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Literature There are two books whose titles include our topic [Gar73; Lon93]. They
can be useful for some of the basics, but are overall outdated.

For vector-valued martingales, modern references are [Hyt+16; Pis16].
The only book about sharp constants in martingale ienqualties is [Osę12].
One stochastic analysis text that pays attention to our topic is [Kal21].
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[1: 2021-10-12]

0 Review of martingale basics
Random variables will be usually defined on a filtered probability space (Ω, (ℱ𝑛)𝑛∈ℕ, 𝜇).
We denote byℱ∞ the 𝜎-algebra generated by∪𝑛∈ℕℱ𝑛. The following examples are useful
to keep in mind.
Example 0.1 (Dyadic filtration). Ω = [0, 1], 𝜇 Lebesguemeasure,ℱ𝑛 is the 𝜎-algebra gen-
erated by the dyadic intervals of length 2−𝑛, that is, intervals of the form [2−𝑛𝑘, 2−𝑛(𝑘 +
1)] with 𝑘 ∈ ℤ.

A higher dimensional version involves dyadic cubes. One can also construct similar
filtrations on more general manifolds, or even metric measure spaces.
Example 0.2 (Atomic filtrations). Ω = [0, 1], 𝜇 Lebesgue measure, ℱ𝑛 is a 𝜎-algebra
generated by finitely many intervals.

We recall that an atom for a measure 𝜇 on a 𝜎-algebra ℱ is a set 𝐴 ∈ ℱ such that
𝜇(𝐴) > 0 and, for every 𝐴′ ∈ ℱ with 𝐴′ ⊆ 𝐴, we have 𝜇(𝐴′) ∈ {0, 𝜇(𝐴)}. In an atomic
𝜎-algebra, every measurable set is a finite union of atoms.

One can view martingale analysis as analysis of atomic filtrations, if we do not al-
low any constants to depend on the filtration. All results that we are interested in can
be transferred from atomic filtrations to general filtrations. However, it is technically
convenient to always use general filtrations, since they can appear in applications.
Example 0.3. Ω = [0, 1]ℕ, 𝜇 the product of Lebesgue measures,

ℱ𝑛 = {𝐵 × [0, 1]{𝑛,𝑛+1,…} | 𝐵 ⊆ [0, 1]{0,…,𝑛−1} Borel}. (0.1)

This filtration appears in the analysis of independent randomvariables, and gives a good
idea of how a general filtration looks like.

An adapted process is a sequence of functions (𝑓𝑛) such that, for every 𝑛 ∈ ℕ, the
function 𝑓𝑛 is ℱ𝑛-measurable.

An adapted process 𝑓 is called predictable if, for every 𝑛 > 0, the function 𝑓𝑛 is
ℱ𝑛−1-measurable.

For nested 𝜎-algebras ℱ′ ⊆ ℱ on Ω, the conditional expectation is the orthogonal
projection

𝔼(⋅|ℱ′) ∶ 𝐿2(Ω,ℱ, 𝜇) → 𝐿2(Ω,ℱ′, 𝜇).
The conditional expectation has the following properties. Here and later, all identities
and inequalities are meant to hold almost surely, unless mentioned otherwise.

1. 𝔼(1|ℱ′) = 1.

2. For every 𝑝 ∈ [1,∞], 𝔼 extends to a contraction 𝐿𝑝(ℱ) → 𝐿𝑝(ℱ′)

3. ∫𝔼(𝑓|ℱ′) = ∫𝑓 for every 𝑓 ∈ 𝐿1(ℱ).

4. Positivity: 𝑓 ≥ 0 ⟹ 𝔼(𝑓|ℱ′) ≥ 0.

5. Assume that 𝑓 ∈ 𝐿1(ℱ), 𝑔 ∈ 𝐿0(ℱ′), and either 𝑓𝑔 ∈ 𝐿1(ℱ) or 𝑓 ≥ 0, 𝔼(𝑓|ℱ′)𝑔 ∈
𝐿1(ℱ′). Then

𝔼(𝑓𝑔|ℱ′) = 𝔼(𝑓|ℱ′)𝑔 in 𝐿1(ℱ′).

Suppose that (𝑋, ℱ, 𝜇) is a regular measure space and ℱ′ ⊆ ℱ is a sub-𝜎-algebra.
Then there exists an essentially unique measurable map (𝑋, ℱ′) → ℳ(𝑋), 𝑦 ↦ 𝜇𝑦 such
that, for every 𝑓 ∈ 𝐿1(ℱ), for 𝜇-a.e. 𝑦 ∈ 𝑋 , we have 𝑓 ∈ 𝐿1(𝑋, 𝜇𝑦), and ∫𝑓 d𝜇𝑦 =
𝔼(𝑓|ℱ′)(𝑦). This map is called ameasure disintegration. A measure disintegration satis-
fies 𝜇𝑥 = 𝜇𝑦 for 𝜇-a.e. 𝑦 and 𝜇𝑦-a.e. 𝑥.
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Example 0.4. If ℱ′ is an atomic filtration, then we can choose a collection of disjoint
atoms 𝒜 ⊆ ℱ′ with 𝜇(∪𝐴∈𝒜𝐴) = 1. Then, for each 𝑥 ∈ 𝐴 ∈ 𝒜, we can set d𝜇𝑥 ∶=
𝜇(𝐴)−11𝐴 d𝜇, and

𝔼(𝑓|ℱ′)(𝑥) = 𝜇(𝐴)−1∫
𝐴
𝑓(𝑥′) d𝜇(𝑥′).

Example 0.5. LetΩ = [0, 1]2 with the Lebesgue measure, ℱ the Borel 𝜎-algebra, and ℱ′

the Borel 𝜎-algebra in the first variable, like in (7.5). Then, we can choose 𝜇(𝑥,𝑦) to be
the Lebesgue measure on {𝑥} × [0, 1], and

𝔼(𝑓|ℱ′)(𝑥, 𝑦) = ∫
1

0
𝑓(𝑥, 𝑦′) d𝑦′.

A martingale is an adapted process with values in ℂ (later also in a Banach space)
such that, for every𝑚 ≤ 𝑛, the function 𝑓𝑛 is integrable, and we have

𝑓𝑚 = 𝔼(𝑓𝑛|ℱ𝑚).

Example 0.6. Sums of independent random variables
Example 0.7 (Dyadic martingale). Let 𝑓 be an integrable function on [0, 1] with the
Lebesgue measure and 𝑓𝑛 = 𝔼(𝑓|ℱ𝑛) (the same definition works for any filtration).

This construction can often be used to transfer results from martingales to a real
analysis setting. The main difference between the analysis of dyadic martingales and
general martingales is that the Calderón–Zygmund decomposition does not work for
general martingales. A substitute that does work for general martingales is the Gundy
decomposition.

The main reason why this construction does not produce all possible martingales is
that it may happen that lim𝑛→∞‖𝑓𝑛‖ = ∞, in which case there might be no function 𝑓
with 𝑓𝑛 = 𝔼(𝑓|ℱ𝑛). A well-known example involves a doubling betting strategy.
Example 0.8. Any integrable process can be written as the sum of a process with pre-
dictable jumps and a martingale.

A stopping time is a function 𝜏 ∶ Ω → ℕ̄ = ℕ ∪ {∞} such that, for every 𝑛 ∈ ℕ, we
have {𝜏 ≤ 𝑛} ∈ ℱ𝑛.
Example 0.9. Any constant function is a stopping time.
Example 0.10 (Hitting time). If 𝑓 is an adapted process with values in a metric space 𝑋
and 𝐵 ⊆ 𝑋 is a Borel set, then

𝜏 ∶= inf{𝑡 | 𝑓𝑡 ∈ 𝐵}

is a stopping time, called the first hitting time of 𝐵.
If 𝜎, 𝜏 are stopping times, then 𝜎 ∧ 𝜏 and 𝜎 ∨ 𝜏 are also stopping times.
For a stopping time 𝜏 and a process 𝑓, the stopped process 𝑓𝜏 is defined by

𝑓𝜏𝑡 ∶= 𝑓𝜏∧𝑡.

If 𝑓 is a martingale, then the stopped process 𝑓𝜏 is again a martingale.
If 𝜏 is a stopping time, the corresponding 𝜎-algebra is defined by

ℱ𝜏 ∶= {𝐴 ∈ ℱ∞ | (∀𝑛)𝐴 ∩ {𝜏 ≤ 𝑛} ∈ ℱ𝑛}.

The function 𝜏 is ℱ𝜏-measurable. We abbreviate 𝔼𝜏𝑓 ∶= 𝔼(𝑓|ℱ𝜏).
The optional sampling theoremsays that, for every discrete timemartingale𝑓, bounded

stopping time 𝜏, and another stopping time 𝜎, we have

𝑓𝜎∧𝜏 = 𝔼𝜎𝑓𝜏.
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1 Maximal and square functions
You are probably already familiar with the Lebesgue differentialtion theorem. The best
proof of that theorem uses themaximal operator to absorb error terms. This idea is used
in many places in analysis, and the study of martingales is one of these places.

Definition 1.1 (Maximal operator). For an adapted process 𝑓 with values in a normed
space, we write

𝑀𝑓𝑛 = (𝑀𝑓)𝑛 ∶= sup
𝑘≤𝑛

|𝑓𝑘|.

Remark. Since our martingales are indexed by a countable set, we can use a pointwise
supremum here. In continuous time, we would need a lattice supremum.

A submartingale is an adapted process with values inℝ≥0 such that, for every𝑚 ≤ 𝑛,
we have

𝑓𝑚 ≤ 𝔼𝑚𝑓𝑛.
Example 1.2. If (𝑓𝑛) is a martingale, then (|𝑓𝑛|) is a submartingale.
Example 1.3. If 𝑓 is any adapted process, then𝑀𝑓 is a submartingale.

If 𝑓 is a submartingale, then, for any 𝑝 ∈ [1,∞] and𝑚 ≤ 𝑛, we have
‖𝑓𝑚‖𝑝 ≤ ‖𝑓𝑛‖𝑝.

We define the 𝐿𝑝 norm of a (sub-)martingale by

‖𝑓‖𝑝 ∶= sup
𝑛
‖𝑓𝑛‖𝑝.

With this definition, the maximal operator is clearly bounded on 𝐿∞. The next result
looks a lot like an 𝐿1 → 𝐿1,∞ bound for𝑀, but is in fact stronger and more convenient
to use.

Lemma 1.4. Let 𝑓 be a submartingale with values in ℝ≥0. Then, for every 𝜆 > 0 and
𝑛 ∈ ℕ, we have

𝜆|{𝑀𝑓𝑛 > 𝜆}| ≤ ∫
{𝑀𝑓𝑛>𝜆}

𝑓𝑛 d𝜇.

Proof. For a fixed 𝜆, define the stopping time
𝜏 ∶= inf{𝑘 | 𝑓𝑘 > 𝜆}.

Then, {𝑀𝑓𝑛 > 𝜆} = {𝜏 ≤ 𝑛}. Hence,
𝜆|{𝑀𝑓𝑛 > 𝜆}| = 𝜆 ∑

𝑘≤𝑛
|{𝜏 = 𝑘}|

≤ ∑
𝑘≤𝑛

∫
{𝜏=𝑘}

𝑓𝑘 d𝜇

(submartingale property) ≤ ∑
𝑘≤𝑛

∫
{𝜏=𝑘}

𝑓𝑛 d𝜇

= ∫
{𝑀𝑓𝑛>𝜆}

𝑓𝑛 d𝜇.

Remark (𝐿1,∞ norm). ByChebychev’s inequality, for anymeasurable function 𝑔, wehave
sup
𝜆>0

𝜆−1|{𝑔 > 𝜆}| ≤ ‖𝑔‖1.

The converse inequality is false with any constant, as shown by the example 𝑔(𝑥) = 1/𝑥
on the measure space ℝ>0 with the Lebesgue measure. The left-hand side of the above
inequality is the so-called 𝐿1,∞ seminorm of 𝑔. As suggested by the notation, 𝐿1,∞ is part
of a larger family of Lorentz spaces, which is in turn contained in Orlicz spaces, but we
will not talk about such generalities.
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Theorem 1.5 (Doob’s maximal inequality). Let 𝑓 be a submartingale with values inℝ≥0.
Then, for every 𝑝 ∈ (1,∞], we have

‖𝑀𝑓‖𝑝 ≤ 𝑝′‖𝑓‖𝑝.

Here and later, 𝑝′ denotes the Hölder conjugate: 1/𝑝 + 1/𝑝′ = 1.

Proof. By the layer cake formula and Lemma 1.4, we write

‖𝑀𝑓𝑛‖𝑝𝑝 = ∫
∞

0
𝑝𝜆𝑝−1𝜇(𝑀𝑓𝑛 > 𝜆) d𝜆

≤ ∫
∞

0
𝑝𝜆𝑝−2∫

{𝑀𝑓𝑛>𝜆}
𝑓𝑛 d𝜇 d𝜆

= ∫
Ω
∫

𝑀𝑓𝑛

0
𝑝𝜆𝑝−2𝑓𝑛 d𝜆 d𝜇

= 𝑝
𝑝 − 1 ∫Ω

(𝑀𝑓𝑛)𝑝−1𝑓𝑛 d𝜇

≤ 𝑝
𝑝 − 1(∫Ω

𝑓𝑝𝑛 d𝜇)1/𝑝(∫
Ω
(𝑀𝑓𝑛)𝑝 d𝜇)1−1/𝑝.

Since𝑓𝑛 ∈ 𝐿𝑝 implies𝑓𝑘 ∈ 𝐿𝑝 for all 𝑘 ≤ 𝑛 by𝐿𝑝 contractivity of conditional expectations,
we have𝑀𝑓𝑛 ∈ 𝐿𝑝. Hence, we can cancel suitable powers of ‖𝑀𝑓𝑛‖𝑝 on both sides and
obtain the claim.

There are other ways to deduce Theorem 1.5 from Lemma 1.4, such as real interpo-
lation with the 𝐿∞ estimate. But the above proof does not rely on the 𝐿∞ estimate, only
on the 𝐿1-like estimate in Lemma 1.4.

It is often the case in martingale theory that inequalities near 𝐿1 are the most pow-
erful ones. One can justify this by the observation that 𝐿1 is the minimal assumption
required to even define a martingale.
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[1: 2021-10-12]
[2: 2021-10-19]

If 𝑓 is a martingale, then the increments 𝑑𝑓𝑘 are orthogonal in the Hilbert space
𝐿2(Ω). Indeed, more generally, for any 𝑛 and 𝑔 ∈ 𝐿0(ℱ𝑛−1), we have

𝔼(𝑔𝑑𝑓𝑛) = 𝔼(𝔼(𝑔𝑑𝑓𝑛|ℱ𝑛−1)) = 𝔼(𝑔𝔼(𝑑𝑓𝑛|ℱ𝑛−1)) = 𝔼(𝑔 ⋅ 0) = 0. (1.1)

Definition 1.6 (Square function). For a martingale 𝑓, we write

𝑆𝑓𝑛 ∶= (∑
𝑘≤𝑛

|𝑑𝑓𝑘|2)
1/2.

In continuous time, the analog of 𝑆𝑓 is denoted by [𝑓] and called the quadratic
variation.

Here and later, for notational simplicity, we will consider martingales with 𝑓0 = 0.
Since martingale increments 𝑑𝑓𝑘 are orthogonal, we have

‖𝑓𝑛‖2 = ‖𝑆𝑓𝑛‖2.

Next, we will see that 𝑆 is bounded from 𝐿1 to 𝐿1,∞. The proof that we present for
this fact uses a summation by parts identity of a kind that also appears e.g. in the Itô
formula.

Lemma 1.7. Let 𝑓 be a martingale, 𝜆 > 0, and 𝜏 ∶= inf{𝑛 | |𝑓𝑛| > 𝜆}. Then,

∑
𝑘
𝔼(|𝑑𝑓𝑘|21𝜏>𝑘) ≤ 2𝜆‖𝑓‖1.

On the left-hand side of the above estimate, we are taking the expectation of 𝑆𝜏−1.
Note that 𝜏 − 1 is not a stopping time. Such predictability emulation will also be impor-
tant in the BDG inequality below.

Proof. By the monotone convergence theorem, it suffices to consider the case 𝑓𝑁 =
𝑓𝑁+1 = ⋯ for an arbitrarily large 𝑁. Then, we can replace 𝜏 by 𝜏 ∧ 𝑁 + 1 without
changing the inequality. This is necessary to apply the optional sampling theorem.

We use the identity

∑
𝑘<𝜏

|𝑑𝑓𝑘|2 + |𝑓𝜏−1|2 = 2𝑓𝜏𝑓𝜏−1 − 2 ∑
𝑘≤𝜏

𝑓𝑘−1𝑑𝑓𝑘.

Note that
{𝑘 ≤ 𝜏} = Ω ⧵ {𝜏 < 𝑘} = Ω ⧵ {𝜏 ≤ 𝑘 − 1} ∈ ℱ𝑘−1.

Therefore, by (1.1), we have
𝔼(1𝑘≤𝜏𝑓𝑘−1𝑑𝑓𝑘) = 0.

Hence,
𝔼 ∑
𝑘<𝜏

|𝑑𝑓𝑘|2 + 𝔼|𝑓𝜏−1|2 = 2𝔼(𝑓𝜏𝑓𝜏−1).

Therefore,
∑
𝑘
𝔼(|𝑑𝑓𝑘|21𝜏>𝑘) ≤ 2𝔼|𝑓𝜏𝑓𝜏−1| ≤ 2𝔼|𝑓𝜏𝜆| ≤ 2𝜆‖𝑓‖1,

where the last step follows from the optional sampling theorem, which gives in particu-
lar 𝑓𝜏 = 𝔼𝜏𝑓𝑁+1.

Corollary 1.8. Let 𝑓 be a martingale and 𝜆 > 0. Then,

|{𝑆𝑓 > 𝜆}| ≤ 3𝜆−1‖𝑓‖1.
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Proof. Let 𝜏 ∶= inf{𝑛 | |𝑓𝑛| > 𝜆}. Then

|{𝑆𝑓 > 𝜆}| ≤ |{𝑆𝑓𝜏−1 > 𝜆}| + |{𝜏 < ∞}| ≤ 𝜆−2‖𝑆𝑓𝜏−1‖22 + 𝜆−1‖𝑓‖1.

By Lemma 1.7, the first summand is ≤ 2𝜆−1‖𝑓‖1.

Lemma 1.9 (Davis decomposition). For every martingale (𝑓𝑛), there exists a decomposi-
tion 𝑓 = 𝑓pred + 𝑓bv as a sum of two martingales such that 𝑓pred has a predictable bound
on jumps:

|𝑑𝑓pred𝑛 | ≤ 2𝑀𝑑𝑓𝑛−1, (1.2)

and 𝑓bv has bounded variation:

𝔼∑
𝑛
|𝑑𝑓bv𝑛 | ≤ 2𝔼𝑀𝑑𝑓. (1.3)

Proof. Let

𝑑𝑔𝑛 ∶= min(1, 𝑀𝑑𝑓𝑛−1
|𝑑𝑓𝑛|

)𝑑𝑓𝑛,

𝑑𝑓pred𝑛 ∶= 𝑑𝑔𝑛 − 𝔼𝑛−1(𝑑𝑔𝑛),

𝑑ℎ𝑛 ∶= 𝑑𝑓𝑛 − 𝑑𝑔𝑛 = max(0, 1 − 𝑀𝑑𝑓𝑛−1
|𝑑𝑓𝑛|

)𝑑𝑓𝑛,

𝑑𝑓bv𝑛 ∶= 𝑑ℎ𝑛 − 𝔼𝑛−1(𝑑ℎ𝑛).

Then, by definition,
|𝑑𝑔𝑛| ≤ 𝑀𝑑𝑓𝑛−1,

and, by positivity of conditional expectation, also

|𝔼𝑛−1(𝑑𝑔𝑛)| ≤ 𝔼𝑛−1(|𝑑𝑔𝑛|) ≤ 𝔼𝑛−1(𝑀𝑑𝑓𝑛−1) = 𝑀𝑑𝑓𝑛−1.

This implies (1.2).
On the other hand, we have the telescoping bound

|𝑑ℎ𝑛| = max(0, |𝑑𝑓𝑛| − 𝑀𝑑𝑓𝑛−1) = 𝑀𝑑𝑓𝑛 −𝑀𝑑𝑓𝑛−1,

which implies (1.3).

Theorem 1.10 (Davis inequalities). Let 𝑓 be a martingale with 𝑓0 = 0. Then,

𝔼𝑆𝑓 ∼ 𝔼𝑀𝑓.

Here and later, 𝐴 ≲ 𝐵 means that 𝐴 ≤ 𝐶𝐵 with an absolute constant 𝐶, and 𝐴 ∼ 𝐵
means that 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴.

Proof. It suffices to consider martingales with 𝑓𝑁 = 𝑓𝑁+1 = ⋯ =∶ 𝑓∞ for some 𝑁, as
long as we show bounds independent of 𝑁.

Let 𝑓 = 𝑓pred+𝑓bv be a Davis decomposition as in Lemma 1.9. Then, for every 𝑛 > 0,
we have the predictable bound

|𝑓pred𝑛 | ≤ |𝑓pred𝑛−1 | + |𝑑𝑓pred𝑛 | ≤ |𝑓pred𝑛−1 | + 2|𝑀𝑑𝑓𝑛−1| =∶ 𝜌𝑛−1.

Let 𝜆 > 0 and 𝜏 ∶= inf{𝑛 | 𝜌𝑛 > 𝜆}. Then,

|{𝑆𝑓pred > 𝜆}| ≤ |{𝑆𝑓pred > 𝜆, 𝜏 = ∞}| + |{𝜏 < ∞}|
≤ |{𝑆𝑓pred,(𝜏) > 𝜆}| + |{𝜏 < ∞}|
≤ 𝜆−2‖𝑆𝑓pred,(𝜏)‖22 + |{𝜏 < ∞}|
= 𝜆−2‖𝑓pred𝜏 ‖2 + |{𝜏 < ∞}|.
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On the set {𝜏 = ∞}, we use the bound𝑀𝑓pred ≤ 𝑀𝜌 ≤ 𝜆, while on the set {𝜏 < ∞}, we
use the bound |𝑓pred𝜏 | ≤ 𝜌𝜏−1 ≤ 𝜆 (at this point, predictability is essential). This gives

|{𝑆𝑓pred > 𝜆}| ≤ 𝜆−2∫
{𝜏=∞}

|𝑓pred𝜏 |2 + 𝜆−2∫
{𝜏<∞}

|𝑓pred𝜏 |2 + |{𝜏 < ∞}|

≤ 𝜆−2∫
{𝑀𝑓pred≤𝜆}

|𝑀𝑓pred|2 + |{𝜏 < ∞}| + |{𝜏 < ∞}|.

Note that {𝜏 < ∞} = {𝑀𝜌 > 𝜆}. Inserting this in the above inequality and integrating in
𝜆, we obtain

𝔼𝑆𝑓pred = ∫
∞

0
|{𝑆𝑓pred > 𝜆}| d𝜆

≤ ∫
∞

0
𝜆−2∫

{𝑀𝑓pred≤𝜆}
|𝑀𝑓pred|2 d𝜆 + 2∫

∞

0
|{𝑀𝜌 > 𝜆}| d𝜆

= 𝔼|𝑀𝑓pred|2∫
∞

𝑀𝑓pred
𝜆−2 d𝜆 + 2𝔼𝑀𝜌

= 𝔼𝑀𝑓pred + 2𝔼𝑀𝜌
≤ 3𝔼𝑀𝑓pred + 4𝔼𝑀𝑑𝑓
≤ 3𝔼𝑀𝑓 + 3𝔼∑

𝑛
|𝑑𝑓bv𝑛 | + 4𝔼𝑀𝑑𝑓

≤ 3𝔼𝑀𝑓 + 10𝔼𝑀𝑑𝑓.

