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Preface

F i n a l l y , i t i s d o n e .

How to read the thesis? It is devided into eight chapters and an

appendix. Each of them can be read almost independently from the

other ones. Just the Chapters 3–5 are connected somehow and for

Chapter 8 the reader needs to know what we have done in the previous

chapters.

The first chapter gives a short introduction to the whole thesis, where

the reader can see what we are heading to and, maybe not less impor-

tant, why this goal is interesting, giving the development of the theory

and statements that have been proved so far in the past.

The second chapter is providing the fundamental set theory we are

using. The reader will find basic statements, either cited to standard

text books and papers, or, on the other hand, we will give proofs to

technical facts that we have extracted from the upcoming proof—not

to fog the idea of forthcoming statements.

The third chapter gives a short introduction to the notion of forcing

we are mainly using in this thesis. In fact, as in the second chapter,

we are going to cite proven facts as often as possible as far as we are

going to use them. Otherwise the reader will find a short proof.

The fourth chapter defines and explains the main tool we are going

to use, the so-called coarse morass. People who are familiar with the

theory of morasses, are easily able to understand what is going on there.
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Finally in the fifth chapter, we give a proof of the first main theorem—

strongly using details of the third and fourth chapter.

In the sixth chapter we consider another theory which will be weaker

than the one we have used in the fifth chapter. This gives us the

possibility to find a nice counterexample—as we will see. Although the

main idea of the given proof survives, we need to define an even general

version of the morass structure.

In the seventh chapter we consider and prove the second main theorem.

This will be possible almost independently from the former chapters.

In the last chapter, we finally put both theorems together and to top the

theory off, giving a few more remarks on it we have considered during

the proofs. Additionally, we discuss general versions of the given main

theorems.

In the appendix, we give a proof of a well-known theorem of Jensen.

The proof is written very basically and completely independent from

the chapters of the main part of this thesis. The reason and context to

this statement will be provided in the first chapter.

Acknowledgments. There are a lot of people I really would like

to mention here—not only people who have influenced me directly,

preparing the thesis. However, writing the preface for the thesis and

not my memoirs, I am going to mention just the two people with the

strongest connection to my thesis—my two supervisors.

Professor Ronald B. Jensen. Now, almost a decade later that I met

Professor Jensen the first time, I owe him a lot—more than I could

summarize in some lines. He would not like to read this anyway. How-

ever, this might be the right place to say: Thank you, Ronald, for your

understanding, support and motivation in all of the past years so far.
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the past. I would like to thank him especially for his deep trust in me

and my work, and also in my (seldom easy) way of doing. I would like

to stress the financial support he was giving to me the whole time—

starting with supporting my attendings of several conferences in logic,

or even accepting my needs on some technical equipment.

Special thank I would like to give here to my better half, Karen, just for

being there—being at my side with much patience, especially during

the hardest time in the last months.

Last but not least, I would like to thank Anna-Luise and Marc Messer-

schmidt for reading the words and patiently killing typos during the

last weeks.
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CHAPTER 1

Introduction

Constructing models of a given consistent theory is often done in logic.1

In the easiest cases we can use the well-known Löwenheim-Skolem the-

orem:

Theorem (Löwenheim-Skolem). Every consistent theory T in an infi-

nite language L has a model of power at most L . Moreover, if T has

infinite models, then it has infinite models of any given power greater

than L .

By this theorem we know that every theory will fail to distinguish

between infinite cardinals. So we can head for the question what will

happen when we ask for pairs of infinite cardinals.

To start with, consider the language L A, . . . where A is a unary

predicate. Call an L-model A A; A, . . . a κ, λ -model , if A κ

and A λ.

Now define for infinite cardinals α, β, κ and λ the following notion of

a general Transfer Property

α, β κ, λ ,

meaning that if a theory T has an α, β -model, then it has also a

(κ, λ -model.

In [MorVau62], Morley and Vaught proved for infinite cardinals α β

that
β, α ℵ1,ℵ0 .

1This introduction gives just a quick overview what this paper is about. For

more details the author refers to [ChaKei90, Dev84, Jec03, Kan94]. In fact, we will

leave out many other interesting results next to the way we are walking on straight

to the main theorem we are interested in.
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8 CHAPTER 1. INTRODUCTION

In fact, using homogenous models they showed that for a consistent

and countable theory, having a β, α -model, they can construct an

elementary chain of length ℵ1 of models Aν such that for arbitrary

ν̄ ν ℵ1 we always have AAν̄ AAν and Aν̄ is an elementary

submodel of Aν , being a proper subset. Moreover, AAν and AAν are

both countable for all ν ℵ1. Then the union of this chain of models

is obviously an ℵ1,ℵ0 -model.

Using the Löwenheim-Skolem Theorem stated above we can find a gen-

eralized version of it, providing that for arbitrary infinite cardinals

α β we always have
β, α α , α .

Furthermore, in [Cha63], Chang has proved for all infinite cardinals

α β and regular δ such that 2 δ δ that the following holds

β, α δ , δ .

And so a natural question arises given by the so-called gap-one con-

jecture or gap-one two cardinal problem asserting that every theory

T of a countable language L which has an α , α -model, also has a

β , β -model for infinite cardinals α and β.

Chang’s result stated above shows the gap-one conjecture, where β is a

regular cardinal, follows from GCH. Jensen, adding κ to the hypoth-

esis, proved that ℵ1,ℵ0 κ , κ when κ is a singular cardinal. In

fact, Jensen proved in [Jen72] that the full (and very strong) gap-one

conjecture already follows from the axiom of constructibility.2

Let us now look at a special version of the gap-one two cardinal problem

— sometimes also called Chang’s Transfer Property , in fact, on the

following

2Moreover, we can formulate the so-called gap-n conjecture in an obvious way

and Jensen then proved it even for the gap-n conjecture.
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Question 1. Under what circumstances can the following transfer prop-

erty fail:

ℵ1,ℵ0 ℵ2,ℵ1 ?

More precisely, we are going to answer the following questions:

Question 2. What is the consistency strength of the failure of the above

mentioned Chang’s Transfer Property: ℵ1,ℵ0 ℵ2,ℵ1 ?

Question 3. What extensions of ZFC are consistent with the failure

of Chang’s or even more general transfer properties?

Chang’s Transfer Property is closely related to a combinatorical prob-

lem of the existence of the following tree: For an infinite cardinal κ

we call a tree T a κ -Aronszajn tree if T has height κ such that ev-

ery branch and every level has cardinality at most κ. Let a special

Aronszajn tree be an Aronszajn tree T whose nodes are one-to-one

functions from ordinals less than κ into κ, ordered by inclusion. Or

equivalently, there is a function σ : T κ such that σ x σ y for

all tree elements x T y.

It is well-known that we can easily construct an ℵ1-Aronszajn tree and,

moreover, under GCH we can also construct a special κ -Aronszajn tree

for every regular κ. We will, in fact, remind the reader of the proof in

the appendix.

The connection now between special Aronszajn trees and the gap-one

conjecture is given by the following statement:

Theorem. There is a sentence ϕ in a finite language such that for all

infinite cardinals κ, ϕ has a κ , κ -model if and only if there exists a

special κ -Aronszajn tree.
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We will sketch the proof in Chapter 2. With this theorem in mind, a

canonical counterexample to Chang’s Transfer Property stated above

involves the absence of a special ℵ2-Aronszajn tree.

In [Mit72], Mitchell shows that it is consistent with ZFC that there

is no special Aronszajn tree if and only if it is consistent that there

exists a Mahlo cardinal. As a corollary, Mitchell shows that if it is

consistent that there is a Mahlo cardinal, then it is consistent that

Chang’s Transfer Property, ℵ1,ℵ0 ℵ2,ℵ1 , fails.

Theorem ([Mit72]). The theory “ZFC and τ τ is Mahlo ” is equi-

consistent to the theory

“ZFC and there is no special ℵ2-Aronszajn trees”

and implies the consistency of “ZFC and ℵ1,ℵ0 ℵ2,ℵ1 ”.

Mitchell’s counterexample for the failure of the transfer property stated

above, in fact, is given by the formula saying that there is a special

ℵ2-Aronszajn tree. This is sufficient for his theorem because there is

always an Aronszajn tree of height ℵ1.

We will now improve the last statement, trying to get the failure of

Chang’s Transfer Property not only from a Mahlo but from an inacces-

sible cardinal, providing the existence of a special ℵ2-Aronszajn tree.

So, we have to take another suitable theory which will have enough

γ , γ -models apart from the case γ ℵ1. In fact, in Chapter 6 we

will look at a very weak theory to get the same statement. Moreover,

this theory has other interesting properties as we will see in Chapter 8.

Furthermore, we know by the result of Chang we have mentioned above

that we cannot expect to find the desired counterexample in an uni-

verse where GCH holds, in fact, where just ℵ1 2 ℵ1 2ℵ0 holds.

However, we will find a model of set theory, proving the existence of

the counterexample for the failure of Chang’s Transfer Property such
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that 2κ κ holds for all uncountable κ and 2ℵ0 ℵ2 and so, GCH

only minimally fails.

In fact, in Chapter 5 and Chapter 7 we are going to prove the follow-

ing statement that is a corollary of the main theorems of this paper,

Theorem 70 and Theorem 79:

Theorem. The theory

ZFC “ τ τ is inaccessible ”

is equi-consistent to the theory

ZFC “ ℵ1,ℵ0 ℵ2,ℵ1 ”.

This statement obviously improves Mitchell’s theorem above and will

follow from the next two theorems we are going to prove.

Theorem. Suppose there is a model of ZFC with an inaccessible car-

dinal τ . Moreover, let θ κ be two regular cardinals below τ . Then

there is a forcing extension of L that is a model of the following:

ZFC 2θ κ “ there is a special κ -Aronszajn tree”

“ 2α α for all infinite cardinals α θ or α κ”

“ γ , γ κ , κ for all regular cardinals γ κ”.

And moreover as we will see later, it follows easily from known facts

the following:

Theorem. Suppose there is a model of set theory ZFC such that

γ , γ κ , κ

holds for a given pair of cardinals γ γ ω and an uncountable

regular cardinal κ. Then the following theory is consistent

ZFC “ τ τ is inaccessible ”.
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It is enough to prove the last two theorems. In Chapter 5, considering

the first theorem, starting from an appropiate ground model that has

an inaccessible cardinal we will consider a suitable notion of forcing, due

to Mitchell and to be defined in Chapter 3. Working then in the generic

forcing extension, we will consider a theory T and show the failure of

the above stated transfer property by constructing a counterexample.

Moreover, in the forcing extension we will have a special κ -Aronszajn

tree and –as desired– sufficiently small powers of cardinals. And so the

proof will be done.

Moreover, in Chapter 6 we are going to look at the proof of the first

main theorem more closely. Although this theorem will be proved

by Chapter 5, we are able to find the desired counterexample to the

considered transfer property even with a much weaker theory and so

we are going to improve the statement, proving Theorem 80.

On our way, considering the new theory, the main tool within the proof

–the morass structure– is getting slightly more complex. Fortunately,

the main idea of the old proof is preserved. In fact, we will consider

the following theory:

ZFC V L C for C On 2 A A

A is the largest cardinal A regular,

and even this theory will have γ , γ -models for arbitrary regular car-

dinals γ θ or γ κ, working within the forcing extension we will

have constructed by then.

More important, we will be able to construct the desired model of set

theory –such that the transfer property above fails– as a forcing exten-

sion of a model of GCH as the following statement, in fact Theorem 80,

promises:
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Theorem. Assuming GCH, let τ be inaccessible. Moreover, consider

two more regular cardinals θ κ below τ . Then there is a forcing

extension such that within this model of set theory we have 2θ 2κ

κ τ . Furthermore, we have for all regular cardinals γ θ or γ κ

the following failure of the transfer property:

γ , γ κ , κ .

Of course, it is always possible to get a special κ -Aronszajn tree within

the forcing extension by choosing τ appropiate as we will see. Moreover,

the last theorem gives us many possibilities to get nice independent

statements for the failure of Chang’s Transfer Property with respect to

large cardinals.

Having a large cardinal, say a measurable one or even a larger cardinal

–just providing there is an inaccessible cardinal below to work with–

starting from a suitable model satisfying GCH, we then can apply the

forcing of the last theorem and we get the desired failure of the transfer

property in a universe where we still have the existence property of that

large cardinal we have started from.

Finally, in Chapter 7, the proof of the second theorem will use the proof

idea of Chang’s statement that we mentioned above a few times. Work-

ing in a suitable L D by choosing the predicate D carefully, we will be

close enough to the universe V to have sufficient consistency preserva-

tion between L D and V and even close enough to the constructible

universe to get sufficient fitting properties on powers of cardinals to be

able to apply Chang’s proof idea.

In the appendix we will remind the reader of a well-known and of-

ten used theorem of Jensen—he never has published but mentioned

in [Jen72], giving a characterization of a weak version of the square

principle with special Aronszajn trees.
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As already mentioned in the preface, the author does not want to forget

to stress that this paper would not even exist without the untiring

support and the enriching ideas of Professor Jensen during the past

years.



CHAPTER 2

Fundamentals

The following statements are all provable in (sometimes just parts of)

the Zermelo-Fraenkel set theory with the axiom of choice: ZFC.1 The

collection of these results should not be seen as a complete introduc-

tion to the theory we are using in the upcoming chapters. Most of

the following statements will just be cited, anyway. For a detailed sur-

vey and proofs the author strongly refers to the standard books, e.g.,

[ChaKei90, Dev84, Dra74, Jec03, Kan94]. For the conveniency of the

reader we are (mostly) using standard notation.

With this in mind, the reader will find in this chapter some important

standard facts and even some other (technical) basics we will need

later.2

Constructing Models

Let us start with some (very) basic set theory. A set X is said to be

extensional if for all distinct u, v X there is an x X such that x u

if and only if x v.

Lemma 4 ([Jec03, Theorem 6.15], Mostowski Collapse). For each ex-

tensional set X there is a unique transitive set M and an unique bi-

jection π : X M such that π : X, M, . Moreover, if

Y X is transitive, then π Y id Y .

