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In this note I review three fields found in Conway’s group of games: the surreal numbers, the

real numbers, and the nimbers. The primary motivation to write this note was to understand

why the multiplication of surreal numbers is well-defined; most proofs of this fact in the

literature seem to follow Conway’s original book [Con01], but the argument given there does

not quite follow the inductive scheme that it claims to follow, so substantial reorganization is

required. After finding one such reorganization I became aware that a better one has been

already worked out by Schleicher and Stoll [SS06]. Hence the main original aspect of the

present write-up is that I make the symmetry between Left and Right options of a game in

multiplicative constructions very explicit. This idea arose in a discussion with Stefan Rabenstein.

1 Games

Definition 1.1. A game consists of its left options and right options. All games are constructed

in this way.

A generic left (resp. right) option of x is denoted by xL (resp. xR). In order to highlight the

symmetry between Left and Right we use placeholders j,α,β ,γ, . . . for L, R. Most statements

are prepended with quantifiers ∀ j,α,β ,γ, . . . unless mentioned otherwise. It is convenient to

identify L = +1, R= −1. We write x j ∈ j x .

We define a transitive relation ≺ on games by x ≺ y iff there is a chain x ∈α1
x1 ∈α2

· · · ∈αn

y . The statement “all games are constructed in this way” is formalized by demanding that ≺ is

well-founded. Theorems about games are proved by induction on ≺ and theorems about pairs

of games by induction on the product order unless mentioned otherwise.

Definition 1.2.

(x + y)α :≡ xα + y, x + yα.

(−x)α :≡ −(x−α)

Observation: addition is commutative and distributive. Write x − y :≡ x + (−y).

Definition 1.3. The game without options is denoted by 0. Recursively define

x ⋚ j 0 :⇐⇒ ∀x− j (x− j 6⋚− j 0)

The relation x ⋚ j 0 is interpreted as “ j wins x when moving second”. Indeed, by the

recursive definition this happens exactly when all first moves of the opponent − j lead to a

game which − j cannot win when j is on turn.

Lemma 1.4.

x ⋚ j 0 ⇐⇒ −x ⋚− j 0.

Proof. By induction we may assume that the conclusion is known for all options of x . Then

− x ⋚ j 0 ⇐⇒ ∀(−x)− j ((−x)− j 6⋚− j 0) ⇐⇒ ∀x j (−(x j) 6⋚− j 0)

⇐⇒ ∀x j (x j 6⋚ j 0) ⇐⇒ x ⋚− j 0.

Lemma 1.5. Suppose x ⋚ j 0 and y ⋚ j 0. Then x + y ⋚ j 0.

The strategy for playing x + y is to answer all moves of the opponent in the same game.
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Proof. We induct on x , y .

We have to show (x + y)− j 6⋚− j 0 for every − j-th option of x + y . By symmetry it suffices

to consider x− j + y. By the assumption x ⋚ j 0 we have x− j 6⋚− j 0, so there is an option with

(x− j) j ⋚ j 0. Hence by the inductive hypothesis (x− j) j + y ⋚ j 0. This is a j-th option of x− j + y

and we conclude by definition.

Lemma 1.6. For any game x and any j we have x − x ⋚ j 0.

Here we use the symmetric play strategy.

Proof. We induct on x .

We have to show (x − x)− j 6⋚− j 0 for every choice of the option on the right-hand side.

This option can take two possible forms. The first case is x− j − x . Here we use the inductive

hypothesis to conclude x− j − x− j ⋚ j 0 and plug this into the definition of ⋚− j on x− j − x . The

second case x − x j is similar.

Corollary 1.7. For every game x and j = ±1 we have

x j 6⋚ j x .

Proof. Equivalently, there is an option z− j of z :≡ x j − x with z− j ⋚− j 0. One such option is

x j − x j .

Lemma 1.8. For any games x , y we have x + y ⋚ j 0∧ y ⋚− j 0 =⇒ x ⋚ j 0.

If x 6⋚ j 0, then − j wins x as the first player. − j’s strategy for playing x + y is then to move

in x first.

Proof. Suppose x 6⋚ j 0. Then there is an option x− j ⋚− j 0. By Lemma 1.5 we have x− j+ y ⋚− j 0.