This, together with the simple bound

𝔼𝑆𝑓bv ≤ 𝔼∑
𝑛
|𝑑𝑓bv𝑛 | ≤ 2𝔼𝑀𝑑𝑓,

implies 𝔼𝑆𝑓 ≲ 𝔼𝑀𝑓.
The proof of the converse inequality is similar and uses

𝑆𝑓pred𝑛 = ((𝑆𝑓pred𝑛−1 )2 + (𝑑𝑓pred𝑛 )2)1/2 ≤ |𝑆𝑓pred𝑛−1 | + |𝑑𝑓pred𝑛 | ≤ |𝑆𝑓pred𝑛−1 | + 2|𝑀𝑑𝑓𝑛−1| =∶ 𝜌𝑛−1.

Lemma 1.11 (Garsia–Neveu). Let𝑊,𝑍 be positive random variables such that, for every
𝜆 > 0, we have

𝔼(1𝑊>𝜆(𝑊 − 𝜆)) ≤ 𝔼(1𝑊>𝜆𝑍). (1.4)

Then, for every 𝑝 ≥ 1, we have
‖𝑊‖𝑝 ≤ 𝑝‖𝑍‖𝑝.

Proof. For 𝑝 = 1, it suffices to take 𝜆 → 0, so assume 𝑝 > 1. Suppose first that 𝑊 is
bounded by Λ and (1.4) holds for all 𝜆 ∈ (0, Λ). We will use the formula

𝑡𝑝 = 𝑝(1 − 𝑝)∫
𝑡

0
(𝑡 − 𝜆)𝜆𝑝−2 d𝜆.
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It yields

𝔼𝑊 𝑝 = 𝑝(𝑝 − 1)𝔼∫
𝑊

0
(𝑊 − 𝜆)𝜆𝑝−2 d𝜆

= 𝑝(𝑝 − 1)∫
Λ

0
𝔼((𝑊 − 𝜆)1𝑊>𝜆)𝜆𝑝−2 d𝜆

≤ 𝑝(𝑝 − 1)∫
Λ

0
𝔼(𝑍1𝑊>𝜆)𝜆𝑝−2 d𝜆

= 𝑝(𝑝 − 1)𝔼∫
𝑊

0
𝑍𝜆𝑝−2 d𝜆

= 𝑝𝔼𝑍𝑊 𝑝−1

≤ 𝑝(𝔼𝑍𝑝)1/𝑝(𝔼𝑊 𝑝)1−1/𝑝.

Since𝑊 is bounded, we can cancel a suitable power of 𝔼𝑊 𝑝 on both sides and obtain
the claim.

For general𝑊 , we apply the bounded case to min(𝑊,Λ) and let Λ → ∞.

Corollary 1.12. Let (𝐴𝑡) be an increasing predictable process with𝐴0 = 0 and 𝜉 a positive
random variable such that, for everty 𝑡, we have

𝔼𝑡(𝐴∞ − 𝐴𝑡) ≤ 𝔼𝑡(𝜉).

Then, for every 𝑝 ≥ 1, we have
‖𝐴∞‖𝑝 ≤ 𝑝‖𝜉‖𝑝.

Proof. For 𝜆 > 0, let 𝜏 ∶= inf{𝑡 | 𝐴𝑡+1 > 𝜆}. Then,

𝔼max(𝐴∞ − 𝜆, 0) = 𝔼(𝐴∞ − 𝜆)1𝜏<∞ ≤ 𝔼(𝐴∞ − 𝐴𝜏)1𝜏<∞ ≤ 𝔼(𝜉1𝜏<∞) ≤ 𝔼(𝜉1𝐴∞>𝜆),

so we can apply Lemma 1.11.
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[2: 2021-10-19]
[3: 2021-10-26]

Corollary 1.13 (Burkholder–Davis–Gundy inequalities). For every 𝑝 ∈ [1,∞) and every
martingale 𝑓, we have

‖𝑆𝑓‖𝑝 ∼ ‖𝑀𝑓‖𝑝.

Proof. For any 𝑡0 and 𝐵 ∈ ℱ𝑡0 , we can apply Theorem 1.10 to the martingale 1𝐵(𝑓 −
𝑓(𝑡0))𝑡≥𝑡0 , and obtain

𝔼𝑡0(𝑀(𝑓 − 𝑓𝑡0)) ∼ 𝔼𝑡0(𝑆(𝑓 − 𝑓𝑡0)).
Note that

𝑀𝑓 −𝑀𝑓𝑡0 ≤ 𝑀(𝑓 − 𝑓𝑡0) ≤ 2𝑀𝑓, 𝑆𝑓 − 𝑆𝑓𝑡0 ≤ 𝑆(𝑓 − 𝑓𝑡0) ≤ 𝑆𝑓,

so the conditions of Corollary 1.12 hold for instance for ̃𝐴𝑡 = 𝑀𝑓𝑡 and 𝜉 = 𝑆𝑓, with
exception of the fact that ̃𝐴𝑡 is not predictable. This can be remedied by taking 𝐴𝑡 =
𝑀𝑓𝑡−1 and 𝜉 = 𝑆𝑓 +𝑀𝑑𝑓 ≤ 3𝑆𝑓. Corollary 1.12 now shows that ‖𝑀𝑓‖𝑝 ≲ 𝑝‖𝑆𝑓‖𝑝.

The proof of the converse inequality is similar.

1.1 Predictable square function
Definition 1.14 (Predictable square function). For a martingale 𝑓, let

𝑠𝑓𝑛 ∶= (
𝑛
∑
𝑘=1

𝔼𝑘−1(|𝑑𝑓𝑘|2))
1/2.

The continuous time version of 𝑠𝑓 is denoted by ⟨𝑓⟩ and called the predictable quadratic
variation. We mainly discuss 𝑠𝑓 because the continuous time analog is sometimes used
in stochastic analysis, and in order to present a few techniques.

The next lemma looks similar to 𝐿𝑝 contractivity of conditional expectation, but it
cannot be proved by using this contractivity for each invidual summand.

Lemma 1.15. Let 𝑧1, 𝑧2,… be positive random variables. Then, for every 𝑝 ∈ [1,∞), we
have

𝔼(
∞
∑
𝑘=1

𝔼𝑘−1(𝑧𝑘))𝑝 ≤ 𝑝𝑝𝔼(
∞
∑
𝑘=1

𝑧𝑘)𝑝.

Proof. The hypothesis of Corollary 1.12 holds with equality for 𝐴𝑛 = 𝑊𝑛 and 𝜉 = 𝑍∞,
where

𝑊𝑛 ∶=
𝑛
∑
𝑘=1

𝔼𝑘−1(𝑧𝑘), 𝑍𝑛 ∶=
𝑛
∑
𝑘=1

𝑧𝑘. (1.5)

Corollary 1.16. Let 𝑝 ∈ [2,∞) and 𝑓 be a martignale. Then, we have

‖𝑠𝑓‖𝑝 ≤ (𝑝/2)1/2‖𝑆𝑓‖𝑝.

Lemma 1.17. Let 𝑍,𝑊 be positive random variables such that, for some 𝐶 < ∞ and all
𝜆 > 0, we have

𝔼(𝑍 ∧ 𝜆) ≤ 𝐶𝔼(𝑊 ∧ 𝜆).
Then, for every 𝑝 ∈ (0, 1], we have

𝔼𝑍𝑝 ≤ 𝐶𝔼𝑊 𝑝.
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Proof. For 𝑝 = 1, it suffices to let 𝜆 → ∞ in the hypothesis.
For 𝑝 < 1, we use the formula

𝑡𝑝 = 𝑝(1 − 𝑝)∫
∞

0
(𝑡 ∧ 𝜆)𝜆𝑝−2 d𝜆.

Chaning the order of integration and applying the hypothesis for each 𝜆, we obtain the
claim.

Corollary 1.18. Let 𝑧1, 𝑧2,… be positive random variables. Then, for every 𝑝 ∈ (0, 1], we
have

𝔼(
∞
∑
𝑘=1

𝑧𝑘)𝑝 ≤ 2𝔼(
∞
∑
𝑘=1

𝔼𝑘−1(𝑧𝑘))𝑝.

Thus, we see that, for 𝑝 ∈ (0, 2] and any martingale 𝑓, we have

‖𝑆𝑓‖𝑝 ≲𝑝 ‖𝑠𝑓‖𝑝.

Proof. Define𝑊,𝑍 as in (5.17). Let 𝜏 ∶= inf{𝑛 | 𝑊𝑛+1 > 𝜆}. Then,

𝔼(𝑍∞ ∧ 𝜆) ≤ 𝔼(𝑍𝜏 + 𝜆1𝜏<∞)
= ∑

𝑘
𝔼(1𝑘≤𝜏𝑧𝑘) + 𝜆|{𝑊∞ > 𝜆}|

≤ ∑
𝑘
𝔼(1𝑘≤𝜏𝔼𝑘−1𝑧𝑘) + 𝔼(𝑊∞ ∧ 𝜆)

≤ 2𝔼(𝑊∞ ∧ 𝜆).

We conclude by Lemma 1.17.

Corollary 1.19. Let 𝑝 ∈ (0, 2] and 𝑓 be a martingale. Then

‖𝑀𝑓‖𝑝 ≤ 51/𝑝‖𝑠𝑓‖𝑝.

Proof. Let 𝜏 ∶= inf{𝑛 | 𝑠𝑓𝑛+1 > 𝜆}. Then,

𝔼((𝑀𝑓)2 ∧ 𝜆2) ≤ 𝔼[(𝑀𝑓𝜏)2] + 𝜆2𝔼1𝜏<∞
(Doob’s inequality) ≤ 4𝔼[(𝑓𝜏)2] + 𝜆2𝔼1𝑠𝑓∞>𝜆

≤ 5𝔼((𝑠𝑓∞)2 ∧ 𝜆2).

We conclude by Lemma 1.17.

Lemma 1.20 (Good-𝜆 inequality). Let 𝑓, 𝑔 be positive random variables, 𝑝 ∈ (0,∞), and
suppose that we are given 𝛽 > 1 and 𝛿, 𝜖 ∈ ℝ>0 with 𝛽𝑝𝜖 < 1. Assume that, for every
𝜆 > 0, we have

𝜇{𝑔 > 𝛽𝜆, 𝑓 ≤ 𝛿𝜆} ≤ 𝜖𝜇{𝑔 > 𝜆}.
Then,

𝔼𝑔𝑝 ≤ 𝛿−𝑝
𝛽−𝑝 − 𝜖𝔼𝑓

𝑝.

Proof. The hypothesis implies

𝜇{𝑔 > 𝛽𝜆} = 𝜇{𝑔 > 𝛽𝜆, 𝑓 ≤ 𝛿𝜆} + 𝜇{𝑔 > 𝛽𝜆, 𝑓 > 𝛿𝜆}
≤ 𝜖𝜇{𝑔 > 𝜆} + 𝜇{𝑓 > 𝛿𝜆}.

Using the formula 𝑡𝑝 = 𝑝∫𝑡
0 𝜆𝑝−1 d𝜆, we obtain

𝔼𝑔𝑝 = 𝑝𝔼∫
𝑔

0
𝜆𝑝−1 d𝜆

= 𝑝∫
∞

0
𝜇{𝑔 > 𝜆}𝜆𝑝−1 d𝜆.
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Inserting the above estimate, we obtain

𝔼(𝑔/𝛽)𝑝 ≤ 𝜖𝔼𝑔𝑝 + 𝔼(𝑓/𝛿)𝑝.

Rearranging, we obtain the claim.

Lemma 1.21. Let 𝑧1, 𝑧2,… be positive random variables. Then, for every 𝑝 ∈ (0,∞), we
have

𝔼(
∞
∑
𝑘=1

𝑧𝑘)𝑝 ≲𝑝 𝔼(𝑀𝑧 ∨
∞
∑
𝑘=1

𝔼𝑘−1(𝑧𝑘))𝑝.

Thus, we see that, for 𝑝 ∈ [2,∞) and any martingale 𝑓, we have

‖𝑆𝑓‖𝑝 ≲𝑝 ‖𝑠𝑓 ∨ 𝑀𝑑𝑓‖𝑝.

Proof. We continue using notation (5.17). We will verify the hypothesis of Lemma 1.20.
Let 𝛽, 𝛿 ∈ ℝ>0 with 𝛽 > 𝛿 + 1. Consider the stopping times

𝜏 ∶= inf{𝑛 | 𝑍𝑛 > 𝜆}, 𝜏𝛽 ∶= inf{𝑛 | 𝑍𝑛 > 𝛽𝜆}, 𝜎 ∶= inf{𝑛 | (𝑊𝑛+1 ∨ 𝑧𝑛) > 𝛿𝜆}

and the process
ℎ𝑛 = ∑

𝑘≤𝑛
1𝜏<𝑘≤𝜏𝛽∧𝜎𝑧𝑘.

Then, if 𝑍 > 𝛽𝜆 and𝑊 ∨𝑀𝑧 ≤ 𝛿𝜆, we have 𝜎 = ∞, so that

ℎ∞ = ∑
𝜏<𝑘≤𝜏𝛽

𝑧𝑘 ≥ 𝛽𝜆 − ∑
𝑘<𝜏

𝑧𝑘 − 𝑧𝜏 ≥ 𝛽𝜆 − 𝜆 − 𝛿𝜆 = (𝛽 − 1 − 𝛿)𝜆.

Hence,

𝜇{𝑍 > 𝛽𝜆,𝑊 ∨𝑀𝑧 ≤ 𝛿𝜆} ≤ 𝜇{ℎ∞ > (𝛽 − 1 − 𝛿)𝜆}

≤ 1
(𝛽 − 1 − 𝛿)𝜆𝔼ℎ∞

= 1
(𝛽 − 1 − 𝛿)𝜆 ∑𝑘

𝔼(1𝜏<𝑘≤𝜏𝛽∧𝜎𝑧𝑘)

= 1
(𝛽 − 1 − 𝛿)𝜆 ∑𝑘

𝔼(1𝜏<𝑘≤𝜏𝛽∧𝜎𝔼𝑘−1𝑧𝑘)

≤ 1
(𝛽 − 1 − 𝛿)𝜆𝔼(1𝜏<∞𝛿𝜆)

= 𝛿
𝛽 − 1 − 𝛿𝜇{𝑍 > 𝜆}.

Now it suffices to take any 𝛽 > 1 and 𝛿 sufficiently small depending on 𝛽.

Remark. Most of the material in this section is from [Bur73].
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[3: 2021-10-26]
[4: 2021-11-02]

2 Lépingle inequality
For 0 < 𝑟 < ∞ and a sequence of random variables 𝑓 = (𝑓𝑛)𝑛, the 𝑟-variation of 𝑓 on
the interval [𝑡′, 𝑡] is defined by

𝑉𝑟𝑓𝑡′,𝑡 ∶= sup
𝐽,𝑡′≤𝑢0<⋯<𝑢𝐽≤𝑡

(
𝐽
∑
𝑗=1

|𝑓𝑢𝑗−1 − 𝑓𝑢𝑗 |𝑟)
1/𝑟
, (2.1)

where the supremum is taken over arbitrary increasing sequences. Analogously,𝑉∞𝑓𝑡′,𝑡 ∶=
sup𝑡′≤𝑢′<𝑢≤𝑡|𝑓𝑢′ − 𝑓𝑢|.

We abbreviate 𝑉𝑟𝑓𝑡 ∶= 𝑉𝑟𝑓0,𝑡 and 𝑉𝑟𝑓 ∶= 𝑉𝑟𝑓0,∞.
The following result is a quantitative version of the martingale convergence theo-

rem.

Theorem 2.1 (Lépingle inequality). For every 𝑝 ∈ [1,∞), there exists a constant𝐶𝑝 < ∞
such that, for every 𝑟 > 2, and every martingale 𝑓, we have

‖𝑉𝑟𝑓‖𝐿𝑝 ≤ 𝐶𝑝
𝑟

𝑟 − 2‖𝑀𝑓‖𝐿𝑝 . (2.2)

The main difficulty here is that the supremum in the definition of 𝑉𝑟 is taken over
not necessarily adapted partitions. We will remedy this by a greedy selection algorithm,
stopping as soon as we see a large jump. We have to use stopping rules depending on a
parameter𝑚 in order to capture jumps of all possible sizes.

Proof. By themonotone convergence theorem, wemay assume that𝑓 becomes constant
after some time 𝑁.

Let𝑀𝑡 ∶= sup𝑡″≤𝑡′≤𝑡|𝑓𝑡′ − 𝑓𝑡″ |. For each𝑚 ∈ ℕ, define an adapted partition by

𝜏(𝑚)
0 ∶= 0, 𝜏(𝑚)

𝑗+1 ∶= inf{𝑡 ≥ 𝜏(𝑚)
𝑗 | |𝑓𝑡 − 𝑓𝜏𝑗 | ≥ 2−𝑚𝑀𝑡}. (2.3)

Claim. Let 0 ≤ 𝑡′ < 𝑡 < ∞ and𝑚 ≥ 2. Suppose that

2 < |𝑓𝑡′ − 𝑓𝑡|/(2−𝑚𝑀𝑡) ≤ 4. (2.4)

Then there exists 𝑗 with 𝑡′ < 𝜏(𝑚)
𝑗 ≤ 𝑡 and

|𝑓𝑡′ − 𝑓𝑡| ≤ 8|𝑓𝜏(𝑚)
𝑗−1

− 𝑓𝜏(𝑚)
𝑗

|. (2.5)

Proof of the claim. Let 𝑗 be the largest integer with 𝜏′ ∶= 𝜏(𝑚)
𝑗 ≤ 𝑡. We claim that 𝜏′ > 𝑡′.

Suppose for a contradiction that 𝜏′ < 𝑡′ (the case 𝜏′ = 𝑡′ is similar but easier). By the
hypothesis (2.4) and the assumption that 𝑡, 𝑡′ are not stopping times, we obtain

2 ⋅ 2−𝑚𝑀𝑡 < |𝑓𝑡′ − 𝑓𝑡| ≤ |𝑓𝜏′ − 𝑓𝑡′ | + |𝑓𝜏′ − 𝑓𝑡| < 2−𝑚𝑀𝑡′ + 2−𝑚𝑀𝑡 ≤ 2 ⋅ 2−𝑚𝑀𝑡,

a contradiction. This shows 𝜏′ > 𝑡′.
It remains to verify (2.5). Assume that𝑀𝜏′ < 𝑀𝑡/2. Then, for some 𝜏″ ∈ (𝜏, 𝑡], we

have |𝑓𝜏′ − 𝑓𝜏″ | ≥ 𝑀𝑡/2 ≥ 2−𝑚𝑀𝜏″ , contradicting maximality of 𝜏′. It follows that

|𝑓𝜏(𝑚)
𝑗−1

− 𝑓𝜏(𝑚)
𝑗

| ≥ 2−𝑚𝑀𝜏′ ≥ 2−𝑚𝑀𝑡/2 ≥ |𝑓𝑡′ − 𝑓𝑡|/8.
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Next, for any 0 < 𝜌 < 𝑟 < ∞, we will show the pathwise inequality

𝑉𝑟
𝑡 (𝑓𝑡)𝑟 ≤ 8𝜌

∞
∑
𝑚=2

(2−(𝑚−2)𝑀∞)
𝑟−𝜌 ∞

∑
𝑗=1

|𝑓𝜏(𝑚)
𝑗−1

− 𝑓𝜏(𝑚)
𝑗

|𝜌. (2.6)

Let (𝑢𝑙) be any increasing sequence. For each 𝑙 with |𝑓𝑢𝑙 − 𝑓𝑢𝑙+1 | ≠ 0, let 𝑚 = 𝑚(𝑙) ≥ 2
be such that

2 < |𝑓𝑢𝑙 − 𝑓𝑢𝑙+1 |/(2−𝑚𝑀𝑢𝑙+1) ≤ 4.
Such𝑚 exists because the distance is bounded by𝑀𝑢𝑙+1 .

Let 𝑗 = 𝑗(𝑙) be given by the Claim above with 𝑡′ = 𝑢𝑙 and 𝑡 = 𝑢𝑙+1. Then

|𝑓𝑢𝑙 − 𝑓𝑢𝑙+1 |𝑟 ≤ 8𝜌|𝑓𝜏(𝑚)
𝑗−1

− 𝑓𝜏(𝑚)
𝑗

|𝜌 ⋅ (4 ⋅ 2−𝑚𝑀𝑢𝑙+1)𝑟−𝜌.

Since each pair (𝑚, 𝑗) occurs for at most one 𝑙, this implies

∑
𝑙
|𝑓𝑢𝑙 − 𝑓𝑢𝑙+1 |𝑟 ≤ 8𝜌 ∑

𝑚,𝑗
|𝑓𝜏(𝑚)

𝑗−1
− 𝑓𝜏(𝑚)

𝑗
|𝜌 ⋅ (2−(𝑚−2)𝑀∞)𝑟−𝜌.

Taking the supremum over all increasing sequences (𝑢𝑙), we obtain (2.6).
Since we assumed that 𝑓𝑛 becomes independent of 𝑛 for sufficiently large 𝑛, we have

𝑀∞ ≤ 𝑉𝑟
𝑡 (𝑓𝑡) < ∞.

Substituting this inequality in (2.6) and canceling 𝑉𝑟
𝑡 (𝑓𝑡)𝑟−2 on both sides, we obtain

𝑉𝑟
𝑡 (𝑓𝑡)𝜌 ≤ 8𝜌

∞
∑
𝑚=2

2−(𝑚−2)(𝑟−𝜌)
∞
∑
𝑗=1

|𝑓𝜏(𝑚)
𝑗−1

− 𝑓𝜏(𝑚)
𝑗

|𝜌. (2.7)

By the optional sampling theorem, for each𝑚, the sequence (𝑓𝜏(𝑚)
𝑗

)𝑗 is a martingale
with respect to the filtration (ℱ𝜏(𝑚)

𝑗
)𝑗 . Let

𝑆(𝑚) ∶= (
∞
∑
𝑗=1

|𝑓𝜏(𝑚)
𝑗−1

− 𝑓𝜏(𝑚)
𝑗

|2)
1/2

denote the square function of this martingale. Then (2.7) implies

𝑉𝑟𝑓 ≤ 8(
∞
∑
𝑚=2

2−(𝑚−2)(𝑟−2)𝑆2(𝑚))
1/2

≤ 8
∞
∑
𝑚=2

2−(𝑚−2)(𝑟−2)/2𝑆(𝑚)

By Minkowski’s inequality, this implies

‖𝑉𝑟𝑓‖𝐿𝑝 ≤ 8
∞
∑
𝑚=2

2−(𝑚−2)(𝑟−2)/2‖𝑆(𝑚)‖𝐿𝑝 .

Applying the BDG inequality for the martingales (𝑓𝜏(𝑚)
𝑗

)𝑗 , we obtain

‖𝑉𝑟𝑓‖𝐿𝑝 ≲𝑝

∞
∑
𝑚=2

2−(𝑚−2)(𝑟−2)/2‖sup
𝑗
|𝑓𝜏(𝑚)

𝑗
|‖𝐿𝑝

≲ 𝑟
𝑟 − 2‖𝑀𝑓‖𝐿𝑝 .

Remark. The dependence of the constant in Theorem 2.1 on the variation exponent 𝑟
can be improved to√

𝑟
𝑟−2

using a vector-valued BDG inequality. In fact, a slightly more
careful version of the above argument already shows this for 𝑝 ∈ [2,∞).
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2.1 Martingale convergence
Corollary 2.2 (Martingale convergence). Let 𝑓 be a martingale with ‖𝑓‖1 < ∞. Then,
for every 𝑟 > 2, 𝑉𝑟𝑓 is finite a.s. In particular, the sequence (𝑓𝑛)𝑛 converges a.s.

