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Abstract. We introduce higher dimensional analogues of simplicial constructions due

to Segal and Waldhausen, respectively producing the direct sum and algebraic K-theory
spectra of an exact category. We interrelate them by totalizing, and investigate their

fibrancy properties based on the formalism of higher Segal spaces of Dyckerhoff-Kapranov.
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Introduction

Let E be an exact category. In this article, we investigate certain simplicial categories
naturally arising in the context of algebraic K-theory. They are obtained as generalizations
of the following ubiquitous constructions, which produce a simplicial category from E ;

• the Segal construction S⊕(E),
• the Waldhausen construction S(E).

From a topological perspective, their relevance lies in the fact that they provide deloopings
of the direct sum and algebraic K-theory spectra of E , respectively.

From an algebraic perspective, both constructions have fibrancy properties of structural
importance. Namely, S⊕(E) and S(E) satisfy the Segal and 2-Segal conditions, respectively,
modelling the structure of an associative, resp. multi-valued associative, monoid.

This work centers around certain higher dimensional generalizations of the above;

• the k-dimensional Segal construction S
〈k〉
⊕ (E),

• the k-dimensional Waldhausen construction S〈k〉(E).

For k = 1, we recover S⊕(E) and S(E), respectively. For k = 2, these constructions form
the foundational basis of real algebraic K-theory as introduced by Hesselholt-Madsen [14],
and studied further for example by Dotto [5]. In our context, E is not endowed with a duality
structure, and we consider these objects primarily as simplicial categories.

Similarly to the case k = 1, the higher dimensional constructions provide higher deloopings
of algebraic K-theory and its split variant (Corollary 4.15). Their relevance from the algebraic
perspective warrants further investigation, for which our main results lay the groundwork.

Theorem 0.1. The higher Segal construction S
〈k〉
⊕ (E) is a lower (2k−1)-Segal category. The

higher Waldhausen construction S〈k〉(E) is a 2k-Segal category.
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Higher Segal objects were introduced in [8], with a focus on the 2-Segal conditions, in
particular showing that they are responsible for the associativity of Hall and Hecke algebras.
From a different perspective, unital 2-Segal spaces were defined and studied independently
in [11] and its series of sequels.

Further work in this area includes a precise description of unital 2-Segal sets in terms of
double categories in [2], and the introduction of relative Segal conditions in [22] and [24],
which model the structure of modules over multi-valued associative monoids.

Let us briefly outline the structure of the paper. In §1, we summarize some basic theory
of cyclic polytopes and their triangulations from [17] and [25], which is used in §2 to define
and study relations between the higher Segal conditions from [9]. Novel results concern the
interaction with diagonals and total simplicial objects of multisimplicial objects.

In §3, we define the simplicial category S
〈k〉
⊕ (E), realize it as the total simplicial object of

the iterated 1-dimensional construction, and prove the first part of Theorem 0.1. Section 4
provides definitions of the higher S-construction and first examples; we show that S〈k〉(E)
is the total simplicial object of Waldhausen’s original construction, from which we deduce
delooping and additivity theorems, as well as the second part of Theorem 0.1.

Finally, §5 introduces the requisite homological context enabling us to establish further
Segal properties for the higher S-constructions; it also includes some further examples.
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1. Cyclic polytopes

In this section, we recall results on polytopes relevant to the study of higher Segal objects.

Definition 1.1. Let d ≥ 0, and consider the moment curve

γd : R −→ Rd, t 7−→ (t, t2, t3, . . . , td).

For a finite subset N ⊆ R, the d-dimensional cyclic polytope on the vertices N is defined to
be the convex hull of the set γd(N) ⊆ Rd, and denoted by

C(N, d) = conv(γd(N)).

The combinatorial type of the polytope C(N, d) only depends on the cardinality of N . We
will usually consider N to be the set [n] = {0, 1, . . . , n}, where n ≥ 0.

Cyclic polytopes are simplicial polytopes, i.e., their boundary forms a simplicial complex,
which organizes into two components (with non-empty intersection), as follows.

Definition 1.2. A point x in the boundary of C([n], d+ 1) is called a lower point, if

(x− R>0) ∩ C([n], d+ 1) = ∅,
where the half-line of positive real numbers R>0 ⊆ Rd+1 is embedded into the last coordinate.
Similarly, x is said to be an upper point, if

(x+ R>0) ∩ C([n], d+ 1) = ∅.
The lower and upper points of the boundary form simplicial subcomplexes of C([n], d+1),

which admit the following purely combinatorial description.

Definition 1.3. Let I ⊆ [n]. A gap of I is a vertex j ∈ [n] r I in the complement of I. A
gap is said to be even, resp. odd, if the cardinality #{i ∈ I | i > j} is even, resp. odd. The
subset I is called even, resp. odd, if all gaps of I are even, resp. odd.

Proposition 1.4 (Gale’s evenness criterion; [25], Theorem 0.7). Let n ≥ 0, and let I ⊆ [n]
with #I = d+1. Then I defines a d-simplex in the lower, resp. upper, boundary of C([n], d+1)
if and only if I is even, resp. odd.
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Forgetting the last coordinate of Rd+1 defines a projection map

p : C([n], d+ 1) −→ C([n], d).

For any I ⊆ [n] with #I − 1 = r ≤ d, the projection p maps the geometric r-simplex

|∆I | ⊆ C([n], d+ 1)

homeomorphically to an r-simplex in C([n], d).

Definition 1.5. The lower triangulation T` of the polytope C([n], d) is the triangulation given
by the projections under p of the simplices contained in the lower boundary of C([n], d+ 1).
Similarly, the upper triangulation Tu of C([n], d) is defined by the projections of the simplices
contained in the upper boundary of the polytope C([n], d+ 1).

Vice versa, any triangulation of C([n], d) induces a piecewise linear section of p, whose
image defines a simplicial subcomplex of C([n], d + 1). This interplay between the cyclic
polytopes in different dimensions is what makes their combinatorics comparatively tractible.

Definition 1.6. Given a set I ⊆ 2[n] of subsets of [n], we denote by

∆I ⊆ ∆n (1.1)

the simplicial subset of ∆n whose m-simplices are given by those maps [m]→ [n] which factor
over some I ∈ I.

