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The purpose of this note is to show that a compact extension of a measure-preserving

dynamical system is isometric (Theorem 22). The main step in the proof is Lemma 20 that

shows that every function f on the extension correlates with a generalized eigenfunction unless

f is conditionally weakly mixing.

Our tools are Lemma 7 and measurable functional calculus.

We denote by π : (X ,X ,µ, T )→ (Y,Y ,µ, T ) a factor map of measure-preserving dynamical

systems. We usually identify Y with a subalgebra of X .

In most of the text we assume that Y is ergodic and T is invertible on X . We also assume

that X is a regular measure space, so that we can take advantage of measure disintegration.

We begin with a review of results that we shall use.

Conditional expectation

Definition 1. The conditional expectation is the orthogonal projection

E(·|Y ) : L2(X )→ L2(Y ).

Lemma 2. The conditional expectation has the following properties.

1. E(1|Y ) = 1.

2.
∫

E( f |Y ) =
∫

f for f ∈ L1(X ).

3. Let f ∈ L2(X ) and F ∈ Y . Then E( f 1F |Y ) = E( f |Y )1F .

4. Conditional expectation maps positive functions in L1(X ) to positive functions.

5. E : L∞(X )→ L∞(Y ) is a contraction.

6. E : L1(X )→ L1(Y ) is a contraction.

7. Assume that f ∈ L1(X ), g ∈ L0(Y ) and either f g ∈ L1(X ) or f ≥ 0,E( f |Y )g ∈ L1(Y ).

Then

E( f g|Y ) = E( f |Y )g in L1(Y ).

This is of course well-known but it is important to have the weakest possible assumptions

in (7).

Proof. (1) holds since 1 ∈ L2(Y ).

(2) holds for f ∈ L2(X ) since
∫

E( f |Y ) =



E( f |Y ), 1
�

=



f ,E(1|Y )
�

=



f , 1
�

=
∫

f .

For (3) use that the orthogonal projection minimizes the distance.

To show (4) let 0 ≤ f ∈ L2(X ) and F = {E( f |Y ) < 0}. Then || f 1F − 0|| < || f 1F −
1FE( f |Y )||= || f 1F −E( f 1F |Y )||, which is a contradiction, unless F = ;.

To show (5) use (4) and (1).

Since E is self-adjoint and L∞(X ) ⊂ L2(X ) this implies (6). Thus it can be extended to

a contraction L1(X )→ L1(Y ) by continuity. The properties (2) and (4) continue to hold for

f ∈ L1(X ).

Consider now (7). By linearity we obtain E( f g|Y ) = E( f |Y )g for f ∈ L2(X ) and simple

functions g ∈ L∞(Y ). By density we may weaken the assumption to f ∈ L1(X ). The monotone

convergence theorem shows that the same holds whenever g ∈ L0(Y ) is such that f g ∈ L1(X )

and E( f |Y )g ∈ L1(Y ).
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By (4), the monotone convergence theorem, (2) and monotone convergence theorem again

we see that

∫

|E( f |Y )g| ≤
∫

E(| f ||Y )|g|= lim
k

∫

E(| f ||Y )|gk|= lim
k

∫

E(| f ||gk||Y ) = lim
k

∫

| f ||gk|=
∫

| f g|,

where gk denotes the truncation of g by k. Hence f g ∈ L1(X ) implies that E( f |Y )g ∈ L1(Y ).

Moreover, if f ≥ 0 then the inequality turns into an equality and we obtain the converse

implication.

Conditional almost periodicity (in measure)

We mostly follow Tao’s conventions and exposition [3] 1.

Definition 3. The conditional scalar product of f , g ∈ L2(X ) is




f , g
�

L2(X |Y ) := E( f ḡ|Y ) ∈ L1(Y )

and the conditional norm of f ∈ L2(X ) is

‖ f ‖L2(X |Y ) :=



f , f
�1/2

L2(X |Y ) = E(| f |
2|Y )1/2 ∈ L2(Y ).

The space L2(X |Y ) is the space of f ∈ L2(X ) such that ||‖ f ‖L2(X |Y )||L∞(Y ) is finite.

The space L2(X |Y ) is a L∞(Y )-module. A finitely generated submodule is a set f1 L∞(Y ) +
· · ·+ fn L∞(Y ) with some f1, . . . , fn ∈ L2(X |Y ). A finitely generated module zonotope is a set

f1B + · · ·+ fnB with some f1, . . . , fn ∈ L2(X |Y ), where B = BL∞(Y ) is the closed unit ball of

L∞(Y ).