Proof. Fixing 𝜆 < ∞ and 𝑁 ∈ ℕ, consider the stopping time

𝜏 ∶= inf{𝑛 | |𝑓𝑛| > 𝜆}.

Then 𝑀𝑓𝜏∧𝑁 ≤ 𝜆 ∨ |𝑓𝜏∧𝑁 |. Since 𝜏 ∧ 𝑁 is a bounded stopping time, by the optional
sampling theorem, we have

‖𝑀𝑓𝜏∧𝑁‖1 ≤ 𝜆 + ‖𝑓𝜏∧𝑁‖1 ≤ 𝜆 + ‖𝑓‖1.

By Lépingle’s inequality, for 𝑟 > 2, we obtain

‖𝑉𝑟𝑓𝜏∧𝑁‖1 ≲ 𝜆 + ‖𝑓‖1.

Since the right-hand side does not depend on 𝑁 and by the monotone convergence the-
orem, we obtain

‖𝑉𝑟𝑓𝜏‖1 ≲ 𝜆 + ‖𝑓‖1.
In particular, the function 𝑉𝑟𝑓𝜏 is finite a.s. On the set {𝑀𝑓 < 𝜆}, we have 𝑓 = 𝑓𝜏, so
that 𝑉𝑟𝑓 is finite a.s. on this set.

Taking the union over 𝜆 ∈ ℕ, we find that 𝑉𝑟𝑓 is finite a.s. on the set {𝑀𝑓 < ∞}. By
Doob’s maximal inequality, this set has full probability.

We have shown that, for an 𝐿1 martingale 𝑓, the limit 𝑓∞ ∶= lim𝑛→∞ 𝑓𝑛 exists a.s.
We recall the condition under which this convergence also holds in 𝐿1. We start with an
example that shows that this is not always the case.
Example 2.3. Consider Ω = [0, 1] with the dyadic filtration. The sequence

𝑓𝑛 = 2𝑛1[0,2−𝑛]

is a martingale and converges pointwise a.s. to 0. On the other hand, 𝔼𝑓𝑛 = 1 ≠ 0 = 𝔼0.

Definition 2.4. A set 𝐹 of real random variables is called uniformly integrable if

lim
𝜆→∞

sup
𝑓∈𝐹

𝔼(1|𝑓|>𝜆|𝑓|) = 0.

Example 2.5. If 𝑓 ∈ 𝐿1, then the singleton {𝑓} is uniformly integrable.
Uniform integrability is useful because it is the minimal hypothesis under which an

analogue of the dominated convergence theorem holds. We recall this analogue.

Proposition 2.6 (Dominated convergence). For every sequence of random variables 𝑓 =
(𝑓𝑛), the following are equivalent:

1. 𝑓 is Cauchy in 𝐿1,

2. 𝑓 is uniformly integrable and Cauchy in probability, that is,

(∀𝜖 > 0)(∃𝑁 ∈ ℕ)(∀𝑚, 𝑛 ≥ 𝑁)𝜇{|𝑓𝑛 − 𝑓𝑚| > 𝜖} < 𝜖.

In relation with martingales, it is important that uniform integrability is preserved
under conditional expectation. This can be seen using the following characterization.

Lemma 2.7. Let 𝐹 be a set of random variables. The following are equivalent.

1. 𝐹 is uniformly integrable.
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2. sup𝑓∈𝐹 𝔼|𝑓| < ∞ and
lim

𝜇(𝐴)→0
sup
𝑓∈𝐹

𝔼(1𝐴|𝑓|) = 0. (2.8)

Proof. Without loss of generality, all r.v. in 𝐹 are positive.
⟹ : For every 𝜆 > 0, we have

𝔼𝑓 ≤ 𝜆 + 𝔼(1𝑓>𝜆𝑓).

Taking the supremumover𝑓 ∈ 𝐹 onboth sides and choosing𝜆 such that sup𝑓∈𝐹 𝔼(1𝑓>𝜆𝑓) <
∞, we see that sup𝑓∈𝐹 𝔼|𝑓| < ∞.

Moreover,
𝔼(1𝐴𝑓) ≤ 𝜇(𝐴)𝜆 + 𝔼(1𝑓>𝜆𝑓).

Taking first the supremum over 𝑓 ∈ 𝐹, and then lim𝜇(𝐴)→0, we obtain

lim
𝜇(𝐴)→0

sup
𝑓∈𝐹

𝔼(1𝐴𝑓) ≤ sup
𝑓∈𝐹

𝔼(1𝑓>𝜆𝑓).

Taking lim𝜆→0, we obtain (2.8).
⟸ : We have 𝜇{𝑓 > 𝜆} ≤ 𝜆−1𝔼𝑓. Taking the supremum over 𝑓 ∈ 𝐹, we obtain

sup
𝑓∈𝐹

𝜇{𝑓 > 𝜆} ≤ 𝜆−1 sup
𝑓∈𝐹

𝔼𝑓.

The RHS converges to 0 as 𝜆 → ∞. The second hypothesis now implies that 𝐹 is uni-
formly integrable.

Lemma 2.8. Let 𝐹 ⊂ 𝐿1(Ω,ℱ) be uniformly integrable. Then the set

{𝔼(𝑓|ℱ′) | 𝑓 ∈ 𝐹,ℱ′ ⊆ ℱ sub-𝜎-algebra}

is uniformly integrable.

Proof. We verify the characterization above. We have

𝔼|𝔼(𝑓|ℱ′)| ≤ 𝔼𝔼(|𝑓||ℱ′) = 𝔼|𝑓|.

This verifies the first condition.
Fixing 𝜆 > 0, we also have

𝔼(1𝐴|𝔼(𝑓|ℱ′)|) ≤ 𝔼(1𝐴𝔼(|𝑓||ℱ′)) = 𝔼(𝔼(1𝐴|ℱ′)|𝑓|) ≤ 𝜆𝔼|𝑓| + 𝔼(1𝔼(1𝐴|ℱ′)>𝜆|𝑓|)

Since 𝜇{𝔼(1𝐴|ℱ′) > 𝜆} ≤ 𝜆−1𝜇(𝐴) and using (2.8) for the set 𝐹, we obtain

lim
𝜇(𝐴)→0

sup
𝑓∈𝐹,ℱ′⊆ℱ

𝔼(1𝐴|𝔼(𝑓|ℱ′)|) ≤ 𝜆𝔼|𝑓|.

Since 𝜆 > 0 was arbitrary, this implies (2.8) for the set of conditional expectations.

The above results can now be summarized as follows.

Proposition 2.9 (Martingale closure). For every martingale 𝑓 = (𝑓𝑛)𝑛∈ℕ, the following
are equivalent.

1. The set {𝑓𝑛}𝑛∈ℕ is uniformly integrable.

2. The sequence (𝑓𝑛)𝑛∈ℕ converges in 𝐿1.

3. There exists 𝑓∞ ∈ 𝐿1 such that, for every 𝑛 ∈ ℕ, we have 𝑓𝑛 = 𝔼𝑛𝑓∞.

If the above conditions hold, then we can take 𝑓∞ = lim𝑛→∞ 𝑓𝑛 a.s. and in 𝐿1.
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[4: 2021-11-02]
[5: 2021-11-09]

Remark. We have seen that, for a martingale 𝑓, we have

𝑀𝑓 ∈ 𝐿1 ⟹ 𝑓 is uniformly integrable ⟹ 𝑓 ∈ 𝐿1.

The second implication cannot be reversed by Example 2.3. The following example
shows that the first implication also cannot be reversed, and also that𝑀 is not bounded
on 𝐿1.
Example 2.10. Let Ω = [0, 1] with the dyadic filtration and

𝑓∞ ∶=
∞
∑
𝑚=0

(𝑚 + 1)−22𝑚1[2−𝑚−1,2−𝑚]

and 𝑓𝑛 ∶= 𝔼𝑛𝑓∞. Then, for 𝑥 ∈ (2−𝑙−1, 2−𝑙), we have

𝑀𝑓(𝑥) = 𝑓𝑙(𝑥) = 2𝑙
∞
∑
𝑚=𝑙

∫
2−𝑙

0
(𝑚+1)−22𝑚1[2−𝑚−1,2−𝑚](𝑦) d𝑦 = 2𝑙−1

∞
∑
𝑚=𝑙

(𝑚+1)−2 ∼ (𝑙+1)−12𝑙.

We see that𝑀𝑓 ∉ 𝐿1.

3 Vector-valued inequalities
Remark. The norm on a Banach space 𝑋 will be sometimes denoted by 𝑋𝑓 ∶= ‖𝑓‖𝑋 .
This is consistent with operator notation, in that every norm is also a sublinear operator.

Lemma 3.1. Let 𝑋 be a Banach space. Let 𝑇 be a subadditive operator that maps 𝑋-
valued martingales starting at 0 to ℝ≥0-valued increasing adapted processes starting at 0
such that, for every stopping time 𝜏, we have

𝑇𝑓𝜏 = 𝑇(𝑓𝜏)𝜏,

and for every time 𝑡 we have
𝑇𝑓𝑡 ≤ 𝑇𝑓𝑡−1 + 𝑋𝑑𝑓𝑡.

Let 𝑈 be another operator satisfying the same properties as 𝑇.
Assume that, for some 𝑟 ∈ (1,∞) and every 𝑋-valued martingale 𝑓, we have

ℙ{𝑇𝑓 > 𝜆} ≲ 𝜆−𝑟(𝐿𝑟𝑈𝑓)𝑟. (3.1)

Then, for every 𝑞 ∈ [1,∞) and every 𝑋-valued martingale 𝑓, we have

𝐿𝑞𝑇𝑓 ≲𝑞 𝐿𝑞𝑈𝑓 + 𝐿𝑞𝑀𝑋𝑑𝑓. (3.2)

The formulation is flexible enough to apply to any combination {𝑇, 𝑈} = {𝑋𝑀,𝑋𝑆},
and also some other operators, such as martingale transforms or 𝑟-variation norms.

Proof. Consider first the case 𝑞 = 1. We use the Davis decomposition 𝑓 = 𝑓pred + 𝑓bv.
Of the two possible generalizations of the Davis decomposition to𝑋-valuedmartingales,
we use the one in which the absolute value is replaced by the 𝑋-norm (the alternative
would be to make a decomposition for each 𝑘 separately). Specifically, we have

𝑋𝑑𝑓pred𝑛 ≤ 2𝑀𝑋𝑑𝑓𝑛−1, 𝔼∑
𝑛
𝑋𝑑𝑓bv𝑛 ≤ 2𝔼𝑀𝑋𝑑𝑓.

For 𝜆 > 0, define the stopping time

𝜏 ∶= inf{𝑡 | 𝑈𝑓pred𝑡 > 𝜆 or𝑀𝑋𝑑𝑓𝑡 > 𝜆}.
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We claim that
𝑈𝑓pred𝜏 ≤ 𝑈𝑓pred ∧ 3𝜆. (3.3)

Indeed, the first bound is trivial. The second bound is trivial if 𝜏 = ∞, so assume 𝜏 ∈
(0,∞). Then, by properties of the Davis decomposition, we have

𝑈𝑓pred𝜏 ≤ 𝑈𝑓pred𝜏−1 + 𝑋𝑑𝑓pred𝜏 ≤ 𝜆 + 2𝑀𝑋𝑑𝑓𝜏−1 ≤ 3𝜆.

Also,

{𝑇𝑓pred > 𝜆} ⊆ {𝑇𝑓pred𝜏 > 𝜆} ∪ {𝜏 < ∞}
⊆ {𝑇𝑓pred𝜏 > 𝜆} ∪ {𝑈𝑓pred > 𝜆} ∪ {𝑀𝑋𝑑𝑓𝜏 > 𝜆}.

By the layer cake formula,

‖𝑇𝑓pred‖𝐿1 = ∫
∞

0
ℙ{𝑇𝑓pred > 𝜆} d𝜆

≤ ∫
∞

0
ℙ{𝑇𝑓pred𝜏 > 𝜆} d𝜆 +∫

∞

0
ℙ{𝑈𝑓pred > 𝜆} d𝜆

+∫
∞

0
ℙ{𝑀𝑋𝑑𝑓 > 𝜆} d𝜆 =∶ 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

The term 𝐼𝐼𝐼 is easy to bound by the layer cake formula.
In the term 𝐼𝐼, we use the properties of the Davis decomposition to estimate

𝐼𝐼 = ‖𝑈𝑓pred‖𝐿1
≤ ‖𝑈𝑓‖𝐿1 + ‖𝑈𝑓bv‖𝐿1
≤ ‖𝑈𝑓‖𝐿1 + ‖∑

𝑛
𝑋𝑑𝑓bv𝑛 ‖𝐿1

≤ ‖𝑈𝑓‖𝐿1 + 2‖𝑀𝑋𝑑𝑓‖𝐿1 .

Using the hypothesis (3.1) and (3.3), we bound the first term by

𝐼 ≲ ∫
∞

0
𝜆−𝑟‖𝑈𝑓pred𝜏 ‖𝑟𝐿𝑟 d𝜆

≤ ∫
∞

0
𝜆−𝑟‖𝑈𝑓pred ∧ 3𝜆‖𝑟𝐿𝑟 d𝜆

= 𝔼∫
∞

0
min(𝜆−𝑟(𝑈𝑓pred)𝑟, 3𝑟) d𝜆

≲ 𝔼𝑈𝑓pred = 𝐼𝐼,

and we reuse the previously established estimate for 𝐼𝐼.
We have shown (3.2) for 𝑞 = 1, and we will now extend this claim to 𝑞 > 1. In doing

so, we may replace 𝑈𝑓 by (𝑈𝑓 + 𝑀𝑋𝑑𝑓)/2. This has the effect that we may omit the
second summand on the RHS of (3.2).

For 𝑞 > 1, we use the Garsia-Neveu lemma. For a martingale 𝑓, let 𝜏𝑓 ∶= 𝑓 − 𝑓𝜏 be
the martingale 𝑓 started at (stopping) time 𝜏.

For any 𝑡 ∈ ℕ and 𝐵 ∈ ℱ𝑡, we can apply the case 𝑞 = 1 to the martingale 1𝐵 𝑡𝑓, and
obtain

𝔼𝑡𝑇 𝑡𝑓 ≲ 𝔼𝑡𝑈 𝑡𝑓.
Note that

𝑇𝑓∞ − 𝑇𝑓𝑡 = 𝑇𝑓∞ − 𝑇(𝑓𝑡)∞ ≤ 𝑇(𝑓 − 𝑓𝑡)∞ = 𝑇 𝑡𝑓∞,
𝑈 𝑡𝑓∞ ≤ (𝑈𝑓 + 𝑈𝑓𝑡)∞ ≤ 2𝑈𝑓∞,

so the conditions of Corollary 1.12 hold for 𝐴𝑡 = 𝑇𝑓(𝑡−1)∨0 and 𝜉 ∼ 𝑈𝑓∞. Corollary 1.12
now shows the claim.
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Monotonicity of 𝑈𝑓 is used in estimates for both 𝐼 and 𝐼𝐼 above.

Corollary 3.2 (ℓ𝑟 valued BDG inequality). For every 𝑘 ∈ ℕ, let 𝑓𝑘 = (𝑓𝑘,𝑛)𝑛 be a real-
valued martingale starting at 0. Then, for every 𝑞, 𝑟 ∈ [1,∞), we have

𝐿𝑞ℓ𝑟𝑘𝑀𝑓𝑘 ≲𝑞 𝐿𝑞ℓ𝑟𝑘𝑆𝑓𝑘.

Proof. For 𝑟 = 𝑞, this follows from the scalar-valued Doob’s inequality and Fubini. For
general 𝑞, we apply Lemma 3.1 with 𝑋 = ℓ𝑟.

Toy example: better constant in Lépingle.

3.1 Weighted and vector-valued Doob inequalities
Let𝑤 ∈ 𝐿1(Ω,ℱ∞) be a positive function, that wewill call aweight. Wewrite𝑤𝑘 ∶= 𝔼𝑘𝑤,
𝑤∗ ∶= sup𝑘𝑤𝑘, and 𝑤𝐵 ∶= ∫𝐵 𝑤 d𝜇 for 𝐵 ∈ ℱ∞.

Lemma 3.3. Let 𝑓 be an ℝ≥0-valued submartingale (recall that this means 𝑓𝑘 ≤ 𝐸𝑘𝑓𝑛 for
𝑘 ≤ 𝑛). Then, for every 𝜆 > 0 and 𝑛 ∈ ℕ, we have

𝜆𝑤{𝑀𝑓𝑛 > 𝜆} ≤ ∫
{𝑀𝑓𝑛>𝜆}

𝑓𝑛𝑀𝑤𝑛 d𝜇.

Proof. For a fixed 𝜆, define the stopping time

𝜏 ∶= inf{𝑘 | 𝑓𝑘 > 𝜆}.

Then, {𝑀𝑓𝑛 > 𝜆} = {𝜏 ≤ 𝑛}. Hence,

𝜆𝑤{𝑀𝑓𝑛 > 𝜆} = 𝜆 ∑
𝑘≤𝑛

𝑤{𝜏 = 𝑘}

≤ ∑
𝑘≤𝑛

∫
{𝜏=𝑘}

𝑓𝑘𝑤𝑘 d𝜇

(submartingale property) ≤ ∑
𝑘≤𝑛

∫
{𝜏=𝑘}

𝑓𝑛𝑤𝑘 d𝜇

≤ ∫
{𝑀𝑓𝑛>𝜆}

𝑓𝑛𝑤∗ d𝜇.

We recall that, for a function 𝑓 on a measure space (Ω, 𝜇) and 𝑝 ∈ [1,∞), the 𝐿𝑝,∞
quasinorm is defined by

‖𝑓‖𝐿𝑝,∞ ∶= sup
𝜆>0

𝜆𝜇{|𝑓| > 𝜆}1/𝑝.

For 𝑝 = ∞, we have ‖𝑓‖𝐿𝑝,∞ = ‖𝑓‖𝐿∞ .

Theorem 3.4 (Marcinkiewicz/real interpolation, see e.g. [Gra14]). Let (Ω, 𝜇) and (Ω̃, �̃�)
be 𝜎-finite measure spaces. Let 0 < 𝑝0 < 𝑝1 ≤ ∞. Let

𝑇 ∶ 𝐿𝑝0(Ω) + 𝐿𝑝1(Ω) → 𝐿0(Ω̃)

be a subadditive operator such that, for every function 𝑓, we have

‖𝑇𝑓‖𝐿𝑝𝑗,∞(Ω̃) ≤ 𝐴𝑗‖𝑓‖𝐿𝑝𝑗 (Ω), 𝑗 = 0, 1.

Then, for every 𝑝 ∈ (𝑝0, 𝑝1), we have

‖𝑇𝑓‖𝐿𝑝(Ω̃) ≲𝑝 ‖𝑓‖𝐿𝑝(Ω).
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Lemma 3.5. Let 𝑝 ∈ (1,∞), 𝑓 be a submartingale, and 𝑤 a weight. Then,

‖𝑀𝑓‖𝐿𝑝(𝑤) ≲𝑝 ‖𝑓‖𝐿𝑝(𝑤∗)

Proof. We will show the following more precise estimate:

‖𝑀𝑓𝑁‖𝐿𝑝(𝑤) ≲𝑝 ‖𝑓𝑁‖𝐿𝑝(𝑀𝑤𝑁), (3.4)

from which the claim follows by letting 𝑁 → ∞. The main advantage of this formula-
tion is that the right-hand side increases in 𝑁, which would not be the case if we would
use the weight 𝑤∗ instead of𝑀𝑤𝑁 .

Lemma 3.3 implies in particular

‖𝑀𝑓𝑁‖𝐿1,∞(𝑤) ≲ ‖𝑓𝑁‖𝐿1(𝑀𝑤𝑁).

The estimate
‖𝑀𝑓𝑁‖𝐿∞(𝑤) ≲ ‖𝑓𝑁‖𝐿∞(𝑀𝑤𝑁)

is easy to see. By real interpolation, these two bounds imply (3.4).

Proposition 3.6 (Vector-valued maximal inequality). Let 𝑝 ∈ (1,∞) and 𝑟 ∈ (1,∞].
Then, for any sequence of martingales 𝑓𝑘 = (𝑓𝑘,𝑛)𝑛, we have

𝐿𝑝ℓ𝑟𝑘𝑀𝑓𝑘 ≲𝑞,𝑟 𝐿𝑝ℓ𝑟𝑘𝑓𝑘.

Proof. The case 𝑟 = ∞ follows from the scalar case, because ℓ∞𝑓𝑘 is a submartingale.
The case 𝑝 = 𝑟 also follows from the scalar case and Fubini.
For 1 < 𝑟 < 𝑝 < ∞, let 𝜌 ∶= (𝑝/𝑟)′ = 𝑝/(𝑝− 𝑟). Then, for some weight 𝑤 ∈ 𝐿𝜌 with

‖𝑤‖𝜌 ≤ 1, we have

‖ℓ𝑟𝑘𝑀𝑓𝑘‖𝑟𝑝 ≲ (𝔼(∑
𝑘
(𝑀𝑓𝑘)𝑟)

𝑝/𝑟)
𝑟/𝑝

= 𝔼∑
𝑘
(𝑀𝑓𝑘)𝑟𝑤

≲ 𝔼∑
𝑘
|𝑓𝑘|𝑟𝑤∗

and we conclude using Hölder’s inequality and boundedness of the maximal operator
on 𝐿𝜌.

For 1 < 𝑝 < 𝑟 < ∞, let 𝑠 ∈ (1, 𝑝). Then, for some sequence of weights with

‖ℓ(𝑟/𝑠)
′

𝑘 𝑤𝑘‖(𝑝/𝑠)′ ∼ 1,

we have

‖ℓ𝑟𝑘𝑀𝑓𝑘‖𝑠𝑝 = ‖ℓ𝑟/𝑠𝑘 (𝑀𝑓𝑘)𝑠‖𝑝/𝑠

∼ ∫∑
𝑘
𝑤𝑘(𝑀𝑓𝑘)𝑠

≲ ∫∑
𝑘
𝑤∗
𝑘|𝑓𝑘|𝑠

≤ ‖ℓ(𝑟/𝑠)
′

𝑘 𝑤∗
𝑘‖(𝑝/𝑠)′‖ℓ𝑟/𝑠𝑘 |𝑓𝑘|𝑠‖𝑝/𝑠.

Since (𝑟/𝑠)′ < (𝑝/𝑠)′, from the previously shown case, we obtain

‖ℓ(𝑟/𝑠)
′

𝑘 𝑤∗
𝑘‖(𝑝/𝑠)′ ≲ ‖ℓ(𝑟/𝑠)

′

𝑘 𝑤𝑘‖(𝑝/𝑠)′ ∼ 1.

Remark. Most of this section is from [Hyt+16, Section 3].

20



[5: 2021-11-09]
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4 Rough paths
In this section, we discuss how to define ∫𝑎 d𝑔 for not very regular functions 𝑎, 𝑔. The
intended application is that 𝑔 is a sample path of a martingale, which only has bounded
𝑟-variation for 𝑟 > 2, so that we cannot use Stieltjes integration.

The function 𝑎 is assumed to have the same regularity as 𝑔, because we want the
theory to be suitable for solving equations like 𝑓(𝑡) = ∫𝑡

0 𝑎(𝑠, 𝑓(𝑠)) d𝑔(𝑠).

4.1 Young integration with Hölder functions
We begin with a criterion for convergence of Riemann-like sums. Let Δ ∶= {(𝑠, 𝑡) |
0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇}. For any Ξ ∶ Δ → ℝ and a partition 0 = 𝜋0 < … < 𝜋𝐽 = 𝑇, write

ℐ𝜋Ξ0,𝑇 ∶=
𝐽
∑
𝑗=1

Ξ𝜋𝑗−1,𝜋𝑗 .