But the left hand side is an option of x + y, and by definition we obtain x + y 6⋚ j 0, a

contradiction.

We extend ⋚ j to binary relations on games by x ⋚ j y :⇐⇒ (x − y)⋚ j 0.

Corollary 1.9. The relations ⋚ j are reflexive, transitive, and translation invariant in the sense

x ⋚ j y ⇐⇒ (x + z)⋚ j (y + z).

Proof. Reflexivity is given by Lemma 1.6.

To show transitivity suppose x ⋚ j y ⋚ j z. By definition this means (x − y) ⋚ j 0 and

(y − z) ⋚ j 0. By Lemma 1.5 this implies (x − y + y − z) ⋚ j 0. By Lemma 1.6 we have

−y + y ⋚− j 0. By Lemma 1.8 this implies (x − y)⋚ j 0.

Translation invariance follows from z ⋚± j z and Lemmas 1.5 and 1.9 for the forward and

the backward implication, respectively.

The relations ⋚1 and ⋚−1 are usually called ≥ and ≤, respectively, but the author could

not resist indexing them. Equality is defined by

x = y :⇐⇒ x ≤ y ∧ x ≥ y.

Finally, we write

x ≶ j y :⇐⇒ x ⋚ j y ∧ x 6⋚− j y.

Corollary 1.9 shows that games form a partially ordered Group modulo =.
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Lemma 1.10. The relations ≶ j are transitive.

Proof. Suppose x ≶ j y ≶ j z. By transitivity of ⋚ j we obtain x ⋚ j z. Suppose now x ⋚− j z.

Then also z ⋚ j x , so by transitivity of ⋚ j we obtain y ⋚ j x , a contradiction.

Lemma 1.11 (One-sided Simplest Form Theorem for games). Let x , z be games and j be given.

If z 6⋚− j x j for all options of x and for every option z− j there is an option x− j with z− j ⋚ j x− j,

then z ⋚ j x.

Proof. We have to show z− j 6⋚− j x and z 6⋚− j x j for all respective options. The second relation

is just the hypothesis. On the other hand, by the hypothesis we have z− j ⋚ j x− j for some option

of x . By definition this implies z− j 6⋚− j x as required.

Lemma 1.12. Let x , y be games and let j ∈ {±1} be such that ∀y j∃x j : x j ⋚ j y j and ∀x− j∃y− j :

x− j ⋚ j y− j . Then x ⋚ j y.

Proof. The first condition implies x 6⋚− j y j for all y j . The conclusion follows from Lemma 1.11.

Applying the last Lemma with both j = ±1 we obtain that x = y follows from analogous

relations for the respective options. This will be used repeatedly in the proofs of the distributive

and associative laws for multiplication.

Definition 1.13. For games x , y define

(x y)αβ :≡ xα y + x yβ − xα yβ .

Lemma 1.14. For any games x , y, z we have

1. x0≡ 0, where 0 :≡ {|},

2. x1≡ x, where 1 :≡ {0|},

3. x y ≡ y x

4. (−x)y ≡ −(x y)≡ x(−y)

5. (x + y)z = xz + yz

6. (x y)z = x(yz)

Proof. In the product 1 there are no options. In the product 2 the options are

(x1)α1 ≡ xα1+ x0+ xα0≡ xα1≡ xα

by induction and part 1. Commutativity 3 is proved by induction using commutativity of

addition:

(x y)αβ ≡ xα y + x yβ − xα yβ ≡ y xα + yβ x − yβ xα ≡ yβ x + y xα − yβ xα ≡ (y x)βα.

In 4 we only need to show the first identity since the second follows from it by commutativity.

By induction we have

((−x)y)αβ ≡ (−x)α y + (−x)yβ − (−x)α yβ ≡ (−(x−α))y + (−x)yβ − (−(x−α))yβ

≡ −x−α y − x yβ + x−α yβ ≡ −(x−α y + x yβ − x−α yβ )≡ −(x y)−αβ ≡ (−(x y))αβ .
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To see distributivity 5 write without loss of generality

((x + y)z)αβ ≡ (x + y)αz + (x + y)zβ − (x + y)αzβ ≡ (xα + y)z + (x + y)zβ − (xα + y)zβ

and using the inductive hypothesis and Lemma 1.6 this is

= xαz+ yz+ xzβ + yzβ − xαzβ − yzβ ≡ (xz)αβ + yz+ yzβ − yzβ = (xz)αβ + yz ≡ (xz+ yz)αβ .