1In fact, in most cases we will not need the presence of the Axiom of Choice

here. However, in our applications we will have it.
2In most cases, the more famous the statement is, the less we are proving it

here in this chapter.
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16 CHAPTER 2. FUNDAMENTALS

More generally, X has not to be a set but it must be so-called set-like,

meaning that for all x X the collection of all -predecessors, x ,

is a set.

Now let us look at models of, say, a countable language L, and elemen-

tary embeddings between them.

Definition 5. A directed system of models Ai i ω has elementary

embeddings πij : Ai Aj such that πik πjk πij for all natural

numbers i j k.

Then we can prove:

Lemma 6 ([Jec03, Lemma 12.2], Direct Limit). If Ai, πij i j ω

is a directed system of models, then there exists a model A, unique up

to isomorphism, and elementary embeddings πi : Ai A such that

A i ω rng πi and πi πj πij for all i j.

� � �� � � �����������������������

���������������

�����������

	
	

	
	
	


�

� ��
A0 Ai Aj Ak

A

πij

π0

πi πj πk

πik

The model A in the last lemma is called the direct limit of the given

sequence Ai, πij i j ω .

Stationary Sets

Remember, for a regular cardinal κ we call X κ a closed and un-

bounded set, club for short, if it is closed under limit points and un-

bounded in κ. We call a set S κ stationary if it meets all club

sets.

There are nice properties, e.g., the collection of all club sets is closed

under intersections of strictly less than κ many sets. Moreover, it is
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closed under diagonal intersection of length κ. Using this we can prove

the following important and well-known fact:

Lemma 7 ([Jec03, Theorem 8.7], Fodor). If S κ is stationary and

π : S κ is a regressive ordinal function, that is π ξ ξ for all

ξ S ∅ , then there is a stationary subset T S and an ordinal

γ κ such that f α γ for all α T .

Sometimes useful –as we will see later– is also the following collection

of well-known facts:

Lemma 8. Let κ ω be a regular cardinal.

Let cf μ κ. Then the set γ μ cf γ κ is a stationary

subset of μ.

For each function f : κ κ, the set α κ f α α is

closed and unbounded in κ.

The set of all limit points of a club set of κ is club again.

Now, call a transitive class W V an inner model if W contains all

ordinal numbers and satisfies ZFC. In fact, the constructible universe

L is an inner model as we will discuss in one of the next sections. Then

we can prove the following

Lemma 9. Let W be an inner model and κ τ be infinite cardinals

such that κ W τ and λ τ W cf λ κ is stationary in

the universe V. Moreover let U : U, U be a linear order such that

U H for a suitable H W , H W τ and

Ux : z z U x W, Ux
W κ for any x U.

Then we have U τ .

Proof. Suppose not. Without loss of generality, using a suitable

bijection let H be just τ . So, let γ be the cofinality of U, U , that

is the cardinality of a minimal subset of U which lies cofinal. Hence,

we have γ U τ . However, letting f : γ U be a monotone

and cofinal enumeration, we have U ν γ Uf ν and so afterall also

τ U γ κ τ . This means we have γ τ .



18 CHAPTER 2. FUNDAMENTALS

Define g ν : sup Uf ν ν for ν τ . Then g is weakly monotone,

that is g ν ν, and supν τ g ν sup U τ . By our assumption,

the set S : ν τ W cf ν κ is stationary in V. For

elements ν of S is g ν strictly less than ν because in W we have:

Uf ν κ κ cf ν ν, and so Uf ν is bounded in ν.

�

ν

ν̃

f ν

f ν̃

Uf ν

Uf ν̃

U
Hence, g S is a regressive function on a

stationary set. Now, Theorem 7 of Fodor

implies that there is a stationary subset S

of S such that g ν α for a suitable α τ

and arbitrary ν S . But in this case we

also have the following contradiction:

τ supν S g ν supν S g ν α τ.

Note, the first equality just holds because by definition we have for

x U y obviously Ux Uy and so

Uf ν ν τ Uf ν ν ν τ ,

meaning the range of f and g are both cofinal in τ .

Therefore, the lemma is proved. (Lemma 9)

Forcing

Working in a so-called ground model M , we consider a partial order

P, P and call it sometimes notion of forcing with the so-called forc-

ing conditions as its elements. We also say that a condition p is stronger

than a condition q if p P q. We call a set D P dense in P if for

every p P there is a q D such that q P p.

Call a non-empty G P a filter if firstly, whenever p q and p G,

then also q G; and, secondly, if p, q are elements of G, then there is

an r G such that r is stronger than both, p and q. Moreover, call a

filter G generic over M (or just M-generic) if for every dense D in P

and D M , the filter G always meets D.



CHAPTER 2. FUNDAMENTALS 19

Then we can construct the so-called forcing extension or generic ex-

tension, M G , of the ground model M that satisfied ZFC, given a

generic filter G, such that M G ZFC, M M G , G M G ,

OnM G OnM and it is minimal in the sense that if N is a transitive

model of ZF such that M N and G N , then M G N .

The main idea now is that we are able to name elements of the generic

extension within the ground model. Moreover, we can define the so-

called forcing relation ‘ ’ within M and so we are able to decide within

the ground model what properties hold in the generic extension:

Lemma 10 ([Jec03, Kun80]). For every generic G P over M and

every formula ϕ of the forcing language we have

M G ϕ if and only if p G p ϕ.

For a collection of the properties of the forcing relation we refer to

[Jec03, Theorem 14.7].

In Chapter 3 we will use the connection to Boolean algebras. In fact,

we can look at the universe V as collection of functions, ranging into

the set 2 0, 1 , that is, roughly speaking, the identification of sets

with their characteristic functions. So we can identify the universe V

with V2 where 2 is the simplest Boolean algebra. Then the formula

x y has truth value 0 or 1.

Taking now a more complex Boolean algebra B we can look at atomic

formulae x y and x y where the truth value can be an element of B
strictly between 0B and 1B. Choosing B in an appropiate way we can

try to decide formulae which we cannot in V2.

Furthermore, having a Boolean algebra B we can consider the related

partial order B , B defined as B : B 0B and setting b0 B b1 if

p q p.

Moreover, we can start from a partial order to construct a related

Boolean algebra as follows:
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Lemma 11 ([Jec03]). For every partially ordered set P, P there is

a complete Boolean algebra B B P and a mapping π : P B
where B is as above such that

if p P q, then π p B π q ,

p and q are compatible if and only if π p π q 0B,

the set π p p P is dense in B.

Moreover, the Boolean algebra B is unique up to isomorphism.

Having these complete Boolean algebras we can construct a Boolean-

valued model (of the language of set theory) where the Boolean values

of and are given by two functions of two variables x y and

x y , cf. [Jec03] for all details.

We are now interested in cardinal preserving properties for a given

notion of forcing. For a cardinal κ in the ground model, say a partial

order yields the κ-chain condition, κ-c.c. for short, if every dense set

has cardinality strictly less than κ.

Lemma 12. If P yields the κ-c.c., then it preserves cofinalities above

κ, that means, if λ is a cardinal such that cfM λ κ, then we have

cfM λ cfM G λ . Moreover, if κ is regular, then cardinals are pre-

served above κ.

A partial order P is λ-closed if whenever γ λ and pξ ξ γ is a

decreasing sequence of elements of P, that is pξ P pη for η ξ, then

there is a q P such that for each ξ γ we have q P pξ.

This property ensures that objects with suitable small cardinality within

the forcing extension can already be found in the ground model.

Lemma 13 ([Jec03, Kun80]). If P is λ-closed for a cardinal λ, then

there are no new sets of ordinals of cardinality strictly smaller than λ

in the forcing extension. Therefore, P preserves cofinalities below λ.

Moreover, P preserves also cardinals below λ.



CHAPTER 2. FUNDAMENTALS 21

We turn now to the problem of the iterated application of forcing, that

is in the easiest case the following two-step product forcing.

Lemma 14. Let P and Q be two notions of forcing in M . In order

that G P Q is generic over M , it is necessary and sufficient that

G G1 G2 where G1 P is generic over M and G2 Q is generic

over M G1 . Moreover, in this case we have

M G M G1 G2 M G2 G1 .

Now, in general, in applications the second forcing might be not an

element of the ground model M . The important fact here is that even

then, in case of a two-step iteration, we can represent it by a single

notion of forcing extension over the ground model.

Let P be a partial order in M and Q a name for a partial order, that

is P Q is partial order . Define then P Q as the set

p, q p P P q Q

and, moreover,

p1, q1 p2, q2 if and only if p1 p2 and p1 q1 Q q2.

For more details and facts we again refer to [Jec03, Kun80].

Constructible Universe

For the whole section, we strongly refer to [Jen72, Dev84] for proofs

and details. The idea of taking constructible sets is easy to describe:

When we look at the von Neumann’s view of V, taking all subsets in

the successor step Vα 1 P V , then we realize that we have no idea

what does this really mean. So an attempt could be just to take the

subsets we really need, meaning all subsets that can be described or

constructed in some sense.

Therefore, let us turn to the theory of constructible sets, looking at

Gödel’s constructible universe L : α On Lα, where L0 : ∅, for limit

ordinals λ set Lλ : α λ Lλ and, finally, take as Lα 1 the collection
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of all within Lα from parameters taken from Lα definable sets. Then

L is an inner model of set theory, in fact, it is the smallest one.

Lemma 15 ([Dev84]). The following hold:

(a) Assume V L. Then GCH and AC.

(b) L V L ZFC GCH .

Let ZF be all axioms of ZF without the power set axiom. Then some-

times it is useful to have the following

Lemma 16 ([Dev84, Jen72]). For a regular and uncountable cardinal

κ we have that Lκ is a model of V L and ZFC .

This is best possible situation, having Lκ P κ V because there

are cofinal many ranks of subsets of κ. So, in case of a regular limit of

cardinals, an (L-)inaccessible, we would have found a model of full set

theory — proving that we cannot expect to prove the existence of such

a cardinal in the presence of Gödel’s Incompleteness Theorem.

One of the most important results in this area is:

Lemma 17 ([Dev84], Gödel, Condensation Lemma). Let α be an ar-

bitrary limit ordinal. If X 1 Lα, that is preserving -formulae, then

there are unique π and β such that β α and:

(a) π : X, Lβ, ,

(b) if Y X transitive, then π Y id Y ,

(c) π x L x for all x X.

Here, L is the canonical well-ordering of the constructible universe,

cf. [Dev84] for details. And finally on the way to prove the Generalized

Continuum Hypothesis we prove that bounded subsets will be caught

by the next cardinal level of the constructible hierarchy.

Lemma 18 ([Dev84]). Assume V L and let κ be a cardinal. If x is

a bounded subset of κ, or more generally, if x Lα for some α κ,

then x Lκ.
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Using the fine structure theory3, Jensen was able to prove the important

covering property for the constructible universe. For, let us say that

0# exists, if there is a non-trivial elementary embedding π : L L.

Lemma 19 ([Dev84], Jensen, Covering Lemma). Assume, 0# does

not exist. If X is an uncountable set of ordinals, then there is a con-

structible set, Y, of ordinals such that X Y and X Y .

Now, for many applications it is useful to consider a more general

version of the constructible universe: for some set A, we can consider

the class L A , the universe of all sets constructible relative to A, in

fact, let the levels Lα A be similarly defined as for the usual hierarchy

and let Lα 1 A be the set of all subsets of Lα A that are definable

over Lα A using parameters from Lα A and A itself.

Then we have similiar properties as for the Lα-hierarchy, cf. [Dev84]. In

particular we have for α ω that Lα A α and for B A L A ,

L A L B L B L A .

The price of having more freedom in the construction of subsets is

loosing parts of GCH: One major tool for this assertion was the Con-

densation Lemma. But now, having an X 1 Lα A we just find π, β

and B such that
π : X Lβ B ,

where B π A X . Thus, in general this does not lead to a structure

of the L A -hierarchy. However, we can then prove the following

Lemma 20 ([Dev84]). Let A κ. Then L A is an inner model of

ZFC and we have L A 2λ λ for λ κ.

Moreover, using a bit more technical tools we can finally prove

Lemma 21 ([Dev84]). Let V L A , where A κ . Then 2κ κ

holds and so if κ ℵ0, we have the full GCH.

3cf. [Dev84, Jen72].
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At the very last, let us prove the following statement we are going to

use later.

Lemma 22. For an uncountable and regular cardinal κ and a subset

D κ we have that L D 2 κ κ.

Proof. Let b γ κ be a given small subset of κ. Then it is

sufficient to prove the following

Claim. b Lκ D .

With the claim in mind, we are obviously done, having small subsets

of κ already within the model Lκ D which has cardinality κ as we

already know. And so, it remains to prove the claim.

For, let b Lξ D ZFC for a suitable ordinal ξ. Heading a conden-

sation argument, define simultanously two sequences Xi i ω of

elementary submodels of Lξ D , , D and κi i ω of ordinals as

follows:

Let X0 be the smallest elementary submodel of Lξ D , , D , contain-

ing γ as a subset. Define κi as the least upper bound of Xi κ. More-

over, let Xi 1 be the smallest elementary submodel of Lξ D , , D ,

containing κi as a subset. Finally set X : i ω Xi.

Then for κ̄ : supi ω κi we have κ̄ κ. The model X is an elementary

substructure of Lξ D , , D . Moreover, we have that γ κ̄ X and

also X κ̄ κ.

Now, let σ : X̄ X be the collapsing map. Then by the condensation

property we have that X̄ is isomorphic to Lξ D̄ , , D̄ for suitable ξ̄

and D̄ such that σ κ̄ is the identity map. We also have that D̄ κ̄

and even more important, D̄ D κ̄.

However, then we have that X̄ Lξ D κ̄ , , D κ̄ which is clearly

an element and especially a subset of Lκ D because ξ̄ κ.

Therefore, b σ 1 b X̄ Lκ D as desired. (Lemma 22)
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Combinatorical Principles and Trees

We will not consider �-principles and related subjects like Souslin

trees. Here, we are interested in constructing special Aronszajn trees.

For, we consider coherent square-sequences, which Jensen introduced

in [Jen72].