From the above discussion, it follows that we have canonical homeomorphisms

|∆T` | ∼−−→ C([n], d), and |∆Tu | ∼−−→ C([n], d),

expressing the lower, resp. upper, triangulation of C([n], d) geometrically.

Definition 1.7. Let I, J ⊆ [n] be subsets of cardinality d+ 1, as well as |∆I | and |∆J | the
geometric d-simplices in C([n], d) ⊆ Rd they define, respectively. Let L(|∆J |) denote the set
of lower boundary points of |∆J | = C(J, d), and similarly, let U(|∆I |) be the set of upper
boundary points of |∆I | = C(I, d). We write

|∆I | ≺ |∆J | ⇐⇒ |∆I | ∩ |∆J | ⊆ U(|∆I |) ∩ L(|∆J |).

If |∆I | ≺ |∆J |, then we say that |∆I | lies below the simplex |∆J |.

Proposition 1.8 ([17], Corollary 5.9). The transitive closure of ≺ defines a partial order on
the set of nondegenerate d-simplices in ∆n.

Remark 1.9. Suppose that T ⊆ 2[n] consists of subsets of [n] of cardinality d+1 and defines
a triangulation of the cyclic polytope C([n], d). In particular,

|∆T | ∼= C([n], d).

Let I0 ∈ T . Then either L(|∆I0 |) is contained in L(|∆T |), or there is some I1 ∈ T such that
the simplex |∆I0 | lies below |∆I1 |. Iterating this argument, we obtain a chain

|∆I0 | ≺ |∆I1 | ≺ |∆I2 | ≺ . . .

of subsimplices of |∆T |. The statement of Proposition 1.8 implies that this chain is acyclic
and therefore has to terminate after finitely many steps. Thus, there exists I∞ ∈ T with

L(|∆I∞ |) ⊆ L(|∆T |).

Similarly, there exists a set I−∞ ∈ T such that U(|∆I−∞ |) ⊆ U(|∆T |).
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2. Higher Segal conditions

Let C be an∞-category which admits finite limits. Following [9], we introduce a framework
of fibrancy properties of simplicial objects in C governed by the combinatorics from §1 of cyclic
polytopes and their triangulations.

Definition 2.1. For n ≥ d ≥ 0, we introduce the lower subposet of 2[n] as follows;

L([n], d) = {J | J ⊆ I for some even I ⊆ [n] with #I = d+ 1}.

Analogously, we define

U([n], d) ⊆ 2[n]

as the poset of all subsets contained in an odd subset I ⊆ [n] of cardinality #I = d+ 1.

By Proposition 1.4, the sets of subsimplices of C([n], d) described by L([n], d) and U([n], d)
define the lower and upper triangulations of the cyclic polytope, respectively.

Definition 2.2. Let d ≥ 0. A simplicial object X ∈ C∆ is called

• lower d-Segal if, for every n ≥ d, the natural map

Xn −→ lim←−
I∈L([n],d)

XI

is an equivalence;
• upper d-Segal if, for every n ≥ d, the natural map

Xn −→ lim←−
I∈U([n],d)

XI

is an equivalence;
• d-Segal if X is both lower and upper d-Segal.

Example 2.3. Let X ∈ C∆ be a simplicial object.

(1) Then X is lower (or upper) 0-Segal if and only if X '−−→ X0 is equivalent to the
constant simplicial object on its 0-cells.

(2) The simplicial object X is lower 1-Segal if, for every n ≥ 1, the map

Xn −→ X{0,1} ×X{1} X{1,2} ×X{2} · · · ×X{n−1} X{n−1,n}

is an equivalence. That is, X is a Segal object in the sense of Rezk [18].
For X ∈ Set∆, this means that X is equivalent to the nerve of the category with

objects X0, morphisms X1, and composition induced by the correspondence

X{0,1} ×X{1} X{1,2} ∼←−− X2 −→ X{0,2}.

Furthermore, X ∈ Set∆ is 1-Segal if and only if this defines a discrete groupoid. In
fact, in general, an object X ∈ C∆ is upper 1-Segal if, for every n ≥ 1, we have

Xn
'−−→ X{0,n}.

(3) The simplicial object X is lower 2-Segal if, for every n ≥ 2, the map

Xn −→ X{0,n−1,n} ×X{0,n−1} X{0,n−2,n−1} ×X{0,n−2} · · · ×X{0,2} X{0,1,2}

is an equivalence. Similarly, X is upper 2-Segal if, for every n ≥ 2, we have

Xn
'−−→ X{0,1,n} ×X{1,n} X{1,2,n} ×X{2,n} · · · ×X{n−2,n} X{n−2,n−1,n}.

It follows that X is 2-Segal if and only if it is 2-Segal in the sense of [8]. This is most
readily seen by reducing to Segal objects as in (2) by applying the respective path
space criteria, Proposition 2.7 and [8], Theorem 6.3.2 – or by Proposition 2.5.
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Remark 2.4. Let X be a simplicial object in an ∞-category C which admits limits. Then
we can form the right Kan extension of X along the (opposite of the) Yoneda embedding

Yop : N(∆op) −→ Fun(N(∆op),Top)op,

where Top denotes the ∞-category of spaces. In particular, by means of this extension, we
may evaluate X on any simplicial set. Then we can reformulate the higher Segal conditions
as follows. Let Σd = Σ`|d ∪ Σu|d denote the collection of d-Segal coverings, where

Σ`|d = {∆L([n],d) ↪→ ∆n | n ≥ d}, and Σu|d = {∆U([n],d) ↪→ ∆n | n ≥ d},
see [8], §5.2. Then X is d-Segal if and only if it is Σd-local (cf. loc.cit., Proposition 5.1.4).
In this case, we say that the elements of Σd are X-equivalences (meaning, X maps them to
equivalences in C).

Similarly, X is lower, resp. upper, d-Segal if and only if it is Σ`|d-local, resp. Σu|d-local.

Proposition 2.5. Let d ≥ 0, and let X be a simplicial object in an ∞-category C with limits.
Then X is d-Segal if and only if, for every n ≥ d, and every triangulation of the cyclic
polytope C([n], d) defined by the poset of simplices T ⊆ 2[n], the natural map

Xn −→ lim←−
I∈T

XI

is an equivalence.