Definition 4. A subset E ⊂ L2(X |Y ) is said to be conditionally precompact if for every ǫ > 0

there exists a finitely generated module zonotope Z ⊂ L2(X |Y ) such that E lies within the

ǫ-neighborhood of Z for the norm |||| · ||L2(X |Y )||L∞(Y ).
A function f ∈ L2(X |Y ) is said to be conditionally almost periodic if its orbit under T is

conditionally precompact.

A function f ∈ L2(X |Y ) is said to be conditionally almost periodic in measure if for every

ǫ > 0 there exists a subset E ⊂ Y of measure at least 1−ǫ such that f 1E is conditionally almost

periodic.

The extension X → Y is called compact if every function in L2(X |Y ) is conditionally almost

periodic in measure.

Lemma 5. The subset of c.a.p. functions CAP(X |Y, T) ⊂ L2(X |Y ) is a shift-invariant L∞(Y )-
module that contains the constants. It is closed for the L2(X |Y ) norm.

The subset of c.a.p.m. functions CAPM(X |Y, T )⊂ L2(X |Y ) is a shift-invariant L∞(Y )-module

that contains the constants. It is the closure of CAP(X |Y, T ) in L2(X |Y ) for the L2(X ) norm.

The notation CAP and CAPM is not standard. We shall also write CAP(X |Y ) of just CAP

instead of CAP(X |Y, T ) and analogously for CAPM if no confusion can arise. We usually confine

ourselves to proving resultss about real-valued c.a.p. or c.a.p.m. functions, the extension to the

complex-valued case should not be difficult.

1see http://terrytao.wordpress.com/2008/02/27/254a-lecture-13-compact-extensions/
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Proof. That the two sets are shift-invariant L∞(Y )-modules and contain the constants is clear

from definitions. Denseness of the former in the latter in the L2(X ) norm also follows from the

definition.

The only non-trivial assertion is the closedness of CAPM(X |Y, T)⊂ L2(X |Y ) in the L2(X )

norm.

Let fn be a sequence of c.a.p.m. functions that converges in L2(X ) norm to f ∈ L2(X |Y ).
Let ǫ > 0 be given and find for each fn a measurable set An ⊂ Y with measure at least 1− ǫ/2n

such that fn1An
is c.a.p.

Let A := ∩nAn. This is a set of measure at least 1 − ǫ. Furthermore fn1A → f 1A in

L2(X ). This implies || fn1A − f 1A||L2(X |Y ) → 0 in L2(Y ). Passing to a subsequence we may

assume uniform convergence on a measurable set B ⊂ Y of measure at least 1− ǫ. Therefore

fn1A1B → f 1A1B in L2(X |Y ).
Since the c.a.p. functions form a L∞(Y )-module we see that the functions fn1A1B are c.a.p.,

so that f 1A1B is also c.a.p. Since ǫ is arbitrary the function f is c.a.p.m. by definition.

The main difficulty in dealing with CAPM is that L∞(X ) is in general not dense in L2(X |Y )
for the norm |||| · ||L2(X |Y )||L∞(Y ). Example: Y = [0,1], X = Y × [0,1], f (y, z) = 1z<y y−1/2 ∈
L2(X |Y ) cannot be approximated by bounded functions.

This problem is addressed by Lemma 8. From now on we make the standing assumption

that Y is ergodic and T is invertible on X . We also assume that X is a regular measure space,

so that we can take advantage of measure disintegration.

Theorem 6 ([1, Theorem 5.8]). Suppose that X is a regular measure space. Then there exists an

essentially unique measurable map Y →M (X ), y 7→ µy such that whenever f ∈ L1(X ) we have

f ∈ L1(X ,µy) and
∫

f dµy = E( f |Y )(y) for ν-a.e. y.

In particular
∫ ∫

f (x)dµy(x)dν(y) =
∫

f dµ whenever f ∈ L1(X ).

The essential uniqueness of the disintegration µ=
∫

µydν(y) readily implies that µT y =

Tµy .

The following technical lemma is implicitely used in [1, (6.14)] and will be useful later on.

Lemma 7. We have µπ(x) = µy for ν-a.e. y ∈ Y and µy -a.e. x ∈ X .