The claimed equality follows by Lemma 1.12. To show the equality 6 expand the options on

the left-hand side as

((x y)z)αβγ ≡ (x y)αβz+(x y)zγ−(x y)αβzγ ≡ (xα y+x yβ−xα yβ )z+(x y)zγ−(xα y+x yβ−xα yβ )zγ.

Using the inductive hypothesis and distributivity (part 5) this is

= xα(yz) + x(yβz + yzγ − yβzγ)− xα(yβz + yzγ − yβzγ)≡ (x(yz))αβγ.

The claimed equality again follows by Lemma 1.12.

2 Numbers

Definition 2.1. A game x is called a number if for all options we have x j 6⋚ j x− j and every

option is also a number.

Proposition 2.2. For every number x we have x ≶ j x j .

Proof. In view of Corollary 1.7 it suffices to show x j−x ⋚− j 0. Equivalently, for all z j , z :≡ x j−x ,

we have z j 6⋚ j 0. We have two possibilities for z j. One is given by x j − x− j, and here we use

the assumption that x is a number. The other is given by (x j) j − x . Suppose for contradiction

(x j) j ⋚ j x . By induction hypothesis we also have x j ≶ j (x j) j , so by transitivity (Corollary 1.9)

we get x j ⋚ j x , contradicting Corollary 1.9.

Lemma 2.3. Numbers are a subgroup of games.

Proof. The hardest part is to show that the numbers are closed under addition. If x , y are

numbers then wlog the options of z :≡ x+ y are x j+ y and by Proposition 2.2 and Corollary 1.9

we have z = x + y ≶ j x j + y = z j . We conclude using transitivity of ≶ j .

Corollary 2.4. Numbers are totally ordered by ≤.

Proof. By Lemma 2.3 it suffices to show that numbers are comparable to 0. Fix j ∈ {±1}. If we

have x j ⋚ j 0 for some option then by Proposition 2.2 and transitivity (Corollary 1.9) we obtain

x ⋚ j 0. Otherwise by definition we have x ⋚− j 0.

Theorem 2.5 (Simplest Form). Let x be a game and z a number. If z 6⋚ j x− j for all options of x,

but no option of z satisfies this condition, then z = x.

Proof. Suppose z j ⋚−α xα. If α = − j, then by Proposition 2.2 we get z ≶ j z j ⋚ j x− j, so by

transitivity z ⋚ j x− j , contradicting the hypothesis. So we must have α= j. Hence x , z satisfy

the assumptions of Lemma 1.11 for j = ±1.
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2.1 Multiplication

Theorem 2.6. Let x , y, y ′ be numbers. Then

1. x y is a number.

2. For every option xα of x we have

(y − y ′)≶ j 0 =⇒ (x − xα)(y − y ′)≶α j 0

3. We have

(y − y ′) = 0 =⇒ x(y − y ′) = 0

Claim 3 in particular shows that multiplication is well-defined modulo =.

Proof. The theorem is proved by induction on a relation ≺′ on tuples (x , {y, y ′}) consisting of

a number and an unordered pair of numbers. The relation ≺′ is the smallest transitive relation

for which the following elements precede (x , {y, y ′}):

( x̃ , {y, y ′}), x̃ ≺ x

(x , { ỹ , y ′}), ỹ ≺ y

(x , { ỹ , ỹ ′}), ỹ ≺ y, ỹ ′ ≺ y

(y, { x̃ , x̃ ′}), x̃ ≺ x , x̃ ′ ≺ x .

Using the axiom of choice it is not hard to verify that the relation ≺′ is in fact transitive.

Question: do we need choice here?

Proof of claim 1 By Claim 1 in the inductive hypothesis and Lemma 2.3 all options of x y

are numbers. It remains to verify (x y)1 6≥ (x y)−1 or, equivalently,

−(x − xα)(y − yβ )< −(x − xγ)(y − yδ)

provided αβ = 1, γδ = −1. This is equivalent to

(x − xα)(y − yβ )− (x − xγ)(y − yδ)> 0.