We will discuss sufficient conditions for the convergence of these sums along the di-
rected (by set inclusion) set of partitions.

For a mapping Ξ ∶ Δ → 𝐸 (𝐸 a vector space), we write

𝛿Ξ𝑠,𝑢,𝑡 ∶= Ξ𝑠,𝑡 − Ξ𝑠,𝑢 − Ξ𝑢,𝑡.

A control is a function 𝜔 ∶ Δ → [0,∞) that is superadditive in the sense that

𝜔(𝑠, 𝑡) + 𝜔(𝑡, 𝑢) ≤ 𝜔(𝑠, 𝑢)

for all 𝑠 ≤ 𝑡 ≤ 𝑢. This implies in particular that 𝜔(𝑡, 𝑡) = 0 for all 𝑡.

Lemma 4.1. Let 𝜔 be a control and 𝜃 > 1. Let (𝐸, |⋅|) be a Banach space and Ξ ∶ Δ → 𝐸
such that, for every 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑢 ≤ 𝑇, we have

|𝛿Ξ𝑠,𝑡,𝑢| ≤ 𝜔(𝑠, 𝑢)𝜃. (4.1)

Then, for every partition 0 = 𝜋0 ≤ … ≤ 𝜋𝐽 = 𝑇, we have

|Ξ0,𝑇 − ℐ𝜋Ξ0,𝑇 | ≲ (𝜃 − 1)−1𝜔(0, 𝑇)𝜃.

Proof. By induction on the partition size 𝐽, we will show the bound

|Ξ0,𝑇 − ℐ𝜋Ξ0,𝑇 | ≤
𝐽−1
∑
𝑘=1

(2/𝑘)𝜃𝜔(0, 𝑇)𝜃.

For 𝐽 = 1, we have ℐ𝜋Ξ0,𝑇 = Ξ0,𝑇 , which serves as the induction base.
Suppose that the claim is known for all partitions of size 𝐽 and let 𝜋 be a partition of

size 𝐽 + 1. By superadditivity of 𝜔, we have
𝐽−1
∑
𝑘=0

𝜔(𝜋𝑘, 𝜋𝑘+2) = ∑
𝑘≤𝐽−1 even

𝜔(𝜋𝑘, 𝜋𝑘+2) + ∑
𝑘≤𝐽−1 odd

𝜔(𝜋𝑘, 𝜋𝑘+2) ≤ 2𝜔(0, 𝑇).

Hence, there exists 𝑘 with 𝜔(𝜋𝑘, 𝜋𝑘+2) ≤ 2𝜔(0, 𝑇)/𝐽. Let 𝜋′ ∶= 𝜋 ⧵ {𝜋𝑘+1}. Then,

|ℐ𝜋Ξ0,𝑇 − ℐ𝜋′Ξ0,𝑇 | = |𝛿Ξ𝜋𝑘,𝜋𝑘+1,𝜋𝑘+2 | ≤ 𝜔(𝜋𝑘, 𝜋𝑘+2)𝜃 ≤ (2/𝐽)𝜃𝜔(0, 𝑇).

Applying the inductive hypothesis to 𝜋′, we obtain the claim.
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Proposition 4.2 (Sewing). Let 𝜔 be a control such that

lim
𝜋
sup
𝑗
𝜔(𝜋𝑗 , 𝜋𝑗+1) = 0. (4.2)

Let Ξ ∶ Δ → 𝐸 be such that (4.1) holds. Then, the limit

ℐΞ0,𝑇 ∶= lim
𝜋
ℐ𝜋Ξ0,𝑇

exists and satisfies
|ℐΞ0,𝑇 − Ξ0,𝑇 | ≲ (𝜃 − 1)−1𝜔(0, 𝑇)𝜃.

Proof. For any partitions 𝜋 ⊆ 𝜋′, by Lemma 4.1, we have

|ℐ𝜋Ξ𝑠,𝑡 − ℐ𝜋′Ξ𝑠,𝑡| ≤ ∑
𝑗
|Ξ𝜋𝑗 ,𝜋𝑗+1 − ℐ𝜋′Ξ𝜋𝑗 ,𝜋𝑗+1 |

≲ ∑
𝑗
𝜔(𝜋𝑗 , 𝜋𝑗+1)𝜃

≲ sup
𝑗
𝜔(𝜋𝑗 , 𝜋𝑗+1)𝜃−1∑

𝑗
𝜔(𝜋𝑗 , 𝜋𝑗+1)

≲ 𝜔(𝑠, 𝑡) sup
𝑗
𝜔(𝜋𝑗 , 𝜋𝑗+1)𝜃−1.

The hypothesis (4.2) implies that 𝜋 ↦ ℐ𝜋Ξ𝑠,𝑡 is a Cauchy net.

Example 4.3 (Young integral). Let 𝑎, 𝑔 ∶ [0, 𝑇] → ℝ be 𝛼-Hölder functions and

Ξ𝑠,𝑡 ∶= 𝑎𝑠(𝑔𝑡 − 𝑔𝑠).

Then,

𝛿Ξ𝑠,𝑡,𝑢 = Ξ𝑠,𝑢 − Ξ𝑠,𝑡 − Ξ𝑡,𝑢
= 𝑎𝑠(𝑔𝑢 − 𝑔𝑠) − 𝑎𝑠(𝑔𝑡 − 𝑔𝑠) − 𝑎𝑡(𝑔𝑢 − 𝑔𝑡)
= 𝑎𝑠(𝑔𝑢 − 𝑔𝑡) + 𝑎𝑠(𝑔𝑡 − 𝑔𝑠) − 𝑎𝑠(𝑔𝑡 − 𝑔𝑠) − 𝑎𝑡(𝑔𝑢 − 𝑔𝑡)
= (𝑎𝑠 − 𝑎𝑡)(𝑔𝑢 − 𝑔𝑡).

In particular, Ξ𝑠,𝑡,𝑢 ≲ |𝑠 − 𝑡|𝛼|𝑢 − 𝑡|𝛼 ≤ |𝑢 − 𝑠|2𝛼. Hence, provided that 2𝛼 > 1, the
hypothesis of Proposition 4.2 holds with 𝜃 = 2𝛼 and 𝜔(𝑠, 𝑡) ∼ |𝑡 − 𝑠|.

4.2 Young integration with 𝑉 𝑟 functions
If the function 𝑔 ∶ [0, 𝑇] → ℝ has bounded 𝑟-variation, then

𝜔𝑔,𝑟(𝑠, 𝑡) ∶= (𝑉𝑟𝑔𝑠,𝑡)𝑟 = sup
𝑠≤𝜋0≤⋯≤𝜋𝐽≤𝑡

𝐽
∑
𝑗=1

|𝑔𝜋𝑗 − 𝑔𝜋𝑗−1 |𝑟

is a control. If both 𝑎, 𝑔 ∈ 𝑉𝑟, then, in the situation of Example 4.3, we have

|𝛿Ξ𝑠,𝑡,𝑢| ≤ 𝜔𝑎,𝑟(𝑠, 𝑡)1/𝑟𝜔𝑔,𝑟(𝑡, 𝑢)1/𝑟. (4.3)

This implies in particular (4.1) with 𝜔 = 𝜔𝑎,𝑟 + 𝜔𝑔,𝑟 and 𝜃 = 2/𝑟. However, (4.2) only
holds for this control if 𝑎, 𝑔 are also continuous. In order to integrate functions with
jumps, we will show a version of the sewing lemma under the condition (4.3).

Definition 4.4. If 𝑓 is a function defined on a suitable interval, we write

𝑓(𝑡+) ∶= lim
𝑡′→𝑡,𝑡′>𝑡

𝑓(𝑡′), 𝑓(𝑡−) ∶= lim
𝑡′→𝑡,𝑡′<𝑡

𝑓(𝑡′),

provided that the respective limits exist.
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Lemma 4.5. Let 𝜔 be a control. Then, for every 𝜖 > 0, there exists a partition 𝜋 such that

max
𝑗
(𝜔(𝜋𝑗−1+,𝜋𝑗) ∧ 𝜔(𝜋𝑗−1, 𝜋𝑗−)) ≤ 𝜖. (4.4)

Proof. We select the partition greedily starting with 𝜋0 = 0. It will be clear from the
construction that the claim (4.4) holds. If 𝜋𝑗 has been already selected and 𝜋𝑗 < 𝑇, we
distinguish two cases.

Case 1: if 𝜔(𝜋𝑗 , 𝜋𝑗+) < 𝜖, then we let

𝜋𝑗+1 ∶= sup{𝑡 > 𝜋𝑗 | 𝜔(𝜋𝑗 , 𝑡) < 𝜖}.

Then 𝜔(𝜋𝑗 , 𝜋𝑗+1−) ≤ 𝜖.
Case 2: if 𝜔(𝜋𝑗 , 𝜋𝑗+) ≥ 𝜖, then we choose any 𝜋𝑗+1 ∈ (𝜋𝑗 , 𝑇] with 𝜔(𝜋𝑗+,𝜋𝑗+1) ≤ 𝜖.
To see that such 𝜋𝑗+1 exists, suppose for a contradiction that, for every 𝑡 ∈ (𝜋𝑗 , 𝑇],

we have 𝜔(𝜋𝑗+, 𝑡) > 𝜖. Choose recursively 𝑡0 = 𝑇 and, given 𝑡𝑘, let 𝑡𝑘+1 ∈ (𝜋𝑗 , 𝑡𝑘) be
such that 𝜔(𝑡𝑘+1, 𝑡𝑘) > 𝜖. By superadditivity, we obtain

𝜔(𝜋𝑗 , 𝑇) ≥ ∑
𝑘
𝜔(𝑡𝑘+1, 𝑡𝑘) = +∞,

a contradiction.
The selection of𝜋𝑗 ’s ends after finitelymany steps, because otherwisewewould have

𝜔(𝜋𝑗 , 𝜋𝑗+1+) ≥ 𝜖 for every 𝑗, which in turn implies 𝜔(𝜋𝑗 , 𝜋𝑗+2) ≥ 𝜖, and summing over
even 𝑗 we obtain a contradiction with the superadditivity of 𝜔.

Theorem 4.6 (Sewing with jumps). Let 𝜔1,𝑛, 𝜔2,𝑛 be controls and 𝛼1,𝑛, 𝛼2,𝑛 ≥ 0 with
𝛼1,𝑛 + 𝛼2,𝑛 > 1 for all 𝑛 ∈ {1,… ,𝑁}.

Let Ξ ∶ Δ → 𝐸. Assume

|𝛿Ξ𝑠,𝑢,𝑡| ≤
𝑁
∑
𝑛=1

𝜔𝛼1,𝑛1,𝑛 (𝑠, 𝑢)𝜔𝛼2,𝑛2,𝑛 (𝑢, 𝑡),

Then the following net limit exists,

ℐΞ0,𝑇 ∶= lim
𝜋
ℐ𝜋Ξ0,𝑇 ,

and one has the following estimate:

|ℐΞ0,𝑇 − Ξ0,𝑇 | ≲
𝑁
∑
𝑛=1

𝜔𝛼1,𝑛1,𝑛 (0, 𝑇−)𝜔𝛼2,𝑛2,𝑛 (0+, 𝑇),

with 𝐶 depending only onmin𝑛 𝛼1,𝑛 + 𝛼2,𝑛.

Proof. Let
𝜃 ∶= min

𝑛
𝛼1,𝑛 + 𝛼2,𝑛 > 1

and

𝜔(𝑠, 𝑡) ∶=
𝑁
∑
𝑛=1

𝜔𝛼1,𝑛/𝜃1,𝑛 (𝑠, 𝑡−)𝜔𝛼2,𝑛/𝜃2,𝑛 (𝑠+, 𝑡).

Note that the functions (𝑠, 𝑡) ↦ 𝜔1,𝑛(𝑠, 𝑡−) and (𝑠, 𝑡) ↦ 𝜔2,𝑛(𝑠+, 𝑡) are also controls. The
function 𝜔 is a control, because, by Hölder’s inequality,

𝜔𝛼1,𝑛/𝜃1,𝑛 (𝑠, 𝑢)𝜔𝛼2,𝑛/𝜃2,𝑛 (𝑠, 𝑢) ≥ (𝜔1,𝑛(𝑠, 𝑡) + 𝜔1,𝑛(𝑡, 𝑢))𝛼1,𝑛/𝜃(𝜔2,𝑛(𝑠, 𝑡) + 𝜔2,𝑛(𝑡, 𝑢))𝛼2,𝑛/𝜃

≥ 𝜔1,𝑛(𝑠, 𝑡)𝛼1,𝑛/𝜃𝜔2,𝑛(𝑠, 𝑡)𝛼2,𝑛/𝜃 + 𝜔1,𝑛(𝑡, 𝑢)𝛼1,𝑛/𝜃𝜔2,𝑛(𝑡, 𝑢)𝛼2,𝑛/𝜃.

It follows from Lemma 4.5 applied to the control∑𝑛(𝜔1,𝑛+𝜔2,𝑛) that (4.2) holds. Since
|𝛿Ξ𝑠,𝑡,𝑢| ≤ 𝜔(𝑠, 𝑢)𝜃, we can apply Proposition 4.2.
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Theorem 4.6 allows us to integrate under the hypothesis (4.3), but only for 𝑟 < 2. By
the law of the iterated logarithm, paths of the Brownian motion are not in 𝑉𝑟 for any
𝑟 ≤ 2.

There are two options to refine the above reasoning in order to obtain an integration
theory suitable for martingales.

• The classical stochastic integration uses orthogonality between martingale incre-
ments. We will return to that.

• Rough integration theory replacesRiemann–Stieltjes sumsbyhigher order quadra-
ture schemes. Higher order quadrature improves the order of convergence (under
suitable regularity assumptions). In the rough setting, it improves from having no
convergence to having convergence.

Another motivation for us to look at the rough integration theory is that it informs us
about the estimates that we will want when we return to stochastic integration.
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[7: 2021-11-23]

4.3 Rough paths
Throughout this section, we fix some 𝑟 ∈ [2, 3).

An 𝑟-rough path (with values in ℝ𝑑) consists of

𝑋 ∶ [0, 𝑇] → ℝ𝑑, 𝕏 ∶ Δ → ℝ𝑑×𝑑

such that 𝑋 ∈ 𝑉𝑟, 𝕏 ∈ 𝑉𝑟/2, where

𝑉𝑟𝕏𝑠,𝑡 = sup
𝑠≤𝑢0≤⋯≤𝑢𝐽≤𝑡

(∑
𝑗
|𝕏𝑢𝑗 ,𝑢𝑗+1 |𝑟)

1/𝑟
.

and Chen’s relation holds for 𝑠 < 𝑡 < 𝑢:
𝕏𝑠,𝑢 = 𝕏𝑠,𝑡 + 𝕏𝑡,𝑢 + (𝑋𝑡 − 𝑋𝑠) ⊗ (𝑋𝑢 − 𝑋𝑡). (4.5)

Remark. If 𝑋 is sufficiently regular for the integral to be defined, one can take

𝕏𝑠,𝑡 ∶= ∫
𝑡

𝑠
(𝑋𝑢− − 𝑋𝑠) ⊗ d𝑋𝑢.

Next, we introduce the spaces inwhich one can state and solve differential equations
driven by rough paths.
Definition 4.7 (Controlled path). Let X = (𝑋, 𝕏) be an 𝑟-rough path in ℝ𝑑. An X-
controlled 𝑟-rough path in a vector space 𝐸 consists of 𝑌 ∶ [0, 𝑇] → 𝐸, 𝑌 ′ ∶ [0, 𝑇] →
𝐿(ℝ𝑑, 𝐸) such that 𝑌 ′ ∈ 𝑉𝑟 and

𝑅Y,X𝑠,𝑡 ∶= 𝛿𝑌𝑠,𝑡 − 𝑌 ′
𝑠 𝛿𝑋𝑠,𝑡 ∈ 𝑉𝑟/2.

Although 𝑅Y,X depends on all of 𝑌, 𝑌 ′, 𝑋 , it is commonly abbreviated to 𝑅𝑌 , since
the other dependencies are usually unambiguous.

Itmay be helpful to think about the scalar case 𝑑 = 𝑑′ = 1, andwewill use the scalar
notation. All arguments will be, however, formulated in such a way that they work in
the vector-valued case, which is important e.g. because one may wish to incorporate
time as an additional coordinate in X.
Example 4.8. (𝑋, 1) is an 𝑋-controlled path.
Lemma 4.9 (Rough integral). Let X = (𝑋, 𝕏) be an 𝑟-rough path and Y = (𝑌, 𝑌 ′) an
X-controlled path in 𝐿(ℝ𝑑, ℝ𝑑′). Let Ξ𝑠,𝑡 ∶= 𝑌𝑠𝛿𝑋𝑠,𝑡 + 𝑌 ′

𝑠𝕏𝑠,𝑡. Then,

∫
𝑇

0
Y dX ∶= lim

𝜋
ℐ𝜋Ξ0,𝑇

exists and satisfies

||∫
𝑡

𝑠
Y dX − Ξ𝑠,𝑡|| ≲ 𝑉𝑟/2𝑅𝑠,𝑡−𝑉𝑟𝑋𝑠+,𝑡 + 𝑉𝑟𝑌 ′

𝑠,𝑡−𝑉𝑟/2𝕏𝑠+,𝑡.

Proof.

𝛿Ξ𝑠,𝑡,𝑢 = 𝑌𝑠𝛿𝑋𝑠,𝑢 + 𝑌 ′
𝑠𝕏𝑠,𝑢 − (𝑌𝑠𝛿𝑋𝑠,𝑡 + 𝑌 ′

𝑠𝕏𝑠,𝑡) − (𝑌𝑡𝛿𝑋𝑡,𝑢 + 𝑌 ′
𝑡 𝕏𝑡,𝑢)

= 𝑌𝑠𝛿𝑋𝑡,𝑢 + 𝑌 ′
𝑠 (𝕏𝑠,𝑢 − 𝕏𝑠,𝑡) − (𝑌𝑡𝛿𝑋𝑡,𝑢 + 𝑌 ′

𝑡 𝕏𝑡,𝑢)
= (𝑌𝑠 − 𝑌𝑡)𝛿𝑋𝑡,𝑢 + 𝑌 ′

𝑠 (𝕏𝑡,𝑢 + 𝛿𝑋𝑠,𝑡 ⊗ 𝛿𝑋𝑡,𝑢) − 𝑌 ′
𝑡 𝕏𝑡,𝑢

= (𝑌𝑠 − 𝑌𝑡)𝛿𝑋𝑡,𝑢 + (𝑌 ′
𝑠 − 𝑌 ′

𝑡 )𝕏𝑡,𝑢 + 𝑌 ′
𝑠 (𝛿𝑋𝑠,𝑡 ⊗ 𝛿𝑋𝑡,𝑢)

= −𝑅Y,X𝑠,𝑡 𝛿𝑋𝑡,𝑢 + (𝑌 ′
𝑠 − 𝑌 ′

𝑡 )𝕏𝑡,𝑢.

(4.6)

Hence, we can apply Theorem 4.6.

25



Example 4.10. ∫𝑇
0 (𝑋 − 𝑋0, 1) ⊗ dX = 𝕏0,𝑇 . Indeed, in this case 𝛿Ξ = 0 in (4.6).

This gives even a 𝑉𝑟/3 approximation of the integral. However, we drop the second
order term and only use a 𝑉𝑟/2 approximation, since we want to run the iteration in the
simplest possible space for the given regularity.

4.3.1 Rough differential equations

We consider an initial value problem that is informally described by 𝑌0 = 𝑦0, d𝑌 =
𝜙(𝑌) d𝑋 . A rigorous formulation is the following: given a rough path X in ℝ𝑑 and a
function 𝜙 ∶ ℝ𝑑′ → 𝐿(ℝ𝑑, ℝ𝑑′), we are looking for an X-controlled path Y such that

𝑌𝑇 = 𝑦0 +∫
𝑇

0
𝜙(Y)X. (4.7)

We still have to define what we mean by 𝜙(Y).
We will find that this problem has a unique solution if 𝜙 ∈ 𝐶2,1

𝑏 , the space of twice
differentiable functions with 𝜙,𝐷𝜙, 𝐷2𝜙 bounded and 𝐷2𝜙 Lipschitz.

The proof proceeds by a fixed point argument. First, we need to identify a metric
space in which this argument will be run. We abbreviate ‖𝑋‖𝑟 ∶= 𝑉𝑟𝑋0,𝑇 .

4.3.2 Operations on controlled paths

We have deliberately omitted the condition 𝑌 ∈ 𝑉𝑟 from the definition of the controlled
path, because it is implicit in the other conditions.

Lemma 4.11 (Implicit bound). Let X be a rough path and Y an X-controlled path. Then

‖𝑌‖𝑟 ≤ ‖𝑌 ′‖sup‖𝑋‖𝑟 + ‖𝑅𝑌‖𝑟/2.

Lemma 4.12 (Integration). LetX be a rough path and Y anX-controlled path. Let 𝑍𝑡 ∶=
∫𝑡
0 𝑌 dX and 𝑍′𝑡 ∶= 𝑌𝑡. Then, Z = (𝑍, 𝑍′) is an X-controlled path, and it satisfies

‖𝑅𝑍‖𝑟/2 ≲ ‖𝑅𝑌‖𝑟/2‖𝑋‖𝑟 + ‖𝑌 ′‖𝑟‖𝕏‖𝑟/2 + ‖𝑌 ′‖sup‖𝕏‖𝑟/2. (4.8)

Proof.

𝑅𝑍𝑠,𝑡 = 𝛿𝑍𝑠,𝑡 − 𝑍′𝑠𝛿𝑋𝑠,𝑡

= ∫
𝑡

0
Y dX −∫

𝑠

0
Y dX − 𝑌𝑠𝛿𝑋𝑠,𝑡

= ∫
𝑡

𝑠
Y dX − 𝑌𝑠𝛿𝑋𝑠,𝑡 − 𝑌 ′

𝑠𝕏𝑠,𝑡 + 𝑌 ′
𝑠𝕏𝑠,𝑡.

The last term corresponds to the last term in the conclusion, and the remaining differ-
ence is estimated by Lemma 4.9.

Lemma 4.13 (Composition with a smooth function). Let X be a rough path and Y an
X-controlled path. Suppose 𝜙 ∈ 𝐶1,1

𝑏 . Then 𝜙(Y) ∶= (𝜙(𝑌), 𝐷𝜙(𝑌)𝑌 ′) is an X-controlled
path, and we have

‖𝜙(Y)′‖𝑟 = ‖𝐷𝜙(𝑌)𝑌 ′‖𝑟 ≤ ‖𝐷𝜙‖sup‖𝑌 ′‖𝑟 + ‖𝐷𝜙‖𝐿𝑖𝑝‖𝑌‖𝑟‖𝑌 ′‖sup, (4.9)

‖𝑅𝜙(𝑌)‖𝑟/2 ≤ ‖𝐷𝜙‖sup‖𝑅𝑌‖𝑟/2 +
1
2‖𝐷𝜙‖𝐿𝑖𝑝‖𝑌‖

2
𝑟 . (4.10)

Interestingly, this estimate does not depend on X.
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Proof. Adding and subtracting 𝐷𝜙(𝑌𝑡)𝑌 ′
𝑠 , we obtain

𝐷𝜙(𝑌𝑡)𝑌 ′
𝑡 − 𝐷𝜙(𝑌𝑠)𝑌 ′

𝑠 = 𝐷𝜙(𝑌𝑡)(𝑌 ′
𝑡 − 𝑌 ′

𝑠 ) + (𝐷𝜙(𝑌𝑡) − 𝐷𝜙(𝑌𝑠))𝑌 ′
𝑠 . (4.11)

This implies the first estimate.
By Taylor’s formula,

|𝑅𝜙(𝑌)𝑠,𝑡 | = |𝜙(𝑌𝑡) − 𝜙(𝑌𝑠) − 𝐷𝜙(𝑌𝑠)𝑌 ′
𝑠𝑋𝑠,𝑡|

≤ |𝜙(𝑌𝑡) − 𝜙(𝑌𝑠) − 𝐷𝜙(𝑌𝑠)𝑌𝑠,𝑡| + |𝐷𝜙(𝑌𝑠)𝑅𝑌𝑠,𝑡|

≤ 1
2‖𝐷𝜙‖𝐿𝑖𝑝|𝑌𝑠,𝑡|

2 + ‖𝐷𝜙‖sup|𝑅𝑌𝑠,𝑡|,

which implies second estimate.

