cardinals k > Ry, V.(E N k)
holds.
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