Proof. By [17], Corollary 5.12, any triangulation T of C([n], d) can be connected to the lower
and upper triangulations T` and Tu via sequences of elementary flips of the form

L(|∆I |) ⊆ |∆I | ⊇ U(|∆I |).
This implies that we have a zig-zag of X-equivalences of the form

∆L([n],d) −→ . . .←− ∆T −→ . . .←− ∆U([n],d)

in the category of simplicial sets over ∆n. This implies that the inclusion ∆T ⊆ ∆n is again
an X-equivalence by 2-out-of-3, which was to be shown.

For the converse, there is nothing to prove. �

Definition 2.6. Let X be a simplicial object in an ∞-category C. The left path space P /X
is the simplicial object in C defined as the pullback of X along the endofunctor

c/ : ∆→ ∆, [n] 7→ [0]⊕ [n].

Here, for two linearly ordered sets I and J , the ordinal sum I ⊕ J is the disjoint union I q J
of sets, endowed with the linear order where i ≤ j for every pair of i ∈ I and j ∈ J .

Similarly, the right path space P .X is given by the pullback of X along

c. : ∆→ ∆, [n] 7→ [n]⊕ [0].

Proposition 2.7 (Path space criterion). Let d ≥ 0, and let C be an ∞-category with finite
limits. Let X ∈ C∆ be a simplicial object.

• Suppose d is even. Then
(1) X is lower d-Segal if and only if P /X is lower (d− 1)-Segal,
(2) X is upper d-Segal if and only if P .X is lower (d− 1)-Segal.

• Suppose d is odd. Then the following conditions are equivalent.
(i) X is upper d-Segal.

(ii) P /X is upper (d− 1)-Segal.
(iii) P .X is lower (d− 1)-Segal.

Proof. We show that if d is even, then X is an upper d-Segal object if and only if P .X is
lower (d− 1)-Segal. All other assertions follow by analogous arguments.

Let `([n], d) denote the set of maximal elements of the poset L([n], d), so that

∆L([n],d) =
⋃

I∈`([n],d)

∆I
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is the minimal presentation, and similarly for u([n], d) ⊆ U([n], d).
Then the claim is an immediate consequence of the following observation. A subset I ⊆ [n]

of cardinality d+ 1 is odd if and only if n ∈ I and I r {n} is an even subset of [n− 1]. Thus
the map c. : `([n− 1], d− 1)→ u([n], d), I 7→ I ⊕ [0], is a bijection. �

Remark 2.8. There is no path space criterion for lower d-Segal objects if d is odd. While

`([5], 3) = {{0, 1, 2, 3}, {0, 1, 3, 4}, {0, 1, 4, 5}, {1, 2, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4}},

the maps c/ : `([4], 2) → `([5], 3), I 7→ [0] ⊕ I, and c. : u([4], 2) → `([5], 3), I 7→ I ⊕ [0], are
not even jointly surjective, and their images

im(c/) = {{0, 1, 2, 3}, {0, 1, 3, 4}, {0, 1, 4, 5}}, im(c.) = {{0, 1, 4, 5}, {1, 2, 4, 5}, {2, 3, 4, 5}}

intersect. Rather, the complement of im(c.) in `([n], d) is given by `([n− 1], d), for all d ∈ N
and n ≥ d. By induction, we obtain a disjoint decomposition of sets

`([n], d) =

n∐
j=d

u([j − 1], d− 1)⊕ {j}. (2.1)

In fact, this statement, resp. its dual, also follow by grouping the elements of `([n], d) by
their maximal, resp. minimal, vertex, and the following explicit description. If d is odd, then

`([n], d) =
{∐
i∈J
{i, i+ 1}

∣∣∣ J ⊆ [n] with #J =
d+ 1

2
and |i− j| > 1 for all i, j ∈ I

}
, (2.2)

for all n ≥ d. All other `([n], d) and u([n], d) are described from this by applying the proof
of Proposition 2.7.

Proposition 2.9. Let X be a simplicial object in an ∞-category C which admits limits.
Assume that X is lower or upper d-Segal. Then X is (d+ 1)-Segal.

Proof. We show the statement assuming that X is lower d-Segal. The proof for upper d-Segal
objects is similar. Let n ≥ d + 1 and consider a collection T defining a triangulation |∆T |
of the cyclic polytope C([n], d+ 1). Recall that T` defines the simplicial complex L(|∆T |) of
lower facets, and the projection p : C([n], d + 1) → C([n], d) identifies |∆T` | ⊆ C([n], d + 1)
with the simplicial subcomplex defining the lower triangulation

p(|∆T` |) ⊆ C([n], d).

Thus, we obtain a commutative diagram

∆T ∆n

∆T`

ι

κ
ι`

(2.3)

of simplicial sets, in which by definition, ι ∈ Σd+1 and ι` ∈ Σ`|d. In order to deduce (d+ 1)-

Segal descent for X, we have to show that ι ∈ Σ`|d, the collection of Σ`|d-equivalences, by
the tautological part of Proposition 2.5.

By the 2-out-of-3 property of Σ`|d, it suffices to show that κ ∈ Σ`|d. We will do so by
showing that κ can be obtained as an iterated pushout along morphisms in Σ`|d.

By Remark 1.9, the triangulation |∆T | of C([n], d+ 1) contains a maximal (d+ 1)-simplex

of the form |∆I |, defined by a singleton collection {I} ⊆
(

[n]
d+2

)
. Let I` be the set which

defines the lower facets of |∆I |, defining a triangulation |∆I` | of C(I, d). Then the inclusion
of simplicial sets

κ` : ∆I` −→ ∆I
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is contained in Σ`|d. Further, since |∆I | is a maximal simplex, we have a pushout diagram

∆T ∆I

∆T
(1)

∆I`

·y
κ(1) κ`

of simplicial sets, where T (1) = T r {I}. Thus, the map κ(1) lies in Σ`|d, and |∆T (1) | is an

admissible simplicial subcomplex of C([n], d+ 1) with one (d+ 1)-simplex less than |∆T |.
Assume that the triangulation |∆T | consists of exactly r simplices of dimension (d + 1).