The above discussion allows us to constrct a space in which the equation (4.23)
makes sense.

Lemma 4.14 (Solution space). For any 𝜙 ∈ 𝐶1,1
𝑏 and any 𝐴 ∈ (0,∞), there exists 𝜖 > 0

such that if ‖𝑋‖𝑟 + ‖𝕏‖𝑟/2 < 𝜖, then the set of X-controlled paths

𝒴 = 𝒴(X, 𝐴) ∶= {Y | ‖𝑌 ′‖𝑟 ≤ 𝐴, ‖𝑅𝑌‖𝑟/2 ≤ 𝐴2, ‖𝑌‖𝑟 ≤ 𝐴/‖𝜙‖𝐿𝑖𝑝, ‖𝑌 ′‖sup ≤ ‖𝜙‖sup}
(4.12)

is invariant under the mapping

Step ∶ Y↦ (𝑦0 +∫
⋅

0
𝜙(Y) dX, 𝜙(𝑌)) (4.13)

for any 𝑦0 ∈ ℝ𝑑′ .

Proof. Implicit constants in this proof are allowed to depend on the 𝐶1,1
𝑏 norm of 𝜙.

Suppose Y ∈ 𝒴. Direct estimates show

‖𝜙(𝑌)‖𝑟 ≤ ‖𝜙‖𝐿𝑖𝑝‖𝑌‖𝑟 ≤ 𝐴, ‖𝜙(𝑌)‖sup ≤ ‖𝜙‖sup.

By Lemma 4.13, we have

‖𝜙(Y)′‖𝑟 ≲ 𝐴, ‖𝑅𝜙(Y)‖𝑟/2 ≲ 𝐴2. (4.14)

By Lemma 4.12, we obtain

‖𝑅∫
⋅
0 𝜙(Y) dX‖𝑟/2 ≲ 𝜖(𝐴2 + 𝐴 + 1).

By Lemma 4.11, this implies

‖∫
⋅

0
𝜙(Y) dX‖𝑟 ≲ 𝜖(𝐴2 + 𝐴 + 1).

Choosing 𝜖 sufficiently small, we obtain the claim.

Remark. Global bounds on 𝜙 can be replaced by growth conditions, and then 𝜖 would
also depend on 𝑦0 and these growth conditions. There is also a “roughGronwall lemma”
for concatenating local solutions in such a setting.
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4.3.3 Contractive iteration

In this section, we will show that the iteration (4.13) is contractive with respect to a
suitable metric on the space (4.12). This implies existence and uniqueness of solutions.

For the later purpose of proving continuous dependence of the solution on data, the
estimates will involve two rough paths X, X̃ and paths Y, Ỹ controlled by the respective
rough paths. We abbreviate

Δ𝑌 = 𝑌 − ̃𝑌 , Δ𝑌 ′ = 𝑌 ′ − ̃𝑌 ′, Δ𝑅𝑌 = 𝑅𝑌 − 𝑅�̃� , Δ𝑋 = 𝑋 − ̃𝑋, Δ𝕏 = 𝕏 − �̃�,
Δ𝜙(𝑌) = 𝜙(𝑌) − 𝜙(𝑌 ′), Δ𝑅𝜙(𝑌) = 𝑅𝜙(𝑌) − 𝑅𝜙(�̃�).

Lemma 4.15 (Stability of composition). Suppose 𝜙 ∈ 𝐶2,1
𝑏 . Let X, X̃ be rough paths, Y a

X-controlled path, and Ỹ a X̃-controlled path. Then,

‖𝜙(𝑌) − 𝜙( ̃𝑌)‖𝑟 ≤ ‖𝐷𝜙‖sup‖Δ𝑌‖𝑟 + ‖𝐷𝜙‖𝐿𝑖𝑝‖Δ𝑌‖sup‖ ̃𝑌‖𝑟, (4.15)

‖𝜙(𝑌)′ − 𝜙( ̃𝑌)′‖𝑟 ≤ ‖𝐷𝜙‖sup‖Δ𝑌 ′‖𝑟 + ‖𝐷𝜙‖𝐿𝑖𝑝‖𝑌‖𝑟‖Δ𝑌 ′‖sup
+ ‖𝐷𝜙‖𝐿𝑖𝑝‖Δ𝑌‖sup‖ ̃𝑌 ′‖𝑟 + ‖𝐷2𝜙‖sup‖Δ𝑌 ′‖𝑟‖ ̃𝑌 ′‖sup + ‖𝐷2𝜙‖𝐿𝑖𝑝‖Δ𝑌‖sup‖ ̃𝑌‖𝑟‖ ̃𝑌 ′‖sup,

(4.16)

‖𝑅𝜙(𝑌) − 𝑅𝜙(�̃�)‖𝑟/2 ≤ ‖𝐷𝜙‖sup‖Δ𝑅𝑌‖𝑟/2 + ‖𝐷𝜙‖𝐿𝑖𝑝‖Δ𝑌‖sup‖𝑅�̃�‖𝑟/2
+ 1
2‖𝐷

2𝜙‖sup(‖𝑌‖𝑟 + ‖ ̃𝑌‖𝑟)‖Δ𝑌‖𝑟 +
1
2‖𝐷

2𝜙‖𝐿𝑖𝑝‖Δ𝑌‖sup‖ ̃𝑌‖2𝑟 . (4.17)

Lemma 4.15 almost recovers Lemma 4.13 upon setting Ỹ = 0.

Proof. In order to show (4.15), we write

(𝜙(𝑌𝑡) − 𝜙(𝑌𝑠)) − (𝜙( ̃𝑌𝑡) − 𝜙( ̃𝑌𝑠))

= ∫
1

0
𝐷𝜙(𝑌𝑠 + 𝑟(𝑌𝑡 − 𝑌𝑠))(𝑌𝑡 − 𝑌𝑠) d𝑟 −∫

1

0
𝐷𝜙( ̃𝑌𝑠 + 𝑟( ̃𝑌𝑡 − ̃𝑌𝑠))( ̃𝑌𝑡 − ̃𝑌𝑠) d𝑟

= ∫
1

0
(𝐷𝜙(𝑌𝑠 + 𝑟(𝑌𝑡 − 𝑌𝑠))(𝑌𝑡 − 𝑌𝑠 − ( ̃𝑌𝑡 − ̃𝑌𝑠))

+ (𝐷𝜙(𝑌𝑠 + 𝑟(𝑌𝑡 − 𝑌𝑠)) − 𝐷𝜙( ̃𝑌𝑠 + 𝑟( ̃𝑌𝑡 − ̃𝑌𝑠)))( ̃𝑌𝑡 − ̃𝑌𝑠)) d𝑟, (4.18)

and estimate

|𝐷𝜙(𝑌𝑠 + 𝑟(𝑌𝑡 − 𝑌𝑠)) − 𝐷𝜙( ̃𝑌𝑠 + 𝑟( ̃𝑌𝑡 − ̃𝑌𝑠))|
≤ ‖𝐷𝜙‖𝐿𝑖𝑝|(𝑌𝑠 + 𝑟(𝑌𝑡 − 𝑌𝑠)) − ( ̃𝑌𝑠 + 𝑟( ̃𝑌𝑡 − ̃𝑌𝑠))|
≤ ‖𝐷𝜙‖𝐿𝑖𝑝(𝑟|𝑌𝑡 − ̃𝑌𝑡| + (1 − 𝑟)|𝑌𝑠 − ̃𝑌𝑠|)
≤ ‖𝐷𝜙‖𝐿𝑖𝑝‖Δ𝑌‖sup.

In order to show (4.16), we write

(𝐷𝜙(𝑌𝑡)𝑌 ′
𝑡 − 𝐷𝜙( ̃𝑌𝑡) ̃𝑌 ′

𝑡 ) − (𝐷𝜙(𝑌𝑠)𝑌 ′
𝑠 − 𝐷𝜙( ̃𝑌𝑠) ̃𝑌 ′

𝑠 )
= 𝐷𝜙(𝑌𝑡)((𝑌 ′

𝑡 − ̃𝑌 ′
𝑡 ) − (𝑌 ′

𝑠 − ̃𝑌 ′
𝑠 )) + (𝐷𝜙(𝑌𝑡) − 𝐷𝜙(𝑌𝑠))(𝑌 ′

𝑠 − ̃𝑌 ′
𝑠 )

+ (𝐷𝜙(𝑌𝑡) − 𝐷𝜙( ̃𝑌𝑡))( ̃𝑌 ′
𝑡 − ̃𝑌 ′

𝑠 ) + ((𝐷𝜙(𝑌𝑡) − 𝐷𝜙(𝑌𝑠)) − (𝐷𝜙( ̃𝑌𝑡) − 𝐷𝜙( ̃𝑌𝑠))) ̃𝑌 ′
𝑠 .
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The first 3 terms contribute the first 3 terms to (4.16). The 4-fold difference in the last
term can be written as in (4.18) with 𝐷𝜙 in place of 𝜙, which gives the last 2 terms in
(4.16).

Now we show (4.17). By inserting 𝐷𝜙(𝑌𝑠)𝑌𝑠,𝑡 and 𝐷𝜙( ̃𝑌𝑠) ̃𝑌𝑠,𝑡, one has

𝑅𝜙(𝑌)𝑠,𝑡 − 𝑅𝜙(�̃�)𝑠,𝑡 = 𝜙(𝑌)𝑠,𝑡 − 𝐷𝜙(𝑌𝑠)𝑌 ′
𝑠𝑋𝑠,𝑡 − (𝜙( ̃𝑌)𝑠,𝑡 − 𝐷𝜙( ̃𝑌𝑠) ̃𝑌 ′

𝑠 ̃𝑋𝑠,𝑡)
= 𝜙(𝑌)𝑠,𝑡 − 𝐷𝜙(𝑌𝑠)𝑌𝑠,𝑡 − (𝜙( ̃𝑌)𝑠,𝑡 − 𝐷𝜙( ̃𝑌𝑠) ̃𝑌𝑠,𝑡)
+ 𝐷𝜙(𝑌𝑠)𝑅𝑌𝑠,𝑡 − 𝐷𝜙( ̃𝑌𝑠)𝑅�̃�𝑠,𝑡

(4.19)

By Taylor’s formula, the first line in (5.12) equals

∫
1

0
(1 − 𝑟)(𝐷2𝜙(𝑌𝑠 + 𝑟𝑌𝑠,𝑡)𝑌⊗2

𝑠,𝑡 − 𝐷2𝜙( ̃𝑌𝑠 + 𝑟 ̃𝑌𝑠,𝑡) ̃𝑌⊗2
𝑠,𝑡 ) d𝑟.

The integrand can be written in the form

𝐷2𝜙(𝑌𝑠 + 𝑟𝑌𝑠,𝑡)(𝑌⊗2
𝑠,𝑡 − ̃𝑌⊗2

𝑠,𝑡 ) + (𝐷2𝜙(𝑌𝑠 + 𝑟𝑌𝑠,𝑡) − 𝐷2𝜙( ̃𝑌𝑠 + 𝑟 ̃𝑌𝑠,𝑡)) ̃𝑌⊗2
𝑠,𝑡 ,

and this contributes the last line to (4.17).
The second line in (5.12) equals

𝐷𝜙(𝑌𝑠)𝑅𝑌𝑠,𝑡 − 𝐷𝜙( ̃𝑌𝑠)𝑅�̃�𝑠,𝑡 ≲ 𝐷𝜙(𝑌𝑠)(𝑅𝑌𝑠,𝑡 − 𝑅�̃�𝑠,𝑡) + (𝐷𝜙(𝑌𝑠) − 𝐷𝜙( ̃𝑌𝑠))𝑅�̃�𝑠,𝑡

which completes the proof.

Lemma 4.16 (Stability of rough integration). Let X, X̃ be rough paths, Y a X-controlled
path, and Ỹ a X̃-controlled path. Define Z, Z̃ as in Lemma 4.12. Then,

‖Δ𝑅𝑍‖𝑟/2 ≲𝑟 ‖Δ𝑌 ′‖sup‖𝕏‖𝑟/2 + ‖Δ𝑌 ′‖𝑟‖𝕏‖𝑟/2 + ‖Δ𝑅𝑌‖𝑟/2‖𝑋‖𝑟
+ ‖ ̃𝑌 ′‖sup‖Δ𝕏‖𝑟/2 + ‖ ̃𝑌 ′‖𝑟‖Δ𝕏‖𝑟/2 + ‖𝑅�̃�‖𝑟/2‖Δ𝑋‖𝑟. (4.20)

Note that (4.20) with Ỹ = 0 recovers (4.8).

Proof. Let Ξ𝑠,𝑡 ∶= 𝑌𝑠𝑋𝑠,𝑡 + 𝑌 ′
𝑠𝕏𝑠,𝑡 − ( ̃𝑌𝑠 ̃𝑋𝑠,𝑡 + ̃𝑌 ′

𝑠 �̃�𝑠,𝑡). Then one has,

|𝑅𝐼X(𝑌)𝑠,𝑡 − 𝑅𝐼X̃(�̃�)𝑠,𝑡 | = |∫
𝑡

𝑠
Y dX − 𝑌𝑠𝑋𝑠,𝑡 − (∫

𝑡

𝑠
Ỹ dX̃ − ̃𝑌𝑠 ̃𝑋𝑠,𝑡)|

≤ |𝑌 ′
𝑠𝕏𝑠,𝑡 − ̃𝑌 ′

𝑠 �̃�𝑠,𝑡| + |𝐼(Ξ)𝑠,𝑡 − Ξ𝑠,𝑡|.

We estimate the first term by

|Δ𝑌 ′
𝑠𝕏𝑠,𝑡| + | ̃𝑌 ′

𝑠Δ𝕏𝑠,𝑡|.

We estimate the last term by the sewing lemma (Theorem 4.6) with (as the calculation
(4.6) shows)

𝛿(Ξ)𝜏,𝑢,𝜈 = 𝑅𝑌𝜏,𝑢𝛿𝑋𝑢,𝜈 + 𝛿𝑌 ′
𝜏,𝑢𝕏𝑢,𝜈 − (𝑅�̃�𝜏,𝑢𝛿 ̃𝑋𝑢,𝜈 + 𝛿 ̃𝑌 ′

𝜏,𝑢�̃�𝑢,𝜈).

and

|𝛿(Ξ)𝜏,𝑢,𝜈| ≤ |Δ𝛿𝑌 ′
𝜏,𝑢𝕏𝑢,𝜈| + |𝛿 ̃𝑌 ′

𝜏,𝑢Δ𝕏𝑢,𝜈| + |Δ𝑅𝑌𝜏,𝑢𝛿𝑋𝑢,𝜈| + |𝑅�̃�𝜏,𝑢Δ𝛿𝑋𝑢,𝜈|.

Lemma 4.17 (Stability of implicit bound).

‖𝑌 − ̃𝑌‖𝑟 ≤ ‖Δ𝑌 ′‖sup‖𝑋‖𝑟 + ‖ ̃𝑌 ′‖sup‖Δ𝑋‖𝑟 + ‖Δ𝑅𝑌‖𝑟/2.
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Proof. This follows from writing

𝑌𝑠,𝑡 − ̃𝑌𝑠,𝑡 = (𝑌 ′
𝑠𝑋𝑠,𝑡 + 𝑅𝑌𝑠,𝑡) − ( ̃𝑌 ′

𝑠 ̃𝑋𝑠,𝑡 + 𝑅�̃�𝑠,𝑡)
= (𝑌 ′

𝑠 − ̃𝑌𝑠)𝑋𝑠,𝑡 + ̃𝑌𝑠(𝑋𝑠,𝑡 − ̃𝑋𝑠,𝑡) + (Δ𝑅𝑌𝑠,𝑡).

Lemma 4.18 (Contractivity of the iteration). For every 𝐴 < ∞ and 𝜙 ∈ 𝐶2,1
𝑏 , there esists

𝜖 > 0 such that, for every rough path X with ‖𝑋‖𝑟 < 𝜖 and ‖𝕏‖𝑟/2 < 𝜖, the map (4.13) is
strictly contractive on the set

{𝑌 ∈ 𝒴(X, 𝐴) | 𝑌0 = 𝑦0, 𝑌 ′
0 = 𝜙(𝑦0)} (4.21)

with respect to the metric

𝑑(Y, Ỹ) = max(‖Δ𝑅𝑌‖𝑟/2, ‖Δ𝑌 ′‖𝑟, 2(‖𝐷𝜙‖sup + 𝐴‖𝐷𝜙‖𝐿𝑖𝑝)‖Δ𝑌‖𝑟). (4.22)

Proof. The implicit constants here are allowed to depend on 𝐴 in the definition of 𝒴.
Suppose Y, Ỹ ∈ 𝒴(X, 𝐴) with 𝑑(Y, Ỹ) = 𝛼 and 𝑌0 = ̃𝑌0 = 𝑦0. Then,

‖Δ𝑌‖sup ≤ ‖Δ𝑌‖𝑟 ≲ 𝛼.
By Lemma 4.15, we obtain

‖𝜙(𝑌) − 𝜙( ̃𝑌)‖𝑟 ≤ ‖𝐷𝜙‖sup‖Δ𝑌‖𝑟 + ‖𝐷𝜙‖𝐿𝑖𝑝‖Δ𝑌‖sup‖ ̃𝑌‖𝑟 ≤ 𝛼/2.

‖𝜙(𝑌)′ − 𝜙( ̃𝑌)′‖𝑟 ≲𝜙 ‖Δ𝑌 ′‖𝑟 + ‖𝑌‖𝑟‖Δ𝑌 ′‖sup
+ ‖Δ𝑌‖sup‖ ̃𝑌 ′‖𝑟 + ‖Δ𝑌 ′‖𝑟‖ ̃𝑌 ′‖sup + ‖Δ𝑌‖sup‖ ̃𝑌‖𝑟‖ ̃𝑌 ′‖sup ≲ 𝛼(1 + 𝐴),

‖𝑅𝜙(𝑌) − 𝑅𝜙(�̃�)‖𝑟/2 ≲ ‖Δ𝑅𝑌‖𝑟/2 + ‖Δ𝑌‖sup‖𝑅�̃�‖𝑟/2
+ (‖𝑌‖𝑟 + ‖ ̃𝑌‖𝑟)‖Δ𝑌‖𝑟 + ‖Δ𝑌‖sup‖ ̃𝑌‖2𝑟 ≲ 𝛼(1 + 𝐴2).

Let Z = Step(Y), Z̃ = Step(Ỹ). Then
‖Δ𝑍′‖𝑟 = ‖𝜙(𝑌) − 𝜙( ̃𝑌)‖𝑟 ≤ 𝛼/2.

By Lemma 4.16,

‖Δ𝑅𝑍‖𝑟/2 ≲ 𝜖(‖Δ𝜙(𝑌)′‖sup + ‖Δ𝜙(𝑌)′‖𝑟 + ‖Δ𝑅𝜙(𝑌)‖𝑟/2) ≲ 𝛼𝜖.
By Lemma 4.17, this implies

‖Δ𝑍‖𝑟 ≲ ‖Δ𝑍′‖sup‖𝑋‖𝑟 + ‖Δ𝑅𝑍‖𝑟/2 ≤ ‖Δ𝑍′‖𝑟𝜖 + 𝐶𝜖𝛼 ≲ 𝜖𝛼.
Choosing 𝜖 small enough, we obtain the claim.

Theorem 4.19 (Existence of solutions). For every 𝜙 ∈ 𝐶2,1
𝑏 , there exist 𝐴 < ∞ and 𝜖 > 0

such that, for every rough path X with ‖𝑋‖𝑟 < 𝜖 and ‖𝕏‖𝑟/2 < 𝜖 and every 𝑦0, there exists
a unique X-controlled path Y ∈ 𝒴(X, 𝐴) such that, for every 𝑡 ∈ [0, 𝑇], we have

Y𝑡 = 𝑦0 +∫
𝑡

0
𝜙(Y) dX, 𝑌 ′

𝑡 = 𝜙(𝑌𝑡). (4.23)

Proof. Let 𝐴, 𝜖 be as in Lemma 4.18. Define a sequence of controlled paths by
(Y0)𝑡 = 𝑦0, (Y0)′𝑡 = 0, (Y𝑗+1) = Step(Y𝑗).

For 𝑗 ≥ 1, the paths (Y𝑗) are elements of (4.21). It follows from Lemma 4.18 that this
sequence is Cauchy with respect to the metric (4.22), and its limit solves the RDE (4.23).
Uniqueness of the solution follows from strict contractivity of (4.13).

One can also show that the solution Y in Theorem 4.19 is unique among all X-
controlled paths (not only those in 𝒴(X, 𝐴)). To this end, we note that, given any two
X-controlled solutions, they are in 𝒴(X, 𝐴) for some large 𝐴. One then has to subdivide
the time interval into smaller intervals, on each of which X has sufficiently small vari-
ation norm to apply Lemma 4.18. Large jumps of X have to be handled separately. We
omit the tedious details.
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4.3.4 Lipschitz dependence on data

Lemma 4.20 (Local Lipschitz dependence of RDE solution on the data). For every 𝜙 ∈
𝐶2,1
𝑏 and every 𝐴 < ∞, there exists 𝜖 > 0 such that if X, X̃ are rough paths with norms < 𝜖,

Y ∈ 𝒴(X, 𝐴) is a solution of (4.23) with initial datum 𝑦0, and Ỹ ∈ 𝒴(X̃, 𝐴) is a solution of
(4.23) with initial datum ̃𝑦0 such that |𝑦0 − ̃𝑦0| ≤ 𝜖 and rough path X̃, then

max(‖Δ𝑅𝑌‖𝑟/2, ‖Δ𝑌 ′‖𝑟, ‖Δ𝑌‖𝑟) ≲𝑟,𝜙,𝐴 max(‖𝑋 − ̃𝑋‖𝑟, ‖𝕏 − �̃�‖𝑟/2, |𝑦0 − ̃𝑦0|).

Proof. Let 𝛽 be the RHS of the conclusion and

𝛼 ∶= max(‖Δ𝑅𝑌‖𝑟/2, ‖Δ𝑌 ′‖𝑟, 2(‖𝐷𝜙‖sup + 𝐴‖𝐷𝜙‖𝐿𝑖𝑝 + 1)‖Δ𝑌‖𝑟).

We may assume 𝛼 > 𝛽, since otherwise the conclusion already holds. In this case, we
have

‖Δ𝑌‖sup ≤ |𝑦0 − ̃𝑦0| + ‖Δ𝑌‖𝑟 ≲ 𝛼, ‖Δ𝑌 ′‖sup ≤ ‖𝜙‖𝐿𝑖𝑝‖Δ𝑌‖sup ≲ 𝛼.
By Lemma 4.15, we obtain

‖𝜙(𝑌)′ − 𝜙( ̃𝑌)′‖𝑟 ≲ 𝛼(1 + 𝐴), ‖Δ𝑅𝜙‖𝑟/2 ≲ 𝛼(1 + 𝐴2),

A simple bound is
‖𝜙( ̃𝑌)‖𝑟 ≤ ‖𝜙‖𝐿𝑖𝑝‖ ̃𝑌‖𝑟 ≤ 𝐴.

