
CHAPTER 6

A weaker Theory for the Counterexample

As promised in former chapters we are now giving another proof of the

existence of the counterexample to the general Chang’s Transfer Prop-

erty, considering the question under what circumstances the following

assertion for arbitrary infinite cardinals γ and any uncountable regular

cardinal κ fails:
γ , γ κ , κ .

However, we now start from a weaker theory than we considered in

Chapter 5. In fact, this will not change the claim of the main theorem,

Theorem 59. Though, it might be interesting to know that the the-

ory which is needed to get the desired failure of the above mentioned

transfer property is indeed rather weak possible.

Moreover, we are even able to start from a ground model M that only

satisfies GCH. This is indeed a much weaker assumption than we have

used in Chapter 5, where we started (basically) from L. Therefore we

are going to prove the following

Theorem 68. Let M be a model of set theory, satisfying GCH such

that, in M , there is an inaccessible τ and κ τ is an uncountable

regular cardinal. Moreover, for Mitchell’s notion of forcing M let G

be an M-generic filter over M . Then for arbitrary uncountable regular

γ τ or γ ω we have

M G γ , γ κ , κ .

This theorem will give us a lot of possibilities to get nice independent

statements for the failure of Chang’s Transfer Property with respect

to large cardinals. Having a large cardinal, say a measurable one or

even a larger cardinal –just providing there is an inaccessible cardinal
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below to work with– starting from a suitable model satisfying GCH, we

then can apply the forcing of the last theorem and we are getting the

desired failure of the transfer property in a universe where we still have

the existence property of that large cardinal we have started from.

The reason for this is simply the fact that Mitchell’s notion of forcing

is in some sense a small one. That is, the forcing works very locally

and it will not affect any really much larger cardinal properties beyond

the considered inaccessible cardinal, as we already know.

Now, to start with the proof, fix a model M of ZFC GCH such that

τ is inaccessible and κ τ is uncountable and regular.

Already in Chapter 4, we defined a theory T which contains, e.g., the

axiom of constructibility. A model of this theory gives us very good

control about constructing structures like the coarse morass.

There are two (and even more) important consequences we used within

the fixed model of the theory T. At first, we had GCH and so we knew

about the behavior of powers of cardinals. And secondly, we strongly

used consequences of the very powerful condensation property of the

constructible universe.

We will now start from a relatively weak theory such that its models

satisfy the axiom V L C for a given C On. We will again have

a symbol for the largest cardinal, A, however, it might be that we

loose GCH. Instead of this we assert that there are only a few bounded

subsets of the interpretation of the symbol A.

However, the price for this freedom will be a more complex structure

theory during the proof. In fact, the levels of the morass, we are going

to use here, will blow up. Each of them, the former intervals Sα, will

now be a (wide-branching) tree. Therefore, we are going to argue with

two trees within the new morass structure.
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Moreover, because of the growing of the levels Sα, we now have to go

over to use the models LD
β themself as new indexes in the morass, not

only their ordinal heights β (or even the old indexes ν as above), cf.

Figure 2, p. 64.

Nevertheless, even now the main idea of the proof can be preserved.

To fix the set of axioms let us define the new (weak version of the)

theory T as follows:

T : ZFC V L C for C On 2 A A

A is the largest cardinal A regular.

Trying to re-prove the Theorem 59, in a newer version given by Theo-

rem 68, we will repeat the arguments we have stated in earlier chapters.

For, fix a model A of the new version T and let A be the largest car-

dinal. Let us work within this model A, doing all further constructions

and definitions.

Then, obviously, we have LA C HA, the set of all sets within A

that are hereditarily smaller than A. Furthermore, denote with LD
ν the

model Lν D , , D ν and define as earlier, in Chapter 4,

SA : ν ν is a limit of p.r.-closed ordinals, A ν,

LB
ν A is the largest cardinal .

However, this will not be the set where the tree is ranging on, as we

will see very soon.

Now, for every ν SA let βν be again the smallest p.r.-closed β such

that LB
β ν A. Moreover, define SA : LB

βν
ν SA . As we

can see now, we are going to use the whole models LB
βν

as index in the
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morass structure. However, we cannot use this definition to get the

missing levels Sα for α A. Note, we can obviously show now that

SA LB
β there is ν β such that ν is limit of p.r.-closed ordinals,

β is the smallest β such that LB
β ν A,

LB
ν A is the largest cardinal, and A ν .

With this in mind, we can define for all α A the sets Sα as follows

Sα : LD
β there is ν β such that ν is limit of p.r.-closed ordinals,

β is the smallest β such that LD
β ν α,

LD
ν α is the largest cardinal, α ν,

D β, LD
ν Hα LD

α .

