
CHAPTER 2

Fundamentals

The following statements are all provable in (sometimes just parts of)

the Zermelo-Fraenkel set theory with the axiom of choice: ZFC.1 The

collection of these results should not be seen as a complete introduc-

tion to the theory we are using in the upcoming chapters. Most of

the following statements will just be cited, anyway. For a detailed sur-

vey and proofs the author strongly refers to the standard books, e.g.,

[ChaKei90, Dev84, Dra74, Jec03, Kan94]. For the conveniency of the

reader we are (mostly) using standard notation.

With this in mind, the reader will find in this chapter some important

standard facts and even some other (technical) basics we will need

later.2

Constructing Models

Let us start with some (very) basic set theory. A set X is said to be

extensional if for all distinct u, v X there is an x X such that x u

if and only if x v.

Lemma 4 ([Jec03, Theorem 6.15], Mostowski Collapse). For each ex-

tensional set X there is a unique transitive set M and an unique bi-

jection π : X M such that π : X, M, . Moreover, if

Y X is transitive, then π Y id Y .

1In fact, in most cases we will not need the presence of the Axiom of Choice

here. However, in our applications we will have it.
2In most cases, the more famous the statement is, the less we are proving it

here in this chapter.
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More generally, X has not to be a set but it must be so-called set-like,

meaning that for all x X the collection of all -predecessors, x ,

is a set.

Now let us look at models of, say, a countable language L, and elemen-

tary embeddings between them.

Definition 5. A directed system of models Ai i ω has elementary

embeddings πij : Ai Aj such that πik πjk πij for all natural

numbers i j k.

Then we can prove:

Lemma 6 ([Jec03, Lemma 12.2], Direct Limit). If Ai, πij i j ω

is a directed system of models, then there exists a model A, unique up

to isomorphism, and elementary embeddings πi : Ai A such that

A i ω rng πi and πi πj πij for all i j.
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The model A in the last lemma is called the direct limit of the given

sequence Ai, πij i j ω .

Stationary Sets

Remember, for a regular cardinal κ we call X κ a closed and un-

bounded set, club for short, if it is closed under limit points and un-

bounded in κ. We call a set S κ stationary if it meets all club

sets.

There are nice properties, e.g., the collection of all club sets is closed

under intersections of strictly less than κ many sets. Moreover, it is



CHAPTER 2. FUNDAMENTALS 17

closed under diagonal intersection of length κ. Using this we can prove

the following important and well-known fact:

Lemma 7 ([Jec03, Theorem 8.7], Fodor). If S κ is stationary and

π : S κ is a regressive ordinal function, that is π ξ ξ for all

ξ S ∅ , then there is a stationary subset T S and an ordinal

γ κ such that f α γ for all α T .

Sometimes useful –as we will see later– is also the following collection

of well-known facts:

Lemma 8. Let κ ω be a regular cardinal.

Let cf μ κ. Then the set γ μ cf γ κ is a stationary

subset of μ.

For each function f : κ κ, the set α κ f α α is

closed and unbounded in κ.

The set of all limit points of a club set of κ is club again.

Now, call a transitive class W V an inner model if W contains all

ordinal numbers and satisfies ZFC. In fact, the constructible universe

L is an inner model as we will discuss in one of the next sections. Then

we can prove the following

Lemma 9. Let W be an inner model and κ τ be infinite cardinals

such that κ W τ and λ τ W cf λ κ is stationary in

the universe V. Moreover let U : U, U be a linear order such that

U H for a suitable H W , H W τ and

Ux : z z U x W, Ux
W κ for any x U.

Then we have U τ .

Proof. Suppose not. Without loss of generality, using a suitable

bijection let H be just τ . So, let γ be the cofinality of U, U , that

is the cardinality of a minimal subset of U which lies cofinal. Hence,

we have γ U τ . However, letting f : γ U be a monotone

and cofinal enumeration, we have U ν γ Uf ν and so afterall also

τ U γ κ τ . This means we have γ τ .
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Define g ν : sup Uf ν ν for ν τ . Then g is weakly monotone,

that is g ν ν, and supν τ g ν sup U τ . By our assumption,

the set S : ν τ W cf ν κ is stationary in V. For

elements ν of S is g ν strictly less than ν because in W we have:

Uf ν κ κ cf ν ν, and so Uf ν is bounded in ν.