By iterating the argument just given, we obtain a chain of morphisms

∆T` ↪−→ ∆T
(r−1)

↪−→ . . . ↪−→ ∆T
(1)

↪−→ ∆T

in Σ`|d whose composite is the morphism κ from (2.3). Thus, it is also contained in Σ`|d. �

Definition 2.10. Let C be an∞-category with finite limits, and Y ∈ C∆×k a k-fold simplicial
object, for k ≥ 0. We will denote by DY ∈ C∆ the diagonal of Y , which is defined to be the
pullback of Y under the diagonal embedding ∆ ↪→ ∆×k.

Remark 2.11. Let C be an ∞-category with finite limits, and let Y ∈ C∆×k be a k-fold
simplicial object, and let r ≥ 0. We conjecture the following compatibilities.

(1) If Y is k-fold lower (2r − 1)-Segal, r ≥ 1, then DY is lower (2kr − 1)-Segal.
(2) If Y is k-fold lower, resp. upper, 2r-Segal, then DY is upper, resp. lower, 2kr-Segal.
(3) If Y is k-fold upper (2r + 1)-Segal, then DY is upper (2kr + 1)-Segal.

Note that (1) implies the other two statements, by repeated applications of the path space
criterion; indeed, P /DY ' DP /(k)Y and P .DY ' DP .

(k)Y , where the notation P /(k) and P .
(k)

means application of the corresponding path space functor in each variable.

Definition 2.12. Let V : C∆ → C∆×k be the total décalage functor, which is the pullback
along the k-fold ordinal sum ⊕ : ∆×k → ∆. The total simplicial object of Y is denoted by

TY ∈ C∆,
where T is defined as the right adjoint of V .

Remark 2.13. Let Y ∈ C∆×k be a k-fold simplicial object. If k = 2, then for all n ≥ 0, by
cofinality, the n-cells of the total simplicial object of Y are computed by

(TY )n
'−−→ eq

( n∏
i=0

Y{0,...,i},{i,...,n}
∏

I⊕J=[n]

YI,J

)
,

ψ/

χ.

where the components of ψ/ are given by ∂•,0 ◦ pri for I = {0, . . . , i}, and χ. consists of the
functors ∂i,• ◦ pri for J = {i, . . . , n}, cf. [1], §III. Equivalently, this can be expressed as

(TY )n
'−−→ lim←−

I1∪...∪Ik=[n]
I1≤...≤Ik

YI1,...,Ik (2.4)

for arbitrary k ≥ 1, by induction.

Definition 2.14. Let d = (di) ∈ Nk, and let Y ∈ C∆×k be a k-fold simplicial object. We say
that Y is d-Segal if it is di-Segal in the ith simplicial direction, for all 1 ≤ i ≤ k.

Proposition 2.15. Let C be an ∞-category with finite limits, r ∈ Nk, and let Y ∈ C∆×k be
a lower (2r − 1)-Segal object. Then TY ∈ C∆ is lower (2r − 1)-Segal, where r =

∑
ri.

Proof. For k = 1, this is a tautology. Now assume the statement for some k ≥ 1, and consider
a lower (2r − 1)-Segal object Y = Y•,• ∈ (C∆)∆×k in C∆ which is lower (2s− 1)-Segal in the
remaining coordinate. We want to prove that, for all n ≥ 2(r + s)− 1, the inclusion⋃

H∈`

⋃
H=I∨J
I≤J

∆I ×∆J ↪−→
n⋃
i=0

∆{0,...,i} ×∆{i,...,n} (2.5)
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is a Y -equivalence, where ` = `([n], 2(r + s)− 1), and I ∨ J signifies the non-disjoint union.
By eliminating redundant summands, we can write the left-hand side as⋃

H∈`

( ⋃
H=I∨J, I≤J
2r≤#I≤2r+1

∆I ×∆J ∪
2r−1⋃
i=0

∆[i] ×∆Hr[i−1] ∪
n−1⋃

j=n−2s

∆H∩[j+1] ×∆[n]r[j]

)
.

Now, by induction, TYm,• is lower (2r − 1)-Segal, for all m ≥ 0.
Combining this, as well as the lower (2s − 1)-Segal property in the other variable, with

Proposition 2.9, and using (2.2), the statement follows. �

Remark 2.16. Let C = Set. Then the functor defined by Proposition 2.15,

T : {k-fold categories} −→ {lower (2k − 1)-Segal sets} (2.6)

is not an equivalence. In fact, for k = 2, the main result of [2] shows that the functor

V : {2-Segal sets} −→ {double categories}

induces an equivalence between the subcategory of unital 2-Segal sets on the left- and stable
double categories together with the extra datum of an augmentation on the right-hand side.
In particular, this implies that (2.6) cannot be fully faithful. Moreover, we provide a class of
counter-examples to its essential surjectivity in Example 5.17.

It is an interesting problem to generalize the above equivalence to arbitrary k. The defini-
tion of stability directly extends to k-fold categories (in terms of (k + 1)-cubes), and so does
the notion of augmentation; the analogue of unitality for higher Segal objects should involve
degenerate triangulations of the appropriate cyclic polytopes.

Our considerations in §4 suggest a candidate for the inverse functor; on the other hand, it
appears that for V to produce k-fold Segal objects, it still needs to be restricted to 2-Segal
objects.

Our next result is the analogue of Remark 2.11 (2) for the total simplicial object; however,
the proof is not as straight-forward, for the following reason.

Lemma 2.17. Let C be an ∞-category with finite limits, and let Y ∈ C∆×k be a k-fold
simplicial object, k ≥ 1. Then P /TY ' TP /Y and P .TY ' TP .Y , where P /, resp. P ., is
applied in the first, resp. last, simplicial direction.

Proof. This is an immediate consequence of the following base change squares,

∆×k ∆×k ∆×k ∆×k

∆ ∆ ∆ ∆

⊕

c/×id

⊕ ⊕

id×c.

⊕

c/ c.

where c/ and c. are the maps from Definition 2.6. �

Proposition 2.18. Let C be an ∞-category with finite limits. Let k ≥ 1, and let Y ∈ C∆×k
be a 2r-Segal object, r ∈ Nk. Then TY ∈ C∆ is a 2r-Segal object, where r =

∑
ri.