Here, we have to use new predicates D because we will very often need

condensation arguments and so we might loose the originally given

predicate C.

Notice, that the models of SA are linearly ordered by inclusion. How-

ever, all other collections of models in Sα for α A are partially

ordered by a relation , defined as follows: For elements LD̄
β̄

and LD
β

of Sα where α A we set

LD̄
β̄ LD

β if and only if β̄ β and D̄ D β̄.

Then this relation obviously forms a tree on each level Sα. Moreover,

we have expanded the former intervals and now we are going to check

in the remaining part of this chapter that all of the earlier arguments

are going through.

As above, define S : α A Sα. Note, α A Sα is obviously a subset

of HA. Therefore, because of the assumption given by the theory T ,

namely 2 A A, the cardinality of this set is at most (and obviously

also at least) the cardinal A.
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Moreover, repeating the argument of Lemma 54, we can prove that for

stationary many α A we have a non-empty set Sα.

Then for s̄ : LD̄
β̄

and s : LD
β let s α be the α such that s Sα.

Furthermore, for s LD
β let s D be the D and s β be the β. And

finally, let s ν be the smallest ν given by the definition of the set Sα.

Note, that with this notation we conclude that for elements s̄ and s of

S we have s̄ s if and only if s̄ α s α , s̄ β s β and s̄ D

s D β̄ and so, the relation can be defined on the whole collection

of models S than only seperately for each level Sα, still forming a tree

and being linearly on SA. In fact, we have for elements s̄ and s of SA

obviously that s̄ s if and only if s̄ s if and only if s̄ β s β .

Now, imitating the old definition, for s̄ Sᾱ and s Sα where ᾱ α

define s̄ s if there is an elementary embedding π : s̄ s such that

crit π ᾱ and π ᾱ α. We call this map πs̄s.

And again, repeating the proof of Lemma 55 for structures s LD
β

than the old Lβν ’s we conclude that the maps πs̄s are unique for fixed

models s̄ and s. Moreover, the same proof as of Lemma 56 shows that

the relation forms a tree on S.
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Now, looking at the arguments used in the last

part of Lemma 57 –where we constructed a use-

ful elementary substructure X of a given tree

element– we conclude that an s SA is a limit

point in the tree relation and, moreover, if s̄ and

s are elements of Sα for α A and s̄ s, then

also s̄ is a limit point in the tree relation .

And so we can give the general version of the coarse morass, let us

simply call it A-quasi-morass , defined as follows
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Definition 69. Let the cardinal A, the sequence Sα α A , the

tree relations and with the sequence πν̄ν ν̄ ν of embeddings

be defined as above. Then we call the structure

M : B; A, Sα α A , , , πν̄ν ν̄ ν

the A-quasi-morass with the universe B.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��

��
��

��

��

��
��

��

� � �� � �

�

�

�

�

��
��

��
��

��

��

��

��

��
��

� � �

� � �� � �

�

�

�

�

�

�

�� � �

�
�
�
�
�
�
�
�
��

ᾱ
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Figure 2. The A-quasi-morass

Here, the universe B can be seen as collection of all models of the

shape LD
β where β is an ordinal and D a subset of β. Of course,

using a suitable way of coding we can arrange B again as collection of

ordinals. However, not to fog the idea, we will work with the models

instead of codes of ordinals.

In fact, withM A we mean the initial segment of the given morassM

defined by

M A : B A; A, Sα α A , A, A, πs̄s s̄ s, s α A .
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And again, B A is the collection of all models s B such that

s α A. Note, in case we have coded the models as ordinals, this

restriction could be seen simply as A itself—as in the earlier definition

on page 45. Moreover, A means the restriction of the relation to

models s such that s α A. The same holds for the relation A.

So, as in the beginning of Chapter 5, we can assume that we have again

a ground model M satisfying (2), cf. p.47, that is, M is a model of set

theory satisfying M “τ least inaccessible” V L B for a suitable

subset B κ and also, without loss of generality, we assume (3), cf.

p.50, that is that the initial segmentM A is indeed an element of the

ground model. Certainly, we again assume as in (4), cf. p. 50, that A

is a subset of κ.

Going on in the argumentation of the given proof for Theorem 59,

being within the first case where we have a countable cofinal sequence

γi i ω within the ground model M , we defined the important

sequences aν at page 51. For a fixed model s SA, we now give the

following definition of the desired sequence as as follows:

Let si be the unique tree element being the -smallest s̄ such that

s̄ s and γi s̄ α . This tree element on the -branch below s is

still well-defined. Then let as be the set of all si for arbitrary natural

numbers i.