As in (5.15), we have
‖𝑅𝜙(Ỹ)‖𝑟/2 ≲ 𝐴2.

Inserting all these bounds into Lemma 4.16, we obtain

‖Δ𝑅𝑌‖𝑟/2 ≲ 𝜖(‖Δ𝜙(𝑌)′‖sup+‖Δ𝜙(𝑌)′‖𝑟+‖Δ𝑅𝜙(𝑌)‖𝑟/2)+𝛽(‖𝜙( ̃𝑌)′‖sup+‖𝜙( ̃𝑌)‖𝑟+‖𝑅𝜙(�̃�)‖𝑟/2)
≲ 𝜖𝛼(1 + 𝐴2) + 𝛽(1 + 𝐴2).

By Lemma 4.15, we have

‖Δ𝑌 ′‖𝑟 = ‖𝜙(𝑌) − 𝜙( ̃𝑌)‖𝑟 ≤ ‖𝐷𝜙‖sup‖Δ𝑌‖𝑟 + ‖𝐷𝜙‖𝐿𝑖𝑝‖Δ𝑌‖sup‖ ̃𝑌‖𝑟
≤ (‖𝐷𝜙‖sup + 𝐴‖𝐷𝜙‖𝐿𝑖𝑝)‖Δ𝑌‖𝑟 + 𝐴‖𝐷𝜙‖𝐿𝑖𝑝|𝑦0 − ̃𝑦0| ≤ 𝛼/2 + 𝐶𝛽.

Moreover, by Lemma 4.17, we have

‖Δ𝑌‖𝑟 ≤ ‖Δ𝑌 ′‖sup‖𝑋‖𝑟 + ‖ ̃𝑌 ′‖sup‖Δ𝑋‖𝑟 + ‖Δ𝑅𝑌‖𝑟/2.
≤ 𝐶𝛼𝜖 + 𝐴𝛽 + 𝐶(𝜖𝛼 + 𝛽).

Inserting these bounds into the definition of 𝛼, we obtain

𝛼 ≤ max(𝐶(𝜖𝛼 + 𝛽), 𝛼/2 + 𝐶𝛽, 𝐶(𝜖𝛼 + 𝛽)),

where 𝐶 depends on 𝑟, 𝜙, 𝐴. If 𝐶𝜖 ≤ 1/2, then this implies 𝛼 ≤ 𝐶𝛽.

Remark. Rough paths were introduced in [Lyo98] and controlled paths in [Gub04]. For
a long time, the theory concentrated on Hölder continuous paths; a good exposition of
this case is in the book [FH20]. The treatment of 𝑉𝑟 paths is adapted from [FZ18].
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5 Martingale transforms
Themain result of this section, Theorem 5.4, is a bound for discrete time versions of the
Itô integral.

We denote ℓ𝑝 norms by
ℓ𝑝𝑘𝑎𝑘 ∶= (∑

𝑘∈ℕ
|𝑎𝑘|𝑝)1/𝑝.

In order to simplify notation, we only consider martingales 𝑔 with 𝑔0 = 0.

5.1 Davis decomposition
Wewill use the following𝐿𝑞 bound for theDavis decomposition (constructed inLemma1.9).
Lemma 5.1 (Davis decomposition in 𝐿𝑞). For every martingale (𝑓𝑛) with values in a Ba-
nach space 𝑋 , there exists a decomposition 𝑓 = 𝑓pred + 𝑓bv as a sum of two martingales
adapted to the same filtration with 𝑓pred0 = 0 such that the differences of 𝑓pred have pre-
dictable majorants:

𝑋𝑑𝑓pred𝑛 ≤ 2𝑀𝑋𝑑𝑓𝑛−1 (5.1)
and 𝑓bv has bounded variation, in an integral sense for every 𝑞 ∈ [1,∞):

𝐿𝑞 ∑
𝑘≤𝑛

𝑋𝑑𝑓bv𝑘 ≤ (𝑞 + 1)𝐿𝑞𝑀𝑋𝑑𝑓𝑛. (5.2)

Proof. Recall from the construction in Lemma 1.9 that
𝑑𝑓bv𝑛 = 𝑑 ̃ℎ𝑛 − 𝔼𝑛−1(𝑑 ̃ℎ𝑛),

where ̃ℎ𝑛 is a process such that
𝑋𝑑 ̃ℎ𝑛 = 𝑀𝑋𝑑𝑓𝑛 −𝑀𝑋𝑑𝑓𝑛−1.

Therefore,
𝐿𝑞 ∑

𝑘≤𝑛
𝑋𝑑𝑓bv𝑘 ≤ 𝐿𝑞 ∑

𝑘≤𝑛
𝑋𝑑 ̃ℎ𝑘 + 𝐿𝑞 ∑

𝑘≤𝑛
𝔼𝑘−1𝑋𝑑 ̃ℎ𝑘.

Using Lemma 1.15 in the second summand, we obtain the claim.

Lemma 5.2. Let 1 ≤ 𝑞 < ∞, 𝑋 be a Banach function space, elements of which are
ℝ-valued maps 𝑥(⋅), and (𝑓𝑛) a martingale with values in 𝑋 . Then for 𝑓pred given by
Lemma 5.1 we have

‖‖𝑆𝑓pred‖𝑋‖𝐿𝑞 ≤ (𝑞 + 2)‖‖𝑆𝑓‖𝑋‖𝐿𝑞 ,
where the square function is given by

‖𝑆𝑓‖𝑋 ∶= ‖ℓ2𝑛(𝑑𝑓𝑛(⋅))‖𝑋
Remark. We will apply this with 𝑋 = ℓ𝑟, i.e. 𝑟-summable series, viewed as maps from
ℕ → ℝ, with the usual Banach structure.

Proof. Using (5.2) we estimate
‖‖𝑆𝑓pred‖𝑋‖𝐿𝑞 ≤ ‖‖𝑆𝑓‖𝑋‖𝐿𝑞 + ‖‖𝑆𝑓bv‖𝑋‖𝐿𝑞

≤ ‖‖𝑆𝑓‖𝑋‖𝐿𝑞 + ‖‖∑
𝑛
|𝑑𝑛𝑓bv|‖𝑋‖𝐿𝑞

≤ ‖‖𝑆𝑓‖𝑋‖𝐿𝑞 + ‖∑
𝑛
‖𝑑𝑛𝑓bv‖𝑋‖𝐿𝑞

≤ ‖‖𝑆𝑓‖𝑋‖𝐿𝑞 + (𝑞 + 1)‖sup
𝑛
‖𝑑𝑛𝑓‖𝑋‖𝐿𝑞

≲ ‖‖𝑆𝑓‖𝑋‖𝐿𝑞 .
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5.2 Vector-valued maximal paraproduct estimate
Wecall a process (𝐹𝑠,𝑡)𝑠≤𝑡 depending on two time variablesadapted if𝐹𝑠,𝑡 isℱ𝑡-measurable
for every 𝑠 ≤ 𝑡.

For an adapted process (𝐹𝑠,𝑡) and a martingale (𝑔𝑛), we define

Π(𝐹, 𝑔)𝑠,𝑡 ∶= ∑
𝑠<𝑗≤𝑡

𝐹𝑠,𝑗−1𝑑𝑔𝑗 (5.3)

Note that Π(𝐹, 𝑔)𝑠,⋅ only depends on (𝐹𝑠,⋅).

Proposition 5.3. Let 0 < 𝑞, 𝑞1 ≤ ∞, 1 ≤ 𝑞0, 𝑟, 𝑟0 < ∞, 1 ≤ 𝑟1 ≤ ∞. Assume 1/𝑞 =
1/𝑞0+1/𝑞1 and 1/𝑟 = 1/𝑟0+1/𝑟1. Then, for anymartingales (𝑔(𝑘)𝑛 )𝑛, any adapted sequences
(𝐹(𝑘)𝑠,𝑡 )𝑠≤𝑡, and any stopping times 𝜏′𝑘 ≤ 𝜏𝑘 with 𝑘 ∈ ℤ, we have

‖
‖ℓ

𝑟
𝑘 sup
𝜏′𝑘≤𝑡≤𝜏𝑘

|Π(𝐹(𝑘), 𝑔(𝑘))𝜏′𝑘,𝑡|
‖
‖𝑞 ≤ 𝐶𝑞0,𝑞1,𝑟0,𝑟1

‖
‖ℓ

𝑟1
𝑘 sup

𝜏′𝑘≤𝑡<𝜏𝑘
|𝐹(𝑘)𝜏′𝑘,𝑡

|‖‖𝑞1
‖ℓ𝑟0𝑘 𝑆𝑔

(𝑘)
𝜏′𝑘,𝜏𝑘

‖𝑞0 , (5.4)

where 𝑆𝑔𝑠,𝑡 ∶= (𝛿(𝑆𝑔)2)1/2𝑠,𝑡 = (∑𝑡
𝑗=𝑠+1|𝑑𝑔𝑗 |2)

1/2.

Proof of Proposition 5.3. We may replace each 𝑔(𝑘) by the martingale

̃𝑔(𝑘)𝑛 ∶= 𝑔(𝑘)𝑛∧𝜏𝑘 − 𝑔(𝑘)𝑛∧𝜏′𝑘
(5.5)

without changing the value of either side of (5.4).
Consider first 𝑞 ≥ 1. For each 𝑘, the sequence

ℎ(𝑘)𝑡 ∶= {0, 𝑡 < 𝜏′𝑘,
Π(𝐹(𝑘), 𝑔(𝑘))𝜏′𝑘,𝑡, 𝑡 ≥ 𝜏′𝑘,

is a martingale. We may also assume 𝐹𝜏′𝑘,𝑡 = 0 if 𝑡 ∉ [𝜏′𝑘, 𝜏𝑘). By the ℓ𝑟 valued BDG
inequality (Corollary 3.2), we can estimate

𝐿𝐻𝑆 (5.4) ≲ ‖
‖ℓ

𝑟
𝑘|𝑆ℎ(𝑘)|‖‖𝑞

= ‖
‖ℓ

𝑟
𝑘ℓ2𝑗 |𝐹

(𝑘)
𝜏′𝑘,𝑗−1

𝑑𝑔(𝑘)𝑗 |‖‖𝑞
≤ ‖
‖ℓ

𝑟
𝑘𝑀𝐹(𝑘)ℓ2𝑗 |𝑑𝑔

(𝑘)
𝑗 |‖‖𝑞

≤ ‖ℓ𝑟1𝑘 𝑀𝐹(𝑘)‖𝑞1
‖
‖ℓ

𝑟0
𝑘 𝑆𝑔(𝑘)‖‖𝑞0

.

Here and later, we abbreviate𝑀𝐹(𝑘 ∶= sup𝑗 |𝐹
(𝑘
𝜏′𝑘,𝑗

|.
Consider now 𝑞 < 1. By homogeneity, we may assume

‖
‖ℓ

𝑟1
𝑘 𝑀𝐹(𝑘)‖‖𝑞1

= ‖
‖ℓ

𝑟0
𝑘 𝑆𝑔(𝑘)‖‖𝑞0

= 1, (5.6)

and we have to show
‖
‖ℓ

𝑟
𝑘 sup
𝜏′𝑘≤𝑡≤𝜏𝑘

|Π(𝐹(𝑘), 𝑔(𝑘))𝜏′𝑘,𝑡|
‖
‖𝑞 ≲ 1.

We use the Davis decomposition 𝑔 = 𝑔pred + 𝑔bv (Lemma 5.1 with 𝑋 = ℓ𝑟0). The
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contribution of the bounded variation part is estimated as follows:

‖ℓ𝑟𝑘 sup
𝜏′𝑘≤𝑡≤𝜏𝑘

|Π(𝐹(𝑘), 𝑔(𝑘),bv)𝜏′𝑘,𝑡|‖𝑞

≤ ‖ℓ𝑟𝑘∑
𝑗
|𝐹(𝑘)𝜏′𝑘,𝑗−1

| ⋅ |𝑑𝑔(𝑘),bv𝑗 |‖𝑞

≤ ‖ℓ𝑟1𝑘 𝑀𝐹(𝑘)‖𝑞1‖ℓ
𝑟0
𝑘 (∑

𝑗
|𝑑𝑔(𝑘),bv𝑗 |)‖𝑞0

≤ ‖ℓ𝑟1𝑘 𝑀𝐹(𝑘)‖𝑞1‖∑
𝑗
ℓ𝑟0𝑘 |𝑑𝑔

(𝑘),bv
𝑗 |‖𝑞0

≲ ‖ℓ𝑟1𝑘 𝑀𝐹(𝑘)‖𝑞1‖sup𝑗
ℓ𝑟0𝑘 |𝑑𝑔

(𝑘)
𝑗 |‖𝑞0

≤ ‖ℓ𝑟1𝑘 𝑀𝐹(𝑘)‖𝑞1‖ℓ
𝑟0
𝑘 𝑆𝑔(𝑘)‖𝑞0 ,

where we used (5.2) in the penultimate step.
It remains to consider the part 𝑔pred with predictable bounds for jumps. We use the

layer cake formula in the form

∫𝑓𝑞 = ∫
∞

0
ℙ{𝑓𝑞 > 𝜆} d𝜆 = ∫

∞

0
ℙ{𝑓 > 𝜆1/𝑞} d𝜆.

By the layer cake formula, we have

‖
‖ℓ

𝑟
𝑘 sup
𝜏′𝑘≤𝑡≤𝜏𝑘

|Π(𝐹(𝑘), 𝑔(𝑘),pred)𝜏′𝑘,𝑡|
‖
‖
𝑞

𝑞

= ∫
∞

0
ℙ{ℓ𝑟𝑘 sup

𝜏′𝑘≤𝑡≤𝜏𝑘
|Π(𝐹(𝑘), 𝑔(𝑘),pred)𝜏′𝑘,𝑡| > 𝜆1/𝑞} d𝜆. (5.7)

Fix some 𝜆 > 0 and define a stopping time

𝜏 ∶= inf{𝑡 || 𝑀(ℓ𝑟0𝑘 𝑑𝑔(𝑘))𝑡 > 𝑐𝜆1/𝑞0 or ℓ𝑟0𝑘 𝑆𝑔
(𝑘),pred
𝑡 > 𝑐𝜆1/𝑞0 or ℓ𝑟1𝑘 sup

0<𝑗≤𝑡
|𝐹(𝑘)𝜏′𝑘,𝑗

| > 𝜆1/𝑞1}.

(5.8)
Define stopped martingales ̃𝑔(𝑘)𝑡 ∶= 𝑔(𝑘),pred𝑡∧𝜏 and adapted processes

̃𝐹(𝑘)𝑡′,𝑡 ∶= 𝐹(𝑘)𝑡′,𝑡∧𝜏−1.

Then, on the set {𝜏 = ∞}, we have

Π(𝐹(𝑘), 𝑔(𝑘),pred)𝜏′𝑘,𝑡 = Π( ̃𝐹(𝑘), ̃𝑔(𝑘))𝜏′𝑘,𝑡 for all 𝑘, 𝑡.

Hence,

{ℓ𝑟𝑘 sup
𝜏′𝑘≤𝑡≤𝜏𝑘

|Π(𝐹(𝑘), 𝑔(𝑘),pred)𝜏′𝑘,𝑡| > 𝜆1/𝑞}

⊂{ℓ𝑟𝑘 sup
𝜏′𝑘≤𝑡≤𝜏𝑘

|Π( ̃𝐹(𝑘), ̃𝑔(𝑘))𝜏′𝑘,𝑡| > 𝜆1/𝑞}

∪ {ℓ𝑟0𝑘 𝑆𝑔(𝑘) > 𝜆1/𝑞0} ∪ {ℓ𝑟0𝑘 𝑆𝑔(𝑘),pred > 𝜆1/𝑞0}
∪ {ℓ𝑟1𝑘 𝑀𝐹(𝑘) > 𝜆1/𝑞1}

(5.9)

The contributions of the latter three terms to (5.7) are ≲ 1 by (5.6) and Lemma 5.2. It
remains to handle the first term.

By construction, we have ℓ𝑟1𝑘 𝑀 ̃𝐹(𝑘) ≤ 𝜆1/𝑞1 , and due to (5.1) we also have ℓ𝑟0𝑘 𝑆 ̃𝑔(𝑘) ≤
𝜆1/𝑞0 , provided that the absolute constant 𝑐 in (5.8) is small enough. Choose an arbitrary
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exponent ̃𝑞with 𝑞0 < ̃𝑞 < ∞. By the already known case of the Proposition with (𝑞0, 𝑞1)
replaced by ( ̃𝑞,∞), we obtain

ℙ{ℓ𝑟𝑘 sup
𝜏′𝑘≤𝑡≤𝜏𝑘

|Π( ̃𝐹(𝑘), ̃𝑔(𝑘))𝜏′𝑘,𝑡| > 𝜆1/𝑞}

≤ 𝜆− ̃𝑞/𝑞‖ℓ𝑟𝑘 sup
𝜏′𝑘≤𝑡≤𝜏𝑘

|Π( ̃𝐹(𝑘), ̃𝑔(𝑘))𝜏′𝑘,𝑡|‖
̃𝑞
̃𝑞

≲ ̃𝑞 𝜆− ̃𝑞/𝑞‖ℓ𝑟1𝑘 𝑀 ̃𝐹(𝑘)‖ ̃𝑞
∞‖ℓ𝑟0𝑘 𝑆 ̃𝑔(𝑘)‖ ̃𝑞

̃𝑞

≤ 𝜆− ̃𝑞/𝑞0‖ℓ𝑟0𝑘 𝑆𝑔(𝑘),pred ∧ 𝜆1/𝑞0‖
̃𝑞
̃𝑞.

(5.10)

This estimate no longer depends on the stopping time 𝜏. Integrating the right-hand side
of (5.10) in 𝜆, we obtain

∫
∞

0
𝜆− ̃𝑞/𝑞0‖ℓ𝑟0𝑘 𝑆𝑔(𝑘),pred ∧ 𝜆1/𝑞0‖

̃𝑞
̃𝑞 d𝜆 = 𝔼∫

∞

0
(𝜆− ̃𝑞/𝑞0(ℓ𝑟0𝑘 𝑆𝑔(𝑘),pred) ̃𝑞 ∧ 1) d𝜆

∼ 𝔼(ℓ𝑟0𝑘 𝑆𝑔(𝑘),pred)𝑞0
∼ 1,

where we used ̃𝑞 > 𝑞0, Lemma 5.2 with 𝑋 = ℓ𝑟0 , and the assumption (5.6).
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We will soon need a version of Proposition 5.3 with a supremum in both time argu-
ments of the paraproduct. Nice estimates of such form are only available under some
structural assumptions on 𝐹. In this course, we only consider 𝐹 = 𝛿𝑓.

Theorem 5.4. Let 𝑞, 𝑞0, 𝑞1, 𝑟, 𝑟1 be as in Proposition 5.3 with 𝑟0 = 2, that is,

0 < 𝑞, 𝑞1 ≤ ∞, 1 ≤ 𝑞0, 𝑟 < ∞, 1 ≤ 𝑟1 ≤ ∞, 1/𝑞 = 1/𝑞0 + 1/𝑞1, 1/𝑟 = 1/2 + 1/𝑟1.

Let 𝑓 be an adapted process, 𝑔 a martingale, and 𝜏 an adapted partition. Then, we have
‖
‖ℓ

𝑟
𝑘 sup
𝜏𝑘−1≤𝑠≤𝑡≤𝜏𝑘

|Π(𝛿𝑓, 𝑔)𝑠,𝑡|‖‖𝑞 ≲
‖
‖ℓ

𝑟1
𝑘 sup

𝜏𝑘−1≤𝑡<𝜏𝑘
|𝛿𝑓𝜏𝑘−1,𝑡|

‖
‖𝑞1

‖𝑆𝑔‖𝑞0 . (5.11)

Proof. For any 𝑠 ≤ 𝑡 ≤ 𝑢, the sums (5.3) satisfy the relation

𝛿Π(𝐹, 𝑔)𝑠,𝑡,𝑢 = Π𝑠,𝑢(𝐹, 𝑔) − Π𝑠,𝑡(𝐹, 𝑔) − Π𝑡,𝑢(𝐹, 𝑔)
= ∑

𝑠<𝑗≤𝑢
𝐹𝑠,𝑗−1𝑑𝑔𝑗 − ∑

𝑠<𝑗≤𝑡
𝐹𝑠,𝑗−1𝑑𝑔𝑗 − ∑

𝑡<𝑗≤𝑢
𝐹𝑡,𝑗−1𝑑𝑔𝑗

= ∑
𝑡<𝑗≤𝑢

(𝐹𝑠,𝑗−1 − 𝐹𝑡,𝑗−1)𝑑𝑔𝑗 .

In case of 𝐹 = 𝛿𝑓, the right-hand side becomes

∑
𝑡<𝑗≤𝑢

(𝑓𝑡 − 𝑓𝑠)𝑑𝑔𝑗 = (𝑓𝑡 − 𝑓𝑠)(𝑔𝑢 − 𝑔𝑡).

Therefore, for any 𝜏′𝑘 ≤ 𝑠 ≤ 𝑡, we can estimate

|Π𝑠,𝑡(𝛿𝑓, 𝑔)| ≤ |Π𝜏′𝑘,𝑡(𝛿𝑓, 𝑔)| + |Π𝜏′𝑘,𝑠(𝛿𝑓, 𝑔)| + |𝛿𝑓𝜏′𝑘,𝑠𝛿𝑔𝑠,𝑡|.

In the first two terms, we apply Proposition 5.3 with 𝜏′𝑘 = 𝜏𝑘−1, 𝑓(𝑘) = 𝑓, 𝑔(𝑘) = 𝑔 for
each 𝑘. In the last term, by Hölder’s inequality, we have

‖
‖ℓ

𝑟
𝑘 sup
𝜏𝑘−1≤𝑠<𝑡≤𝜏𝑘

|𝛿𝑓𝜏′𝑘,𝑠𝛿𝑔𝑠,𝑡|
‖
‖𝑞 ≤

‖
‖ℓ

𝑟1
𝑘 sup

𝜏𝑘−1≤𝑠<𝑡≤𝜏𝑘
|𝛿𝑓𝜏′𝑘,𝑠|

‖
‖𝑞1

‖
‖ℓ

2
𝑘 sup
𝜏𝑘−1≤𝑠<𝑡≤𝜏𝑘

|𝛿𝑔𝑠,𝑡|‖‖𝑞0
.

In the former norm, we observe that the dependence on 𝑡 disappears. In the latter norm,
we use the ℓ2 valued BDG inequality (Corollary 3.2) with the martingales ℎ(𝑘) = 𝜏𝑘−1𝑔𝜏𝑘 .

5.3 Stopping time construction
In this section, we estimate the 𝑟-variation of a two-parameter function by square function-
like objects, like we did this for one-parameter functions in the proof of Lépingle’s in-
equality.

For an adapted process (Π𝑠,𝑡)𝑠≤𝑡, let

Π∗
𝑛″ ∶= sup

0≤𝑛<𝑛′≤𝑛″
|Π𝑛,𝑛′ |, Π∗ ∶= Π∗

∞.

Lemma 5.5. For any discrete time adapted process (Π𝑠,𝑡)𝑠<𝑡, there exist adapted partitions
𝜏(𝑚)
𝑗 such that, for every 0 < 𝜌 < 𝑟 < ∞, we have

sup
𝑙max,𝑢0<⋯<𝑢𝑙max

𝑙max
∑
𝑙=1
|Π𝑢𝑙−1,𝑢𝑙 |𝑟 ≤

(Π∗)𝑟
1 − 2−𝑟 + 2𝜌

∞
∑
𝑚=0

(2−𝑚Π∗)𝑟−𝜌
∞
∑
𝑗=1

( sup
𝜏(𝑚)
𝑗−1≤𝑡<𝜏

(𝑚)
𝑗

|Π𝑡,𝜏(𝑚)
𝑗

|)
𝜌
.