Definition 23 ( κ-Sequence). For an infinite cardinal κ call a se-

quence Cα α κ Lim a κ-sequence if

(a) α κ Lim Cα α club ,

(b) α κ Lim cf α κ otp Cα κ ,

(c) if β α is a limit point of Cα, then Cα β Cα.

We say, κ holds if there is a Cα α κ Lim -sequence.

For our purpose it will be interesting another weaker version of this

combinatorical principle — the so-called Weak Square.

Definition 24 ( κ-Sequence). For an infinite cardinal κ call a se-

quence Cα α κ Lim a κ-sequence if

(a) α κ Lim Cα is club in α ,

(b) β κ Lim Cα β : α β κ ,

(c) α κ Lim otp Cα κ .

We say, κ holds if there is a κ-sequence.

Choose for all limit ordinals α κ club sets Cα α such that

otp Cα κ. If there are only κ many bounded subsets of κ, then

this forms trivially a κ-sequence and finally we have

Lemma 25 ([Dev84, Jen72]). The following hold:

(a) If κ κ κ, then κ.

(b) If κ, then κ.

(c) Assume V L A for an A κ such that for all α κ ,

α L A α κ,

then κ holds. In particular, if V L, then κ holds for all

infinite cardinals κ.
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Now, call a partial order T, T a tree if the set of all predecessors

of an element of T is well-ordered by T . Moreover, for a cardinal

κ we call a tree T a κ -Aronszajn tree if T has height κ such that

every branch and every level has cardinality at most κ. Let a special

κ -Aronszajn tree be an Aronszajn tree T whose nodes are one-to-one

functions from ordinals less than κ into κ, ordered by inclusion. Or

equivalently, there is a function σ : T κ such that σ x σ y for

all tree elements x T y.

Call a tree T a κ-Souslin tree if T has height κ and every branch and ev-

ery antichain has cardinality strictly less than κ. Obviously, a κ-Souslin

tree is a κ-Aronszajn tree. However, a special κ -Aronszajn tree is not

Souslin, because Aν : σ 1 ν are antichains by the property of σ

defined above. But ν κ Aν T and T κ .

Lemma 26 ([Kan94]). If κ is regular and 2 κ κ, then there is a

κ -Aronszajn tree.

There is an important connection to the theory of trees that we will

use in Chapter 5 and give a proof in the appendix.

Lemma 27 ([Dev84, Jen72]). There is a special κ -Aronszajn tree if

and only if κ holds.

The idea of the proof is easy to understand: Having a κ -Aronszajn

tree we can consider suitable subsets of branches of the tree. The

restrictions of the tree, having no cofinal branches and each tree level

has cardinality at most κ, helps to prove to get a κ-sequence.

On the other hand, imitating the proof of an ℵ1-Aronszajn tree, we

now need the κ-sequence to survive the limit points during the con-

struction without taking to many branches on such levels.

Remember, as in the first chapter, we call a model A A; A, . . . a

κ, λ -model of a language L A, . . . , if A κ and A λ. Then

we have the following
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Lemma 28 ([ChaKei90, Theorem 7.2.11]). There is a sentence ϕ in

a finite language such that for all infinite cardinals κ, ϕ has a κ , κ -

model if and only if there exists a special κ -Aronszajn tree.

For, let L U, T, , r, f, g, h where U is a unary relation, T and

are binary relations, r and f are unary functions and, finally, g and h

are binary functions.

Then let ϕ be the sentence of the language L, saying that

(a) the relation T acts like a tree, meaning that the partial order

dom T rng T , T is a tree in the usual sense; the relation

is a linear order; and the relation U is an initial segment

for , that is, x y U y y x ,

(b) the function r acts like the tree order function or rank func-

tion, that is x T y r x r y , z x r x z and

z r y x xTy r x z ; and the function f acts like

the function for a special Aronszajn tree, that is x U f x

and xTy f x f y ,

(c) use the function g to assert that for each x, the set of all

predecessors y y x has cardinality at most U ; and finally,

use the function h to assert that for each x, the set of all

elements of the same rank y r y x has cardinality at

most U .

It is an easy exercise to show that this sentence ϕ will work to prove

the lemma above.

To round up the theory we remind the reader of the following

Lemma 29 ([Dev84]). Assume GCH. Let κ be an uncountable cardinal

for which κ holds. Then there is a κ -Souslin tree.

Moreover, in [Jen72, p.286, Remark (3)], Jensen showed the following

fact which we will use later

Lemma 30 ([Jen72]). If κ is not Mahlo in L, then κ holds.

In fact, we can prove the following generalization
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Lemma 31 ([Jen72]). Suppose κ is not a Mahlo cardinal in L B for

a subset B ℵ1, then κ holds.

Primitive Recursive Functions

The well-known primitive recursive functions on the natural numbers

can be generalized to primitive recursive functions on ordinals. The

easiest way here is to consider the canonical functions like successor

function, addition, multiplication, taking powers and taking iterated

powers.

Then we call an ordinal α primitive recursive closed if it is closed under

these ordinal functions restricted to α.

On the other hand we can generalize these functions to sets (not only

ordinals) as are given by the next

Definition 32 (Primitive Recursive Functions). A (class) function

f : Vn V is said to be primitive recursive (p.r.) if and only if it

is generated by the following schemata:

(a) f x1, . . . , xn xi for 1 i n,

(b) f x1, . . . , xn xi, xj for 1 i, j n,

(c) f x1, . . . , xn xi xj for 1 i, j n,

(d) f x1, . . . , xn h g1 x1, . . . , xn , . . . , gk x1, . . . , xn , where

h, g1,. . . ,gk are all p.r.,

(e) f y, x1, . . . , xn z y g z, x1, . . . , xn , where g is p.r.,

(f) f x1, . . . , xn ω,

(g) f y, x1, . . . , xn g y, x1, . . . , xn, f z, x1, . . . , xn z h y ,

where g and h are p.r. and, moreover,

z h y rank z rank y .

In fact, in [JenKar71], it is shown that α is closed under ordinal prim-

itive recursive functions if and only if Lα is closed under the primitive

recursive functions on general sets.
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Even a rather complex function like Lν ν On is primitive recursive.

This means that a level of the constructible universe with height a p.r.-

closed ordinal has in most cases enough set theory within to work with.

We are going to use such arguments in Chapter 5.

We will now look on cardinals and try to find many p.r.-closed ordinals.

Lemma 33. Let κ ω be a regular cardinal. Then κ is p.r.-closed and

there are cofinal many p.r.-closed ordinals below κ.

Proof. Obviously, as a ZF -model, Lκ is closed under functions of

Definition 32. Moreover, let γ0 κ be chosen. Then we can define γi 1

as the smallest γ such that the union of all ranges of functions given

by Definition 32 restricted to Lγi
is a subset of Lγ. Then supi ω γi κ

is p.r.-closed. (Lemma 33)

Then the same argument proves that for a ZF -model A there are

cofinal many p.r.-closed ordinals in OnA and even the following

Corollary 34. Let A be a model ZF . Then there are cofinal many

limits of p.r.-closed ordinals in OnA.

The next rather technical statement will allow us later to find p.r.-

closed ordinals in elementary submodels. In fact, we are arguing to get

finally Lemma 37 at the end of this section. For, let us define for i ω

and ordinals ν:
g0 ν : ν 1,

gi 1 ν : gν 1
i ν 1 .

Here, the iterated power is defined in the usual way by induction on

non-empty ordinals: let g1
i μ : gi μ , gν 1

i μ : gi gν
i μ and

finally gλ
i μ : supν λ gν

i μ for limit ordinals λ. Then these functions

are obviously primitive recursive. Moreover, we have the following

Lemma 35 ([JenKar71]). Let F be a p.r. set function. Then there is

a Σ1-formula ϕ such that whenever x1, . . . , xn Lα A there is i ω

such that

y F x1, . . . , xn Lgi α A ϕ y, x1, . . . , xn .
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This statement ensures that each primitive recursive function can be

caught by the gi-functions as rank in the L-hierarchy. But then we now

have

Corollary 36. Lα A is p.r.-closed if and only if α is closed under the

functions gi for i ω.

Now, let ϕi be the formula for the function gi given by Lemma 35.

Then we have that α is p.r.-closed if and only if for all i ω we have

Lα A ν ξ ϕi ξ, ν .

Because even the sequence ϕi i ω is p.r.-closed, we finally can

code altogether in one formula, saying “On is p.r.-closed”:

Lemma 37 ([JenKar71]). There is a formula ϕ such that α is p.r.-

closed if and only if Lα ϕ.

(Small) Large Cardinals

And finally we state an equivalence we will find useful in our construc-

tion later. Remember, we call a cardinal κ (strongly) inaccessible if κ

is regular and for all λ κ we have 2λ κ.

Call κ Mahlo if the set γ κ γ is inaccessible is stationary in κ,

and finally, call a cardinal κ weakly compact if the partition relation

κ κ 2
2 holds.

Here, κ κ 2
2 means that every partition of κ 2, the set of all

unordered pairs of κ, into two pieces has a homogeneous set of size κ.

We refer to [Dra74, Jec03, Kan94] for more details.

In future facts we will use the following reflecting properties of the

constructible universe:
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Lemma 38. The following hold:

(a) If κ is a regular cardinal, then (κ is a regular cardinal)L,

(b) If κ is inaccessible, then (κ is inaccessible)L,

(c) If κ is Mahlo, then (κ is Mahlo)L,

(d) If κ is weakly compact, then (κ is weakly compact)L.

Finally, we state two well-known connections between large cardinals

and the (non-)existence of trees:

Lemma 39 ([Dev84, Jen72]). If κ is a regular uncountable cardinal

which is not Mahlo in the constructible universe, then there is a con-

structible special Aronszajn tree of height κ.

The proof uses arguments about combinatorical principles given by,

e.g., Lemma 27 and Lemma 30. Another well-known fact is the follow-

ing:

Lemma 40 ([Dev84, Dra74, Jec03, Kan94]). Let κ be an uncountable

cardinal. The following are equivalent:

(a) κ is weakly compact,

(b) κ is inaccessible and there is no κ-Aronzsajn tree.





CHAPTER 3

The Forcing

We now define the notion of forcing we are going to use. In fact, it will

be Mitchell’s forcing that he introduced in [Mit72]. There he used it

to prove the statement we are trying to improve with Theorem 59.

To start with, fix κ an uncountable regular cardinal and τ κ an

inaccessible one in a (suitable) ground model for the remaining part of

this chapter.

Definition 41. Let P : P τ be p : x p x2 x ω x τ ,

ordered by the usual reverse inclusion.

Then the application of P adjoints in the usual way τ -many (Cohen)

reals. Now, the second forcing looks a bit more technical.

For α τ , let Pα : p P p α p . If s P, then define

bs : p P q P p r s r and q are compatible ,

or equivalently, bs p P p P Ḡ s ∅ for a P-generic Ḡ over

the ground model M .

Let B be the boolean algebra associated with P. Define then Bα B
by Bα : bs s Pα . Then Bα is canonically isomorphic to the

complete boolean algebra associated with Pα.

Call a function f M acceptable, if the following conditions hold:

(a) dom f τ and rng f B,

(b) dom f κ,

(c) for all γ τ we have f γ Bγ ω.

33
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The bounding property given by the last property will give us control of

the time when we will have collapsed cardinals with the second forcing.

This important fact was used by Mitchell in [Mit72] as we will see later.

Let A be the set of all acceptable functions in M . Moreover, let Ḡ be P-

generic and let M be M Ḡ , the forcing extension by P and also ground

model for second forcing Q. Then for f A define f̄ : dom f 2

in M by f̄ γ 1 if and only if f γ Ḡ ∅.

Definition 42. With the notation above let Q : Q κ, τ be defined

over the model M by letting the field be the set A of acceptable functions

and letting f Q g if and only if f̄ ḡ.

Note, although the field of Q is a subset of the ground model M , the

definition of the order Q is using the P-generic object G.

Finally, we can now put both forcings together. Note, Q is defined in

M , a generic extension of P. We, therefore, denote this partial order

with a dot, to signify that we are using a name for it.

We then define the notion of forcing we are interested in:

Definition 43 (Mitchell). Let M κ, τ be the usual two-step product

P Q of the forcings P and Q defined above, that is

M κ, τ : P A,

p, f M κ,τ q, g : p P q and p P f Q g.

In the following we will cite a few lemmas proven in [Mit72]. Actually,

Mitchell defines simultanously two such forcings depending which prob-

lem they should solve. We are using the second one, in fact, our M κ, τ

is his R2 ω, κ, τ and we are stating the lemmas in our terminology.

Fix apart from Ḡ now also a Q-generic G̃ over M and set N be the

forcings extension M Ḡ G̃ . We already know by elementary forcing

arguments that then Ḡ G̃ is M-generic over the ground model M , cf.

[Jec03, Kun80] for details.
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Lemma 44 ([Mit72]). In the first step of the forcing using P, we adjoin

τ -many reals to M , however, cardinals are preserved. In the second step

we collapse τ to κ .

One of the major observations for our desired preserving properties is

the following:

Lemma 45 ([Mit72, Lemma 3.3]). The notion of forcing M κ, τ has

the τ -chain condition.

Therefore we get the following consequence:

Corollary 46 ([Mit72, Lemma 3.4]). For all ordinals δ such that δ κ

or τ δ we have δ M δ N . Hence cardinals below κ and above τ

are preserved.

And finally we can conclude:

Corollary 47 ([Mit72, Corollary 3.5]). In the forcing extension N we

have 2ω 2κ τ .

We will now try to look on the forcing construction in a rather different

way. In fact, we will split it off in τ -many parts Mν and Mν for ν τ

where Mν will consists of conditions p of the forcing M such that “p

works below ν” and similarly for Mν . In fact, Mν will add subsets of

ω which can be described with conditions below ν and then we will

collapse all ordinals below ν to κ. Of course this is only interesting in

the case that ν is greater than κ.

Therefore we set

Pν : p M : p ν p , Pν : p M : p ν 0 ,

Aν : f A : f ν f , Aν : f A : f ν 0 .

And moreover

Mν : Pν Aν , Mν : Pν Aν ,

Gν : G Mν , Gν : G Mν .

As noticed above we finally can prove the following
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Lemma 48 ([Mit72, Lemma 3.6]). Let ν τ be a limit ordinal.