This is symmetric in simultaneously permuting γ,δ and x , y, so assume γ = 1, δ = −1. By

Lemma 1.6 and Lemma 1.14 the left-hand side is

= (xγ − xα)(y − yβ ) + (x − xγ)(−yβ + yδ) = (x − xα)(yδ − yβ ) + (−xα + xγ)(y − yδ).

If α = β = 1 then both products involving x − x1 are > 0 and at least one of the products

involving (xγ − xα) is ≥ 0 by Claims 2 and 3 in the inductive hypothesis. If α= β = −1 then

similarly both products involving y − y−1 are > 0 and one of the other products is ≥ 0. In any

case we have obtained at least one expression that is > 0.

Proof of claim 2 In case y ≶ j y ′ we have y ⋚ j ỹ ⋚ j y ′ for ỹ an option of either y or y ′ and

we split

(x − xα)(y − y ′) = (x − xα)(y − ỹ) + (x − xα)( ỹ − y ′).

One of the products (in which ỹ replaces its parent) is ⋚α j 0 by Claims 2 and 3 in the inductive

hypothesis. The other product (in which ỹ figures along with its parent) is ≶α j 0 since x y, x y ′

are numbers, see Claim 1.
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Proof of claim 3 The options of x(y − y ′) are

xα(y − y ′) + x(y − y ′)β − xα(y − y ′)β . (2.7)

By the Simplest Form Theorem 2.5 it suffices to show that these options are ≶−αβ 0. The first

term is = 0 by Claim 3 in the inductive hypothesis. The second and the third term combine to

= (x − xα)(y − y ′)β ,

and the latter bracket has the form (y− y ′)β ≡ ỹ− ỹ ′ ≶−β y− y ′ = 0 with a pair ( ỹ , ỹ ′) strictly

preceding (y, y ′). Hence the product is ≶−αβ 0 by Claim 2 in the inductive hypothesis.

Corollary 2.8. For any numbers x , y we have x > 0∧ y > 0 =⇒ x y > 0.

Proof. Define a number x ′ by 0 ∈1 x ′ and xα ∈α x ′. Then x = x ′ by the Simplest Form

Theorem 2.5, so x y = x ′ y . Now 0 ∈1 x ′, so x ′ y > 0 follows from Claim 2 in Theorem 2.6.

Thus numbers modulo = form a totally ordered Integral Domain.

2.2 Multiplicative inverse

Definition 2.9. Let x > 0 be a number. We define 0 ∈1 x−1 and

(x−1)−αβ :≡ (1+ (xα − x)(x−1)β )(xα)
−1, xα > 0.

Lemma 2.10. 1. 1− x(x−1)α ≶α 0.

2. x−1 is a number.

3. x(x−1) = 1.

The lemma shows that non-zero Numbers have multiplicative inverses. These inverses are

well-defined modulo = because Numbers are an Integral Domain modulo =.

Proof. We induct on x .

Proof of claim 1 For the option 0 this is immediate. For the other options we have

1− x(x−1)−αβ ≡ 1− x(1+ (xα − x)(x−1)β )(xα)
−1

= (xα − x)(1− x(x−1)β )(xα)
−1

≶−αβ 0,

where we have used the fact that Numbers form an Integral Domain and the inductive hypoth-

esis.

Claim 2 follows from claim 1 and the fact that multiplication by the positive number x is an

order-preserving operation on Numbers.

6

mailto:pzorin@uni-bonn.de


Three fields of equivalence classes of games

June 21, 2015

Pavel Zorin-Kranich

pzorin@uni-bonn.de

Proof of claim 3 For the options of x(x−1) we have

(x(x−1))αβ − 1≡ xα(x
−1) + x(x−1)β − xα(x

−1)β − 1

If xα > 0 then we write this as

= xα(x
−1)− (1+ (xα − x)(x−1)β )

= xα(x
−1)− xα(1+ (xα − x)(x−1)β )(xα)

−1

= xα(x
−1)− xα(x

−1)−αβ

= xα(x
−1 − (x−1)−αβ )

≶−αβ 0.

If xα ≤ 0 then we write the above as

= xα((x
−1)− (x−1)β )− (1− x(x−1)β ).

