Motivation

Let L/K be a finite, totally ramified extension of complete discretely valued fields of characteristic $(0, p)$ with perfect residue field k. A smooth projective variety X over L comes with the following linear algebraic data.

- The crystalline cohomology groups of the special fiber X_0 become K-vector spaces after inverting p.
- These carry a natural Frobenius action, compatible with a fixed lift ϕ_0 of the Frobenius of k to K.
- By comparison with the de Rham cohomology of X, we inherit a (Hodge) filtration over L.

Definition 1: Let isoc_L denote the category of F-isocrystals over K, that is, the category of pairs (V, ρ), where $V \in \text{Vec}_K$ is a finite dimensional vector space over K and $\rho : \text{Gal}(L/K) \to \text{GL}(V)$ a \mathbb{Q}-semilinear automorphism of V. The category of filtered F-isocrystals over L/K is defined to be the fiber product

$$\text{Fil}_L^{\bullet} \times_{\text{Vec}_K} \text{isoc}_L \times_{\text{isoc}_K} \text{Fil}_K^{\bullet},$$

where Fil_K^{\bullet} is the category of finite dimensional K-vector spaces together with a Z-filtration over L.

In fact, the p-adic analogue of a period domain over L, parametrizing Hodge structures, is a moduli space for semistable filtered F-isocrystals over K, cf. [Definition 1]. They form an abelian subcategory of \mathcal{A}, which Calmes and Fontaine describe in terms of certain representations of the absolute Galois group, $\text{rep}_{\text{Gal}}(G_L) \xrightarrow{\sim} \text{Fil}_L^{\bullet} \times_{\text{Vec}_K} \text{isoc}_L \times_{\text{isoc}_K} \text{Fil}_K^{\bullet}$.

The cohomology of p-adic period domains is studied in [1]. A similar strategy is pursued in various settings.

- Originally, by Harder and Narasimhan, in the context of moduli spaces of vector bundles on curves.
- Recently, Fil_L^{\bullet} counts \mathbb{F}_p-points of quiver moduli spaces in order to infer their Betti numbers (over \mathbb{C}).
- Joyce [2] defines this point count to motivic measures of more general moduli spaces, over any field K.

Our goal is to generalize this approach to accommodate for the equivariant setting of Definition 1. Consider three quasi-abelian K-linear categories \mathcal{E}, \mathcal{B}, and \mathcal{D}, and assume that \mathcal{B} and \mathcal{D} are semisimple. Let $\mathcal{E} \xrightarrow{\phi} \mathcal{B} \xrightarrow{\psi} \mathcal{D}$ be a K-linear exact isofiltration. Then for a field extension L/K, we replace \mathcal{B} by the fibre product $(\mathcal{E}_L \times_{\mathcal{B}_L} \mathcal{B}_L) \times_{\mathcal{D}_L} \mathcal{D}_L$, where $\mathcal{E}_L = \mathcal{E} \otimes_L K$.

Example 1: (a) For a quiver Q, the fibre functor $\text{rep}_Q(Q) \xrightarrow{\phi} \mathcal{B} \xrightarrow{\psi} \mathcal{D}_L$ is an exact isofiltration.

(b) Similarly, this applies to the functorial context on categories of representations in \mathcal{B} of a group G. By arguing pointwise, this extends to (pre-)sheaves over K. In fact, it follows that $\text{Fil}_L^{\bullet} \times_{\text{Vec}_K} \text{isoc}_L \times_{\text{isoc}_K} \text{Fil}_K^{\bullet}$, and indeed, the fibre functor of a quasi-Tannakian category over K is an exact K-linear isofiltration.

(c) In the same vein, this works for the fibre functor $\phi_L : \mathcal{E}_L \to \mathcal{B}_L$, where \mathcal{A} is a totally ordered abelian group.

Equivaraint motivic Hall algebras

Over an arbitrary field k, the idea is to replace the number of points $q = \# \text{of} \phi(L/F_p)$ by the affine line itself.

Definition 3: Let L be a stack in groupoids on the big fpd-site \mathbf{A}_{fpd} of affine schemes over K. Then the (relative) Grothendieck ring of stacks $K_0(\mathbf{S}h(L))$ is the free \mathbb{Z}-module on geometric equivalence classes of algebraic stacks over L, of finite type and with affine stabilizers over K. This motivic version of $\text{KKG}(L)$ defines a ring $\mathbf{H}(L)$ and is essentially the Grothendieck ring of motives.