Then Gν is Mν-generic over M , Kν is Mν-generic over M Gν , and

M Gν Gν M G .

The by far most important tool in analyzing Mitchell’s notion of forcing

is the following, providing that sequences of length with an uncountable

cofinality such that their initial segments can be found in an initial

segment of the forcing construction, in fact, are already an element of

this segment:

Lemma 49 ([Mit72, Lemma 3.8]). Suppose that γ has uncountable

cofinality in the ground model M and let t : γ M be such that

t M G and t α M Gν for every α ν. Then t M Gν .

Now we turn back to the question when exactly we add new reals. We

already know that with M κ, τ we add τ -many Cohen reals because of

the first forcing part. However, we can ask whether the second forcing

is changing the powerset of ω again. In fact, it will not as we will prove

with a tool that Mitchell has proved with the following

Lemma 50 ([Mit72, Lemma 3.1]). Suppose that D is a term such that

P D is strongly dense in Q ,

and f A. Then there is g A such that g f and p P g D .

And so, we are able to prove finally

Lemma 51. P ω M Ḡ P ω M G .

Proof. The first inclusion is obvious. Suppose now the other

one does not hold. We are going to deduce a contradiction.

So suppose there is a subset a of ω such that a is an element of M G

but not in M Ḡ , then using the theory of forcing there is a condition

f Q such that

M Ḡ f̌ Q a ω a V̌ .
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Then there is already a condition p G P such that

p P f̌ Q a ω a V̌ .

So we can find a P-name for a Q-name a such that

p P f̌ Q a ω a V̌ .

Now consider the set

g Q g Q f̌ g ǐ a g ǐ a g f̌

and let Di be a P-name for it. Then we can conclude that

p P Di is dense in Q .

Now, step by step using Lemma 50 we can find fi A for i ω

such that f0 : f , fi 1 fi and p P f̌i 1 Di. Finally define

f : i ω fi. Then we obviously have p f̌ Q f̌i for all i ω.

Hence

M G f̌ Q f̌ f̌
i ω

DG
i f̌ Q .

Therefore, for each i ω in M Ḡ , already f̌ knows about whether ǐ

is in aG or not, that is

M Ḡ f̌ Q ǐ aG f̌ Q ǐ aG .

Define then in the ground model M ,

b : i ω M Ḡ f̌ Q ǐ aG M.

But then we have f̌ aG b b̌ V̌. Hence f̌ aG V̌.

However, we also have f̌ aG V̌ because of f̌ Q f̌ and so we

have deduced the desired contradiction. (Lemma 51)

Note, it is a similiar argument like using the property of a partial

order being ℵ1-closed. However, our forcing Q does, in fact, not bear

this property in M Ḡ where we need it. Although the conditions,

functions within A, live in the ground model, the order is defined using

the generic object Ḡ and this causes the problems together with the

fact that we added many countable subsets to M when we got M Ḡ .
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Finally let us turn to a property of Mitchell’s forcing that it does not

kill stationary subsets of τ .

Lemma 52. Let M M κ, τ be Mitchell’s forcing and let G be M-

generic over a ground model M . Then, in the extension N M G , S

remains a stationary subset of τ , where

S : λ τ M cf λ κ .

Proof. Let C τ̌ be closed and unbounded. We are going to

prove that

CG λ τ M cf λ κ ∅.

For, let γ be a name of a monotone enumeration of C, that is

M C γ ξ ξ τ̌ γ is monotone.

Moreover, let Dν be a maximal antichain in p α p M γ ν̌ α̌ .

Because of Lemma 45 we know that Dν τ . Now, for conditions

p Dν define γν,p as the unique α such that p M γ ν̌ α̌ and,

finally, Γν : γν,p p Dν . Then

γG ν Γν M.(1)

In the ground model M , define a sequence βξ ξ κ by setting

β : 0, βλ : ξ λ βξ and more interesting

βξ 1 : lub Γν ν βξ .

Here, ‘lub’ means ‘least upper bound’. Finally we have for β : βκ

that ν β Γν β and cf β κ .

Then, in M G , the defined β is an element of CG. For, let ξ β. By

our construction we have

ξ γG ξ Γξ Γν ν βξ 1 βξ 2 β.

Hence, β is a limit point of CG because of (1) and so also an element

of the closed set CG.

Therefore, M β̌ C S and the lemma is proved. (Lemma 52)
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The Coarse Morass

From now on consider a first order language L with a unary predicate

A and a binary predicate . Define the theory T as follows:

T : ZFC V L A regular

A is the largest cardinal.

Moreover, by a (τ ,κ)-model of L we understand a model of the shape

A A; AA, A, . . . such that A τ and AA κ. In the following

we are working inside a model A of our fixed theory T. Let A AA

be the interpretation of A in A.

We will benefit from this theory in the next chapter, proving our main

theory. For, we will use a tool, the so-called coarse A-morass. To be

able to, we are going to define the structure theory in this chapter and

prove facts we are going to apply later. This is not at all to understand

as an introduction to the theory of morasses1. We will develop methods

we are going to use in the next chapter.

Once and for all, in this chapter we are working within the fixed model

A, otherwise we will state the opposite clearly. Note, because A could

be very different from our universe, possibly being ill-founded, and so

forthcomming arguments will rarely be absolut.

1Only a few introductions to the theory of morasses can be found in the literatur

— although they are sometimes used as a tool in the theory of inner models, proving

statements around the cardinal transfer property. As a starting point we strongly

refer to [Dev84].
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At first, define sets Sα for ordinals α A as follows:

Sα : ν α ν α

Lν α is the largest cardinal α is regular

ξ ν η ν ξ η η is p.r.-closed

Consider the set SA. Because the fixed model A of T thinks that A is

regular and the largest cardinal and, by Corollary 34, there are indeed

cofinal many limits of p.r.-closed ordinals within A, we obviously have

Lemma 53. sup SA .

Let us now look at these intervals Sα more closely and define for ν Sα

βν : the smallest β ν such that

Lβ ν α and β is p.r.-closed.

�

α

ν

βν

α Then βν is well-defined for ν Sν : Because ν lays be-

tween α and α , it must be collapsed at some ordinal level

ξ α . Of course, ξ has not to be p.r.-closed. However,

taking the closure of all (ordinal) primitive functions, pos-

sible by a countable limit construction, we get an ordinal

β (and therefore Lβ) satisfying the desired condition by

Lemma 37. So we can choose a minimal one.

Although defined for all ordinals α below A we can at least show that

for a large set of indexes α the intervals Sα are non-empty, in fact, we

will find a closed and unbounded set:

Lemma 54. The set α A Sα ∅ is stationary in A.

Proof. By Lemma 53, SA is a non-empty set and so we can fix

an arbitrary ν SA. We now define simultanously the following two
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sequences αξ ξ A and Xξ ξ A , letting

αξ : Xξ A,

X0 : the smallest X Lβν where X A transitive,

Xξ 1 : the smallest X Lβν where Xξ A transitive

and αν X,

Xλ : Xξ ξ λ for limit ordinals λ.

Here, by ‘smallest (elementary) submodel’ we mean to take the sub-

model such that it is minimal for the inclusion relation. Then we

obviously have αλ supξ λ αξ.

Now, for each ξ A let π : Lβ ξ Xξ be the Mostowski collapse.

By construction we then have π αξ A. Moreover, π is an elementary

embedding of Lβ ξ into Lβν . Let ν ξ Lβξ
such that π ν ξ ν.

Then –because of the elementary property of π and ν Sα– we also

have that ν ξ lays in Sαξ
. In particular, Sαξ

is not empty.

Finally, by our construction we have found a club set αξ ξ A ,

witnessing the stationarity claimed. (Lemma 54)

On the set S, defined as the union α A Sα of the intervalls defined

above, we will define a relation and a suitable sequence of elementary

embeddings πν̄ν ν̄ ν such that

πν̄ν : Lν̄ Lν and S S.

For, define αν as the unique α such that ν Sα and define

ν̄ ν : αν̄ αν π ν̄ ν π αν̄ αν

there is π : Lβν̄ Lβν such that crit π αν̄ .

And finally set πν̄ν : π Lν̄ .

Note, in the proof of Lemma 54 we actually showed that (in notation

of the proof) we have πν ξ ν π Lν ξ and so, we showed even more,

namely ν ξ ν.
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In fact, we can prove the following

Lemma 55. The maps πν̄ν defined above are unique.

Proof. Here we use the fact that we are working with L-like models

and their definability properties. So let us define

X : the set of all y Lβν such that y is Lβν -definable

using parameters from ν, αν αν .

Then we know by the condensation property that X is already a level

of the Lα-hierarchy. Moreover, we can even describe the ordinal height

of X as follows

Claim. X Lβν .

First note that, by definition, X Lβν . Obviously, in Lβν holds

f f : αν
onto

ν ,

so it does in the substructure X. That means, there is an element f of

X such that Lβν f : αν
onto

ν. So, by absolutness there is an f in X

such that f : αν
onto

ν. Hence, for this f we have dom f αν X

and so finally ν rng f X.

Now, let σ : Lβ̄ X be the collapsing map. We just showed that ν

is a subset of X and therefore σ restricted to ν 1 is the identity map.

We also have β̄ αν is p.r.-closed and Lβ̄ ν αν and so we have,

because of the minimality property, that βν β̄. However, trivially we

have by our construction that β̄ βν and the claim is proved.

With the claim in mind, there is everything within Lβν definable with

parameters taken of ν, αν αν . However, these parameters are fixed

by π : Lβν̄ Lβν . And so, π is uniquely given by them. Therefore,

πν̄ν π Lν̄ and the lemma is proved. (Lemma 55)

We now look at the above defined relation more closely, proving

Lemma 56. The relation forms a tree on S.
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Proof. It is an easy exercise to verify that the relation is non-

reflexive and transitive.

Moreover, consider a set P of predecessors of an element of the

tree. Then P, is obviously well-founded, because if ν̄ ν, then

also αν̄ αν .

It is left to prove that such a set P is also linearly ordered by . If

we showed this, we would even have the missing well-ordering property

of a set of predecessors of an element of the tree.

Claim. If ν̄, ν ν, then ν̄ ν or ν ν̄.

For, let ν̄ ν and ν ν. Consider the two maps π : Lβν̄ Lβν and

π : Lβν
Lβν given by the definition of the tree where πν̄ν : π Lν̄

and πν ν : π Lν . Then we have by construction (and well-known

arguments, e.g., condensation property) the following:

rng π the smallest X̄ Lβν such that

A X̄ is transitive and αν̄ A X̄,

rng π the smallest X Lβν such that

A X is transitive and αν A X .

Without loss of generality, let αν̄ αν . But then, X̄ is a subset of X .

Therefore, π 1 π : Lβν̄ Lβν is an elementary embedding with

the needed properties to conclude that π 1 π Lν̄ πν̄ν because

of the uniqueness of the embeddings given by Lemma 55. And so, we

finally have ν̄ ν.

With the claim also the lemma is proved. (Lemma 56)

There are two more properties we will find later useful. One of them

says that there are, in fact, many limit points within the tree relation.

Lemma 57. For α A let ξ, ν Sα where ξ ν. Then

(a) βξ ν,

(b) sup ξ̄ ξ̄ ξ α.

Proof. Let α, ξ and ν be as above. Then by definition, α is the

largest cardinal in Lν and therefore we trivially have Lν ξ α.
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But this holds even below ν, say at stage ξ ν, and so Lξ ξ α.

We then are able to find an η ν but above ξ such that η is p.r.-

closed. However, this is the condition βξ should satisfy. Because of the

minimality we finally have βξ η ν. This proves the first fact.

For the second property, note that for ξ̄ ξ we have that the model

Lξ thinks that α αξ is the largest cardinal and Lξ̄ thinks the same

about αξ̄ α. Therefore, ξ̄ cannot be greater than α because Lξ̄ is a

subset of Lξ.

On the other hand, let γ α. We will find a ξ̄ α such that γ ξ̄

and ξ̄ ξ as follows, working in Lν : Starting from X0 : γ ξ we

�

α

ξ

ξ̄

βξ

ν

βν

α

set X : i ω Xi where Xi 1 is the smallest X such

that X Lβξ
and Xi α X . Then X will be the

smallest X Lβξ
such that γ ξ X and X α

transitive.

Moreover, α looks like a regular cardinal in Lν , so the

cardinality of X is strictly smaller than α even in this

model. Consider then the collapse map σ : Lβ̄ X

and we have σ ᾱ α for the critical point ᾱ of the

embedding σ. Furthermore, even the map σ is an

element of Lν . Now let ξ̄ such that σ ξ̄ ξ. Then

we finally have

Claim. ξ̄ Sᾱ.

To see this we have to look at the properties in the definition of Sᾱ.

Because α is strictly less than ξ we trivially have ᾱ ξ̄. Also we know

that ξ is limit of p.r.-closed ordinals and so is ξ̄ by the elementary

preserving property of σ and Lemma 37. The same reason shows the

regularity and the property ‘being the largest cardinal’ of ᾱ within Lξ̄.

Moreover, because of ξ̄ β̄ we know that ξ̄ is strictly smaller than ᾱ.

This finishes the proof of the claim.

Trivially, we also have γ ξ̄ α by our construction and for the

elementary embedding σ : Lβ̄ Lβξ
we know by definition and its
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properties that β̄ βξ̄ and ᾱ αξ̄ holds and so by the uniqueness of

the tree embeddings, given by Lemma 55, also σ Lξ̄ πξ̄ξ.

And so, we finally have shown everything for ξ̄ ξ. (Lemma 57)

Note, the second part (b) of the last lemma claims that ξ is a limit

point within the tree relation . Moreover, together with Lemma 53

we have finally shown that each ν SA is a limit point within the tree

relation, that is
sup ν̄ ν̄ ν A.

Considering the figure that might help to understand the structure, we

are now ready to define the complete structure we are aiming to:
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πν̄ν πν̄ν

πνν

Figure 1. The coarse A-morass

Definition 58 (The coarse A-Morass). Let the cardinal A, the sequence

Sα α A , the tree relation with the sequence πν̄ν ν̄ ν of

embeddings be defined as above. Then we call the structure

M : B, A, Sα α A , , πν̄ν ν̄ ν

the coarse A-morass with the universe B such that A B On.