�

ν

ν̃

f ν

f ν̃

Uf ν

Uf ν̃

U
Hence, g S is a regressive function on a

stationary set. Now, Theorem 7 of Fodor

implies that there is a stationary subset S

of S such that g ν α for a suitable α τ

and arbitrary ν S . But in this case we

also have the following contradiction:

τ supν S g ν supν S g ν α τ.

Note, the first equality just holds because by definition we have for

x U y obviously Ux Uy and so

Uf ν ν τ Uf ν ν ν τ ,

meaning the range of f and g are both cofinal in τ .

Therefore, the lemma is proved. (Lemma 9)

Forcing

Working in a so-called ground model M , we consider a partial order

P, P and call it sometimes notion of forcing with the so-called forc-

ing conditions as its elements. We also say that a condition p is stronger

than a condition q if p P q. We call a set D P dense in P if for

every p P there is a q D such that q P p.

Call a non-empty G P a filter if firstly, whenever p q and p G,

then also q G; and, secondly, if p, q are elements of G, then there is

an r G such that r is stronger than both, p and q. Moreover, call a

filter G generic over M (or just M-generic) if for every dense D in P

and D M , the filter G always meets D.
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Then we can construct the so-called forcing extension or generic ex-

tension, M G , of the ground model M that satisfied ZFC, given a

generic filter G, such that M G ZFC, M M G , G M G ,

OnM G OnM and it is minimal in the sense that if N is a transitive

model of ZF such that M N and G N , then M G N .

The main idea now is that we are able to name elements of the generic

extension within the ground model. Moreover, we can define the so-

called forcing relation ‘ ’ within M and so we are able to decide within

the ground model what properties hold in the generic extension:

Lemma 10 ([Jec03, Kun80]). For every generic G P over M and

every formula ϕ of the forcing language we have

M G ϕ if and only if p G p ϕ.

For a collection of the properties of the forcing relation we refer to

[Jec03, Theorem 14.7].

In Chapter 3 we will use the connection to Boolean algebras. In fact,

we can look at the universe V as collection of functions, ranging into

the set 2 0, 1 , that is, roughly speaking, the identification of sets

with their characteristic functions. So we can identify the universe V

with V2 where 2 is the simplest Boolean algebra. Then the formula

x y has truth value 0 or 1.

Taking now a more complex Boolean algebra B we can look at atomic

formulae x y and x y where the truth value can be an element of B
strictly between 0B and 1B. Choosing B in an appropiate way we can

try to decide formulae which we cannot in V2.

Furthermore, having a Boolean algebra B we can consider the related

partial order B , B defined as B : B 0B and setting b0 B b1 if

p q p.

Moreover, we can start from a partial order to construct a related

Boolean algebra as follows:
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Lemma 11 ([Jec03]). For every partially ordered set P, P there is

a complete Boolean algebra B B P and a mapping π : P B
where B is as above such that

if p P q, then π p B π q ,

p and q are compatible if and only if π p π q 0B,

the set π p p P is dense in B.

Moreover, the Boolean algebra B is unique up to isomorphism.

Having these complete Boolean algebras we can construct a Boolean-

valued model (of the language of set theory) where the Boolean values

of and are given by two functions of two variables x y and

x y , cf. [Jec03] for all details.

We are now interested in cardinal preserving properties for a given

notion of forcing. For a cardinal κ in the ground model, say a partial

order yields the κ-chain condition, κ-c.c. for short, if every dense set

has cardinality strictly less than κ.

Lemma 12. If P yields the κ-c.c., then it preserves cofinalities above

κ, that means, if λ is a cardinal such that cfM λ κ, then we have

cfM λ cfM G λ . Moreover, if κ is regular, then cardinals are pre-

served above κ.

A partial order P is λ-closed if whenever γ λ and pξ ξ γ is a

decreasing sequence of elements of P, that is pξ P pη for η ξ, then

there is a q P such that for each ξ γ we have q P pξ.

This property ensures that objects with suitable small cardinality within

the forcing extension can already be found in the ground model.

Lemma 13 ([Jec03, Kun80]). If P is λ-closed for a cardinal λ, then

there are no new sets of ordinals of cardinality strictly smaller than λ

in the forcing extension. Therefore, P preserves cofinalities below λ.