Proof. For k = 1, there is nothing to show. In order to verify the upper 2k-Segal condition
by induction, we use the path space criterion as well as (2.1) to obtain

u([n], 2k) = `([n− 1], 2k − 1)⊕ {n} =

n−1∐
j=2k−1

u([j − 1], 2k − 2)⊕ {j, n}. (2.7)

This suffices, since for the lower 2k-Segal condition, we can use the dual decomposition,

`([n], 2k) =

n−2k+1∐
i=1

{0, i} ⊕ `([n] r [i], 2k − 2).
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Now let k = 2. We aim to exhibit the n-cells of the total simplicial object as the limit

(TY )n
'−−→ lim←−

H∈U([n],4)

lim←−
I∪J=H
I≤J

YI,J .

By (2.7), the H ∈ u([n], 4) are precisely H = {i− 1, i, j − 1, j, n} with 0 < i < j − 1 < n− 1.
The corresponding factor in the limit is of the following form,

Y(i−1)i,i(j−1)jn ×Y(i−1)i,(j−1)jn
Y(i−1)i(j−1),(j−1)jn ×Y(i−1)i(j−1),jn

Y(i−1)i(j−1)j,jn

' Y(i−1)i,i(j−1)n ×Y(i−1)i,(j−1)n
Y(i−1)i(j−1),(j−1)jn ×Y(i−1)(j−1),jn

Y(i−1)(j−1)j,jn
(2.8)

by the upper 2-Segal property in the last and the lower 2-Segal property in the first coordinate,
respectively. But the factors of the form Y(i−1)i,i(j−1)n and Y(i−1)(j−1)j,jn cancel precisely
with the non-maximal elements of U([n], 4), with the exception of the extremal cases Y01,12n

and Y0(n−2)(n−1),(n−1)n, respectively.
On the other hand, we can describe the n-cells of the total simplicial object as follows,

(TY )n ' Y01,1...n ×Y01,2...n
Y012,2...n ×Y012,3...n

. . .×Y0...(n−3),(n−2)(n−1)n

Y0...(n−2),(n−2)(n−1)n ×Y0...(n−2),(n−1)n
Y0...(n−1),(n−1)n

' Y01,12n ×Y01,2n
Y012,23n ×Y012,3n

. . .×Y0...(n−3),(n−2)(n−1)n

Y0...(n−2),(n−2)(n−1)n ×Y0(n−2),(n−1)n
Y0(n−2)(n−1),(n−1)n

(2.9)

by applying the upper 2-Segal property in the first variable wherever possible, as well as the
lower 2-Segal property in the last variable to the final factor. But the factor Y0...(j−1),(j−1)jn

is precisely the limit of the (2.8) after cancellation for all 0 < i < j − 1. �

3. The higher Segal construction

Let D be a pointed category with finite products. In this section, we study a generalization
of a construction due to Segal [20] which is similar to a construction proposed (for k = 2) by
Hesselholt and Madsen [14]. The higher dimensional variants (for k ≥ 3) are straightforward
to define, but do not seem to have appeared in the literature as of yet.

Let Fin∗ denote the category of finite pointed sets. For T ∈ Fin∗, we denote by P(T ) its
poset of pointed subsets, considered as a small category.

Definition 3.1. Let T ∈ Fin∗ be a finite pointed set. A D-valued presheaf

F : P(T )op −→ D

on P(T ) is called a sheaf if, for every pointed subset U ⊆ T , the canonical map

F(U) −→
∏

u∈Ur{∗}

F({∗, u})

is an isomorphism. We denote by Sh(T,D) the category of D-valued sheaves on P(T ).

Given a map ρ : T → T ′ in Fin∗, we define the pointed preimage functor

ρ× : P(T ′) −→ P(T ), U 7−→ ρ−1(U r {∗})q {∗}.

Then the direct image functor F 7→ ρ∗F = F ◦ ρ× makes the assignment

Sh(−,D) : Fin∗ −→ Cat

into a functor with values in the category of small categories.

Definition 3.2. Let k ≥ 1. The k-dimensional Segal construction of D is defined to be the
simplicial category

S
〈k〉
⊕ (D) = Sh(Sk,D) ∈ Cat∆,

where Sk = ∆k/∂∆k is considered as a simplicial object in Fin∗.

Lemma 3.3. Let 0 ≤ i ≤ n. The face map ∂i : Sh(Skn,D)→ Sh(Skn−1,D) is an isofibration.
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Proof. Let ρi : S
k
n → SkI be the corresponding map in Fin∗, where I = [n] r {i}. Given

Φ: (ρi)∗F = ∂i(F) ∼−−→ G′,
we extend G(ρ×i V ) := G′(V ) for V ∈ P(SkI ) by

G(U) :=
∏
α∈U
α|I 6≡∗

F({∗, α})

otherwise. This is functorial, since D is pointed, and so Φ exhibits G(ρ×i V ) as the product

G(ρ×i V ) =
∏

α|I∈Vr{∗}

F({∗, α}).

The lifting of Φ itself is then tautological. �

The goal of this section is to prove the following result, which is due to Segal [20], §2,
for k = 1. Throughout, a lower, resp. upper, d-Segal category means a lower, resp. upper,
d-Segal object in Cat, which is not to be confused with a Segal category in the sense of [6].

Theorem 3.4. Let k ≥ 1, and D a pointed category with finite products. The k-dimensional

Segal construction S
〈k〉
⊕ (D) is a lower (2k − 1)-Segal category. In particular, it is 2k-Segal.

Proof. The last part is an application of Proposition 2.9. Now let n ≥ 2k − 1, and set

L = L([n], 2k − 1).

For I, J ∈ L with I ⊇ J , we denote by ρI,J : SkI → SkJ the corresponding map of pointed sets,
and further write ρI = ρ[n],I for brevity. We have to show that the canonical functor

Sh(Skn,D) −→ lim←−
I∈L

Sh(SkI ,D) (3.1)

is an equivalence of categories. Note that by Lemma 3.3, all transition maps on the right-hand
side are isofibrations, so that the limit is 1-categorical. Now consider the functor

P : L −→ Cat, I 7−→ P(SkI ).