Both brackets are ≶β 0 by claims 2 and 1, respectively, so by monotonicity of multiplication we

obtain that the expression is ≶−β 0. Since in this case necessarily α= 1 we obtain altogether

(x(x−1))αβ − 1≶−αβ 0.

The Simplest Form Theorem 2.5 now implies either x(x−1) = 1 or x(x−1) = 0. But in the latter

case we would have x−1 = 0, since Numbers are an Integral Domain, which contradicts the

fact that 0 is by definition an option of x−1.

3 Dyadic numbers

Since numbers form a totally ordered Field, they contain a unique copy of the dyadic rationals.

As a ring this copy is generated by 1
2 :≡ {0|1} (we have 1

2 +
1
2 ≡ {0 +

1
2 |1 +

1
2} = 1 by the

Simplest Form Theorem 2.5, so this notation makes sense).

Lemma 3.1. For every m ∈ Z we have m⋚ j 0 =⇒ m= z, where z is the number with the only

option m− j :∈ j z. We also have m
2n = {

m−1
2n |

m+1
2n } for all m ∈ Z and n ∈ N.

Proof. In the first claim we induct on m. For m = 0 this follows from the Simplest Form

Theorem 2.5. For positive m we have

(m− 1) + 1= {m− 2|}+ {0|}= {m− 2, m− 1|}= {m− 1|}

by the Simplest Form Theorem 2.5. Negative m are handled analogously.

The second claim for n = 0 and arbitrary m follows from the first claim by the Simplest

Form Theorem 2.5. Suppose now that it is valid for some n. Let z :≡ {m−1
2n+1 |

m+1
2n+1 }. Then

z + z ≡ {
m− 1

2n+1
+ z|

m+ 1

2n+1
+ z}.

Since m−1
2n+1 < z < m+1

2n+1 , by the Simplest Form Theorem 2.5, and by the inductive hypothesis we

obtain

z + z = {
m− 1

2n+1
+

m− 1

2n+1
|
m+ 1

2n+1
+

m+ 1

2n+1
}= {

m− 1

2n
|
m+ 1

2n
}=

m

2n
,

so z = m
2n+1 as required.
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Theorem 3.2. Let D ⊂ No be the minimal subring with L, R ⊂ D finite, L < R =⇒ {L|R} ∈ D.

Then D is generated by 1
2 modulo =.

Proof. Note that by the Simplest Form Theorem 2.5 it suffices to consider one-element subsets

of D in the above recursive definition of D. Thus it suffices to show that for any dyadic numbers
m
2n , m′

2n , m< m′ the number z :≡ { m
2n |

m′

2n } is again dyadic. If z = m′′

2n for some m< m′′ < m′, then

we are done. Otherwise by the pigeonhole principle we have

k

2n
< z <

k+ 1

2n

for some m≤ k < m′. It follows from the Simplest Form Theorem 2.5 that

z = {
k

2n
|
k+ 1

2n
},

and the latter is = 2k+1
2n+1 by Lemma 3.1.

4 Real numbers

Let D ⊂ No be a subring with 1 ∈ D.

Definition 4.1. The set of strictly positive numbers in D is denoted by D+. The standard part

of a number x is the number with the options

st(x)α = x −αq, q ∈ D+.

A number x is called infinitesimal (x ∈ I) if

∀q ∈ D+ : − q < x < q.

A number x is called limited (x ∈ L) if

∃q ∈ D+ : − q < x < q.

It is easy to see that the standard part of a number is indeed a number.

We make the qualitative assumption ∀q ∈ D, q > 0∃r, r ′ ∈ D : 0 < r < q−1 < r ′. The

simplest example is the set of numbers with finite birthday (equivalently, the subring generated

by 1
2 ; the latter equivalence is not entirely trivial).

Lemma 4.2. L ⊂ No is a subring. I ⊂ L is an ideal.

Proof. The hardest part is to show x y ∈ I provided x ∈ I, y ∈ L. Without loss of generality

x , y > 0. We have y < Q ∈ D+ and there exists r ∈ D+ with r < Q−1. Let q ∈ D+. Then

x < qr < qQ−1, so x y < xQ < q as required.

Lemma 4.3. For every number x the difference st x − x is infinitesimal.

Proof. The difference st x − x is a number and its options include

(st x − x)α = st(x)α − x = (x −αq)− x = −αq.