(5.12)
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Proof of Lemma 5.5. For𝑚 ∈ ℕ, define stopping times

𝜏(𝑚)
0 ∶= 0,

and then, for 𝑗 ≥ 0, allowing values in ℕ ∪ {∞},

𝜏(𝑚)
𝑗+1 ∶= inf{𝑡 > 𝜏(𝑚)

𝑗
|| sup
𝜏(𝑚)
𝑗 ≤𝑡′<𝑡

|Π𝑡′,𝑡| > 2−𝑚−1Π∗
𝑡 }. (5.13)

Fix 𝜔 ∈ Ω and let (𝑢𝑙)𝑙max𝑙=0 be a finite strictly increasing sequence. Consider 0 < 𝜌 < 𝑟 <
∞ and split

𝑙max
∑
𝑙=1
|Π𝑢𝑙−1,𝑢𝑙 |𝑟 =

∞
∑
𝑚=0

∑
𝑙∈𝐿(𝑚)

|Π𝑢𝑙−1,𝑢𝑙 |𝑟, (5.14)

where
𝐿(𝑚) ∶= {𝑙 ∈ {1,… , 𝑙max} || 2−𝑚−1Π∗

𝑢𝑙 < |Π𝑢𝑙−1,𝑢𝑙 | ≤ 2−𝑚Π∗
𝑢𝑙 }. (5.15)

In (5.14), we only omitted vanishing summands, since |Π𝑢𝑙−1,𝑢𝑙 | ≤ Π∗
𝑢𝑙 . Let also𝐿′(𝑚) ∶=

𝐿(𝑚) ⧵ {sup𝐿(𝑚)}. Using (5.15), we obtain

𝑙max
∑
𝑙=1
|Π𝑢𝑙−1,𝑢𝑙 |𝑟 ≤

∞
∑
𝑚=0

(2−𝑚Π∗)𝑟−𝜌 ∑
𝑙∈𝐿′(𝑚)

|Π𝑢𝑙−1,𝑢𝑙 |𝜌 +
∞
∑
𝑚=0

(2−𝑚Π∗)𝑟. (5.16)

Claim. For every 𝑙 ∈ 𝐿(𝑚), there exists 𝑗 s.t. 𝜏(𝑚)
𝑗 ∈ (𝑢𝑙−1, 𝑢𝑙].

Proof of the claim. Let 𝑗 be maximal with 𝜏(𝑚)
𝑗 ≤ 𝑢𝑙−1. Since 𝑙 ∈ 𝐿(𝑚), by definition

(5.15), we have
|Π𝑢𝑙−1,𝑢𝑙 | > 2−𝑚−1Π∗

𝑢𝑙 .

By the definition of stopping times (5.13), we obtain 𝜏(𝑚)
𝑗+1 ≤ 𝑢𝑙.

Fix 𝑚. For each 𝑙 ∈ 𝐿′(𝑚), let 𝑗(𝑙) be the largest 𝑗 such that 𝜏(𝑚)
𝑗 ∈ (𝑢𝑙−1, 𝑢𝑙]. Then

all 𝑗(𝑙) are distinct, and, since 𝑙 ≠ max𝐿(𝑚), the claim shows that 𝜏(𝑚)
𝑗(𝑙)+1 < ∞. Fur-

thermore, by (5.15), the monotonicity of 𝑡 ↦ Π∗
𝑡 , and the fact that the infimum in the

definition (5.13) of stopping times is in fact a minimum unless it is infinite, we have

|Π𝑢𝑙−1,𝑢𝑙 | ≤ 2−𝑚Π∗
𝑢𝑙 ≤ 2−𝑚Π∗

𝜏(𝑚)
𝑗(𝑙)+1

≤ 2 sup
𝜏(𝑚)
𝑗(𝑙)≤𝑡′<𝜏

(𝑚)
𝑗(𝑙)+1

|Π𝑡′,𝜏(𝑚)
𝑗(𝑙)+1

|. (5.17)

Since all 𝑗(𝑙) are distinct, this implies

∑
𝑙∈𝐿′(𝑚)

|Π𝑢𝑙−1,𝑢𝑙 |𝜌 ≤ 2𝜌
∞
∑
𝑗=1

sup
𝜏(𝑚)
𝑗−1≤𝑡′<𝜏

(𝑚)
𝑗

|Π𝑡′,𝜏(𝑚)
𝑗

|𝜌.

Substituting this into (7.5), we conclude the proof of Lemma 5.5.

Corollary 5.6. Let (Π𝑠,𝑡)𝑠≤𝑡 be an adapted process with Π𝑡,𝑡 = 0 for all 𝑡. Then, for every
0 < 𝜌 < 𝑟 < ∞ and 𝑞 ∈ (0,∞], we have

‖𝑉𝑟Π‖𝐿𝑞 ≲ sup
𝜏
‖
‖(

∞
∑
𝑗=1

( sup
𝜏𝑗−1≤𝑡<𝑡′≤𝜏𝑗

|Π𝑡,𝑡′ |)
𝜌)

1/𝜌‖
‖𝐿𝑞 , (5.18)

where the supremum is taken over all adapted partitions 𝜏.
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Proof. By themonotone convergence theorem,we can restrict the times in the definition
of 𝑉𝑟 to a finite set, and then apply Lemma 5.5.

The term Π∗ is of the form on the right-hand side of (5.18) with 𝜏1 = ∞. Therefore,
the claim follows from the triangle inequality in 𝐿𝑞 (if 𝑞 ≥ 1), 𝑞-convexity of 𝐿𝑞 (if 𝑞 < 1),
and Hölder’s inequality.

Theorem 5.7. Let

0 < 𝑞, 𝑞1 ≤ ∞, 1 ≤ 𝑞0 < ∞, 1 ≤ 𝑟1 ≤ ∞, 1/𝑞 = 1/𝑞0 + 1/𝑞1, 1/𝑟 < 1/2 + 1/𝑟1.

Let 𝑓 be an adapted process and 𝑔 a martingale. Then, we have

‖𝑉𝑟
𝑘 Π(𝛿𝑓, 𝑔)‖𝑞 ≲ ‖𝑉𝑟1𝑓‖𝑞1‖𝑆𝑔‖𝑞0 . (5.19)

Proof. Combine Corollary 5.6 and Theorem 5.4.

Remark. This section is mostly copied from [FZ20].

38



[11: 2021-12-21]
[12: 2022-01-11]

6 Itô integration
In this section, we discuss integration with respect to a càdlàg martingale in continuous
time, generalizing the paraproductΠ from the previous section. We consider stochastic
processes adapted to some filtration (ℱ𝑡)𝑡∈ℝ≥0 indexed by positive real times. We begin
with some convenient regularity assumptions. These assumptions are not restrictive, in
the sense that, for anymartingale, one can reparametrize time and change the filtration
in such a way that they are satisfied, but we will not discuss this, since our focus is on
more quantitative issues.

A filtration (ℱ𝑡)𝑡∈ℝ≥0 is called right-continuous if, for every 𝑡 ≥ 0, we have

ℱ𝑡 = ⋂
𝑡′>𝑡

ℱ𝑡′ .

For a function 𝑓 ∶ 𝑅≥0 → 𝐸 with values in a metric space 𝐸, the left and right limits at
a point 𝑡 are denoted by

𝑓𝑡− ∶= lim
𝑠→𝑡,𝑠<𝑡

𝑓𝑠, 𝑓𝑡+ ∶= lim
𝑠→𝑡,𝑠>𝑡

𝑓𝑠,

if they exist. A function 𝑓 ∶ ℝ≥0 → 𝐸 is called càdlàg (for “continue à droite, limite à
gauche”, “right continuous with left limits”; some authors use the English abbreviation
“rcll”) if 𝑓𝑡− exists for every 𝑡 > 0, and 𝑓𝑡 = 𝑓𝑡+ for every 𝑡 ≥ 0. A stochastic process
𝑔 ∶ Ω × ℝ≥0 → 𝐸 is called càdlàg if every path 𝑔(𝜔, ⋅) is a càdlàg function.
Theorem 6.1 (Regularization, see e.g. [Kal21, Theorem 9.28]). Let ℱ = (ℱ𝑡)𝑡∈ℝ≥0 be a
right-continuous filtration. If 𝑔 is a martingale with respect toℱ, then there exists a càdlàg
martingale ̃𝑔 with respect to ℱ such that, for every 𝑡 ≥ 0, we have

𝑔(⋅, 𝑡) = ̃𝑔(⋅, 𝑡) a.e.

For an adapted partition 𝜋, we write
⌊𝑡, 𝜋⌋ ∶= max{𝑠 ∈ 𝜋 | 𝑠 ≤ 𝑡}, 0 ≤ 𝑡 < ∞. (6.1)

For a càdlàg adapted process 𝑓 = (𝑓𝑡)𝑡≥0, a càdlàg martingale 𝑔 = (𝑔𝑡)𝑡≥0, and an
adapted partition 𝜋, we consider the following Riemann–Stieltjes sums:

Π𝜋(𝑓, 𝑔)𝑡,𝑡′ ∶= ∑
𝑡<𝜋𝑗<𝑡′

𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡′ , 0 ≤ 𝑡 ≤ 𝑡′ < ∞. (6.2)

In each summand, the integrand𝑓 is evaluated at the left endpoint of the interval [𝜋𝑗 , 𝜋𝑗+1]
on which we consider the increment of the integrator 𝑔 (and also at ⌊𝑡, 𝜋⌋, which is even
further to the left). This is the distinguishing feature of the Itô integral that makes it a
martingale in the 𝑡′ variable.

Unlike in Riemann(–Stieltjes) integration with a bounded variation integrator, eval-
uating 𝑡 at other points in general produces different results (e.g. Stratonovich integral,
where 𝑓 is averaged over 𝜋𝑗 and 𝜋𝑗+1).

Most classical treatments involve sums

∑
𝜋𝑗<𝑡′

𝑓𝜋𝑗𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡′ ,

which corerspond to fixing 𝑡 = 0, but this obscures the observation of the natural regu-
larity of the Itô integral that fits nicely with rough path theory.

For an adpated process 𝑓 and an adapted partition 𝜋, we write

𝑓(𝜋)𝑡 ∶= 𝑓⌊𝑡,𝜋⌋. (6.3)
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Proposition 6.2. Let 0 < 𝑞1 ≤ ∞, 1 ≤ 𝑞0 < ∞, and 0 < 𝑟, 𝑝1 ≤ ∞. Suppose

1/𝑟 < 1/𝑝1 + 1/2, 1/𝑞 = 1/𝑞0 + 1/𝑞1. (6.4)

Let (𝑓𝑡) be a càdlàg adapted process and (𝑔𝑡) a càdlàg martingale.
Then, for every adapted partition 𝜋, we have the estimate

‖
‖𝑉𝑟Π𝜋(𝑓, 𝑔)‖‖𝐿𝑞 ≲ ‖𝑉𝑝1𝑓(𝜋)‖𝐿𝑞1 ‖𝑉∞𝑔‖𝐿𝑞0 . (6.5)

Proof of Proposition 6.2. Since Π𝜋(𝐹, 𝑔)𝑡,𝑡′ is càdlàg in both 𝑡 and 𝑡′, we have

𝑉𝑟Π𝜋(𝐹, 𝑔) = lim
𝑛→∞

sup
𝑙max,𝑢0<⋯<𝑢𝑙max ,𝑢𝑙∈𝜋(𝑛)

(
𝑙max
∑
𝑙=1
|Π𝜋(𝐹, 𝑔)𝑢𝑙−1,𝑢𝑙 |𝑟)

1/𝑟
,

where 𝜋(𝑛) = 𝜋 ∪ 2−𝑛ℕ. By the monotone convergence theorem, it suffices to consider
a fixed 𝜋(𝑛), as long as the bound does not depend on 𝑛.

For any adapted partitions 𝜋 ⊆ 𝜏, we have

Π𝜋(𝑓, 𝑔)𝑡,𝑡′ = ∑
𝑘∶𝑡<𝜋𝑘<𝑡′

𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑘𝛿𝑔𝜋𝑘,𝜋𝑘+1∧𝑡′

= ∑
𝑘∶𝑡<𝜋𝑘<𝑡′

𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑘 ∑
𝑙∶𝜋𝑘≤𝜏𝑙<𝜋𝑘+1∧𝑡′

𝛿𝑔𝜏𝑙 ,𝜏𝑙+1∧𝑡′

= ∑
𝑘∶𝑡<𝜋𝑘<𝑡′

∑
𝑙∶𝜋𝑘≤𝜏𝑙<𝜋𝑘+1∧𝑡′

𝛿𝑓⌊𝑡,𝜋⌋,⌊𝜏𝑙 ,𝜋⌋𝛿𝑔𝜏𝑙 ,𝜏𝑙+1∧𝑡′

= ∑
𝑙∶𝑡<𝜏𝑙<𝑡′

𝛿𝑓(𝜋)⌊𝑡,𝜏⌋,𝜏𝑙𝛿𝑔𝜏𝑙 ,𝜏𝑙+1∧𝑡′

= Π𝜏(𝑓(𝜋), 𝑔)𝑡,𝑡′ ,

(6.6)

where 𝑓(𝜋) is given by (6.3). Define discrete time processes 𝑓(𝜋)𝜏 , 𝑔𝜏 by

(𝑓(𝜋)𝜏 )𝑗 = 𝑓(𝜋)𝜏𝑗 , (𝑔𝜏)𝑗 = 𝑔𝜏𝑗 .

Then, we have

Π𝜋(𝑓, 𝑔)𝜏𝑗 ,𝜏𝑗′ = Π𝜏(𝑓(𝜋), 𝑔)𝜏𝑗 ,𝜏𝑗′
= ∑

𝑙∶𝜏𝑗<𝜏𝑙<𝜏𝑗′
𝛿𝑓(𝜋)⌊𝜏𝑗 ,𝜏⌋,𝜏𝑙𝛿𝑔𝜏𝑙 ,𝜏𝑙+1∧𝜏𝑗′

= ∑
𝑙∶𝑗<𝑙<𝑗′

𝛿𝑓(𝜋)𝜏𝑗 ,𝜏𝑙𝛿𝑔𝜏𝑙 ,𝜏𝑙+1

= Π(𝑓(𝜋)𝜏 , 𝑔𝜏)𝑗,𝑗′ ,

where the last line is the discrete time paraproduct defined in (5.3). By Theorem 5.7 and
the BDG inequality (Corollary 1.13) for the discrete time martingale 𝑔𝜏, we obtain

‖𝑉𝑟Π(𝑓(𝜋)𝜏 , 𝑔𝜏)‖𝑞 ≲ ‖𝑉𝑟1𝑓(𝜋)𝜏 ‖𝑞1‖𝑆𝑔𝜏‖𝑞0 ≲ ‖𝑉𝑟1𝑓(𝜋)𝜏 ‖𝑞1‖𝑉∞𝑔𝜏‖𝑞0 ≤ ‖𝑉𝑟1𝑓‖𝑞1‖𝑉∞𝑔‖𝑞0 .

Lemma 6.3. Let (𝑓𝑡)𝑡≥0 be a càdlàg adapted process. Suppose that 𝑉𝑝1𝑓 ∈ 𝐿𝑞1 for some
𝑝1, 𝑞1 ∈ (0,∞]. Then, for every ̃𝑝1 ∈ (𝑝1,∞) ∪ {∞}, we have

lim
𝜋
‖𝑉 ̃𝑝1(𝑓 − 𝑓(𝜋))‖𝐿𝑞1 = 0.

Proof. We have 𝑉𝑝1𝑓(𝜋) ≤ 𝑉𝑝1𝑓 and, by Hölder’s inequality,

𝑉 ̃𝑝1(𝑓 − 𝑓(𝜋)) ≤ 𝑉𝑝1(𝑓 − 𝑓(𝜋))1−𝜃𝑉∞(𝑓 − 𝑓(𝜋))𝜃
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with some 𝜃 ∈ (0, 1], so it suffices to consider ̃𝑝1 = ∞.
Let 𝜖 > 0 and define a sequence of stopping times recursively, starting with 𝜋0 ∶= 0,

by
𝜋𝑗+1 ∶= inf{𝑡 > 𝜋𝑗 || |𝛿𝑓𝜋𝑗 ,𝑡| ≥ 𝜖}.

Since 𝑓 is càdlàg, the infimum is either +∞ or a minimum, so that this is indeed a
stopping time. Also by the càdlàg assumption, this sequence of stopping times is strictly
monotonically increasing in the sense that 𝜋𝑗 < ∞ ⟹ 𝜋𝑗 < 𝜋𝑗+1. Moreover, if 𝑇 ∶=
sup𝑗 𝜋𝑗 < ∞, then the left limit 𝑓𝑇− does not exist, contradicting the càdlàg hypothesis.
Therefore, 𝜋𝑗 →∞, so that 𝜋 is an adapted partition.

Then, by (4.18), for any adapted partition 𝜋′ ⊇ 𝜋 and 𝑠 ≤ 𝑡, we have

|𝛿𝑓𝑠,𝑡 − 𝛿𝑓(𝜋
′)

𝑠,𝑡 | ≤ |𝑓𝑡 − 𝑓⌊𝑡,𝜋′⌋| + |𝑓𝑠 − 𝑓⌊𝑠,𝜋′⌋|
≤ 2𝜖 + 2𝜖.

Theorem6.4 (Itô integral). In the situation of Proposition 6.2, suppose that the right-hand
side of (6.8) is finite. Then

Π(𝑓, 𝑔) ∶= lim
𝜋
Π𝜋(𝑓, 𝑔) (6.7)

exists in 𝐿𝑞(Ω, 𝑉𝑟), satisfies the bound

‖
‖𝑉𝑟Π(𝑓, 𝑔)‖‖𝐿𝑞 ≲ ‖𝑉𝑝1𝑓‖𝐿𝑞1 ‖𝑉∞𝑔‖𝐿𝑞0 , (6.8)

and, for any 0 ≤ 𝑡 ≤ 𝑡′ ≤ 𝑡″ < ∞, Chen’s relation

Π(𝑓, 𝑔)𝑡,𝑡″ − Π(𝑓, 𝑔)𝑡,𝑡′ − Π(𝑓, 𝑔)𝑡′,𝑡″ = 𝛿𝑓𝑡,𝑡′𝛿𝑔𝑡′,𝑡″ . (6.9)

The limit (6.7) is called the Itô integral (with integrand 𝑓 and integrator 𝑔).

Proof of Theorem 6.4. By the Cauchy criterion for net convergence, the existence of the
limit (6.7) will follow if we can show that

lim
𝜋
sup
𝜏⊇𝜋

‖
‖𝑉𝑟(Π𝜋(𝑓, 𝑔) − Π𝜏(𝑓, 𝑔))‖‖𝐿𝑞 = 0. (6.10)

To this end, we use that, by (6.6), we have

Π𝜋(𝑓, 𝑔) − Π𝜏(𝑓, 𝑔) = Π𝜏(𝑓(𝜋) − 𝑓(𝜏), 𝑔).

Let ̃𝑝1 ∈ (𝑝1,∞]∪{∞} be such that 1/𝑟 < 1/ ̃𝑝1+1/2. By Proposition 6.2 with 𝑓 replaced
by 𝑓(𝜋) − 𝑓(𝜏), we obtain

‖
‖𝑉𝑟Π𝜏(𝑓(𝜋) − 𝑓(𝜏), 𝑔)‖‖𝐿𝑞

≲ ‖𝑉 ̃𝑝1(𝑓(𝜋) − 𝑓(𝜏))(𝜏)‖𝐿𝑞1 ‖𝑉∞𝑔‖𝐿𝑞0

This converges to 0 by Lemma 6.3.
In order to show the Chen relation (6.9), we first show that the corresponding re-

lation holds pointwise for the discretized paraproducts Π𝜋. Indeed, by definition (6.2),
for 𝑡 ≤ 𝑡′ ≤ 𝑡″, we have

Π𝜋(𝑓, 𝑔)𝑡,𝑡″ − Π𝜋(𝑓, 𝑔)𝑡,𝑡′ − Π𝜋(𝑓, 𝑔)𝑡′,𝑡″ (6.11)

= ∑
𝑡<𝜋𝑗<𝑡″

𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡″ − ∑
𝑡<𝜋𝑗<𝑡′

𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡′

− ∑
𝑡′<𝜋𝑗<𝑡″

𝛿𝑓⌊𝑡′,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡″
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= ∑
𝑡<𝜋𝑗<𝑡′

𝑓⌊𝑡,𝜋⌋,𝜋𝑗 (𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡″ − 𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡′) + ∑
𝑡<𝜋𝑗=𝑡′<𝑡″

𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡″

+ ∑
𝑡′<𝜋𝑗<𝑡″

(𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑗 − 𝛿𝑓⌊𝑡′,𝜋⌋,𝜋𝑗 )𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡″

= ∑
𝑡<𝜋𝑗<𝑡′

𝑓⌊𝑡,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗+1∧𝑡′,𝜋𝑗+1∧𝑡″ + ∑
𝑡<𝜋𝑗=𝑡′<𝑡″

𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡″

+ 𝛿𝑓⌊𝑡,𝜋⌋,⌊𝑡′,𝜋⌋ ∑
𝑡′<𝜋𝑗<𝑡″

𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡″

All summands except possibly the one with 𝜋𝑗 < 𝑡′ < 𝜋𝑗+1 in the first sum vanish, and
it follows that

⋯ = 𝛿𝑓⌊𝑡,𝜋⌋,⌊𝑡′,𝜋⌋( ∑
𝑡<𝜋𝑗<𝑡′<𝜋𝑗+1

𝛿𝑔𝜋𝑗+1∧𝑡′,𝜋𝑗+1∧𝑡″+ ∑
𝑡<𝜋𝑗=𝑡′<𝑡″

𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡″+ ∑
𝑡′<𝜋𝑗<𝑡″

𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡″)

= 𝛿𝑓⌊𝑡,𝜋⌋,⌊𝑡′,𝜋⌋( ∑
𝑡<𝜋𝑗≤𝑡′<𝜋𝑗+1∧𝑡″

𝛿𝑔𝑡′,𝜋𝑗+1∧𝑡″ + ∑
𝑡′<𝜋𝑗<𝑡″

𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡″) = 𝛿𝑓(𝜋)𝑡,𝑡′ 𝛿𝑔𝑡′,𝑡″ .

By the already known conclusion (6.7), the process (6.11) converges to the left-hand side
of (6.9). By Lemma 6.3, the last expression in the above chain of equalities converges to
the right-hand side of (6.9).

6.1 Quadratic covariation
Proposition 6.5. Let 𝑞0, 𝑞1 ∈ [1,∞), 1/𝑞 = 1/𝑞0 + 1/𝑞1, and 𝑟 > 1. For càdlàg martin-
gales 𝑓, 𝑔 with 𝑉∞𝑓 ∈ 𝐿𝑞0 , 𝑉∞𝑔 ∈ 𝐿𝑞1 , let

[𝑓, 𝑔]𝜋𝑡,𝑡′ ∶= ∑
⌊𝑡,𝜋⌋≤𝜋𝑗<⌊𝑡′,𝜋⌋

𝛿𝑓𝜋𝑗 ,𝜋𝑗+1𝛿𝑔𝜋𝑗 ,𝜋𝑗+1 .