We form the following version of its Grothendieck construction

π : XP −→ Lop.

The category XP has objects (I, U), where I ∈ L and U ∈ P(SkI ), and there is a unique
morphism (I, U) ≤ (J, V ) if I ⊇ J and U ⊆ ρ×I,JV . The functor π is a cartesian fibration,

where a morphism (I, U) ≤ (J, V ) is cartesian if

U = ρ×I,JV.

The category lim←−I∈L Sh(SkI ,D) can be identified with the full subcategory of Fun(Xop
P ,D)

spanned by those presheaves F which satisfy the following conditions.

(a) The presheaf F maps cartesian morphisms to isomorphisms in D.
(b) For every I ∈ L, the restriction of F to the fibre π−1(I) = P(SkI ) is a sheaf.

A D-valued presheaf on P(Skn) defines a presheaf on XP via pullback along the functor

ϕ0 : XP −→ P(Skn), (I, U) 7−→ ρ×I U.

The lower Segal functor (3.1) is then obtained by restricting this pullback functor along ϕ0

to the category of sheaves on P(Skn).
Since the functor ϕ0 maps cartesian morphisms to the identity map in P(Skn), it factors

over a unique functor ϕ : LXP → P(Skn), where LXP denotes the localization of XP along
the set of cartesian morphisms. Note further that imposing condition (a) on a presheaf F on
the category XP is equivalent to the requirement that F factors through LXP .

We obtain an adjunction of presheaf categories as follows,

ϕ! : DLXP ←→ DP(Skn) :ϕ∗ (3.2)
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where the functor ϕ∗ maps the subcategory of sheaves to the subcategory lim←−I∈L Sh(SkI ,D).

Finally, we introduce the sheafification functor

σ : DP(Skn) −→ Sh(Skn,D)

as the left adjoint of the inclusion. Here, we need to require the existence of pushouts in D;
this assumption is shown to be unnecessary below. Now (3.2) induces an adjunction,

σ ◦ ϕ! : lim←−
I∈L

Sh(SkI ,D)←→ Sh(Skn,D) :ϕ∗ (3.3)

which we claim to be a pair of mutually inverse functors. In order to verify this, we show
that the unit and counit are isomorphisms. For the former, it suffices to show that, for every
sheaf G ∈ Sh(Skn,D) and every subset {∗, α} ⊆ Skn of cardinality 2, the unit morphism

(ϕ!ϕ
∗G)({∗, α}) −→ G({∗, α})

is invertible. We have

(ϕ!ϕ
∗G)({∗, α}) ∼= lim−→

(I,U)∈LXop
P

α∈ρ×I (U)

G(ρ×I (U)).

According to Lemma 3.5 (1) below, the indexing category ϕop/{∗, α} of the colimit has a
final object (Iα, {∗, α|Iα}), with ρ×Iα({∗, α|Iα}) = {∗, α}. This immediately implies the claim.

We proceed to prove that, for every object F ∈ lim←−I∈L Sh(SkI ,D), the counit morphism

F −→ ϕ∗σϕ!F

is invertible. Similarly as above, it suffices to show for all (J, {∗, β}) ∈ LXP that the map

F(J, {∗, β}) −→ (ϕ∗σϕ!F)(J, {∗, β}) (3.4)

is an isomorphism in D. Using Lemma 3.5 (1), we compute the right-hand side as

(σϕ!F)(ρ×J {∗, β}) ∼=
∏

α∈ρ−1
J (β)

(ϕ!F)({∗, α}) ∼=
∏

α∈ρ−1
J (β)

F(Iα, {∗, α|Iα}).

Then Lemma 3.5 (2) implies in particular that the map (3.4) is indeed an isomorphism. �

Lemma 3.5. In the terminology introduced in the proof of Theorem 3.4, let (J, V ) be an
object of the category LXP . Then the following statements hold.

(1) Let α ∈ ρ×J (V ) r {∗}. There is a unique morphism

(Iα, {∗, α|Iα}) −→ (J, V )

in LXP , where

Iα =
⋃

αi<αi+1

{i, i+ 1}.

(2) Let F be an object of lim←−I∈L Sh(SkI ,D) ⊆ DLXP . There is an isomorphism

F(J, V ) ∼−−→
∏

α∈ρ×J (V )r{∗}

F(Iα, {∗, α|Iα}),

whose components are given by restriction along the unique morphisms from (1).

Proof. The even subsets of [n] of cardinality 2k are precisely the disjoint unions of k subsets
of the form {i, i + 1}. Since α 6≡ ∗, it follows that Iα is a (possibly non-disjoint) union of k
such subsets. However, it is contained in the even subset of [n] of cardinality 2k obtained
by inductively filling for each αi−1 < αi < αi+1 either the maximal gap j < i of Iα or its
minimal gap j > i.

The key observation is that the subsets I ∈ L which contain Iα are exactly those with

ρ×I (ρI({∗, α})) = {∗, α}.
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This implies that for a morphism in LXP of the form (Iα, {∗, α|Iα}) ← (I, U) → (J ′, V ′),
we always have U = {∗, α|I}. Thus, the only condition on V ′ is that α|J′ ∈ V ′, and we can
assume without loss of generality that V = {∗, α|J}. In order to describe morphisms

µ : (Iα, {∗, α|Iα}) −→ (J, {∗, α|J})

in LXP , we consider α as a sequence of k bars situated in a diagram of [n], signifying the
fact that αj < αj+1 by the bar j|(j + 1). An object (I, {∗, α|I}) corresponds to marking the
elements i ∈ I ⊆ [n], and the zig-zag µ is a sequence of moves which shift the markings. Each
move consists of adding and then removing certain markings (adhering to the constraints
imposed by the definition of LXP).

The object (Iα, {∗, α|Iα}) marks all elements adjacent to a bar; that is, we visualize it as
a diagram of the following exemplary form,

−− •| • − • | • | • − − •| . . . | • − − −

where ’•’ indicates a marked element and ’−’ an unmarked element of [n]. A single ’•’ at a
vertex i ∈ [n] between two bars (i.e., ’|•|’) corresponds precisely to the case αi−1 < αi < αi+1

from above. Since α|J 6≡ ∗, this implies that i ∈ J ; in fact, this condition states exactly that
there is an element of J in every region cut out by the bars.