Proof. Since X is a regular measure space it suffices to prove µπ(x)( f ) = µy( f ) for some

countable set of bounded continuous functions f (and appropriate y , x). Hence it also suffices

to consider just one f ∈ L∞(X ). Let g = E( f |Y ) ∈ L∞(Y ). Then

∫ ∫

|g(π(x))− g(y)|2dµy(x)dν(y) =

∫ ∫

g ḡ(π(x))− 2ℜg(π(x)) ḡ(y) + g ḡ(y)dµy(x)dν(y)

=

∫ ∫

(g ḡ ◦π)(x)− 2ℜ(g ◦π)(x) ḡ(y) + g ḡ(y)dµy(x)dν(y)

=

∫ ∫

g ḡ(y)− 2ℜg(y) ḡ(y) + g ḡ(y)dν(y)

= 0

since
∫

(h ◦π)(x)dµy(x) = E(h ◦π)(y) = h(y) for a.e. y whenever h ∈ L∞(Y ).
Hence µπ(x)( f ) = g(π(x)) = g(y) = µy( f ) for a.e. y and µy -a.e. x . Note that the first

equality holds whenever π(x) lies outside of a fixed null set, hence x lies outside of a fixed

µ-null set. But a µ-null set is µy -null for a.e. y .
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Lemma 8. Let f ∈ L2(X |Y ) be c.a.p. Then the orbit of f can be approximated by finitely

generated module zonotopes spanned by bounded functions.

Proof. Fix ǫ > 0. Then there exist f1, . . . , fn ∈ L2(X |Y ) such that

orb( f )⊂ Uǫ(
∑

i

B fi).

Consider the bounded functions f k
i
= fi1{| fi |≤k}. Then | fi − f k

i
| → 0 pointwise monotonously,

hence also in L2(X ). Therefore E(| fi − f k
i
|2|Y )→ 0 in L1(Y ) monotonously. Take k so large

that E(| fi − f k
i
|2|Y ) < ǫ/n outside a set Fi of measure at most ǫ/n for all i = 1, . . . , n. Thus

we can split fi = gi + b̃i , where gi = f k
i
∈ L∞(X ) is a good function and b̃i ∈ L2(X |Y ) is a bad

function. If we set bi = b̃i1Fi
then ||||bi − b̃i ||L2(X |Y )||L∞(Y ) ≤ ǫ/n, and in particular

orb( f )⊂ U2ǫ(
∑

i

Bgi +
∑

i

Bbi).

Let K = Y \∪i Fi , this set has measure at least 1−ǫ. We have ||||1K T l f −
∑

i hi gi ||L2(X |Y )||L∞(Y ) <
2ǫ for all l and some hi ∈ B depending on l. Here ||

∑

i hi gi ||L∞(X ) ≤ kn=: M . In other words,

||||1T l K f − T−lsl ||L2(X |Y )||L∞(Y ) < 2ǫ

for every l and some functions sl uniformly bounded by M . By ergodicity of (Y, T ) the translates

T l K cover Y . Let

f̃ =
∑

l≥0

1T l K T−lsl

∏

0≤l ′<l

1T l K∁ .

Then || f̃ ||L∞(X ) ≤ M and |||| f̃ − f ||L2(X |Y )||L∞(Y ) ≤ 2ǫ. In particular we have

orb( f̃ )⊂ U4ǫ(
∑

i

Bgi +
∑

i

Bbi).

Let now N =
p

nM

ǫ
supi ||||bi ||L2(X |Y )||L∞(Y ) and E = ∪i{|bi |> N} ⊂ X . For a given n ∈ Z choose

γn
i
,βn

i
∈ B such that

||||T n f̃ −
∑

i

γn
i gi +
∑

i

βn
i bi ||L2(X |Y )||L∞(Y ) < 4ǫ.

Now we use the disintegration of measure µ=
∫

Y
µyν(y). For almost every y ∈ Y we have

||T n f̃ −
∑

i

γn
i gi +
∑

i

βn
i bi ||L2(X ,µy )

< 4ǫ

and

µy(E)≤
∑

i

µy{|bi |> N} ≤
∑

i

||bi ||2L2(X ,µy )
/N2 ≤ ǫ2M−2.

Therefore

||T n f̃ −
∑

i

γn
i gi1E∁+
∑

i

βn
i bi1E∁ ||2L2(X ,µy )

≤ ||T n f̃ −
∑

i

γn
i gi+
∑

i

βn
i bi ||2L2(X ,µy )

+||T n f̃ ||2
L∞(X )µy(E)≤ 16ǫ2+ǫ2.