CHAPTER 5

An Inaccessible implies the Failure

We will now use the forcing we defined in the last chapter to prove the

main theorem:

Theorem 59. Suppose there is a model of ZFC with an inaccessible

cardinal τ . Moreover, let κ τ be an uncountable regular cardinal.

Then there is a forcing extension of L that is a model of the following:

ZFC 2ℵ0 κ “ 2α α for all cardinals α κ”

“ γ , γ κ , κ for all regular cardinals γ κ”

“ there is a special κ -Aronszajn tree”.

The proof of the theorem will last the remaining part of the chapter.

Starting from a suitable ground model that has an inaccessible cardinal,

we will work within the generic extension of the ground model, given

by the forcing defined in the last chapter. There, we will consider the

theory T we have already defined and show the failure of the stated

transfer property by constructing a counterexample. Moreover, in the

forcing extension we will have a special κ -Aronszajn tree and –as

desired– sufficient small powers of cardinals above κ. And so, the proof

will be done.

Now, working in a set theoretical universe with an inaccessible cardinal,

take an arbitrary (ground) model M , satisfying ZFC and V L B for

any subset B κ such that τ is the least inaccessible cardinal above

κ in M :

M ZFC V L B for B κ

τ least inaccessible above κ.
(2)

To start with, just take M as Gödel’s constructible universe L, that is

choosing B ∅, and so M obviously satisfies the condition (2) where τ

47
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is the least inaccessible cardinal above κ in M , given by the assumption

together with Lemma 38.

However, there will be a point during the up-coming construction where

it might be convenient just to start with a model having the property

given by (2), choosing the predicate B in an appropiate way, than

starting with L.

We will now force with Mitchell’s forcing M κ, τ over M having an

M κ, τ -generic G and finally getting the extension M G . Note, in

M G , we have 2ℵ0 2κ κ τ . Moreover, by construction of

Mitchell’s forcing defined in Definition 43 there is then a P τ -generic

Ḡ and a Q κ, τ -generic G̃ such that M G M Ḡ G̃ where P τ and

Q κ, τ are defined as in Chapter 3, yielding the property of a two-step

forcing

M κ, τ P τ Q κ, τ .

Remember, we already defined the theory T in Chapter 4 as follows:

T ZFC V L A regular

A is the largest cardinal.

Aiming towards a contradiction, let us work with the theory T and

state the following

Supposition 60. In M G , there is a κ , κ -model A of T.

In this chapter we are now going to deduce a contradiction to this

assumption we just made. For, letM : M A be the coarse A-morass

defined in the last chapter within the fixed model A and define

M A : A, Sα α A , A, πν̄ν ν̄ ν A .
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Now, remember the second representation of the forcing extension

M G , given with Lemma 48. In fact, let Mν , Mν , Gν and Gν for ν τ

be defined as in the above mentioned lemma, then M G M Gν Gν .

Moreover, the dividing is in some sense cleverly choosen. In M Gν , we

just have taken new subsets of ω that can be described by conditions

“till ν” and have then collapsed ordinals below ν to κ, which is of

course only interesting for ν κ anyway. This means, in M Gν , the

forcing extension is already constructed up to ν.

If we now consider an initial segment of the morassM, sayM A, then

this small structure of cardinality κ τ has to be already defined in an

initial segment M Gν of the forcing M Gν Gν M G for suitable

ν τ . Therefore, we have the following

Lemma 61. There is ν τ such that M A M Gν .

Now, choose ν τ minimal such that M A M Gν and define

ν : ν κ. Then we can be sure that ν and even ν is collapsed to κ

by our forcing at stage ν, that is, in M Gν .

This property is important for us because it could have been that we

consider just the case that ν is a cardinal, say ν κ , as the minimal

one chosen and then we would have κ -many new reals but κ would

not be collapsed and so 2 κ κ would fail.

Moreover, Gν as bounded subset of the generic filter G, living on forcing

conditions up to ν, is therefore a bounded subset of M L B where

B κ. Remember, so far B could be taken as the empty set.

Therefore, Gν will be caught in an initial segment of the ground model,

say Gν Lν̄ B for a suitable ν̄. Choose ν̄ minimal with this property.

Hence, in L B Gν M Gν , the ordinal ν̄ is already collapsed to κ

because ν is, as we have seen above, and the minimal choice of ν̄.

Further, fix a bijection f : κ ν̄ such that f M Gν and consider

the complete elementary theory of Lν̄ Gν , , Gν , ξ ξ ν̄ where
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we use f to code elements ξ of ν̄ into elements ξ of κ. Then this theory

is a subset of Lκ B .

Therefore, we are able to code Gν in a predicate B κ such that

M Gν L B Gν L B and the model L B still satisfies the

property (2) for possible ground models. Note, the property of τ , being

inaccessible, we obviously did not change in L B .

Now, Gν is Mν-generic over M Gν where Mν , defined in Chapter 3,

is –roughly speaking– the forcing M κ, τ but just taking conditions

acting beyond ν. So, the difference between both forcings is that the

forcing M κ, τ starts at level κ whereas Mν begins later, at level ν

such that κ ν κ .

Because the forcing adds subsets of ω and collapses ordinals to κ, to

start at stage ν κ does not change anything in the arguments: For

the indices ν, the way towards the inaccessible τ is –roughly speaking–

long enough to argue in the same way. Hence, for simplicity but without

loss of generality, we may additionally assume

M A M.(3)

Furthermore, by the choice of the theory T and the Supposition 60 we

know that the interpretation of the predicat A is a set of cardinality

κ of ordinals. So, by renaming the elements using a suitable bijection,

we can arrange A as a subset of κ and so we will also assume without

loss of generality that

A κ.(4)

Apart from this, we do not know how A looks like, in fact, with the

model A we could have a non-standard model of set theory and so

A, A needs not to be well-founded. However, we can ask for the

cofinality of the linear order A, A within A, knowing –as a subset

of κ– this cardinal could be any regular cardinal below κ.
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Hence, to go on with the proof we have to distinguish two cases.

Case 1. cfM A ω

Then under these circumstances, within the ground model we can find

a countable sequence γi i ω M being monotone and cofinal in

A. Remember, we still work within the fixed model A.

Now, for ν SA let νi be the unique tree element being the -smallest

ν̄ such that ν̄ ν and γi αν̄ . Note, because for a fixed ν we have

enough well-foundedness within the tree to define νi that way. We

also know by construction of the coarse A-morass that νi A ν for

νi ν SA and therefore, by (4), we have νi κ. Furthermore, define

aν : νi i ω κ ω.

Towards to the desired contradiction, we define within the fixed model

A for each ν SA and B : ξ B ξ ν the following initial

segment of the morass structure

M ν : B , αν , Sα α αν , Sαν B , Sαν B ,

πν̄ν ν̄ ν ν .

Now, working in the model A, consider the elementary embeddings

πνiνj
: Lνi

Lνj
for every i j ω that we have by definition of the

tree. Let us lift up these embeddings to maps of the shape

π̃νiνj
: Lνi

,M νi Lνj
,M νj ,

defined in the obvious way, that is

π̃νiνj
Lνi

π Lνi
,

π̃νiνj
Sα α ανi

Sα α ανj
,

π̃νiνj
Sανi

B Sανj
B ,

π̃νiνj
πν̄ν ν̄ ν νi πν̄ν ν̄ ν νj .
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But then we have π̃νiνj
π̃νkνj

π̃νiνk
and therefore, using Lemma 6,

the structure M ν is just the direct limit of the structure

Lνi
,M νi i ω , π̃νiνj

i j ω

and so –up to isomorphism– this structure is unique. Therefore, we

finally proved the following

Remark 62. For each ν SA, up to isomorphism, M ν is uniquely

definable from the parameters αν and M A.

Now, the set aν defines a countable path through the tree till the ele-

ment ν (of the tree). And so, because of the uniqueness of limit points

in this tree, we obviously have the following

Lemma 63. For elements ν̄ ν of Sα we have aν̄ aν.

Let us define the technical but useful collection of all countable paths

through the tree structure below ν for an element ν of SA, letting within

the model A,

Θ ν : aν̄ ν̄ SA, ν̄ ν .

Remembering that M L B , there is a first nice property as follows:

Lemma 64. For each ν SA, the sequence Θ ν is uniformly definable

from parameters aν, M A and γi i ω within the model M aν .

Proof. Note, by (3), the parameters M A and γi i ω are

already elements of M , and hence even of M aν . Still working in the

model A, we will now define step by step the desired collection of sets

as follows:

For each νi aν and arbitrary ν Sανi
such that ν νi define

P0 ν , i : πνiνj
ν i j .
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Then P0 ν , i is a cofinal set in the branch above ν as a copy of the

branch below ν. Now set

P1 ν , i : μ̄ μ P0 ν , i μ̄ μ .

The set P1 ν , i collects all missing elements on the branch below an

element of the set P0 ν , i . Therefore, this set describes a branch of

length A and, by definition, it does not depend on the parameter i and

we have P1 ν , i0 P1 ν , i1 for all natural numbers i0, i1. Therefore,

we define P1 ν : P1 ν , i for an arbitrary natural number i.
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ανi

ανj

A

ν νi

πνiνj ν νj

μ ν , j

ν ν

Finally set

P2 ν : μ ν , j j ω ,

where μ ν , j denotes the well-defined -smallest μ of the set P1 ν

of elements of the tree such that γj αμ.

Note, with the given parameters we can obviously define the above

three sets within the model M aν .
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Consider now ν : πνiν ν for an arbitrary i ω. Then ν again does

not depend on the choice of i. Moreover, ν is the unique limit of the

branch defined by P0 ν , i at tree level A. By definition we know then

that aν is just the set P2 ν and so finally we have, defined within the

model M aν , the following

Θ ν aν ν SA ν ν

P2 ν μ aν ν μ αν αμ .

Therefore, the proof is complete. (Lemma 64)

Moreover, with Lemma 22, having aν as a subset of κ, we still have

2 κ κ within the ground model M L B and also within the model

M aν . Hence, because Θ ν is a subset of κ ω, we can sum up with

the following

Lemma 65. For ν SA, within model M aν , the set Θ ν has cardi-

nality at most κ.

Finally we are prepared to complete the desired contradiction using

Lemma 9:

Let W be the inner model M Ḡ and V be the final forcing extension

M G M Ḡ G̃ . Moreover, let κ be the given cardinal and τ be the

inaccessible within the ground model M . Remember, by Lemma 44,

we do not change cardinals forming the forcing extention W . So, we

still have κ W τ . Lemma 45 then gives us immediately the desired

stationarity of the set λ τ W cf λ κ that we need for the

application of Lemma 9.

Now, let H be PW κ and so we have trivially U H W and,

moreover, within W , also that H P κ τ . Remember, W is the

Cohen extension of M by adding τ many reals.

Finally let U be aν ν SA . Then we have U ν SA
Θ ν . Further,

U, U forms a linear order, where the order relation is defined by
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letting: aν̄ aν if and only if ν̄ ν. For arbitrary x U , say x aν ,

we then have:

Ux : z z U x aν̄ aν̄ U aν

aν̄ ν̄ ν; ν̄, ν SA

Θ ν M Ḡ W.

Now, aν is obviously an element of M G and as a countable subset of

κ we know by Lemma 51 that aν was not added by the second forcing

step and so it is an element of M Ḡ .

But then we know that M aν M Ḡ and so we can conclude finally

Ux
W Θ ν M Ḡ Θ ν M aν κ.

Under these circumstances, Lemma 9 promised that the cardinality of

U is strictly smaller than τ . However, the cardinality of U is the same

as the one of SA which is cofinal in the regular cardinal τ . Therefore,

the cardinality of U is equal to τ .

This desired contradiction finishes the first case.



56 CHAPTER 5. AN INACCESSIBLE IMPLIES THE FAILURE

We now turn to the remaining case in our proof and try to deduce a

contradiction there as well.

Case 2. cfM A ω

We still can assume that the initial segment M A of the morass is an

element of the ground model M as in the very beginning of the first

case given by (3).

Now let κ̄ : cfM A ω and γν ν κ̄ M be an uncountable

and cofinal sequence in the linear order A. For ν SA define now as in

the first case

νi : the -smallest ν̄ such that ν̄ ν and γi αν̄ ,

and finally let aν : νi i κ̄ , now an uncountable subset of κ.

Consider, within the forcing extension M G , the definable set

X : aν ν SA .

Note, X is a subset of the ground model M . Moreover, the cardinality

of X is the same as the cardinality of SA, by Lemma 63, and this is τ

because of its regularity property and Lemma 53.

Because M A lies already in the ground model M and together with

γi i κ̄ M we can define initial segments of aν i within the

ground model. Hence, already aν i is an element of M for arbitrary

i κ̄ and so by Lemma 49 we also know that then the whole sequence

aν is an element of the ground model.

However, by definition, X is a subset of PM κ . Moreover, because of

the inaccessibility of τ and 2κ κ within the ground model M , by

Lemma 20 we finally conclude the following

τ X M κ M τ.

Hence, in both cases we were able to find a contradiction. This means

our Supposition 60 was false and the main part of the proof of the

Theorem 59 is already done.
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To finish up with the proof let us look at the following two lemmas:

Lemma 66. In M G , the theory T has γ , γ -models for all regular

γ κ.

Proof. Let us work in M G and consider the models Lγ , γ

for a regular cardinal γ κ. Then, by Lemma 16, this is a model of

ZFC and V L. And, moreover, γ is indeed the largest cardinal in

Lγ because of the preserving properties of the forcing by Corollary 46.

And together with Lemma 33, we finally have found a γ , γ -model

of the fixed theory T.

The same idea shows that Lτ α 1 , τ α is a τ α 1 , τ α -model of

T for arbitrary ordinals α. And so, because τ κ M G , all cases are

successfully discussed and therefore the lemma is proved.

(Lemma 66)

In our first main theorem, we just proved that there cannot be a κ , κ -

model. So, why does not work the model Lκ , κ ? — The answer is

easy when we remember that we collapsed τ to κ , and so, τ κ M G

–being inaccessible in the constructible universe– is not the cardinal

successor of κ in L. Hence, in Lκ
M G Lκ M G , the cardinal κ is

not the largest one.