Moreover, P preserves also cardinals below λ.
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We turn now to the problem of the iterated application of forcing, that

is in the easiest case the following two-step product forcing.

Lemma 14. Let P and Q be two notions of forcing in M . In order

that G P Q is generic over M , it is necessary and sufficient that

G G1 G2 where G1 P is generic over M and G2 Q is generic

over M G1 . Moreover, in this case we have

M G M G1 G2 M G2 G1 .

Now, in general, in applications the second forcing might be not an

element of the ground model M . The important fact here is that even

then, in case of a two-step iteration, we can represent it by a single

notion of forcing extension over the ground model.

Let P be a partial order in M and Q a name for a partial order, that

is P Q is partial order . Define then P Q as the set

p, q p P P q Q

and, moreover,

p1, q1 p2, q2 if and only if p1 p2 and p1 q1 Q q2.

For more details and facts we again refer to [Jec03, Kun80].

Constructible Universe

For the whole section, we strongly refer to [Jen72, Dev84] for proofs

and details. The idea of taking constructible sets is easy to describe:

When we look at the von Neumann’s view of V, taking all subsets in

the successor step Vα 1 P V , then we realize that we have no idea

what does this really mean. So an attempt could be just to take the

subsets we really need, meaning all subsets that can be described or

constructed in some sense.

Therefore, let us turn to the theory of constructible sets, looking at

Gödel’s constructible universe L : α On Lα, where L0 : ∅, for limit

ordinals λ set Lλ : α λ Lλ and, finally, take as Lα 1 the collection
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of all within Lα from parameters taken from Lα definable sets. Then

L is an inner model of set theory, in fact, it is the smallest one.

Lemma 15 ([Dev84]). The following hold:

(a) Assume V L. Then GCH and AC.

(b) L V L ZFC GCH .

Let ZF be all axioms of ZF without the power set axiom. Then some-

times it is useful to have the following

Lemma 16 ([Dev84, Jen72]). For a regular and uncountable cardinal

κ we have that Lκ is a model of V L and ZFC .

This is best possible situation, having Lκ P κ V because there

are cofinal many ranks of subsets of κ. So, in case of a regular limit of

cardinals, an (L-)inaccessible, we would have found a model of full set

theory — proving that we cannot expect to prove the existence of such

a cardinal in the presence of Gödel’s Incompleteness Theorem.

One of the most important results in this area is:

Lemma 17 ([Dev84], Gödel, Condensation Lemma). Let α be an ar-

bitrary limit ordinal. If X 1 Lα, that is preserving -formulae, then

there are unique π and β such that β α and:

(a) π : X, Lβ, ,

(b) if Y X transitive, then π Y id Y ,

(c) π x L x for all x X.

Here, L is the canonical well-ordering of the constructible universe,

cf. [Dev84] for details. And finally on the way to prove the Generalized

Continuum Hypothesis we prove that bounded subsets will be caught

by the next cardinal level of the constructible hierarchy.

Lemma 18 ([Dev84]). Assume V L and let κ be a cardinal. If x is

a bounded subset of κ, or more generally, if x Lα for some α κ,

then x Lκ.
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Using the fine structure theory3, Jensen was able to prove the important

covering property for the constructible universe. For, let us say that

0# exists, if there is a non-trivial elementary embedding π : L L.

Lemma 19 ([Dev84], Jensen, Covering Lemma). Assume, 0# does

not exist. If X is an uncountable set of ordinals, then there is a con-

structible set, Y, of ordinals such that X Y and X Y .

Now, for many applications it is useful to consider a more general

version of the constructible universe: for some set A, we can consider

the class L A , the universe of all sets constructible relative to A, in

fact, let the levels Lα A be similarly defined as for the usual hierarchy

and let Lα 1 A be the set of all subsets of Lα A that are definable

over Lα A using parameters from Lα A and A itself.

Then we have similiar properties as for the Lα-hierarchy, cf. [Dev84]. In

particular we have for α ω that Lα A α and for B A L A ,

L A L B L B L A .