Moreover, as in the Remark 62, we know that for each s SA, the

initial segment M s is uniquely definable from the parameters as and

M A. Here, we define in the obvious way

M s : B s; A, Sα α s α , s, s,

πs̄s s̄ s , s α s α .

And so, we again conclude for distinct s and s, both elements of SA,

that as as. Note, the tree within the initial segment M A does
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not have unique limit points. However, we do not have to care about

this fact because we only need this property for the models within SA.

Furthermore, we have for arbitrary α A and for each structure s Sα

that the collection Sα s : s̄ Sα s̄ s as the set of all elements

L
s D β̄

β̄
in Sα where β̄ s β , a subset of the model s, is even definable

within the structure s.

Moreover, another property of the old morass structure we do not loose

is the following: The cardinality of an -branch s̄ Sα s̄ s for

a fixed s Sα and, therefore, of an initial segment of the α-th level of

the morass structure, Sα s, is strictly less than A because there are

only less than the cardinal A many potentionally new ordinal heights

β̄ s β A for possible elements L
s D β̄

β̄
.

We now turn to the important tool we used in the proof of the main

theorem, defining for s SA the following set of sequences:

Θ s : as̄ s̄ SA, s̄ β s β .

Note, the elements s of the collection SA of models are always of the

shape LC
s β and so we have a canonical (linear) order given by the

ordinal height of these models.

We then can repeat the proof of Lemma 64 to get that for each s SA,

the sequence Θ s is uniformly definable from the parameters as, the

morass segment M A and the (in A) cofinal sequence γi i ω

within the model M as .

For, we use the similar property as we

had in the old proof, that is, that for

all s̄ t̄ where s̄ and t̄ are models of

Sᾱ, and moreover, t̄ t for a model t

of Sα and πt̄t s̄ s, then we have that

s t such that s Sα and also s̄ s

and πt̄t s̄ πs̄s.

� �

� �

�
�
�
�
�
���

�
�
�
�
�
���

�
��

�
��

�
��

�
��

Sᾱ

Sα

s̄ t̄

s πt̄t s̄ t

πs̄s πt̄t s̄ πt̄t



CHAPTER 6. A WEAKER THEORY FOR THE COUNTEREXAMPLE 67

Now, consider an element si L
si D
si β of the collection as for s SA.

Using an appropriate bijection between HA and A we are able to code

given elements si of Ssi α , a subset of HA, as ordinals below A. Note,

here we use that by the choice of si we have si α A. Therefore,

using such a coding we can consider the set as as an element of A ω

and together with (4), cf. p. 50, as an element of κ ω.

But then, the collection Θ s is a subset of κ ω. Hence, as above in

Lemma 65, we conclude that in the model M as , the set Θ s has

cardinality at most κ.

We are now able to finish the proof with the desired contradiction as

above in the end of Chapter 5 as follows: Working within the forcing

extension M G , let W be again the inner model M Ḡ , where Ḡ is

P τ -generic as above.

Following the old idea of Chapter 5, we consider U : as s SA ,

being the union of all Θ s for s ranging about all elements of SA. Then

U, U still forms a linear order, where the order relation is defined

as: as̄ U as if s̄ β s β .

And again, considering as as a countable subset of κ using an appropri-

ate coding, we know by Lemma 51 that as is indeed already an element

of M Ḡ . Hence, as above, Ux
W κ.

After all, we use Lemma 9 again and conclude that the cardinality of

U is strictly smaller than τ . However, we here have U SA τ as

well, and so the desired contradiction for the first case.

In the second case, where the cofinality of A is uncountable, the con-

tradiction follows exactly as on page 56: We construct the sequence

as : si i κ̄ where κ̄ cfM A as above using an uncountable and

cofinal sequence in A and consider the set X : as s SA . We then

again conclude that X SA τ .
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On the other hand, again using Lemma 49 we know that each as is not

only a subset but also an element of the ground model. Having 2κ κ

within M , the cardinality of X is at most κ M which is strictly smaller

than τ , a contradiction.

Furthermore, because of the forcing properties that we have already

described in Chapter 3 and the fact that the ground model satisfies

GCH, we know that within the generic extension M G , the assertion

2γ γ for γ τ is preserved. Note, we also have 2ω 2κ τ and

κ τ . Hence, in M G we trivially have 2 γ γ for γ τ and so we

always have a γ , γ -model of T for γ τ , considering the structure

Lγ D , γ, , D

where D γ such that Lγ D Hγ. Compare this to the upcoming

Lemma 76.

Hence, all arguments of the old proof of Theorem 59 went through

and so we have found the desired counterexample even for the weaker

theory, defined on page 61, starting just from a model of GCH.

This finishes the survey through the proof. (Theorem 68)