In order to see that µ is unique (if it exists), we first note that a ’•’ can never cross a bar.
Indeed, this would require some move

(I, {∗, α|I})←− (H, {∗, α|H}) −→ X

which adds a marking to some i ∈ Iα. Then we can define β ∈ P(SkH) by β|Hr{i} ≡ α|Hr{i}
and by replacing the jump αi−1 = αi < αi+1 with βi−1 < βi = βi+1; but this contradicts the
requirement that the left leg of the move be cartesian.

Then uniqueness follows from the fact that moves which are constrained within different
sets of bars commute with one another, while the moves occuring between two particular
bars all compose to the same shift of markings.

For the existence of µ, we observe that after adding markings for each ’| • |’ as described
above (filling the gaps of Iα; where we can always choose the gap closest to an element of J),
we can remove at least one marking adjacent to each bar (with the exception of the ’| • |’, in
which case the vertex lies in J already, as we have seen).

Then we can move each ’•’ towards its intended position in J by repeatedly marking the
adjacent vertex and removing the original; moreover, once a ’•’ has reached its destination,
we can duplicate it. This requires no further sets of the form {i, i+ 1} to cover all markings,
that is, we stay within L in this process (as of course J ∈ L itself).

Finally, statement (2) follows from the above, since F(J, V ) = F(ρ×J V ), and similarly,

F(Iα, {∗, α|Iα}) = F({∗, α});

but condition (b) tells us that the restriction F|P(SkJ ) to the fibre π−1(J) is a sheaf. �

Note that the n-cells of the 1-dimensional Segal construction constitute a pointed category

with finite products again. We write S
(k)
⊕ (D) ∈ Cat∆×k for the k-fold iterate of S

〈1〉
⊕ (D).

The following result not only provides another perspective on the higher Segal construction,
but together with Proposition 2.15, it yields an alternative proof of Theorem 3.4.

Theorem 3.6. Let k ≥ 1. The k-dimensional Segal construction of a pointed category D
with finite products is naturally equivalent to the total simplicial object of its k-fold Segal
construction,

S
〈k〉
⊕ (D) '−−→ TS

(k)
⊕ (D).

Proof. For k = 1, there is nothing to show. By induction, it suffices to prove, for every k > 1,

S
〈k〉
⊕ (D) '−−→ T (S

〈k−1〉
⊕ (S

〈1〉
⊕ (D))).
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Therefore, we need to construct, for all k, n > 0, a natural equivalence of categories

Sh(Skn,D) '−−→ lim←−
I∪J=[n]
I≤J

Sh(Sk−1
I ,Sh(S1

J ,D)). (3.5)

Note that by Lemma 3.3, the right-hand side is computed by the 1-categorical limit. Now,
we first consider Sh(Sk−1

I ,Sh(S1
J ,D)) as a full subcategory of

Fun(P(Sk−1
I )op,Fun(P(S1

J)op,D))

' Fun(P(Sk−1
I )op × P(S1

J)op,D))

' Fun(P(Sk−1
I q S1

J)op,D)),

where q is the coproduct of pointed sets. Define the two maps λ, ρ : Skn → Sk−1
I q S1

J by

λ(α) =

{
α|I if α(I) ⊆ [k − 1],
∗ otherwise,

and ρ(α) =

{
α|J if α(J) ⊆ {k − 1, k},
∗ otherwise.

Then we claim that an equivalence as in (3.5) descends from the induced functors

Sh(Skn,D) −→ Fun(P(Sk−1
I q S1

J)op,D)), F 7−→ (W 7→ F(λ×W ∩ ρ×W )).

Firstly, let us show that the essential image of this functor lies in Sh(Sk−1
I ,Sh(S1

J ,D)). This

amounts to proving that for every U ∈ P(Sk−1
I ), the assignment V 7→ F(λ×U ∩ ρ×V ) is a

sheaf on P(S1
J). But this reduces straight-forwardly to the sheaf property of F , as

F(λ×U ∩ ρ×V ) ∼−−→
∏
ε∈V

∏
α∈λ×U∩ρ×{∗,ε}

F({∗, α}) ∼←−−
∏
ε∈V
F(λ×U ∩ ρ×{∗, ε}).

The analogous argument shows that U 7→ F(λ×U ∩ ρ×V ) is a sheaf for every V ∈ P(S1
J),

which yields the rest of the claim, since products of sheaves are computed point-wise.
Next, to see that these functors form into a map into the limit boils down to the transitivity

of restriction, (α|I)|IrJ = α|IrJ for I, J ⊆ [n] as before.

Finally, to construct the inverse, given (FI,J) ∈ lim←−I∪J=[n]
I≤J

Sh(Sk−1
I ,Sh(S1

J ,D)), we extend

{∗, α} 7−→ FI(α),J(α)({∗, α|I(α)})({∗, α|J(α)}), for I(α) = α−1[k − 1], J(α) = {iα} q α−1(k),

where iα ∈ I(α) is the maximal element, to a sheaf on P(Skn). In one direction, we use

λ×{∗, α|I(α)} ∩ ρ×{∗, α|J(α)} = {∗, α}

to see that the two constructions are inverse to one another. Conversely, let F ∈ Sh(Skn,D)

denote the image of some (FI,J). For every (U, V ) ∈ P(Sk−1
I )× P(S1

J), I ∩ J 6= ∅, we get

F(λ×U ∩ ρ×V ) ∼−−→ FI,J(U)(V )

via the following isomorphism,∏
α∈λ×U∩ρ×V

FI(α),J(α)({∗, α|I(α)})({∗, α|J(α)}) ∼−−→
∏

(β,ε)∈U×V

FI,J({∗, β})({∗, ε}).