In particular, the left options contain −D+ and the right options contain D+.
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Lemma 4.4. Suppose that the options of z differ from the options of st(x) at most by infinitesimal

numbers. Then z = st(x).

Proof. The right options of x correspond to q ∈ D+. For a given q ∈ D+ take r ∈ D+ with r < q,

then

x + q > x + r + ε

for any ε ∈ I, and in particular x + q is greater than a right option of z, so it is greater than z.

The analogous argument for left options shows that z satisfies the condition in Theorem 2.5.

Conversely, every option of z has the form x −αa, a ∈ D+ + I, so it is separated from x by an

option of x and does not satisfy the condition in Theorem 2.5.

Corollary 4.5. For every number x we have st(st(x)) = st(x).

Proof. On the left-hand side we have the options

(st(st(x)))α = st(x)−αq,

and by Lemma 4.3 they differ at most infinitesimally from the options on the right-hand side.

Lemma 4.4 concludes the proof.

Lemma 4.6. The standard part function is an additive group homomorphism.

Proof. We have the easy identity

st(−x) = −(st x),

and in particular st(0) = 0. It remains to show

x + y + z = 0 =⇒ st x + st y + st z = 0.

Up to permutation of x , y, z the options have the form

(st x + st y + st z)α = x −αq+ st y + st z.

By Lemma 4.3 this is an element of

x + y + z −αq+ I= −αq+ I.

This implies st x + st y + st z = 0 by Lemma 4.4.

Corollary 4.7. ker st= I.

Proof. Inclusion “⊇” is given by Lemma 4.4 and inclusion “⊆” by Lemma 4.3.

Lemma 4.8. The standard part function preserves L and is multiplicative on L.

Proof. st(L) ⊂ L is clear. Let x , y ∈ L. Then by Lemma 4.3 we have

(st(x) st(y))αβ = (x −αq) st(y) + st(x)(y − β r)− (x −αq)(y − β r)

∈ (x −αq)y + x(y − β r)− (x −αq)(y − β r) + I

= x y −αβqr + I.

Hence the options of st(x) st(y) differ from the options of st(x y) at most by infinitesimals, and

this implies equality by Lemma 4.4.

Definition 4.9. Let R := fixst∩L (equivalently, R = st(L)).
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Proposition 4.10. R is a subfield of No.

Proof. Standard part preserves L, fixes 1, and is a ring homomorphism on L, so R is a subring.

It remains to show that for each x ∈ R \ {0} we have x−1 ∈ R (inverse taken in No). Without

loss of generality suppose x > 0. By Corollary 4.7 we have x 6∈ I. In particular, x ≥ q for some

q ∈ D+. Hence x−1 ≤ q−1 < r for some r ∈ D+, so that x−1 ∈ L. By Lemma 4.8 we have

st(x−1)x = st(x−1) st(x) = st(x−1 x) = st(1) = 1,

so st(x−1) = x−1 as required.

Lemma 4.11. Suppose that D has the Archimedean property and contains the dyadic numbers.

Then D is order dense in R.

Proof. Let x , y ∈ R with x > y . Without loss of generality suppose also y > 0. By Lemma 4.7

there exists q ∈ D+ with x − y > q. By the Archimedian property we have x − y > 2−m for

some m ∈ N. Moreover, since x ∈ L and by the Archimedian property, we also have x < N for

some N ∈ N. It follows that there is a number of the form k/2m+1, k ∈ N, k ≤ 2m+1N , between

x and y . Moreover, this number is contained in D.

In particular, under the hypothesis of this lemma R can be identified with a set of Dedekind

cuts of D, ensuring that R is a set (and not a proper class).

Lemma 4.12. x ≥ 0 =⇒ st(x)≥ 0.

Proof. Suppose st(x) 6≥ 0. Then there is a right option st(x)−1 ≤ 0. By definition of the standard

part we have x + q ≤ 0 for some q ∈ D+, and in particular x < 0, a contradiction.

Proposition 4.13. The field R is order complete.

Proof. Let L ⊂ R be a bounded above set and let R ⊂ R be the set of all upper bounds for L. If

L contains a maximum then there is nothing to show. Otherwise let z := {L|R}. Then z is a

limited number and we have l < z < r for all l ∈ L, r ∈ R. By Lemma 4.12 and Lemma 4.6 it

follows that l ≤ st z ≤ r, so st z is in fact the supremum of L.