The price of having more freedom in the construction of subsets is

loosing parts of GCH: One major tool for this assertion was the Con-

densation Lemma. But now, having an X 1 Lα A we just find π, β

and B such that
π : X Lβ B ,

where B π A X . Thus, in general this does not lead to a structure

of the L A -hierarchy. However, we can then prove the following

Lemma 20 ([Dev84]). Let A κ. Then L A is an inner model of

ZFC and we have L A 2λ λ for λ κ.

Moreover, using a bit more technical tools we can finally prove

Lemma 21 ([Dev84]). Let V L A , where A κ . Then 2κ κ

holds and so if κ ℵ0, we have the full GCH.

3cf. [Dev84, Jen72].
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At the very last, let us prove the following statement we are going to

use later.

Lemma 22. For an uncountable and regular cardinal κ and a subset

D κ we have that L D 2 κ κ.

Proof. Let b γ κ be a given small subset of κ. Then it is

sufficient to prove the following

Claim. b Lκ D .

With the claim in mind, we are obviously done, having small subsets

of κ already within the model Lκ D which has cardinality κ as we

already know. And so, it remains to prove the claim.

For, let b Lξ D ZFC for a suitable ordinal ξ. Heading a conden-

sation argument, define simultanously two sequences Xi i ω of

elementary submodels of Lξ D , , D and κi i ω of ordinals as

follows:

Let X0 be the smallest elementary submodel of Lξ D , , D , contain-

ing γ as a subset. Define κi as the least upper bound of Xi κ. More-

over, let Xi 1 be the smallest elementary submodel of Lξ D , , D ,

containing κi as a subset. Finally set X : i ω Xi.

Then for κ̄ : supi ω κi we have κ̄ κ. The model X is an elementary

substructure of Lξ D , , D . Moreover, we have that γ κ̄ X and

also X κ̄ κ.

Now, let σ : X̄ X be the collapsing map. Then by the condensation

property we have that X̄ is isomorphic to Lξ D̄ , , D̄ for suitable ξ̄

and D̄ such that σ κ̄ is the identity map. We also have that D̄ κ̄

and even more important, D̄ D κ̄.

However, then we have that X̄ Lξ D κ̄ , , D κ̄ which is clearly

an element and especially a subset of Lκ D because ξ̄ κ.

Therefore, b σ 1 b X̄ Lκ D as desired. (Lemma 22)
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Combinatorical Principles and Trees

We will not consider �-principles and related subjects like Souslin

trees. Here, we are interested in constructing special Aronszajn trees.

For, we consider coherent square-sequences, which Jensen introduced

in [Jen72].

Definition 23 ( κ-Sequence). For an infinite cardinal κ call a se-

quence Cα α κ Lim a κ-sequence if

(a) α κ Lim Cα α club ,

(b) α κ Lim cf α κ otp Cα κ ,

(c) if β α is a limit point of Cα, then Cα β Cα.

We say, κ holds if there is a Cα α κ Lim -sequence.

For our purpose it will be interesting another weaker version of this

combinatorical principle — the so-called Weak Square.

Definition 24 ( κ-Sequence). For an infinite cardinal κ call a se-

quence Cα α κ Lim a κ-sequence if

(a) α κ Lim Cα is club in α ,

(b) β κ Lim Cα β : α β κ ,

(c) α κ Lim otp Cα κ .

We say, κ holds if there is a κ-sequence.

Choose for all limit ordinals α κ club sets Cα α such that

otp Cα κ. If there are only κ many bounded subsets of κ, then

this forms trivially a κ-sequence and finally we have

Lemma 25 ([Dev84, Jen72]). The following hold:

(a) If κ κ κ, then κ.

(b) If κ, then κ.

(c) Assume V L A for an A κ such that for all α κ ,

α L A α κ,

then κ holds. In particular, if V L, then κ holds for all

infinite cardinals κ.
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Now, call a partial order T, T a tree if the set of all predecessors

of an element of T is well-ordered by T . Moreover, for a cardinal

κ we call a tree T a κ -Aronszajn tree if T has height κ such that

every branch and every level has cardinality at most κ. Let a special

κ -Aronszajn tree be an Aronszajn tree T whose nodes are one-to-one

functions from ordinals less than κ into κ, ordered by inclusion. Or

equivalently, there is a function σ : T κ such that σ x σ y for

all tree elements x T y.