This shows that

orb( f̃ )⊂ U5ǫ(
∑

i

Bgi1E∁ +
∑

i

Bbi1E∁),

and therefore

orb( f )⊂ U7ǫ(
∑

i

Bgi1E∁ +
∑

i

Bbi1E∁).

This zonotope is generated by bounded functions. Since ǫ is arbitrary we are done.
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Lemma 9. Let f ∈ CAP(X |Y, T ). Then every function of the form

f̃ (x) =







a, f (x)> a,

f (x), b ≤ f (x)≤ a,

b, f (x)< b

is also c.a.p.

Proof. Since linear combinations of c.a.p. functions are c.a.p. and constants are c.a.p. it suffices

to prove that the positive part of f is c.a.p.

By Lemma 8 we know that for every ǫ > 0 the orbit of f lies in an ǫ-neighborhood (with

respect to the L2(X |Y )-norm) of a zonotope generated by some bounded functions f1, . . . , fn.

By approximation in the supremum norm we may assume that each fi is a simple function.

Splitting each fi we may assume that they are characteristic functions with either disjoint or

equal supports. Combining identical characteristic functions we may assume that the fi ’s are

positive multiples of characteristic functions with disjoint supports.

Take hi ∈ B such that ||||T k f −
∑

i hi fi ||L2(X |Y )||L∞(Y ) < ǫ. Then ||||T k f +−
∑

i h+
i

fi ||L2(X |Y )||L∞(Y ) <
ǫ. Therefore orb f + can be approximated by the same zonotope as orb f , so that the positive

part f + is c.a.p.

Lemma 10. Let (gn) ⊂ L∞(X ) be a uniformly bounded sequence of c.a.p.m. functions that

converges in measure to g, i.e. for every ǫ > 0 the measure of {|gn− g|> ǫ} converges to zero.

Then g is c.a.p.m.

Proof. Convergence in measure and uniform boundedness imply convergence in L2(X ), so that

E(|g − gn|2|Y )→ 0 in L1(Y ). Passing to a subsequence we may assume uniform convergence

on a set A of arbitrarily large measure 1− δ. Shrinking A slightly (by at most δ) we may

assume that each gn1A ∈ CAP. Furthermore, gn1A→ g1A in L2(X |Y ), hence g1A ∈ CAP. Since

δ was arbitrary, g ∈ CAPM by definition.

Lemma 11. Let f ∈ CAPM. Then the indicator function of every sub- or superlevel set of f is

c.a.p.m.

Proof. Suppose that f is c.a.p. first. By translation we see that we only need to consider

F = { f > 0} and F = { f ≥ 0}.
In the former case we define

gn(x) =







0, f (x)≤ 0,

nf (x), 0< f (x)< 1/n,

1, f (x)≥ 1/n.

In the latter case we define

gn(x) =







0, f (x)≤ −1/n,

1+ nf (x), −1/n< f (x)< 0,

1, f (x)≥ 0.

In either case gn → 1F monotonously and by the monotone convergence theorem also in

measure. Moreover gn ∈ CAP by Lemma 9. Hence 1F ∈ CAPM by Lemma 10.

Suppose now that f ∈ CAPM . Let a ∈ R. Let ǫ > 0 and A be a set with measure greater

than 1− ǫ such that f 1A ∈ CAP.
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By the above the indicator function of the set { f 1A > a} is c.a.p.m., hence there exists

a set F ⊂ { f 1A > a} such that 1F is c.a.p. and µ({ f 1A > a} \ F) is at most ǫ. But then

µ({ f > a}∆F) ≤ 2ǫ. Hence 1F converges to 1{ f >a} in measure as ǫ → 0, so that 1{ f >a} is

cond.a.p. in measure by Lemma 10.

The proof for { f ≥ a} is the same.

Definition 12. Let ZX |Y denote the collection of all measurable subsets E ⊂ X such that 1E is

c.a.p. in measure.

Since the set of c.a.p.m. functions is an invariant linear subspace of L2(X ) and contains the

constants we see that ZX |Y is closed under complementation and translation by T . Lemma 11

shows that ZX |Y is closed under finite unions. Monotone convergence theorem and Lemma 10

show that ZX |Y is closed under countable unions. Clearly we have X ,; ∈ ZX |Y . Hence ZX |Y
is a shift-invariant sub-σ-algebra of X . Since every function in L∞(Y ) is c.a.p. we have

ZX |Y ⊃ π#Y .

