
CHAPTER 4

The Coarse Morass

From now on consider a first order language L with a unary predicate

A and a binary predicate . Define the theory T as follows:

T : ZFC V L A regular

A is the largest cardinal.

Moreover, by a (τ ,κ)-model of L we understand a model of the shape

A A; AA, A, . . . such that A τ and AA κ. In the following

we are working inside a model A of our fixed theory T. Let A AA

be the interpretation of A in A.

We will benefit from this theory in the next chapter, proving our main

theory. For, we will use a tool, the so-called coarse A-morass. To be

able to, we are going to define the structure theory in this chapter and

prove facts we are going to apply later. This is not at all to understand

as an introduction to the theory of morasses1. We will develop methods

we are going to use in the next chapter.

Once and for all, in this chapter we are working within the fixed model

A, otherwise we will state the opposite clearly. Note, because A could

be very different from our universe, possibly being ill-founded, and so

forthcomming arguments will rarely be absolut.

1Only a few introductions to the theory of morasses can be found in the literatur

— although they are sometimes used as a tool in the theory of inner models, proving

statements around the cardinal transfer property. As a starting point we strongly

refer to [Dev84].
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40 CHAPTER 4. THE COARSE MORASS

At first, define sets Sα for ordinals α A as follows:

Sα : ν α ν α

Lν α is the largest cardinal α is regular

ξ ν η ν ξ η η is p.r.-closed

Consider the set SA. Because the fixed model A of T thinks that A is

regular and the largest cardinal and, by Corollary 34, there are indeed

cofinal many limits of p.r.-closed ordinals within A, we obviously have

Lemma 53. sup SA .

Let us now look at these intervals Sα more closely and define for ν Sα

βν : the smallest β ν such that

Lβ ν α and β is p.r.-closed.

�

α

ν

βν

α Then βν is well-defined for ν Sν : Because ν lays be-

tween α and α , it must be collapsed at some ordinal level

ξ α . Of course, ξ has not to be p.r.-closed. However,

taking the closure of all (ordinal) primitive functions, pos-

sible by a countable limit construction, we get an ordinal

β (and therefore Lβ) satisfying the desired condition by

Lemma 37. So we can choose a minimal one.

Although defined for all ordinals α below A we can at least show that

for a large set of indexes α the intervals Sα are non-empty, in fact, we

will find a closed and unbounded set:

Lemma 54. The set α A Sα ∅ is stationary in A.

Proof. By Lemma 53, SA is a non-empty set and so we can fix

an arbitrary ν SA. We now define simultanously the following two
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sequences αξ ξ A and Xξ ξ A , letting

αξ : Xξ A,

X0 : the smallest X Lβν where X A transitive,

Xξ 1 : the smallest X Lβν where Xξ A transitive

and αν X,

Xλ : Xξ ξ λ for limit ordinals λ.

Here, by ‘smallest (elementary) submodel’ we mean to take the sub-

model such that it is minimal for the inclusion relation. Then we

obviously have αλ supξ λ αξ.

Now, for each ξ A let π : Lβ ξ Xξ be the Mostowski collapse.

By construction we then have π αξ A. Moreover, π is an elementary

embedding of Lβ ξ into Lβν . Let ν ξ Lβξ
such that π ν ξ ν.

Then –because of the elementary property of π and ν Sα– we also

have that ν ξ lays in Sαξ
. In particular, Sαξ

is not empty.

Finally, by our construction we have found a club set αξ ξ A ,

witnessing the stationarity claimed. (Lemma 54)

On the set S, defined as the union α A Sα of the intervalls defined

above, we will define a relation and a suitable sequence of elementary

embeddings πν̄ν ν̄ ν such that

πν̄ν : Lν̄ Lν and S S.

For, define αν as the unique α such that ν Sα and define

ν̄ ν : αν̄ αν π ν̄ ν π αν̄ αν

there is π : Lβν̄ Lβν such that crit π αν̄ .

And finally set πν̄ν : π Lν̄ .

Note, in the proof of Lemma 54 we actually showed that (in notation

of the proof) we have πν ξ ν π Lν ξ and so, we showed even more,

namely ν ξ ν.
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In fact, we can prove the following

Lemma 55. The maps πν̄ν defined above are unique.

Proof. Here we use the fact that we are working with L-like models

and their definability properties. So let us define

X : the set of all y Lβν such that y is Lβν -definable

using parameters from ν, αν αν .

Then we know by the condensation property that X is already a level

of the Lα-hierarchy. Moreover, we can even describe the ordinal height

of X as follows

Claim. X Lβν .

First note that, by definition, X Lβν . Obviously, in Lβν holds

f f : αν
onto

ν ,

so it does in the substructure X. That means, there is an element f of

X such that Lβν f : αν
onto

ν. So, by absolutness there is an f in X

such that f : αν
onto

ν. Hence, for this f we have dom f αν X

and so finally ν rng f X.

Now, let σ : Lβ̄ X be the collapsing map. We just showed that ν

is a subset of X and therefore σ restricted to ν 1 is the identity map.