Then,
[𝑓, 𝑔]𝑡,𝑡′ ∶= lim

𝜋
[𝑓, 𝑔]𝜋𝑡,𝑡′ (6.12)

exists in 𝐿𝑞(𝑉𝑟). Moreover, we have the integration by parts formula

𝛿𝑓𝑡,𝑡′𝛿𝑔𝑡,𝑡′ = Π(𝑓, 𝑔)𝑡,𝑡′ + Π(𝑔, 𝑓)𝑡,𝑡′ + [𝑓, 𝑔]𝑡,𝑡′ . (6.13)

The process (6.12) is called the quadratic covariation of 𝑓 and 𝑔. Here are a few facts
about it that easily follow from the definition:

∀𝑡 ≤ 𝑡′ ≤ 𝑡″, [𝑓, 𝑔]𝑡,𝑡″ = [𝑓, 𝑔]𝑡,𝑡′ + [𝑓, 𝑔]𝑡′,𝑡″ a.s.

To see this, note that the same identity holds for [⋅, ⋅]𝜋 for any adapted partition 𝜋 that
contains the times 𝑡, 𝑡′, 𝑡″.

∀𝑡 ≤ 𝑡′, 𝔼𝑡[𝑓, 𝑓]𝑡,𝑡′ = 𝔼𝑡|𝛿𝑓𝑡,𝑡′ |2.

To see this, note that the same identity holds for [⋅, ⋅]𝜋 for any adapted partition 𝜋 that
contains the times 𝑡, 𝑡′, because, by the optinal sampling theorem, 𝛿𝑓𝜋𝑗 ,𝜋𝑗+1 are martin-
gale increments, and therefore orthogonal in 𝐿2.
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Proof of Proposition 6.5. First, we compute

𝛿𝑓⌊𝑡,𝜋⌋,𝑡′𝛿𝑔⌊𝑡,𝜋⌋,𝑡′ − Π𝜋(𝑓, 𝑔)𝑡,𝑡′ − Π𝜋(𝑔, 𝑓)𝑡,𝑡′
= ( ∑

⌊𝑡,𝜋⌋≤𝜋𝑘<𝑡′
𝛿𝑓𝜋𝑘,𝜋𝑘+1∧𝑡′)( ∑

⌊𝑡,𝜋⌋≤𝜋𝑗<𝑡′
𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡′)

− ∑
⌊𝑡,𝜋⌋<𝜋𝑗<𝑡′

𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡′ − ∑
⌊𝑡,𝜋⌋<𝜋𝑘<𝑡′

𝛿𝑔⌊𝑡,𝜋⌋,𝜋𝑘𝛿𝑓𝜋𝑘,𝜋𝑘+1∧𝑡′

= ∑
⌊𝑡,𝜋⌋≤𝜋𝑗<𝑡′

𝛿𝑓𝜋𝑗 ,𝜋𝑗+1∧𝑡′𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡′

+ ∑
⌊𝑡,𝜋⌋≤𝜋𝑘<𝜋𝑗<𝑡′

𝛿𝑓𝜋𝑘,𝜋𝑘+1∧𝑡′𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡′ − ∑
⌊𝑡,𝜋⌋<𝜋𝑗<𝑡′

𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡′

+ ∑
⌊𝑡,𝜋⌋≤𝜋𝑗<𝜋𝑘<𝑡′

𝛿𝑓𝜋𝑘,𝜋𝑘+1∧𝑡′𝛿𝑔𝜋𝑗 ,𝜋𝑗+1∧𝑡′ − ∑
⌊𝑡,𝜋⌋<𝜋𝑘<𝑡′

𝛿𝑔⌊𝑡,𝜋⌋,𝜋𝑘𝛿𝑓𝜋𝑘,𝜋𝑘+1∧𝑡′ .

Each of the last two lines vanishes identically.
In particular, replacing 𝑡′ by ⌊𝑡′, 𝜋⌋, we obtain

𝛿𝑓⌊𝑡,𝜋⌋,⌊𝑡′,𝜋⌋𝛿𝑔⌊𝑡,𝜋⌋,⌊𝑡′,𝜋⌋−Π𝜋(𝑓, 𝑔)𝑡,⌊𝑡′,𝜋⌋−Π𝜋(𝑔, 𝑓)𝑡,⌊𝑡′,𝜋⌋ = ∑
⌊𝑡,𝜋⌋≤𝜋𝑗<⌊𝑡′,𝜋⌋

𝛿𝑓𝜋𝑗 ,𝜋𝑗+1𝛿𝑔𝜋𝑗 ,𝜋𝑗+1 .

(6.14)
Note that

Π𝜋(𝑓, 𝑔)𝑡,⌊𝑡′,𝜋⌋ = Π𝜋(𝑓, 𝑔)𝑡,𝑡′ − ∑
𝜋𝑗<𝑡′<𝜋𝑗+1

𝛿𝑓⌊𝑡,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗 ,𝑡′ , (6.15)

where the sum consists of either 0 or 1 summands. For any inrcreasing sequence 𝑢0 ≤
… ≤ 𝑢𝐾 , we have In particular, with any 𝛼 ∈ (0, 𝑟 − 1), we have

𝐾−1
∑
𝑘=0

|| ∑
𝜋𝑗<𝑢𝑘+1<𝜋𝑗+1

𝛿𝑓⌊𝑢𝑘,𝜋⌋,𝜋𝑗𝛿𝑔𝜋𝑗 ,𝑢𝑘+1 ||
𝑟

= ∑
𝑘∶⌊𝑢𝑘,𝜋⌋<⌊𝑢𝑘+1,𝜋⌋

|𝛿𝑓⌊𝑢𝑘,𝜋⌋,⌊𝑢𝑘+1,𝜋⌋𝛿𝑔⌊𝑢𝑘+1,𝜋⌋,𝑢𝑘+1 |𝑟

≤ ( ∑
𝑘∶⌊𝑢𝑘,𝜋⌋<⌊𝑢𝑘+1,𝜋⌋

|𝛿𝑓⌊𝑢𝑘,𝜋⌋,⌊𝑢𝑘+1,𝜋⌋|2𝑟)
1/2
( ∑
𝑘∶⌊𝑢𝑘,𝜋⌋<⌊𝑢𝑘+1,𝜋⌋

|𝛿𝑔⌊𝑢𝑘+1,𝜋⌋,𝑢𝑘+1 |2𝑟)
1/2

≤ (𝑉2𝑟𝑓)𝑟 sup
𝑡
|𝛿𝑔⌊𝑡,𝜋⌋,𝑡|𝛼(𝑉2(𝑟−𝛼)𝑔)𝑟−𝛼.

This expression no longer depends on the sequence (𝑢𝑘). By Lépingle’s and Hölder’s
inequalities, this is bounded in 𝐿𝑞, and, taking into account Lemma 6.3, this converges
to 0 in 𝐿𝑞. Hence, the second term on the right-hand side of (6.15) converges to 0 in
𝐿𝑞𝑉𝑟. Theorem 6.4 and Lépingle’s inequality for 𝑓 now imply

lim
𝜋
Π𝜋(𝑓, 𝑔)𝑡,⌊𝑡′,𝜋⌋ = Π(𝑓, 𝑔)𝑡,𝑡′ in 𝐿𝑞𝑉𝑟.

Writing (6.14) as

[𝑓, 𝑔]𝜋𝑡,𝑡′ = 𝛿𝑓(𝜋)𝑡,𝑡′ 𝛿𝑔
(𝜋)
𝑡,𝑡′ − Π𝜋(𝑓, 𝑔)𝑡,⌊𝑡′,𝜋⌋ − Π𝜋(𝑔, 𝑓)𝑡,⌊𝑡′⌋, (6.16)

we see that the first summand on the right-hand side converges to 𝛿𝑓𝛿𝑔 in 𝐿𝑞𝑉𝑟 by
Lemma6.3, and the remaining summands to Itô integrals by the above discussion. Hence,
the left hand side converges, as was claimed in (6.12). The identity (6.13) is the limit of
the above equality.
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7 A sharp inequality for the square function
The proof of the BDG inequality that we have seen in this notes was quite indirect: we
started with some 𝐿2 identities and used the Davis decomposition to lower the 𝐿𝑝 expo-
nent. In this section, we will take a look at a more direct method for proving martingale
inequalities. In this special case, it will yield an inequality with an optimal constant.

This section follows [Bur02].

Theorem 7.1. Let (𝑓𝑛)𝑛∈ℕ be a real-valued martingale. Then, for every 𝑁 ∈ ℕ, we have

𝔼(3|𝑓0| +
𝑁
∑
𝑛=1

|𝑑𝑓𝑛|2
𝑓∗𝑛

) ≤ 𝔼(2𝑓∗𝑁 + |𝑓𝑁 |2
𝑓∗𝑁

). (7.1)

We will see later that the inequality (7.1) implies the Davis inequality for the mar-
tingale square function with the sharp constant. In applications, one replaces (7.1) by
the slightly weaker inequality

𝔼(3|𝑓0| +
𝑁
∑
𝑛=1

|𝑑𝑓𝑛|2
𝑓∗𝑛

) ≤ 3𝔼𝑓∗𝑁 .

However, the preculiar form of the right-hand side of (7.1) permits to show this result
by induction on 𝑁.

7.1 A Bellman function
The inductive step in the proof of Theorem 7.1 is usually stated as a concavity property
of a special function. Functions used in such arguments are called “Bellman functions”;
many more examples can be found in the books [Osę12; VV20].

Thoroughout this section,

𝒟 ∶= {(𝑥, 𝑡, 𝑧) ∈ ℝ × ℝ≥0 × ℝ≥0 | |𝑥| ≤ 𝑧}.

We define 𝑈 ∶ 𝒟 → ℝ by

𝑈(𝑥, 𝑦,𝑚) ∶= 𝑦 − |𝑥|2 + (𝛾 − 1)𝑚2

𝑚 ,

where 𝛾 = 3. The main feature of this function is the following concavity property.

Proposition 7.2. For any 𝑥, ℎ ∈ ℝ and 𝑦,𝑚 ∈ ℝ≥0 with |𝑥| ≤ 𝑚, we have

𝑈(𝑥 + ℎ, 𝑦 + |ℎ|2
(|𝑥 + ℎ| ∨ 𝑚), |𝑥 + ℎ| ∨ 𝑚) ≤ 𝑈(𝑥, 𝑦,𝑚) − 2(𝑥)ℎ

𝑚 . (7.2)

Proof of Theorem 7.1 assuming Proposition 7.2. Using (7.2) with

𝑥 = 𝑓𝑛, 𝑦 = ̃𝑆𝑛 ∶= 𝛾|𝑓0| +
𝑛
∑
𝑗=1

|𝑑𝑓𝑗 |2
𝑓∗𝑗

, 𝑚 = 𝑓∗𝑛 , ℎ = 𝑑𝑓𝑛+1,

we obtain
𝑈(𝑓𝑛+1, ̃𝑆𝑛+1, 𝑓∗𝑛+1) ≤ 𝑈(𝑓𝑛, ̃𝑆𝑛, 𝑓∗𝑛 ) −

2𝑓𝑛𝑑𝑓𝑛+1
𝑓∗𝑛

. (7.3)
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By conditional independence, we have

𝔼(2𝑓𝑛𝑑𝑓𝑛+1𝑓∗𝑛
|ℱ𝑛) =

2𝑓𝑛
𝑓∗𝑛

𝔼(𝑑𝑓𝑛+1|ℱ𝑛) = 0.

Taking expectations, we obtain

𝔼𝑈(𝑓𝑛+1, ̃𝑆𝑛+1, 𝑓∗𝑛+1) ≤ 𝔼𝑈(𝑓𝑛, ̃𝑆𝑛, 𝑓∗𝑛 ).

Iterating this inequality, we obtain

𝔼(3|𝑓0| +
𝑁
∑
𝑛=1

|𝑑𝑓𝑛|2
(𝑓∗𝑛 )

− |𝑓𝑁 |2
𝑓∗𝑁

− 2𝑓∗𝑁) = 𝔼𝑈(𝑓𝑁 , ̃𝑆𝑁 , 𝑓∗𝑁) ≤ 𝔼𝑈(𝑓0, ̃𝑆0, 𝑓∗0 ) = 0.

Remark. The above proof in fact shows the pathwise inequality

3|𝑓0| +
𝑁
∑
𝑛=1

|𝑑𝑓𝑛|2
(𝑓∗𝑛 )

≤ 2𝑓∗𝑁 + |𝑓𝑁 |2
𝑓∗𝑁

−
𝑁
∑
𝑛=1

2(𝑓𝑛)𝑑𝑓𝑛+1
(𝑓∗𝑛 )

.

Proof of Proposition 7.2. If |𝑥 + ℎ| ≤ 𝑚, then

𝑈(𝑥 + ℎ, 𝑦 + |ℎ|2
(|𝑥 + ℎ| ∨ 𝑚), |𝑥 + ℎ| ∨ 𝑚)

= (𝑦 + |ℎ|2
𝑚 ) − |𝑥 + ℎ|2 + (𝛾 − 1)𝑚2

𝑚
= 𝑦 + |ℎ|2

𝑚 − |𝑥|2 + 2𝑥ℎ + |ℎ|2 + (𝛾 − 1)𝑚2

𝑚
= 𝑦 − |𝑥|2 + (𝛾 − 1)𝑚2

𝑚 − 2𝑥ℎ
𝑚

= 𝑈(𝑥, 𝑦,𝑚) − 2(𝑥)ℎ
𝑚 .

If |𝑥 + ℎ| > 𝑚, then we need to show

(𝑦 + |ℎ|2
|𝑥 + ℎ|) −

|𝑥 + ℎ|2 + (𝛾 − 1)|𝑥 + ℎ|2
|𝑥 + ℎ| ≤ 𝑦 − |𝑥|2 + (𝛾 − 1)𝑚2

𝑚 − 2𝑥ℎ
𝑚 . (7.4)

This is equivalent to

|ℎ|2 − 𝛾|𝑥 + ℎ|2
|𝑥 + ℎ| ≤ −|𝑥|2 − (𝛾 − 1)𝑚2

𝑚 − 2𝑥ℎ
𝑚 . (7.5)

The inequality (7.5) is equivalent to

|ℎ|2𝑚
𝑚2|𝑥 + ℎ| − 𝛾|𝑥 + ℎ|

𝑚 ≤ −|𝑥 + ℎ|2 + |ℎ|2
𝑚2 − (𝛾 − 1).

Let 𝑡 ∶= |𝑥 +ℎ|/𝑚 > 1 and ̃𝑡 ∶= |ℎ|/𝑚. Note that |𝑡 − ̃𝑡| = ||𝑥 + ℎ| − |ℎ||/𝑚 ≤ |𝑥|/𝑚 ≤ 1.
With this notation, (7.5) is equivalent to

̃𝑡2/𝑡 − 𝛾𝑡 ≤ −𝑡2 + ̃𝑡2 − (𝛾 − 1),

or
𝛾 ≥ 1

𝑡 − 1(𝑡
2 − 1 − ̃𝑡2(1 − 1/𝑡)) = (𝑡 + 1) − ̃𝑡2/𝑡.

Hence, it suffices to ensure

𝛾 ≥ sup
𝑡>1,|𝑡− ̃𝑡|≤1

(𝑡 + 1) − ̃𝑡2/𝑡.

The supremum in ̃𝑡 is assumed for ̃𝑡 = (𝑡 − 1), so this condition becomes

𝛾 ≥ sup
𝑡>1

𝑡 + 1 − (𝑡 − 1)2/𝑡 = sup
𝑡>1

3 − 1/𝑡 = 3.

45



7.2 Sharp constant in the Davis inequality for the square function
Proposition 7.3. Let 𝑓 be a real-valued martingale. Then

𝔼𝑆𝑓 ≤ √3𝔼𝑓∗.
Proof. By Hölder’s inequality and (7.1), we obtain

𝔼𝑆𝑓 ≤ 𝔼((𝑓∗)1/2(
𝑁
∑
𝑛=1

|𝑑𝑓𝑛|2
𝑓∗𝑛

)1/2)

≤ (𝔼𝑓∗)1/2(𝔼(
𝑁
∑
𝑛=1

|𝑑𝑓𝑛|2
𝑓∗𝑛

))1/2

≤ √3𝔼𝑓∗.

The next result shows that√3 is the best possible constant in Proposition 7.3.
Proposition 7.4. Let 𝛾 ≥ 0. Suppose that the inequality

𝔼𝑆𝑓 ≤ 𝛾𝔼𝑓∗ (7.6)

holds for all real-valued simple martingales 𝑓 with 𝑓0 = 0. Then 𝛾 ≥ √3.
Proof. Let 𝑉 ∶ 𝒟 → ℝ be given by

𝑉(𝑥, 𝑡, 𝑧) ∶= √𝑡 − 𝛾𝑧.
Define 𝑈 ∶ 𝒟 → (−∞,∞] by

𝑈(𝑥, 𝑡, 𝑧) ∶= sup{𝔼𝑉(𝑓∞, 𝑡 + 𝑆2(𝑓), 𝑓∗ ∨ 𝑧) || 𝑓0 = 𝑥}, (7.7)

where the supremum is taken over all simple martingales (that is, martingales 𝑓 that
take only finitely many values). This function will play the role of the “best” Bellman
function for the inequality (7.6).

Substituting the constant martingale into the definition (7.7), we see that, for any
(𝑥, 𝑡, 𝑧) ∈ 𝐷, we have

𝑉(𝑥, 𝑡, 𝑧) ≤ 𝑈(𝑥, 𝑡, 𝑧), (7.8)
We claim that, for any simple measurable function 𝑑 ∶ Ω → ℝ with 𝔼𝑑 = 0, we have

𝔼𝑈(𝑥 + 𝑑, 𝑡 + |𝑑|2, |𝑥 + 𝑑| ∨ 𝑧) ≤ 𝑈(𝑥, 𝑡, 𝑧). (7.9)
Proof of (7.9). Fix 𝑥 ∈ ℝwith |𝑥| ≤ 𝑧. Let 𝑑 ∶ Ω → ℝ be a simple function with 𝔼𝑑 = 0
and ℙ(𝑑 = 𝑠𝑗) = 𝑝𝑗 ∈ (0, 1] for 1 ≤ 𝑗 ≤ 𝑚, where∑𝑚

𝑗=1 𝑝𝑗 = 1. Choose 𝑏𝑗 ∈ ℝ so that

𝑈 (𝑥 + 𝑠𝑗 , 𝑡 + |𝑠𝑗 |2, |𝑥 + 𝑠𝑗 | ∨ 𝑧) > 𝑏𝑗 .

Then, by the definition of 𝑈 , there exists a martingale 𝑓𝑗 with 𝑓𝑗0 = 𝑥 + 𝑠𝑗 satisfying

𝔼𝑉(𝑓𝑗∞, 𝑡 + |𝑠𝑗 |2 + 𝑆2 (𝑓𝑗) , (𝑓𝑗)∗ ∨ 𝑧) > 𝑏𝑗 .
Let 𝑓 be a martingale with 𝑓1 = 𝑥+𝑑 which continues with the same distribution as 𝑓𝑗
(rescaled by𝑝𝑗 inmeasure) on the set {𝑑 = 𝑠𝑗}. Because |𝑥| ≤ 𝑧, we have𝑓∗∨𝑧 = (𝑓𝑗)∗∨𝑧
on {𝑑 = 𝑠𝑗}. By (7.7), we have

𝑈(𝑥, 𝑡, 𝑧) ≥ 𝐸𝑉 (𝑓∞, 𝑡 + 𝑆2(𝑓), 𝑓∗ ∨ 𝑧)

=
𝑚
∑
𝑗=1

∫
{𝑑=𝑠𝑗}

𝑉 (𝑓∞, 𝑡 + |𝑠𝑗 |2 + |𝑑𝑓2|2 +⋯ ,𝑓∗ ∨ 𝑧) dℙ

=
𝑚
∑
𝑗=1

𝑝𝑗𝔼𝑉 (𝑓𝑗∞, 𝑡 + |𝑠𝑗 |2 + 𝑆2(𝑓𝑗), (𝑓𝑗)∗ ∨ 𝑧)

≥
𝑚
∑
𝑗=1

𝑝𝑗𝑏𝑗 .

Using the freedom in the choice of 𝑏𝑗 ’s, this implies (7.9).
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For every 𝜆 > 0, we have

𝑉(𝑥, 𝑡, 𝑧) = 𝜆𝑉(𝑥/𝜆, 𝑡/𝜆2, 𝑧/𝜆), 𝑈(𝑥, 𝑡, 𝑧) = 𝜆𝑈(𝑥/𝜆, 𝑡/𝜆2, 𝑧/𝜆).

Define 𝑢, 𝑣 ∶ [−1, 1] × ℝ≥0 → (−∞,∞] by

𝑣(𝑥, 𝑡) ∶= 𝑉(𝑥, 𝑡, 1), 𝑢(𝑥, 𝑡) = 𝑈(𝑥, 𝑡, 1).

Since 𝑡 ↦ 𝑉(𝑥, 𝑡, 𝑧) is nondecreasing, the same holds for 𝑡 ↦ 𝑢(𝑥, 𝑡), so left limits exist.
We claim that

𝑢(1, 1−) ≥ 𝑢(0, 2−) + 𝑢(1, 1−). (7.10)

To see this, let 0 < 𝑠 < 1 < 𝑟. Let 𝑑 be a random variable such thatℙ(𝑑 = −1) = 𝑟/(𝑟+1)
and ℙ(𝑑 = 𝑟) = 1/(𝑟 + 1). Then, (7.9) and scaling imply that

𝑢(1, 𝑠) = 𝑈(1, 𝑠, 1)

≥ 𝑟
𝑟 + 1𝑈(0, 𝑠 + 1, 1) + 1

1 + 𝑟𝑈(1 + 𝑟, 𝑠 + 𝑟2, 1 + 𝑟)

= 𝑟
𝑟 + 1𝑢(0, 𝑠 + 1) + 𝑢(1, (𝑠 + 𝑟2)/(1 + 𝑟)2)

≥ 𝑟
𝑟 + 1𝑢(0, 𝑠 + 1) + 𝑢(1, 𝑟2/(1 + 𝑟)2),

wherewe usedmonotonicity of 𝑢 in the second variable in the last step. Both summands
on the RHS are increasing in both variables 𝑠, 𝑟. Taking 𝑟 → ∞ and 𝑠 → 1, we obtain
(7.10).

If 𝑓 is a simple martingale with 𝑓0 = 0, then, by the hypothesis (7.6), we have

𝔼𝑉(𝑓∞, 0 + 𝑆2𝑓, 𝑓∗ ∨ 1) = 𝔼𝑆𝑓 − 𝛾𝔼(𝑓∗ ∨ 1) ≤ 𝔼𝑆𝑓 − 𝛾𝔼𝑓∗ ≤ 0.

By the definition (7.7), this implies that 𝑢(0, 0) = 𝑈(0, 0, 1) ≤ 0.
Let 𝑑 be a random variable with ℙ(𝑑 = 1) = ℙ(𝑑 = −1) = 1/2. Using (7.9) and the

fact that 𝑢(𝑥, 𝑡) = 𝑢(−𝑥, 𝑡), we obtain

0 ≥ 𝑢(0, 0) ≥ 1
2[𝑢(1, 1) + 𝑢(−1, 1)] = 𝑢(1, 1) ≥ 𝑢(1, 1−) ≥ 𝑣(1, 1−) = 1 − 𝛾.

This implies that 𝑢(1, 1−) is finite. So (7.10) yields 𝑢(0, 2−) ≤ 0. Let 𝑑 be a random
variable with ℙ(𝑑 = 1) = ℙ(𝑑 = −1) = 1/2. By (7.9), for every 𝜖 > 0, we obtain

0 ≥ 𝑢(0, 2−) ≥ 𝑢(0, 2−𝜖) ≥ 1
2[𝑢(1, 3−𝜖)+𝑢(−1, 3−𝜖)] = 𝑢(1, 3−𝜖) ≥ 𝑣(1, 3−𝜖) = √3 − 𝜖−𝛾

Therefore, 𝛾 ≥ √3 − 𝜖. Since 𝜖 > 0 was arbitrary, this implies 𝛾 ≥ √3.
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