Theorem 13. A function f ∈ L2(X |Y ) is conditionally almost periodic in measure if and only if it

is ZX |Y -measurable.

Proof. If f ∈ L2(X |Y ) is c.a.p.m. then it is ZX |Y -measurable by Lemma 11.

Conversely, a ZX |Y -measurable function in L2(X |Y ) is an L2(X )-limit of simple ZX |Y -

measurable functions, hence c.a.p.m. by Lemma 5.

Compact extensions

Furstenberg defines a compact extension in slightly different terms.

Definition 14 ([1, p. 131]). The extension X → Y is called compact if for every f ∈ L2(X )

and every ǫ,δ > 0 there exists a Y -measurable set F with measure at least 1− ǫ and finitely

many functions g1, . . . , gk such that

min
j
||T l f 1F − g j||y < δ

for every l and a.e. y ∈ Y . Equivalently, there is a dense subset D of L2(X ) such that for every

f ∈ D and every δ > 0 there exist finitely many functions g1, . . . , gk such that

min
j
||T l f 1F − g j||y < δ

for every l and a.e. y ∈ Y . (See Furstenberg’s book for proof of equivalence).

We now show that (X ,ZX |Y ,µ, T ) is the maximal compact extension of Y inside X .

By Theorem 13 and Lemma 5 we know that CAP(X |Y ) is dense in L2(ZX |Y ). By Lemma 8

we know that the orbit of every c.a.p. function can be approximated by finitely generated

module zonotopes spanned by bounded functions. Taking all possible linear combinations

of generators of the above zonotope with coefficients in a sufficiently dense finite subset of

the complex unit ball we obtain a finite set of functions for which the last condition in the

definition of a compact extension holds.

Conversely, let f ∈ L2(X ) be any function satisfying the first condition. Then f 1{|| f ||
L2(X |Y )<a}

satisfies the same condition for any a. But this function is contained in L2(X |Y ) and is c.a.p.m.

(take the zonotope spanned by the g j ’s).

By Theorem 13 we have that f 1{|| f ||
L2(X |Y )<a} is ZX |Y -measurable. But f 1{|| f ||

L2(X |Y )<a}→ f

pointwise a.e. as a→∞, so that f is also ZX |Y -measurable.

6

mailto:zorin-kranich@uva.nl


Compact extensions are isometric Pavel Zorin-Kranich, zorin-kranich@uva.nl

Generalized eigenfunctions

Definition 15 ([2, Definition 6.1]). A Y -module is a closed linear subspace M ⊂ L2(X ) such

that whenever f ∈ M and h ∈ L0(Y ) are such that hf ∈ L2(X ) then hf ∈ M .

A function f ∈ L2(X ) is called a generalized eigenfunction if orb( f ) is contained in a

T -invariant finite rank Y -module.

The space of generalized eigenfunctions is denoted by GE(X |Y, T ). It is a vector subspace of

L2(X ). Furstenberg denoted its closure by E (X |Y, T ) in [2, Definition 6.3]. If E (X |Y, T ) = L2(X )

then the extension X → Y is called isometric, [2, §8].

Lemma 16. A generalized eigenfunction is an L2(X )-limit of c.a.p.m. functions.

Proof. By truncation on Y we may assume f ∈ L2(X |Y ).
Let f ∈ L2(X ) be a generalized eigenfunction such that orb( f ) is contained in a finite rank

T -invariant Y -module M .

Let F = {|| f ||L2(X |Y ) > k} and f̃ = f 1F ∈ L2(X |Y ). If k is sufficiently large then || f − f̃ ||L2(X )

is small. Furthermore orb( f̃ ) is contained in M .

Let f1, . . . , fn ∈ L2(X ) be the generators of M . Let g : R≥0→ R be defined as

g(a) :=

(

1, a = 0

1/a, a > 0

and consider the functions g j := g ◦ || f j ||L2(X |Y ) ∈ L0(Y ). Then g j f j ∈ L2(X |Y ) and these

functions also generate M as a Y -module. Hence we may assume that f1, . . . , fn ∈ L2(X |Y ).
By the Gram-Schmidt procedure we may assume that f1, . . . , fn are orthogonal w.r.t. the

conditional scalar product. Multiplying each f j by g j := g ◦|| f j ||L2(X |Y ) ∈ L0(Y ) we may assume

that || f j ||L2(X |Y ) is zero-one-valued.