5 Nimbers

Definition 5.1. In an impartial game the set of left options coincides with the set of right

options and both sets consist of impartial games. All impartial games are constructed in this

way.

The impartial games form a Subgroup of games. By induction every impartial game is its

own additive inverse. Options of an impartial game x will be denoted by x ′.

Lemma 5.2. For every impartial game x exactly one of the following holds.

1. For all options we have x ′ 6= 0, and then x = 0, or

2. there is an option with x ′ = 0, and then x 6⋚ j 0, j = ±1, and in particular x 6= 0.

In particular, any two impartial games are either equal or incomparable under ≤.
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Proof. We argue by induction on x . The two statements about the options are complementary,

so it remains to verify the consequences about x . Recall that by definition

x ⋚ j 0 ⇐⇒ ∀x ′(x ′ 6⋚− j 0).

Hence if the second option holds, then x 6⋚ j 0 for j = ±1 as claimed. On the other hand, if

the first option holds for x , then for each option x ′ the second option holds, and in particular

x ′ 6⋚− j 0, j = ±1. It follows that x ⋚ j 0, j = ±1, as claimed.

Lemma 5.3. Let x , y be impartial games. Then x y is an impartial game and x y 6= 0 ⇐⇒ x 6=

0∧ y 6= 0.

In view of Lemma 5.2 and Lemma 1.14 this shows that multiplication is well-defined modulo

= on impartial games.

Proof. We induct on the pair (x , y). The options of x y are

(x y)′ ≡ x ′ y + x y ′ − x ′ y ′,

and, since the summands are impartial by the inductive hypothesis, this shows that x y is

impartial.

Suppose first x 6= 0, y 6= 0. Then there exist options x ′ = y ′ = 0. By the inductive

hypothesis we obtain an option

(x y)′ ≡ x ′ y + x y ′ − x ′ y ′ = 0,

and it follows that x y 6= 0.

Suppose now x = 0. Then by the inductive hypothesis and Lemma 1.14 every option of x y

has the form

(x y)′ ≡ x ′ y + x y ′ − x ′ y ′ = x ′(y − y ′).

We have to show that this is 6= 0 in order to conclude x y = 0. To this end note that there is an

option x ′′ = 0 and an option (y − y ′)≡ y ′ − y ′. It follows that the impartial game x ′(y − y ′)

has the option

x ′′(y − y ′) + x ′(y ′ − y ′)− x ′′(y ′ − y ′).

By Lemma 1.14 this is

= x ′′ y − x ′′ y ′ + x ′ y ′ − x ′ y ′ − x ′′ y ′ − x ′′ y ′ = x ′′ y − x ′′ y ′,

and this is = 0 by the inductive hypothesis. Hence x ′(y − y ′) 6= 0 as claimed.

The case y = 0 is analogous to x = 0.

We see that impartial games form an Integral Domain modulo =. A mulitplicative identity

is ∗1 :≡ {0|0} (the identity y(∗1)≡ y can be seen by induction).

Lemma 5.4. Let x 6= 0 be an impartial game. Define an impartial game x−1 by

0 ∈ x−1, (x−1)′ ∈ x−1, 0 6= x ′ ∈ x =⇒ (∗1+ (x ′ − x)(x−1)′)(x ′)−1 ∈ x−1.

Then x−1 x = ∗1.
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Proof. By induction on x .

As in the proof of claim 3 in Lemma 2.10 (using Corollary 1.7 and the fact that impartial

games form an Integral Domain) we see that the options of x−1 x are 6= ∗1.

Moreover, since 0 ∈ x−1, we have x−1 6= 0, so x−1 x 6= 0. It follows that some option of

x−1 x is = 0. Applying Lemma 1.11 with z = ∗1 we obtain the claim.

Hence impartial games modulo = form a Field (of characteristic 2).

Recall that the Sprague–Grundy theorem (see e.g. [Sie13]) states that every finite impartial

game is equal to a nimber. This is proved using the mex rule and the substitution rule. Note that

the mex rule follows immediately from Lemma 1.11 and the substitution rule from Lemma 1.12.
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