The last missing property in the statement of the main theorem we

still have to show, uses the choice of τ being the minimal inaccessible

cardinal above κ within M L B for a suitable subset B. In fact,

analyzing our construction more deeply, we see that independent from

the assumption (3), we did indeed start from the constructible universe

— just using (2) and (3) to arguing in a more convenient way.

In this case, the cardinal τ is the least inaccessible above κ even in the

constructible universe. However, we could be able to argue within a

general universe given by (2), just proving a similar statement for L B

as Lemma 30 gives us for the constructible universe L, cf. Lemma 31.
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So in any case, we know then that τ κ M G is not a Mahlo cardinal

within the constructible universe, having started the forcing construc-

tion from L. But then, using Lemma 30, we know that in M G we

have a τ -sequence, and so together with the equivalence of Lemma

84 and Theorem 81, respectively, we finally proved the following

Lemma 67. In M G , there is a special κ -Aronszajn tree.

Using the facts of Chapter 3 that Mitchell proved in [Mit72], we con-

clude that within the forcing extension M G we only somehow slightly

damaged GCH –depending on the choice of κ–, that is, we have 2α α

for all α κ. And even for the smallest infinite cardinal we have chosen

a somehow minimal failure, 2ℵ0 κ , again depending on the choice

of κ.

Finally, our first main theorem is completely proved. (Theorem 59)



CHAPTER 6

A weaker Theory for the Counterexample

As promised in former chapters we are now giving another proof of the

existence of the counterexample to the general Chang’s Transfer Prop-

erty, considering the question under what circumstances the following

assertion for arbitrary infinite cardinals γ and any uncountable regular

cardinal κ fails:
γ , γ κ , κ .

However, we now start from a weaker theory than we considered in

Chapter 5. In fact, this will not change the claim of the main theorem,

Theorem 59. Though, it might be interesting to know that the the-

ory which is needed to get the desired failure of the above mentioned

transfer property is indeed rather weak possible.

Moreover, we are even able to start from a ground model M that only

satisfies GCH. This is indeed a much weaker assumption than we have

used in Chapter 5, where we started (basically) from L. Therefore we

are going to prove the following

Theorem 68. Let M be a model of set theory, satisfying GCH such

that, in M , there is an inaccessible τ and κ τ is an uncountable

regular cardinal. Moreover, for Mitchell’s notion of forcing M let G

be an M-generic filter over M . Then for arbitrary uncountable regular

γ τ or γ ω we have

M G γ , γ κ , κ .

This theorem will give us a lot of possibilities to get nice independent

statements for the failure of Chang’s Transfer Property with respect

to large cardinals. Having a large cardinal, say a measurable one or

even a larger cardinal –just providing there is an inaccessible cardinal

59
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below to work with– starting from a suitable model satisfying GCH, we

then can apply the forcing of the last theorem and we are getting the

desired failure of the transfer property in a universe where we still have

the existence property of that large cardinal we have started from.

The reason for this is simply the fact that Mitchell’s notion of forcing

is in some sense a small one. That is, the forcing works very locally

and it will not affect any really much larger cardinal properties beyond

the considered inaccessible cardinal, as we already know.

Now, to start with the proof, fix a model M of ZFC GCH such that

τ is inaccessible and κ τ is uncountable and regular.

Already in Chapter 4, we defined a theory T which contains, e.g., the

axiom of constructibility. A model of this theory gives us very good

control about constructing structures like the coarse morass.

There are two (and even more) important consequences we used within

the fixed model of the theory T. At first, we had GCH and so we knew

about the behavior of powers of cardinals. And secondly, we strongly

used consequences of the very powerful condensation property of the

constructible universe.

We will now start from a relatively weak theory such that its models

satisfy the axiom V L C for a given C On. We will again have

a symbol for the largest cardinal, A, however, it might be that we

loose GCH. Instead of this we assert that there are only a few bounded

subsets of the interpretation of the symbol A.

However, the price for this freedom will be a more complex structure

theory during the proof. In fact, the levels of the morass, we are going

to use here, will blow up. Each of them, the former intervals Sα, will

now be a (wide-branching) tree. Therefore, we are going to argue with

two trees within the new morass structure.
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Moreover, because of the growing of the levels Sα, we now have to go

over to use the models LD
β themself as new indexes in the morass, not

only their ordinal heights β (or even the old indexes ν as above), cf.

Figure 2, p. 64.

Nevertheless, even now the main idea of the proof can be preserved.

To fix the set of axioms let us define the new (weak version of the)

theory T as follows:

T : ZFC V L C for C On 2 A A

A is the largest cardinal A regular.

Trying to re-prove the Theorem 59, in a newer version given by Theo-

rem 68, we will repeat the arguments we have stated in earlier chapters.

For, fix a model A of the new version T and let A be the largest car-

dinal. Let us work within this model A, doing all further constructions

and definitions.

Then, obviously, we have LA C HA, the set of all sets within A

that are hereditarily smaller than A. Furthermore, denote with LD
ν the

model Lν D , , D ν and define as earlier, in Chapter 4,

SA : ν ν is a limit of p.r.-closed ordinals, A ν,

LB
ν A is the largest cardinal .

However, this will not be the set where the tree is ranging on, as we

will see very soon.

Now, for every ν SA let βν be again the smallest p.r.-closed β such

that LB
β ν A. Moreover, define SA : LB

βν
ν SA . As we

can see now, we are going to use the whole models LB
βν

as index in the
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morass structure. However, we cannot use this definition to get the

missing levels Sα for α A. Note, we can obviously show now that

SA LB
β there is ν β such that ν is limit of p.r.-closed ordinals,

β is the smallest β such that LB
β ν A,

LB
ν A is the largest cardinal, and A ν .

With this in mind, we can define for all α A the sets Sα as follows

Sα : LD
β there is ν β such that ν is limit of p.r.-closed ordinals,

β is the smallest β such that LD
β ν α,

LD
ν α is the largest cardinal, α ν,

D β, LD
ν Hα LD

α .

Here, we have to use new predicates D because we will very often need

condensation arguments and so we might loose the originally given

predicate C.

Notice, that the models of SA are linearly ordered by inclusion. How-

ever, all other collections of models in Sα for α A are partially

ordered by a relation , defined as follows: For elements LD̄
β̄

and LD
β

of Sα where α A we set

LD̄
β̄ LD

β if and only if β̄ β and D̄ D β̄.

Then this relation obviously forms a tree on each level Sα. Moreover,

we have expanded the former intervals and now we are going to check

in the remaining part of this chapter that all of the earlier arguments

are going through.

As above, define S : α A Sα. Note, α A Sα is obviously a subset

of HA. Therefore, because of the assumption given by the theory T ,

namely 2 A A, the cardinality of this set is at most (and obviously

also at least) the cardinal A.
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Moreover, repeating the argument of Lemma 54, we can prove that for

stationary many α A we have a non-empty set Sα.

Then for s̄ : LD̄
β̄

and s : LD
β let s α be the α such that s Sα.

Furthermore, for s LD
β let s D be the D and s β be the β. And

finally, let s ν be the smallest ν given by the definition of the set Sα.

Note, that with this notation we conclude that for elements s̄ and s of

S we have s̄ s if and only if s̄ α s α , s̄ β s β and s̄ D

s D β̄ and so, the relation can be defined on the whole collection

of models S than only seperately for each level Sα, still forming a tree

and being linearly on SA. In fact, we have for elements s̄ and s of SA

obviously that s̄ s if and only if s̄ s if and only if s̄ β s β .

Now, imitating the old definition, for s̄ Sᾱ and s Sα where ᾱ α

define s̄ s if there is an elementary embedding π : s̄ s such that

crit π ᾱ and π ᾱ α. We call this map πs̄s.

And again, repeating the proof of Lemma 55 for structures s LD
β

than the old Lβν ’s we conclude that the maps πs̄s are unique for fixed

models s̄ and s. Moreover, the same proof as of Lemma 56 shows that

the relation forms a tree on S.

�
�
��

� �

�

�

Sα

s̄ s

sj

si

si sj s̄

Now, looking at the arguments used in the last

part of Lemma 57 –where we constructed a use-

ful elementary substructure X of a given tree

element– we conclude that an s SA is a limit

point in the tree relation and, moreover, if s̄ and

s are elements of Sα for α A and s̄ s, then

also s̄ is a limit point in the tree relation .

And so we can give the general version of the coarse morass, let us

simply call it A-quasi-morass , defined as follows
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Definition 69. Let the cardinal A, the sequence Sα α A , the

tree relations and with the sequence πν̄ν ν̄ ν of embeddings

be defined as above. Then we call the structure

M : B; A, Sα α A , , , πν̄ν ν̄ ν

the A-quasi-morass with the universe B.
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LD
β

LD̄
β̄

Sᾱ

Figure 2. The A-quasi-morass

Here, the universe B can be seen as collection of all models of the

shape LD
β where β is an ordinal and D a subset of β. Of course,

using a suitable way of coding we can arrange B again as collection of

ordinals. However, not to fog the idea, we will work with the models

instead of codes of ordinals.

In fact, withM A we mean the initial segment of the given morassM

defined by

M A : B A; A, Sα α A , A, A, πs̄s s̄ s, s α A .
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And again, B A is the collection of all models s B such that

s α A. Note, in case we have coded the models as ordinals, this

restriction could be seen simply as A itself—as in the earlier definition

on page 45. Moreover, A means the restriction of the relation to

models s such that s α A. The same holds for the relation A.

So, as in the beginning of Chapter 5, we can assume that we have again

a ground model M satisfying (2), cf. p.47, that is, M is a model of set

theory satisfying M “τ least inaccessible” V L B for a suitable

subset B κ and also, without loss of generality, we assume (3), cf.

p.50, that is that the initial segmentM A is indeed an element of the

ground model. Certainly, we again assume as in (4), cf. p. 50, that A

is a subset of κ.

Going on in the argumentation of the given proof for Theorem 59,

being within the first case where we have a countable cofinal sequence

γi i ω within the ground model M , we defined the important

sequences aν at page 51. For a fixed model s SA, we now give the

following definition of the desired sequence as as follows:

Let si be the unique tree element being the -smallest s̄ such that

s̄ s and γi s̄ α . This tree element on the -branch below s is

still well-defined. Then let as be the set of all si for arbitrary natural

numbers i.

Moreover, as in the Remark 62, we know that for each s SA, the

initial segment M s is uniquely definable from the parameters as and

M A. Here, we define in the obvious way

M s : B s; A, Sα α s α , s, s,

πs̄s s̄ s , s α s α .

And so, we again conclude for distinct s and s, both elements of SA,

that as as. Note, the tree within the initial segment M A does
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not have unique limit points. However, we do not have to care about

this fact because we only need this property for the models within SA.

Furthermore, we have for arbitrary α A and for each structure s Sα

that the collection Sα s : s̄ Sα s̄ s as the set of all elements

L
s D β̄

β̄
in Sα where β̄ s β , a subset of the model s, is even definable

within the structure s.

Moreover, another property of the old morass structure we do not loose

is the following: The cardinality of an -branch s̄ Sα s̄ s for

a fixed s Sα and, therefore, of an initial segment of the α-th level of

the morass structure, Sα s, is strictly less than A because there are

only less than the cardinal A many potentionally new ordinal heights

β̄ s β A for possible elements L
s D β̄

β̄
.

We now turn to the important tool we used in the proof of the main

theorem, defining for s SA the following set of sequences:

Θ s : as̄ s̄ SA, s̄ β s β .

Note, the elements s of the collection SA of models are always of the

shape LC
s β and so we have a canonical (linear) order given by the

ordinal height of these models.

We then can repeat the proof of Lemma 64 to get that for each s SA,

the sequence Θ s is uniformly definable from the parameters as, the

morass segment M A and the (in A) cofinal sequence γi i ω

within the model M as .

For, we use the similar property as we

had in the old proof, that is, that for

all s̄ t̄ where s̄ and t̄ are models of

Sᾱ, and moreover, t̄ t for a model t

of Sα and πt̄t s̄ s, then we have that

s t such that s Sα and also s̄ s

and πt̄t s̄ πs̄s.
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Sᾱ

Sα

s̄ t̄

s πt̄t s̄ t

πs̄s πt̄t s̄ πt̄t



CHAPTER 6. A WEAKER THEORY FOR THE COUNTEREXAMPLE 67

Now, consider an element si L
si D
si β of the collection as for s SA.

Using an appropriate bijection between HA and A we are able to code

given elements si of Ssi α , a subset of HA, as ordinals below A. Note,

here we use that by the choice of si we have si α A. Therefore,

using such a coding we can consider the set as as an element of A ω

and together with (4), cf. p. 50, as an element of κ ω.

But then, the collection Θ s is a subset of κ ω. Hence, as above in

Lemma 65, we conclude that in the model M as , the set Θ s has

cardinality at most κ.

We are now able to finish the proof with the desired contradiction as

above in the end of Chapter 5 as follows: Working within the forcing

extension M G , let W be again the inner model M Ḡ , where Ḡ is

P τ -generic as above.

Following the old idea of Chapter 5, we consider U : as s SA ,

being the union of all Θ s for s ranging about all elements of SA. Then

U, U still forms a linear order, where the order relation is defined

as: as̄ U as if s̄ β s β .

And again, considering as as a countable subset of κ using an appropri-

ate coding, we know by Lemma 51 that as is indeed already an element

of M Ḡ . Hence, as above, Ux
W κ.

After all, we use Lemma 9 again and conclude that the cardinality of

U is strictly smaller than τ . However, we here have U SA τ as

well, and so the desired contradiction for the first case.

In the second case, where the cofinality of A is uncountable, the con-

tradiction follows exactly as on page 56: We construct the sequence

as : si i κ̄ where κ̄ cfM A as above using an uncountable and

cofinal sequence in A and consider the set X : as s SA . We then

again conclude that X SA τ .
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On the other hand, again using Lemma 49 we know that each as is not

only a subset but also an element of the ground model. Having 2κ κ

within M , the cardinality of X is at most κ M which is strictly smaller

than τ , a contradiction.