Splitting each f j and reassembling we may assume that supp|| f1||L2(X |Y ) ⊃ · · · ⊃ supp|| fn||L2(X |Y ).
Let J be the last index such that supp|| fJ ||L2(X |Y ) = Y and let F = Y \ supp|| fJ+1||L2(X |Y ).

Since T is an algebra homomorphism that commutes with E(·|Y ), T is conditionally unitary,

and in particular (T f1)|F , . . . , (T fn)|F is an orthonormal set in M |F . (TODO: be careful here) In

particular it is an orthonormal set in the J -dimensional space L2(X ,µy) for almost every y ∈ F ,

hence supp|| fJ+1||L2(X |Y ) cannot intersect F , hence F is an invariant subset, hence F = Y by

ergodicity and supp|| fJ+1||L2(X |Y ) = ;.
Thus we have obtained a conditionally orthonormal generating set of M . If now T k f̃ =
∑

j h j f j with h j ∈ L0(Y ) such that h j f j ∈ L2(X ) then

||T k f̃ ||2
L2(X |Y ) =
∑

j

|h j |2|| f j ||2L2(X |Y ) =
∑

j

|h j |2 ∈ L∞(Y )

with a bound that is uniform in k. In particular the orbit of k̃ is contained in a finitely generated

module zonotope (with some scalar multiples of f1, . . . , fn as generators). By definition f̃ is

c.a.p.

From the construction of f̃ we see that f is c.a.p.m.

Conditional weak mixing

Definition 17. A function f ∈ L2(X |Y ) is called conditionally weakly mixing if

C − lim
n
||



T n f , f
�

L2(X |Y ) ||2L2(Y )
= 0.
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Here C − lim stands for the Cesàro limit, i.e. C − limn an = limN
1

N

∑N−1

n=0 an.

The space of c.w.m. functions is denoted by CW M(X |Y, T ) (this not a standard notation).

Lemma 18. Let f ∈ CW M(X |Y, T ) and g ∈ L2(X |Y ). Then C − limn ||



T n f , g
�

L2(X |Y ) ||2L2(Y )
=

0.

This shows in particular that CW M ⊂ L2(X |Y ) is a linear subspace.

Proof. Note that



g, T n f
�

L2(X |Y ) is uniformly bounded in L∞(Y ) by conditional Cauchy-

Schwarz.

1

N

N−1
∑

n=0

||



T n f , g
�

L2(X |Y ) ||2L2(Y )
=

1

N

N−1
∑

n=0

∫

Y




g, T n f
�

L2(X |Y )



T n f , g
�

L2(X |Y )

=
1

N

N−1
∑

n=0

∫

Y

¬



g, T n f
�

L2(X |Y ) T n f , g
¶

L2(X |Y )

=

*

1

N

N−1
∑

n=0




g, T n f
�

L2(X |Y ) T n f , g

+

L2(X )

We wish to apply the van der Corput lemma. For this it suffices to show that

C − lim
h

C − sup
n
|
D




g, T n f
�

L2(X |Y ) T n f ,
¬

g, T n+h f
¶

L2(X |Y ) T n+h f
E

L2(X )
|= 0.

Indeed, the scalar product can be estimated as follows

. . .= |
∫

X




g, T n f
�

L2(X |Y ) T n f
¬

g, T n+h f
¶

L2(X |Y )T
n+h f̄ dµ|

= |
∫

Y




g, T n f
�

L2(X |Y )
¬

g, T n+h f
¶

L2(X |Y )E(T
n f T n+h f̄ |Y )dν |

≤ C |
∫

Y

E(T n f T n+h f̄ |Y )dν |

= C |
∫

Y

E( f Th f̄ |Y )dν |

≤ C

�∫

Y

|E( f Th f̄ |Y )|2dν

�1/2

= C ||
¬

f , Th f
¶

L2(X |Y ) ||L2(Y ).

The convergence to zero in Cesaro sense follows from definition of conditional weakly mixing

and uniform boundedness of this sequence.

Lemma 19. Let f ∈ CW M(X |Y, T ) and g ∈ CAP(X |Y, T ). Then f ⊥L2(X |Y ) g.

Proof. Let g1, . . . , gr ∈ L2(X |Y ) generate a module zonotope Z such that g lies within ǫ of Z .