We also have β̄ αν is p.r.-closed and Lβ̄ ν αν and so we have,

because of the minimality property, that βν β̄. However, trivially we

have by our construction that β̄ βν and the claim is proved.

With the claim in mind, there is everything within Lβν definable with

parameters taken of ν, αν αν . However, these parameters are fixed

by π : Lβν̄ Lβν . And so, π is uniquely given by them. Therefore,

πν̄ν π Lν̄ and the lemma is proved. (Lemma 55)

We now look at the above defined relation more closely, proving

Lemma 56. The relation forms a tree on S.
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Proof. It is an easy exercise to verify that the relation is non-

reflexive and transitive.

Moreover, consider a set P of predecessors of an element of the

tree. Then P, is obviously well-founded, because if ν̄ ν, then

also αν̄ αν .

It is left to prove that such a set P is also linearly ordered by . If

we showed this, we would even have the missing well-ordering property

of a set of predecessors of an element of the tree.

Claim. If ν̄, ν ν, then ν̄ ν or ν ν̄.

For, let ν̄ ν and ν ν. Consider the two maps π : Lβν̄ Lβν and

π : Lβν
Lβν given by the definition of the tree where πν̄ν : π Lν̄

and πν ν : π Lν . Then we have by construction (and well-known

arguments, e.g., condensation property) the following:

rng π the smallest X̄ Lβν such that

A X̄ is transitive and αν̄ A X̄,

rng π the smallest X Lβν such that

A X is transitive and αν A X .

Without loss of generality, let αν̄ αν . But then, X̄ is a subset of X .

Therefore, π 1 π : Lβν̄ Lβν is an elementary embedding with

the needed properties to conclude that π 1 π Lν̄ πν̄ν because

of the uniqueness of the embeddings given by Lemma 55. And so, we

finally have ν̄ ν.

With the claim also the lemma is proved. (Lemma 56)

There are two more properties we will find later useful. One of them

says that there are, in fact, many limit points within the tree relation.

Lemma 57. For α A let ξ, ν Sα where ξ ν. Then

(a) βξ ν,

(b) sup ξ̄ ξ̄ ξ α.

Proof. Let α, ξ and ν be as above. Then by definition, α is the

largest cardinal in Lν and therefore we trivially have Lν ξ α.
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But this holds even below ν, say at stage ξ ν, and so Lξ ξ α.

We then are able to find an η ν but above ξ such that η is p.r.-

closed. However, this is the condition βξ should satisfy. Because of the

minimality we finally have βξ η ν. This proves the first fact.

For the second property, note that for ξ̄ ξ we have that the model

Lξ thinks that α αξ is the largest cardinal and Lξ̄ thinks the same

about αξ̄ α. Therefore, ξ̄ cannot be greater than α because Lξ̄ is a

subset of Lξ.

On the other hand, let γ α. We will find a ξ̄ α such that γ ξ̄

and ξ̄ ξ as follows, working in Lν : Starting from X0 : γ ξ we

�

α

ξ

ξ̄

βξ

ν

βν

α

set X : i ω Xi where Xi 1 is the smallest X such

that X Lβξ
and Xi α X . Then X will be the

smallest X Lβξ
such that γ ξ X and X α

transitive.

Moreover, α looks like a regular cardinal in Lν , so the

cardinality of X is strictly smaller than α even in this

model. Consider then the collapse map σ : Lβ̄ X

and we have σ ᾱ α for the critical point ᾱ of the

embedding σ. Furthermore, even the map σ is an

element of Lν . Now let ξ̄ such that σ ξ̄ ξ. Then

we finally have

Claim. ξ̄ Sᾱ.

To see this we have to look at the properties in the definition of Sᾱ.

Because α is strictly less than ξ we trivially have ᾱ ξ̄. Also we know

that ξ is limit of p.r.-closed ordinals and so is ξ̄ by the elementary

preserving property of σ and Lemma 37. The same reason shows the

regularity and the property ‘being the largest cardinal’ of ᾱ within Lξ̄.

Moreover, because of ξ̄ β̄ we know that ξ̄ is strictly smaller than ᾱ.

This finishes the proof of the claim.

Trivially, we also have γ ξ̄ α by our construction and for the

elementary embedding σ : Lβ̄ Lβξ
we know by definition and its
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properties that β̄ βξ̄ and ᾱ αξ̄ holds and so by the uniqueness of

the tree embeddings, given by Lemma 55, also σ Lξ̄ πξ̄ξ.

And so, we finally have shown everything for ξ̄ ξ. (Lemma 57)

Note, the second part (b) of the last lemma claims that ξ is a limit

point within the tree relation . Moreover, together with Lemma 53

we have finally shown that each ν SA is a limit point within the tree

relation, that is
sup ν̄ ν̄ ν A.

Considering the figure that might help to understand the structure, we

are now ready to define the complete structure we are aiming to:
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Figure 1. The coarse A-morass

Definition 58 (The coarse A-Morass). Let the cardinal A, the sequence

Sα α A , the tree relation with the sequence πν̄ν ν̄ ν of

embeddings be defined as above. Then we call the structure

M : B, A, Sα α A , , πν̄ν ν̄ ν

the coarse A-morass with the universe B such that A B On.