Furthermore, because of the forcing properties that we have already

described in Chapter 3 and the fact that the ground model satisfies

GCH, we know that within the generic extension M G , the assertion

2γ γ for γ τ is preserved. Note, we also have 2ω 2κ τ and

κ τ . Hence, in M G we trivially have 2 γ γ for γ τ and so we

always have a γ , γ -model of T for γ τ , considering the structure

Lγ D , γ, , D

where D γ such that Lγ D Hγ. Compare this to the upcoming

Lemma 76.

Hence, all arguments of the old proof of Theorem 59 went through

and so we have found the desired counterexample even for the weaker

theory, defined on page 61, starting just from a model of GCH.

This finishes the survey through the proof. (Theorem 68)



CHAPTER 7

The Failure implies an Inaccessible

In this chapter we are finally going to prove the still remaining and

promised second main theorem that –as we will see– will follow easily

from known facts, stating the following:

Theorem 70. Suppose there is a model of set theory ZFC such that

γ , γ κ , κ

holds for a given pair of cardinals γ γ ω and an uncountable

regular cardinal κ. Then the following theory is consistent

ZFC “ τ τ is inaccessible ”.

For the remaining part of the chapter let γ γ ω be arbitrary (but

fixed) cardinals and, moreover, κ an uncountable and regular cardinal.

Because we will imitate a proof of Chang where he used model theoret-

ical facts, let us remind the reader to call an infinite structure A over a

fixed language κ-saturated for a cardinal κ if for arbitrary Y A such

that Y κ, a 1-type p over the structure A, y y Y is always real-

ized within the model A, y y Y . Here, with the structure A, y y Y

we mean the model A extended on parameters of Y . Finally, call A

saturated if A is A -saturated.

Roughly speaking, saturated models are large models where we cannot

have a 1-type, that is a consistent set of formulae with just one fixed

free variable, which is not a subset of an element type of a given suitable

element of the model. We leave out the details on this terminology and

strongly refer to standard introductional books on model theory like

[ChaKei90] or [Hod93].

Let us now consider the following and very useful statement.

69
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Theorem 71. If κ is a successor cardinal in L, then for arbitrary

cardinals γ γ ω the transfer property γ , γ κ , κ holds.

We are going to prove this statement along the idea of Chang, cf.

[Cha63], re-written in [Sac72, §23], in his proof of his theorem men-

tioned already in the introduction in Chapter 1:

Lemma 72 (Chang, [Cha63], [Sac72, Theorem 23.4]). If γ γ ω

and κ is a regular uncountable cardinal such that we have 2 κ κ,

then the transfer property γ , γ κ , κ holds.

The key idea is the following: Taking a γ , γ -model B within the lan-

guage L we need to find saturated structures A0 and A1 of cardinality

κ such that B A0 A1 and RA0 RA1 . Here, the predicate R is

a new technical relation that Chang used for the proof which is not

contained in the original language L.

In fact, Chang used the following statement:

Lemma 73 (Chang, [Sac72, Proposition 23.1]). Suppose for a given

model B we have that B RB ω. Let κ be a regular uncountable

cardinal such that 2 κ κ. Then there exist isomorphic saturated

structures A0 and A1 such that B A0 A1, RA0 RA1 and finally

A0 A1 RA1 κ.

Chang was using the property of a model A being R-saturated, that is

when every 1-type p of the following shape is already realized in A:

(a) p is a 1-type over the structure A, y y Y ,

(b) Y A such that Y A ,

(c) R x p.

The interesting part around this property is now the following: The

union of an elementary chain of R-saturated models is, in fact, again

R-saturated. This does not hold for arbitrary chains of (just) saturated

structures.
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Having this, Chang was able to construct an elementary chain of models

Aν ν κ such that for all ν 1, the structure Aν is again R-

saturated, Aν κ and RAν RA0 for all ν ν. Then, the model

C : αν ν κ bears the properties C κ and RC RA0 and

is therefore as desired.

Now, knowing that for the fixed uncountable and regular cardinal κ,

the successor κ is even a successor within the constructible universe

L, choose a suitable (L-)cardinal γ κ such that within the con-

structible universe we have γ κ V.

Obviously, in the universe V there is a collapsing map σ from γ onto κ.

Coding this map σ within an appropriate subset D κ, we can finally

arrange that the following holds:

L D κ κ V.(5)

If there were already a γ , γ -model of the theory T within the model

L D , then we could just apply Chang’s Theorem within this set the-

oretical universe and the argumentation would be easier.

In any case, fix a γ , γ -model B of the theory T within the universe

V. Following Chang’s idea, we can consider an appropriate extension

S of the complete theory of the structure B, that Chang suggested in

his proof, cf. [Sac72, Proof of Proposition 23.1]. In V, the structure B

will witness the consistency of this theory S.

However, even within the model L D , this theory is consistent because

otherwise we could find a (finite) proof sequence witnessing the incon-

sistency which would be absolute between L D and V. To see this,

we could assume by the theorem of Morley and Vaught, mentioned in

the introductional Chapter 1, that γ ℵ1 and γ ℵ0. Therefore,

we can extend the predicate D, without loss of generality, such that

D codes all (ℵ1-many) finite sequences of formulae with parameters of

the ℵ1,ℵ0 -model B, providing enough set theory within L D to be

able to speak about proof sequences. Note, because κ ℵ1 this is still

possible such that D κ.
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And so we can apply Chang’s proof idea within L D . All he was

further needing is 2 κ κ which we already have, given by Lemma 22

for the fixed uncountable and regular cardinal κ.

Therefore, having followed the proof idea of Chang, we finally have

a κ L D , κ -model C within L D . However, C is still a model of T

within V. Moreover, it is even a κ , κ -model in V because of the

absoluteness of (κ and) κ , giving by (5).

Hence, the proof is finally done. (Lemma 71)

Clearly, if κ is not a successor cardinal in L, then is must be inac-

cessible because of having GCH and the fact, that regularity reflects

downwards and so we can conclude the following

Corollary 74. If for a regular and uncountable cardinal κ and a given

pair of infinite cardinals γ γ we have the failed transfer property

γ , γ κ , κ , then κ is inaccessible within L.

And finally the second main statement, Theorem 70, is completely

proved as well. (Theorem 70).



CHAPTER 8

Further Remarks

Summarizing, we can put both theorems, Theorem 59 and Theorem

70, together and finally we get –as promised earlier– the following

Theorem 75. The theory

ZFC “ τ τ is inaccessible ”

is equi-consistent to the theory

ZFC “ ℵ1,ℵ0 ℵ2,ℵ1 ”.

To apply Theorem 59, we had to make sure that for the chosen κ there

is an inaccessible cardinal above it. Merging both theorems in a nice

equi-consistent statement, we have chosen κ minimal, taken κ : ℵ1.

However, there are obviously more possible choices of κ ensuring that

it always lies below an inaccessible cardinal.

Furthermore, the theory T that we used to find the counterexample

in the past chapters to prove the Theorem 68 (or even Theorem 59), is

–in fact– even more interesting as the following remarks will show.

Remember, we defined in Chapter 6 the theory as follows:

T ZFC V L C for C On 2 A A

A is the largest cardinal A regular.

First of all, note, that in case that we consider a cardinal κ such that

2 κ κ, we always find a canonical κ , κ -model, just considering

73
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Lκ D , κ, , D where D κ such that Lκ D Hκ. Therefore we

have the following

Lemma 76. If 2 κ κ, then the theory T has a κ , κ -model.

On the other hand, if there is an inaccessible cardinal τ , then we are

able to find –using Mitchell’s idea– a forcing extension such that the

continuum has cardinality κ , which will be τ , and so the equality

2 κ κ fails badly. Furthermore, in this forcing extension, T does not

have a κ , κ -model. This fact we have described in earlier chapters,

proving Theorem 59 and Theorem 68. And so, we have finally shown

the following

Theorem 77. Assuming GCH, let τ be inaccessible. Moreover, con-

sider a regular and uncountable κ τ . Then there is a forcing exten-

sion such that within this model of set theory we have 2ω 2κ κ τ

and the theory T does not have a κ , κ -model. However, the theory

T has γ , γ -models for all regular cardinals γ κ or γ ω.

Now use the fact –mentioned among the fundamental material given

in Chapter 2– that if κ is not Mahlo in L, then there is a special

κ -Aronszajn tree. Therefore, choosing κ in the first and τ in the

second statement above appropriate, we can arrange the conclusions

of both lemmas above either in the presence or absence of a special

κ -Aronszajn tree.

Furthermore, analyzing the forcing M –that Mitchell was providing in

[Mit72]– more precisely, we can prove the following fact, changing the

focus to other (small) cardinals than just ω. In fact, we are trying to

determine the powerset of another small cardinal than ω as follows.

For, let κ and τ be as usual (i.e., as above in Chapter 3). Moreover,

let θ κ be any infinite regular cardinal. Then define P θ, τ as the

set p : x p x2 x θ x τ , ordered by the usual reverse
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inclusion. Further, we define the set of acceptable functions as we did

on page 33, changing the third condition (c) to the condition

(c’) for all γ τ we have f γ Bγ θ.

All other definitions remain the same as in the Chapter 3, getting the

second forcing Q θ, κ, τ . Finally we define analogously

M θ : M θ, κ, τ : P θ, τ Q θ, κ, τ .

Then obviously, we have M M ω .

Now, following Mitchell’s proven statements, namely [Mit72, Corollar

3.5], we finally obtain in a generic extension of a given ground model

using the new partial order M θ the equation

2θ τ.

Even more important, we need the following general version of Lemma

49, namely [Mit72, Lemma 3.8] now for M θ , saying the following:

Lemma 78 ([Mit72, Lemma 3.8]). Suppose that cfM γ θ and let

t : γ M be such that t M G and t α M Gν for every α ν.

Then t M Gν .

With this in mind, we have the following corollaries of the main theo-

rems. Compare the first one to Theorem 59.

Theorem 79. Suppose there is a model of ZFC with an inaccessible

cardinal τ . Moreover, let θ κ be two regular cardinals below τ . Then

there is a forcing extension of L that is a model of the following:

ZFC 2θ κ “ there is a special κ -Aronszajn tree”

“ 2α α for all infinite cardinals α θ or α κ”

“ γ , γ κ , κ for all regular cardinals γ κ”.

The proof is very similar and almost literally the same as in the case

of θ ω. Analyzing the two cases within the old proof, on page 51

and 56, we see that the argument of the first case, Case 1, gives us
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–even now– a contradiction as long as we have that cfM A κ : This

property was important for the argument when we applied the fact

that 2 κ κ to get finally κ θ κ .

However, in the second case, Case 2, we were able to deduce a contra-

diction whenever cfM A θ, just using an argument with the former

version of Lemma 78 and the fact that we can easily generalize the

Lemma 51 to the powerset of θ. In fact, the proof of the last is again

literally the same, because we only used the fact that the set of ac-

ceptable functions is closed under unions of increasing chains of such

functions.

Note, here we use the fact that θ is strictly less than the regular κ

and that P θ, τ preserves GCH below θ. Furthermore, Q θ, κ, τ does

not change powersets of cardinals below θ. Hence, within the forcing

extension we have indeed 2α α for all infinite cardinal α θ.

In any case, we are getting a contradiction again and so the argument

of the old proof goes through again. Hence, Theorem 79 is proved.

Furthermore, we also get the following statement. Compare this to

Theorem 68 and Theorem 77.

Theorem 80. Assuming GCH, let τ be inaccessible. Moreover, con-

sider two more regular and uncountable cardinals θ κ below τ . Then

there is a forcing extension such that within this model of set theory

we have 2θ 2κ κ τ and the theory T does not have a κ , κ -

model. However, the theory T has γ , γ -models for all regular car-

dinals γ θ or γ κ. In particular, we have for all regular cardinals

γ θ or γ κ the following failure:

γ , γ κ , κ .

Again, the proof is literally the same, because the old one was based

on the former version of the theorem that we just proved. This is still

possible even in the new situation, using the above considerations.
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Note here again, because P θ, τ is the standard way of adding τ -many

subsets of θ, we know that GCH is preserved below θ. And as we

just above mentioned, the second forcing Q θ, κ, τ does not change

powersets of cardinals below θ. This means, in fact, within the forcing

extension we still have the equation 2 γ γ for arbitrary γ θ and

so there are indeed as desired γ , γ -models of T for all γ θ.

This finishes our survey on properties of the theory T which is obvi-

ously independent from the existence of a special Aronszajn tree but

strong enough to get the desired properties for the transfer property we

have discussed in earlier chapters, proving the main statements: The-

orem 59 and Theorem 70, or even the general versions of the first one

with Theorem 79 and Theorem 80.





APPENDIX

Weak Square and special Aronszajn Trees

Introduction

In this chapter we will give a proof of a useful statement, Jensen has

originally proved although he has never published it. In fact, he men-

tioned the equivalence we are going to prove now in his well-known

paper [Jen72]. In Chapter 5 we were using this theorem to prove the

main Theorem 59. The statement says the following

Theorem 81 (Jensen). There is a special κ -Aronszajn tree if and

only if κ holds.

To fix notation, given a tree T, T , let Tα be the set of all elements

of T with tree level α. Call T α the (sub-)tree of all elements of T

with a tree height strictly less than α. Moreover, denote with rkT x

the tree level of an element x of the tree T .

We already defined in Chapter 2 what we mean with the combinator-

ical principle weak square, κ, and with a special κ -Aronszajn tree.

However, because we will extend the definitions, let us repeat the fol-

lowing

Definition 82 (Aronszajn Tree). We call T, T a κ-Aronszajn tree

if the following hold:

T is a tree of height κ,

for α κ, all levels Tα have cardinality strictly less than κ,

all branches in T have cardinality strictly less than κ,

T is normal, that is

– T has exactly one root,

– for each x Tγ and all level γ γ there is y Tγ

such that x T y,

79
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– every element of T has at least two distinct successors

in the next tree level,

– above each branch in T λ there is exactly one element

at limit height λ in T .

The property of being a normal tree is sometimes useful. However, the

existence of a tree yielding just the first three conditions is equivalent

to the existence of a tree given by the definition above.