By Lemma 18 we have

C − lim
n
||



T n f , gi

�

L2(X |Y ) ||L2(Y ) = 0

for every i. Multiplying gi by a function in BL∞(Y ) can only improve the rate of convergence.

Therefore

C − lim
n
||



T n f , T n g
�

L2(X |Y ) ||L2(Y ) ≤ ǫ.
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But the sequence on the left-hand side is identically ||



f , g
�

L2(X |Y ) ||L2(Y ) and ǫ > 0 is arbitrary.

Hence ||



f , g
�

L2(X |Y ) ||L2(Y ) = 0.

Lemma 20. If f ∈ L2(X |Y ) \ CW M(X |Y, T ) then f 6⊥L2(X ) GE(X |Y, T ).

Proof. Fix a measurable representative for f defined everywhere. By the hypothesis

limsup
n

1

N

N−1
∑

n=0

||



T n f , f
�

L2(X |Y ) ||2L2(Y )
> 0.

Passing to a subsequence we may assume that the limit exists and is positive. Applying the mean

ergodic theorem to the fiber product X ×Y X we obtain a T -invariant function H ∈ L2(X ×Y X )

such that 1

N

∑N−1

n=0 T n f̄ ⊗ T n f → H. This means that

∫ ∫

�

�

�

�

�

1

N

N−1
∑

n=0

T n f̄ ⊗ T n f − H

�

�

�

�

�

2

d(µy ×µy)dν(y)→ 0.

Fix a representative for H. Passing to a subsequence we may assume that

∫

�

�

�

�

�

1

N

N−1
∑

n=0

T n f̄ ⊗ T n f − H

�

�

�

�

�

2

d(µy ×µy)→ 0 (21)

for almost every y ∈ Y . In particular
∫

|H|2d(µy × µy) ≤ |||| f ||L2(X |Y )||2L∞(Y ) uniformly in y.

Moreover we may assume that H̄(x , x ′) = H(x ′, x).

For almost every y we can define an operator Sy g(x) :=
∫

H(x ′, x)g(x ′)dµy(x
′) on

L2(X ,µy). By (21) almost every operator Sy is a Hilbert-Schmidt limit of finite rank operators

and its Hilbert-Schmidt norm is uniformly bounded by M = |||| f ||L2(X |Y )||L∞(Y ).
Let L 2(X ) be the space of a.e. defined square integrable function on X (not equivalence

classes). Define an operator S onL 2(X ) by the formula Sg(x) = Sπ(x)g(x)
2. Lemma 7 implies

that
∫ ∫

|Sg(x)− Sy g(x)|2dµy(x)dν(y)

=

∫ ∫ �

�

�

�

∫

H(x ′, x)g(x ′)dµπ(x)(x
′)−
∫

H(x ′, x)g(x ′)dµy(x
′)

�

�

�

�

2

dµy(x)dν(y) = 0,

so that Sg = Sy g in L2(X ,µy) for a.e. y .

Note that the operator S passes to a bounded linear operator on L2(X ) since

||Sg||2
L2(X )

=

∫

|Sg|2dµ

=

∫ ∫

|Sg(x)|2dµy(x)dν(y)

=

∫ ∫

|Sy g(x)|2dµy(x)dν(y)

≤
∫

M2

∫

|g(x)|2dµy(x)dν(y)

= M2||g||2
L2(X )

.

2Furstenberg [1, (6.13)] writes H ∗ g for Sg
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Using T -invariance of H we check that the operator S commutes with T .

ST g(x) = Sπ(x)T g(x)

=

∫

H(x ′, x)T g(x ′)dµπ(x)(x
′)

=

∫

H(T x ′, T x)g(T x ′)dµπ(x)(x
′)

=

∫

H(x ′′, T x)g(x ′′)dµπ(T x)(x
′′)

= Sg(T x).

Note also that




S f , f
�

L2(X ) =

∫ ∫

H(x ′, x) f (x ′) f̄ (x)dµπ(x)(x
′)dµ(x)

=

∫ ∫ ∫

H(x ′, x) f (x ′) f̄ (x)dµπ(x)(x
′)dµy(x)dν(y)

= lim
N

∫ ∫ ∫

1

N

N−1
∑

n=0

T n f̄ (x ′)T n f (x) f (x ′) f̄ (x)dµπ(x)(x
′)dµy(x)dν(y)

= lim
N

1

N

N−1
∑

n=0

∫

|



T n f , f
�

L2(X |Y ) (y)|2dν(y)

> 0.