Call a tree T a κ-Souslin tree if T has height κ and every branch and ev-

ery antichain has cardinality strictly less than κ. Obviously, a κ-Souslin

tree is a κ-Aronszajn tree. However, a special κ -Aronszajn tree is not

Souslin, because Aν : σ 1 ν are antichains by the property of σ

defined above. But ν κ Aν T and T κ .

Lemma 26 ([Kan94]). If κ is regular and 2 κ κ, then there is a

κ -Aronszajn tree.

There is an important connection to the theory of trees that we will

use in Chapter 5 and give a proof in the appendix.

Lemma 27 ([Dev84, Jen72]). There is a special κ -Aronszajn tree if

and only if κ holds.

The idea of the proof is easy to understand: Having a κ -Aronszajn

tree we can consider suitable subsets of branches of the tree. The

restrictions of the tree, having no cofinal branches and each tree level

has cardinality at most κ, helps to prove to get a κ-sequence.

On the other hand, imitating the proof of an ℵ1-Aronszajn tree, we

now need the κ-sequence to survive the limit points during the con-

struction without taking to many branches on such levels.

Remember, as in the first chapter, we call a model A A; A, . . . a

κ, λ -model of a language L A, . . . , if A κ and A λ. Then

we have the following
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Lemma 28 ([ChaKei90, Theorem 7.2.11]). There is a sentence ϕ in

a finite language such that for all infinite cardinals κ, ϕ has a κ , κ -

model if and only if there exists a special κ -Aronszajn tree.

For, let L U, T, , r, f, g, h where U is a unary relation, T and

are binary relations, r and f are unary functions and, finally, g and h

are binary functions.

Then let ϕ be the sentence of the language L, saying that

(a) the relation T acts like a tree, meaning that the partial order

dom T rng T , T is a tree in the usual sense; the relation

is a linear order; and the relation U is an initial segment

for , that is, x y U y y x ,

(b) the function r acts like the tree order function or rank func-

tion, that is x T y r x r y , z x r x z and

z r y x xTy r x z ; and the function f acts like

the function for a special Aronszajn tree, that is x U f x

and xTy f x f y ,

(c) use the function g to assert that for each x, the set of all

predecessors y y x has cardinality at most U ; and finally,

use the function h to assert that for each x, the set of all

elements of the same rank y r y x has cardinality at

most U .

It is an easy exercise to show that this sentence ϕ will work to prove

the lemma above.

To round up the theory we remind the reader of the following

Lemma 29 ([Dev84]). Assume GCH. Let κ be an uncountable cardinal

for which κ holds. Then there is a κ -Souslin tree.

Moreover, in [Jen72, p.286, Remark (3)], Jensen showed the following

fact which we will use later

Lemma 30 ([Jen72]). If κ is not Mahlo in L, then κ holds.

In fact, we can prove the following generalization
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Lemma 31 ([Jen72]). Suppose κ is not a Mahlo cardinal in L B for

a subset B ℵ1, then κ holds.

Primitive Recursive Functions

The well-known primitive recursive functions on the natural numbers

can be generalized to primitive recursive functions on ordinals. The

easiest way here is to consider the canonical functions like successor

function, addition, multiplication, taking powers and taking iterated

powers.

Then we call an ordinal α primitive recursive closed if it is closed under

these ordinal functions restricted to α.

On the other hand we can generalize these functions to sets (not only

ordinals) as are given by the next

Definition 32 (Primitive Recursive Functions). A (class) function

f : Vn V is said to be primitive recursive (p.r.) if and only if it

is generated by the following schemata:

(a) f x1, . . . , xn xi for 1 i n,

(b) f x1, . . . , xn xi, xj for 1 i, j n,

(c) f x1, . . . , xn xi xj for 1 i, j n,

(d) f x1, . . . , xn h g1 x1, . . . , xn , . . . , gk x1, . . . , xn , where

h, g1,. . . ,gk are all p.r.,

(e) f y, x1, . . . , xn z y g z, x1, . . . , xn , where g is p.r.,

(f) f x1, . . . , xn ω,

(g) f y, x1, . . . , xn g y, x1, . . . , xn, f z, x1, . . . , xn z h y ,

where g and h are p.r. and, moreover,

z h y rank z rank y .

In fact, in [JenKar71], it is shown that α is closed under ordinal prim-

itive recursive functions if and only if Lα is closed under the primitive

recursive functions on general sets.
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Even a rather complex function like Lν ν On is primitive recursive.