We are interested in special Aronszajn trees given by the following

Definition 83. A κ -Aronszajn tree is called special, if there is a func-

tion σ : T κ such that for all tree elements x and y we have: if

x T y, then σ x σ y .

Trivially, a κ-Aronszajn tree has cardinality κ. And a κ -Aronszajn

tree is special if and only if it is union of κ-many antichains: on the one

hand take Aα : σ 1 α and on the other hand let σ x be defined as

the smallest α κ such that x Aα for T α κ Aα.

Moreover, special κ -Aronszajn trees have antichains of cardinality κ .

In particular, such trees are not Souslin trees.

ℵ1-Aronszajn Trees

Constructing an ℵ1-Aronszajn tree is an easy exercise. To make clear

where the problems occur when we try to construct Aronszajn trees

for larger cardinals, we will remind the reader of the proof idea in case

of the first uncountable cardinal.

By induction on countable ordinals we construct the tree levels Tα

we are looking for such that its elements will be strictly monotone

functions f : α Q.

Here, with Q we denote the well-known linear order of the rational

numbers. Moreover, we will have a function sup : Tα Q such that

sup f : sup rng f and whenever x T y, then sup x Q sup y .
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The induction is very easy. To start with, we take T0 : ∅ and

sup ∅ : 0. For the successor step set

Tβ 1 : f q f Tβ, sup f q, q Q ,

and sup f q : f q β q where f q : f q, β for f Tβ.

Now, in case where α is a countable limit ordinal and for f T α

and q Q such that sup f q, we are going to define an extended

function g : α Q such that f g and sup g q as follows:

Let f Tβ for a β α. Choose an unbounded C α above β of length

ω. Then C is trivially a club subset of α. Moreover, choose qi i ω

such that qi qj for i j ω, q0 : sup f and qω q. Both can be

done easily.

Now, along the (club) set C ci i ω starting from f let us look

at a branch of the so far defined tree given by tree elements on levels

indexed by elements of C: For each ci C choose an fi Tci
such that

sup fi qi. By the successor step, this is trivially possible because

there are no limit stages within the enumeration of C. Then let gf,q be

such that fi gf,q, dom gf,q α and sup gf,q q. Finally define

Tα : gf,q f T α, sup f q, q Q .

It is an easy exercise to show that T : α ℵ1
Tα is an ℵ1-Aronszajn

tree. In fact, it is even a special one, considering the map σ : T ℵ0

defined by σ : f sup where f is an arbitrary but fixed bijection

between Q and ℵ0.

The combinatorical Principle κ

Combinatorical Principles, as small fragments of the constructible uni-

verse extracted in a useful assertion, have applications in many areas

of mathematics.
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We will in fact look at sequences with relatively weak properties of co-

herency. To start with, let us consider the next lemma speaking about

equivalent statements, each asserting suitable weak square-sequences.

Lemma 84. For an infinite cardinal and arbitrary closed and un-

bounded subsets Γ and Γ of limit ordinals below κ , the following state-

ments are equivalent:

(a) There is a sequence Cα α κ Lim such that

(i) α κ Lim Cα α club ,

(ii) β κ Lim Cα β : α β κ ,

(iii) α κ Lim otp Cα κ .

(b) There is a sequence Cα α κ Lim such that

(i) α κ Lim Cα P α , Cα κ ,

(ii) C Cα C is closed in α ,

(iii) C Cα C is unbounded in α ,

(iv) α, β Lim C Cβ α β κ α C Cα ,

(v) C Cα otp C κ .

(c) There is a sequence Cα α Γ such that

(i) α Γ Cα α club ,

(ii) β Γ Cα β : α β κ ,

(iii) α Γ otp Cα κ .

(d) There is a sequence Cα α Γ such that

(i) α Γ Cα P α , Cα κ ,

(ii) C Cα C is closed in α ,

(iii) C Cα C is unbounded in α ,

(iv) α, β Γ C Cβ α β κ α C Cα ,

(v) C Cα otp C κ .

Proof. Considering Cα : Cβ α β α , we can conclude the

implication from (a) to (b). Similarly, we show that (c) implies (d).

The other implication, to get (a) from (b) and (c) from (d), respectively,

we simply choose as the desired Cα a closed and unbounded subset of

the given Cα.
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Take the restriction to Γ of the sequence given by (a) and we get a

sequence asserted by (c).

Now, let Cα α Γ be a sequence in the sense of (c). Let γβ β κ

be a monotone enumeration of Γ. Define Γ : κ Lim Γ. If Γ

is empty, we would be done. Otherwise choose for α Γ a set Cα as

follows:

Let β κ be such that γβ α γβ 1. Then choose Cα as a closed

and unbounded subset of α such that min Cα γβ and otp Cα κ.

This can be done easily. For α Γ just take Cα : Cα and we have

constructed a sequence in the sense of (a).

Finally, the lemma is proved. (Lemma 84)

In [Jen72], Jensen called the equivalent assertions of the last lemma

weak square, κ. The described sequence is called (in any of the four

cases) a κ-sequence.

As we already have seen in Chapter 2, the following hold:

(a) If κ κ κ, then κ.

(b) If κ, then κ.

A special κ -Aronszajn Tree implies κ

Let T, T be a special κ -Aronszajn tree and σ : T κ such that

whenever x T y, then σ x σ y . We can assume, without loss of

generality, that T is just κ .

We are going to construct a weak square sequence Cα α Γ in

a sense of (c). For, consider the function f : κ κ , defined by

f α : max Tα, rkT α . Then, using Lemma 8, we know that the

set Δ : α κ f α α is a club subset of κ .

Now, take an element α of Δ. Then we have α T α, because, for

the first inclusion, let β α and γ be the tree rank of β. Then β Tγ

and so γ f β f α α. Hence, β Tγ T α.
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For the second inclusion let β be in Tγ for its tree level γ α. Then

we conclude β f γ f α α.

Therefore, setting Γ : α κ : T α α , we know that the club

set Δ is a subset of Γ and because it is obviously closed, Γ is a closed

and unbounded subset of κ as well.

Now, let Γ be the set of all limit points of Γ . Then by Lemma 8, this

set Γ is still a closed and unbounded subset of κ .

Furthermore, choose for each α Γ an element xα with tree level α and

define branches bα : z T z T xα below each chosen xα. Then

we can conclude that

bα α is an unbounded subset.(6)

This is easy to check: Obviously, bα T α α. So, let β α. We

will show that bα β. Because of α Γ we have an α such that

β α α and α Γ . Therefore, there is a y Tα bα and so

bα T α α .

We now can fix an arbitrary α κ and define Cα as a cofinal subset

in bα of order type at most κ by choosing increasing elements t
α

β of the

branch bα minimal with respect to the given function σ by induction

as follows:

Let t
α

0 bα be such that σ t
α

0 min σ bα and let t
α

β bα be

such that σ t
α

β min σ z γ β t
α

γ T z T xα . This is

well-defined because of the one-to-one property of σ on the branch bα.

We go on with the construction till it breaks down. Let γα be minimal

such that tγα does not exist. Then γα is a limit ordinal because other-

wise, the set z t
α

β T z T xα would be non-empty for γα β 1

and so the definition would not break.

Moreover, the set Cα : t
α

β β γα is cofinal in bα. Otherwise we

would have that the set z β γ tβ T z T xα is non-empty
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and so tγα would be defined again. Therefore, we also have by (6) that

Cα is cofinal in α.(7)

Trivially, by definition, the sequence σ t
α

β β γα is strictly mono-

tone in κ. And so, we conclude that the order type of Cα is at most κ

and hence γα κ.

Finally, let Cα be the closure of Cα by taking all limit points below α

such that Cα is a closed and unbounded subset of α of order type at

most κ.

The important property of a (weak) square sequence is its coherency

we still have to prove with the next

Lemma 85. For all α κ we have Cα β : α β κ.

Proof. Define for every x Tξ where ξ is a limit ordinal, the

branch bx : z z T x and the sequence t x : t
x

β β γx as we

did for the xα’s above as follows:

Let t
x

0 be such that σ t
x

0 min σ bx and again t
x

β bx satifying

σ t
x

β min σ z γ β t x
γ T z T x .(8)

Then for each limit ordinal α κ we have t α t xα , and moreover,

as above, that t x is cofinal in bx. Further, t x is strictly monotone

with respect to the tree relation T and the order type of t x is γx κ.

Consider now the sequence t y bx for

a fixed tree element y at limit height

and let z : supT t y bx. Then we

obviously have

t y bx t z(9)

by the definition given in (8) using the

map σ that is one-to-one on a fixed

branch.
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Therefore, for each limit ordinal β κ we then have that the inter-

esting set t α β α β is a subset of all small branches of the set

t z z T β 1 . However, the cardinality of the initial segment

T β 1 of the tree is at most κ. And hence, the cardinality of the

set Cα β : α β is at most κ for all β κ and so the lemma is

proved. (Lemma 85)

Therefore, with the sequence Cα α Γ we finally have found the

desired κ-sequence.

Construction of the partial Order

We now try to imitate the desired behavior of the structure of the

rational numbers with a new partial order of cardinality κ. Therefore

let us prove the following

Lemma 86. There is a partial order P, P and a subset S of the set

of all sequences with elements of P such that:

(a) P is partial order, 1P S, S P κ,

(b) 0,1 P such that for every p P we have 0 P p P 1,

(c) for all p, q P there is an element q P such that whenever

p P q, then p P q P q,

(d) for every s S there is a limit ordinal α κ 1 or α 0 such

that dom s α 1 and s is strictly monotone with respect

to the relation P,

(e) for every s S and for all limit ordinals α dom s we have

s α 1 S,

(f) for every limit ordinal α κ 1 and all p, q P, p q, there

is an s S such that dom s α 1, s 0 p and s α q.

Proof. Consider an elementary submodel H of Hκ of cardinality

κ such that κ H. Then H is transitive because for each element x of

H there is a surjection from κ onto x within the elementary submodel

H of Hκ and therefore, with the domain also the whole range x is a

subset of H.
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Let P : X κ X κ X H κ X κ and define the

following relation on P as follows

X Y : X Y κ Y X κ.

We still have to work to define the set of sequences S. Therefore, let

Θ be a function such that for all α such that 0 α κ and X, Y κ

where X Y we have Θ α, X, Y : Zγ γ α H such that

Z0 X, Zα Y ;

for every γ γ α we have Zγ Zγ ;

for every limit ordinal λ α 1 we have Zλ γ λ Zγ.

For, let α and X, Y be given and fix a bijection f : α κ Y X

in H. Let Zγ be X f γ κ for γ α. Then Z0 and Zα have the

desired properties and because of f λ κ γ κ f γ κ we have

the property for Zλ where λ is a limit ordinal. Moreover, the missing

property is given by the following

Zγ Zγ f γ κ f γ κ γ γ κ κ.

Finally, let

S : Θ γ, p, q γ 1 limit ordinals γ γ κ;

or γ 0; p, q P; p q .

Moreover, for given p and q, elements of P, such that p P q we have

for q : Θ 2, p, q 1 that p P q P q.

Then the partial order P, and the set S have the desired properties

and so the lemma is proved. (Lemma 86)

κ implies a special κ -Aronszajn Tree

Having the partial order P, P we constructed in the last section,

we will now build up a κ -Aronszajn tree using a suitable coherent

sequence. For, let Cα α κ Lim be a κ-sequence in the sense

of (b) of the defining Lemma 84.
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By induction on α κ , we are going to define the following objects

(a) the tree levels Tα consisting of suitable strictly monotone func-

tions f : α P,

(b) a function sup : Tα P such that the following hold:

sup ∅ 0,

if α is a limit ordinal, then sup f is a supremum of the

range of f in the partial order P,

if α β 1, then sup f is just f β ,

(c) a partial function Exα : Tα P Tα such that Exα f, q is

defined if and only if sup f q, and Exα f, q g where

f g, sup g q and dom g α,

We simply can start the induction, letting T0 : ∅ . Even in the

successor step α β 1 we will extend the so far defined tree T α

maximally possible in the following sense:

Tα : f q f Tβ, sup f q, q P ;

sup f q : f q β q;

Exβ 1 f, q :
f q : if f Tβ, sup f q;

Exβ f, qf,q q : if f T β, sup f q.

Here, we let qf,q arbitrary be chosen such that sup f q q. The

existence of such a qf,q follows from the properties of P.

And finally, for limit ordinals λ κ , let a club set C Cλ, a tree

element f Tβ where β λ, and a q P where sup f q 1P be

given. Furthermore, define X : β C β λ . Then let δ be

the order type of X and t : δ X be the monotone enumeration of

X. Last but not least, choose an s S be such that s 0 sup f ,

s δ 1 q and dom s δ.

Define then a branch through the segment T λ of the tree as follows:

set f0 : f , fγ 1 : Ext γ 1 fγ, s γ 1 , and fλ : γ λ fγ. Here

we use the coherency of the κ-sequence that C t λ is an element

of Ct λ , and moreover, that s λ 1 is an element of S. Hence, we

indeed used fλ for the definition of the tree level Tλ .
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Further, let g f, q, C, s be fδ 1. Note, t δ 1 λ. Then define

Tλ : g f, q, C, s f T λ, sup f q P, C Cλ,

δ defined as above,

s S, s 0 sup f , s δ 1 q

And finally, Exλ f, q : g f, q, C, s for arbitrary choosen C Cλ and

s S such that s 0 sup f and s δ 1 q where δ is defined as

above.

The exact choice of the club set C and the sequence s is not necessary

to determine. What we need here is that we extend f to the level λ and

the supremum q. Which way we exactly choose through the already

defined tree T λ is not important because of the coherency of the

κ-sequence and S.

Last but not least, let supλ g f, q, C, s : q and the tree relation is

then given by

f T g if and only if g dom f f and f g.

Then the set T defined as the union of the defined levels Tα for α κ

is obviously a κ -Aronszajn tree. Moreover, the function sup : T P

yields the property that for f T g we have sup f P sup g . That

means, together with a fixed bijection between P and κ we easily can

find a map witnessing that T is even special.

Finally, the theorem is completely proved. (Theorem 81)
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