The **motivic Hall algebra** $\mathbf{H}(L)$ is then the convolution algebra along the correspondence

$$\mathbf{M} \times \mathbf{M} \xrightarrow{\mathbf{L} \circ \mathbf{R}} \mathbf{M} \times \mathbf{M} \xrightarrow{\mathbf{R} \circ \mathbf{L}} \mathbf{M},$$

where $\mathbf{L} \circ \mathbf{R}$ is the moduli stack of short exact sequences in \mathcal{E}, which is mapped in \mathbf{M} to their outer terms and their middle term, respectively. That is, multiplication in $\mathbf{H}(L)$ is defined as the composition

$$K_0(\mathbf{S}h(M)) \otimes \mathbf{M}(\mathbf{S}h(M)) \xrightarrow{\text{nat}} K_0(\mathbf{S}h(M) \times \mathbf{M}(\mathbf{S}h(M)) \xrightarrow{\text{iso}} K_0(\mathbf{S}h(M) \times \mathbf{M}(\mathbf{S}h(M))).$$

Let \mathbf{M} be the moduli stack of B. By replacing $K_0(\text{S}(M))$ by its \mathbb{Q}-equivariant variant $K_0^{\mathbb{Q}}(\text{S}(M))$, we get

$$\mathbf{M} \times \mathbf{M} \xrightarrow{\mathbf{L} \circ \mathbf{R}} \mathbf{M} \otimes \mathbf{M},$$

where $\mathbf{L} \circ \mathbf{R}$ is the moduli stack of short exact sequences in \mathcal{E}, which is mapped in \mathbf{M} to their outer terms and their middle term, respectively. That is, multiplication in $\mathbf{H}(L)$ is defined as the composition

$$K_0(\mathbf{S}h(M)) \otimes K_0(\mathbf{S}h(M)) \xrightarrow{\text{nat}} K_0(\mathbf{S}h(M) \times \mathbf{M}(\mathbf{S}h(M)) \xrightarrow{\text{iso}} K_0(\mathbf{S}h(M) \times \mathbf{M}(\mathbf{S}h(M))).$$

Theorem 2: There is a natural map of simplicial stacks $\mathbf{H}(L) \rightarrow K_0(\mathbf{S}h(M))$, whose pushforward

$$\int \mathbf{H}(L) \rightarrow K_0(\mathbf{S}h(M))/[K_0(\mathbf{S}h(M))]$$

is an algebra morphism if L is hereditary. For $D = 0$, this recovers the motivic version of Definition 2. Further directions

If L carries a duality structure, there is a module over the Hall algebra of L on isometry classes of selloid objects, due to M. Young. We have an analogue of Theorem 1 in the equivariant motivic Hall module. In general, we replace $K_0(\mathbf{S}h(M))$ with a ring of analytic stacks (on affine schemes) over a non-commutative field. This again yields a Hall algebra, since Waldhausen’s S-construction defines a 2-Segal stack [4].

Definition 4: Let $k \geq 0$. The k-coeffs $\mathbf{S}^k(L)$ of the higher Waldhausen S-construction are defined as the full subcategory of the category of diagrams \mathbf{E}: Fun(\{\emptyset, [k]\} \rightarrow \mathbf{E}, (\emptyset \rightarrow [k]) \rightarrow \{0 \rightarrow \emptyset\})$ with

- (degeneracies) for every function $f: \{k + 1 \rightarrow [0\rightarrow \emptyset]\}$, we have $E_{f(0)} \rightarrow \cdots \rightarrow E_{f(k)} = 0$, and
- (faces) for every $g: \{k \rightarrow [k] \rightarrow \emptyset\}$, the sequence $E_{f(\emptyset)} \rightarrow E_{f(1)} \rightarrow \cdots \rightarrow E_{f(k)}$ is exact.

Benson and Madsen introduced $\mathbf{S}^k(L)$ in the context of real algebraic K-theory. We illustrate an element of its 4-skeleton, with image under the upper 4-Segal map $\mathbf{S}^3(L) \rightarrow \mathbf{S}^2(L)$, $\phi_0^3 : \mathbf{S}^3(L) \rightarrow \mathbf{S}^2(L)$ in red.

If L is abelian, n is an equivalence, but this case is an outlier; the general result is as follows.

Theorem 3: The simplicial category $\mathbf{S}^k(L)$ is a 2-Segal object.

References