This means that a level of the constructible universe with height a p.r.-

closed ordinal has in most cases enough set theory within to work with.

We are going to use such arguments in Chapter 5.

We will now look on cardinals and try to find many p.r.-closed ordinals.

Lemma 33. Let κ ω be a regular cardinal. Then κ is p.r.-closed and

there are cofinal many p.r.-closed ordinals below κ.

Proof. Obviously, as a ZF -model, Lκ is closed under functions of

Definition 32. Moreover, let γ0 κ be chosen. Then we can define γi 1

as the smallest γ such that the union of all ranges of functions given

by Definition 32 restricted to Lγi
is a subset of Lγ. Then supi ω γi κ

is p.r.-closed. (Lemma 33)

Then the same argument proves that for a ZF -model A there are

cofinal many p.r.-closed ordinals in OnA and even the following

Corollary 34. Let A be a model ZF . Then there are cofinal many

limits of p.r.-closed ordinals in OnA.

The next rather technical statement will allow us later to find p.r.-

closed ordinals in elementary submodels. In fact, we are arguing to get

finally Lemma 37 at the end of this section. For, let us define for i ω

and ordinals ν:
g0 ν : ν 1,

gi 1 ν : gν 1
i ν 1 .

Here, the iterated power is defined in the usual way by induction on

non-empty ordinals: let g1
i μ : gi μ , gν 1

i μ : gi gν
i μ and

finally gλ
i μ : supν λ gν

i μ for limit ordinals λ. Then these functions

are obviously primitive recursive. Moreover, we have the following

Lemma 35 ([JenKar71]). Let F be a p.r. set function. Then there is

a Σ1-formula ϕ such that whenever x1, . . . , xn Lα A there is i ω

such that

y F x1, . . . , xn Lgi α A ϕ y, x1, . . . , xn .



30 CHAPTER 2. FUNDAMENTALS

This statement ensures that each primitive recursive function can be

caught by the gi-functions as rank in the L-hierarchy. But then we now

have

Corollary 36. Lα A is p.r.-closed if and only if α is closed under the

functions gi for i ω.

Now, let ϕi be the formula for the function gi given by Lemma 35.

Then we have that α is p.r.-closed if and only if for all i ω we have

Lα A ν ξ ϕi ξ, ν .

Because even the sequence ϕi i ω is p.r.-closed, we finally can

code altogether in one formula, saying “On is p.r.-closed”:

Lemma 37 ([JenKar71]). There is a formula ϕ such that α is p.r.-

closed if and only if Lα ϕ.

(Small) Large Cardinals

And finally we state an equivalence we will find useful in our construc-

tion later. Remember, we call a cardinal κ (strongly) inaccessible if κ

is regular and for all λ κ we have 2λ κ.

Call κ Mahlo if the set γ κ γ is inaccessible is stationary in κ,

and finally, call a cardinal κ weakly compact if the partition relation

κ κ 2
2 holds.

Here, κ κ 2
2 means that every partition of κ 2, the set of all

unordered pairs of κ, into two pieces has a homogeneous set of size κ.

We refer to [Dra74, Jec03, Kan94] for more details.

In future facts we will use the following reflecting properties of the

constructible universe:
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Lemma 38. The following hold:

(a) If κ is a regular cardinal, then (κ is a regular cardinal)L,

(b) If κ is inaccessible, then (κ is inaccessible)L,

(c) If κ is Mahlo, then (κ is Mahlo)L,

(d) If κ is weakly compact, then (κ is weakly compact)L.

Finally, we state two well-known connections between large cardinals

and the (non-)existence of trees:

Lemma 39 ([Dev84, Jen72]). If κ is a regular uncountable cardinal

which is not Mahlo in the constructible universe, then there is a con-

structible special Aronszajn tree of height κ.

The proof uses arguments about combinatorical principles given by,

e.g., Lemma 27 and Lemma 30. Another well-known fact is the follow-

ing:

Lemma 40 ([Dev84, Dra74, Jec03, Kan94]). Let κ be an uncountable

cardinal. The following are equivalent:

(a) κ is weakly compact,

(b) κ is inaccessible and there is no κ-Aronzsajn tree.