The operators S and Sy are self-adjoint by construction. By the measurable functional

calculus there exists a constant a > 0 such that



p(S)S f , f
�

L2(X ) 6= 0, where p = χ[−a,a]∁ .

Let pn be a sequence of polynomials such that pn(−a) = 0= pn(a) and pn→ p pointwise

and boundedly on [−M , M] and uniformly on [−M ,−a− ǫ]∪ [−a, a]∪ [a+ ǫ, M] for every

ǫ. Since Sy are self-adjoint Hilbert-Schmidt operators on Hilbert spaces, σ(Sy) \ {0} is discrete.

By the continuous functional calculus pn(Sy) converges in the operator norm topology to the

projection onto the linear span of the eigenspaces of Sy with eigenvalues outside [−a, a].

Recall that the Hilbert-Schmidt norm of Sy is uniformly bounded. Therefore the number of

eigenspaces to eigenvalues with absolute value at least a is also uniformly bounded. Therefore

the rank of p(Sy) is uniformly bounded. Moreover pn(S) → p(S) in the strong operator

topology by the measurable functional calculus.

Let g ∈ L 2(X ). For a.e. y and every n we have pn(S)g = pn(Sy)g in L2(X ,µy). Here

the right-hand side converges in L2(X ,µy). The left-hand side converges in L2(X ), so we can

pass to a subsequence such that the convergence is pointwise µ-almost everywhere, hence

also pointwise µy -a.e. for a.e. y. Therefore the two limits coincide µy -a.e. for a.e. y, i.e.

p(S)g = p(Sy)g in L2(X ,µy).

The L∞(Y )-module p(S)(L2(X |Y )) ⊂ L2(X |Y ) has finite rank. In fact, using cutoffs in

Y we can construct a sequence ( fn) ⊂ L2(X |Y ) such that supp||p(S) fn||L2(X |Y ) has maximal

measure subject to the condition that p(S) fn+1 6∈ lin(p(S) f1, . . . , p(S) fn) in L2(X ,µy) for a.e.

y ∈ supp||p(S) fn||L2(X |Y ). Since the rank of p(Sy) is uniformly bounded we conclude that

this sequence must become identically zero after a finite number of terms. A Gram-Schmidt

procedure provides a finite sub-orthonormal base.

It remains to be shown that p(S)(L2(X |Y )) is T -invariant. But pn(S)→ p(S) strongly and

each of pn(S) commutes with T . Hence p(S) commutes with T as an operator on L2(X ).
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Hence p(S)S f is a generalized eigenfunction that correlated with f .

Theorem 22. The closures of GE(X |Y, T), CAP(X |Y ) and CAPM(X |Y ) in L2(X ) coincide and

are equal to L2(X ,ZX |Y ,µ) and E (X |Y ).
In particular every compact extension is isometric.

Proof. The space CAP is a dense subspace of CAPM for the L2(X ) norm by monotone conver-

gence. Both have closure L2(X ,ZX |Y ,µ) by Theorem 13. The inclusion GE ⊂ CAPM
L2(X )

is

given by Lemma 16.

By Lemma 19 we have CW M ⊥L2(X |Y ) CAP, hence also CW M ⊥L2(X |Y ) CAPM , hence also

CW M ⊥L2(X ) CAPM .

Let 0 6= f ∈ L2(X ,ZX |Y ,µ) and let F be a sublevel set of |E( f |Y )| such that the truncation

f̃ = f 1F does not vanish identically. Then f̃ ∈ CAPM by Theorem 13, hence f̃ 6∈ CW M .

By Lemma 20 the function f̃ correlates with some generalized eigenfunction g. But then

g1F is also a generalized eigenfunction and f correlates with g1F .

Hence the orthogonal complement of GE in L2(X ,ZX |Y ,µ) consists only of the zero, and

we are done.

Zimmer’s definition of (relatively) discrete spectrum [6, II.4] differs from Furstenberg’s

definition of an isometric extension (Definition 15) in that the finite rank invariant submodules

(corresponding to finite dimensional invariant subbundles) that span the space must be

mutually orthogonal. But this can be achieved by a variant of Gram-Schmidt procedure.

A structure theorem for extensions with relatively discrete spectrum was announced by

Zimmer in [4] and proved in [6, Theorem 4.3]. In [5] he studies towers of isometric extensions.

The same structure theorem for isometric extensions was proved by Furstenberg [2].
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