This map arises via the mutually inverse identifications α 7→ (λ(α), ρ(α)) and (β, ε) 7→ β ∪ ε
of the respective indexing sets, with its components given by the fact that

(FI,J) ∈ lim←−
I∪J=[n]
I≤J

Sh(Sk−1
I ,Sh(S1

J ,D)),

which provides, for each α = β ∪ ε as above, a chain of isomorphisms

FI(α),J(α)({∗, α|I(α)})({∗, α|J(α)}) ∼= FI′,J′({∗, α|I′})({∗, α|J′}) ∼= . . . ∼= FI,J({∗, β})({∗, ε}),

where I ′ = I(α) r {iα}, and J ′ = {iα − 1} q J(α). �
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Corollary 3.7 (Delooping). Let k ≥ 1. There is a natural homotopy equivalence

Ωk|S〈k〉⊕ (D)×| '−−→ K⊕(D), (3.6)

where K⊕(D) denotes the direct sum K-theory space of D.

Proof. By Theorem 3.6 as well as Lemma 3.8 below, this reduces to the case k = 1, which is
a special case of [20], Proposition 1.5. �

Lemma 3.8. Let Y ∈ Top∆×k be a k-fold simplicial space. Then the natural map DY → TY
induces an equivalence

|Y | ' |DY | '−−→ |TY |.

Proof. Let us consider Y•,• ∈ (Set∆)∆×k . When k = 2, we obtain the claim from

|DY | ' |D([m] 7→ DYm,•)| '←−− |T ([m] 7→ DYm,•)| '−−→ |T ([m] 7→ TYm,•)| ' |TY |,

which holds by [4], Theorem 1.1 and §7 (also cf. [21], Theorem 1). By iterating this argument,
the statement follows for all k. �

4. The higher Waldhausen construction

Let E be a proto-exact category ([8], Definition 2.4.2; for example, any exact category). We
denote its wide subcategories of admissible monomorphisms, resp. admissible epimorphisms,
by E/, resp. E ..

Definition 4.1. A morphism A→ B in E is called admissible if it factors as the composition

A B

C

of an admissible epimorphism and an admissible monomorphism in E .
Consider a sequence of admissible morphisms together with their corresponding (unique

up to unique isomorphism) factorizations as above,

Ak Ak−1 . . . A0.

Ck Ck−1 . . . C1

The sequence Ak → Ak−1 → . . .→ A0 will be called

• acyclic, if Ci+1 � Ai � Ci is a short exact sequence in E for all 0 < i < k.

An acyclic sequence in E as above is called

• left exact, if Ak → Ak−1 is an admissible monomorphism (equivalently, Ak
∼−−→ Ck),

• right exact, if A1 → A0 is an admissible epimorphism (i.e., C1
∼−−→ A0),

• exact, if it is both left exact and right exact.

Let k, n ≥ 0. We write Fun([k], [n]) for the category of functors between the standard
ordinals [k] and [n], considered as small categories. Note that the objects of this category
correspond bijectively to the set of k-simplices of the simplicial set ∆n.

Definition 4.2. Let k ≥ 0. For every n ≥ 0, we define the category

S[k]
n (E) ⊆ Fun(Fun([k], [n]), E)

to be the full subcategory spanned by all diagrams A satisfying the following conditions.

(a) For every (k − 1)-simplex α in ∆n, we have

As∗k−1α
= . . . = As∗0α = 0.
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(b) For every (k + 1)-simplex γ in ∆n, the corresponding sequence

Ad∗k+1γ
−→ Ad∗kγ −→ . . . −→ Ad∗1γ −→ Ad∗0γ

is acyclic.

We define S
〈k]
n (E), resp. S

[k〉
n (E), as the full subcategory of S

[k]
n (E) on all A such that

(b′) For every (k + 1)-simplex γ in ∆n, the following sequence is left, resp. right, exact.

Ad∗k+1γ
−→ Ad∗kγ −→ . . . −→ Ad∗1γ −→ Ad∗0γ

Finally, we introduce S
〈k〉
n (E) ⊆ S[k]

n (E) as the full subcategory of diagrams A which satisfy

(b′′) For every (k + 1)-simplex γ in ∆n, the sequence

Ad∗k+1γ
−→ Ad∗kγ −→ . . . −→ Ad∗1γ −→ Ad∗0γ

is exact.

By functoriality in [n], we obtain simplicial categories

S〈k〉(E), S〈k](E), S[k〉(E), S[k](E) ∈ Cat∆ .

We call S〈k〉(E) the k-dimensional Waldhausen construction of E .

Remark 4.3. The (k + 1)-skeleton of S〈k〉(E) has an immediate description. Namely,

S
〈k〉
0 (E) ' . . . ' S〈k〉k−1(E) ' 0, S

〈k〉
k (E) ' E ,

while S
〈k〉
k+1(E) is equivalent to the category of k-extensions in E . The dimensionality of the

Waldhausen construction also refers to the fact that the k-skeleton of |S〈k〉(E)×| is equivalent
to the k-fold suspension Sk ∧ |E×|, and not the dimension of the diagrams it classifies.

Example 4.4. Let k ≥ 0, and let E be a proto-exact category.

(1) For k = 0, the degeneracy condition (a) is empty, and therefore,

S〈0〉(E) ' NE(E×) ' E

is the nerve of the maximal subgroupoid of E , categorified by arbitrary morphisms
in E , which is equivalent to the constant object E itself. Similarly, S〈0](E) ' NE(E/),
and dually, S[0〉(E) ' NE(E .). Rather more subtly, S[0](E) '−−→ NE(E) if and only if
E is proto-abelian (in the sense of Remark 5.3), by [10], Proposition 3.1.

(2) For k = 1, we recover a version of the original construction S〈1〉(E) ' S(E) from [23],
whose n-cells are given by the category formed by strictly upper triangular diagrams
with bicartesian squares, as follows.

0 A01 A02 · · · A0n

0 A12
. . . A1n

0 . . .
...

0 A(n−1)n

0

� � �

� �

�

(4.1)

This is a refinement of Quillen’s foundational construction Q(E) in [16], which is the
category of correspondences in E of the form C � B � A. Namely, the forgetful
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functor from the edgewise subdivision ES(E)→ NE(Q(E)) is an equivalence, that is,
the whole diagram A ∈ S2n+1(E) of shape (4.1) is uniquely recovered from

A(n−1)(n+1) . . . A0(2n)

An(n+1) A(n−1)(n+2) . . . A1(2n) A0(2n+1)

. . . (4.2)

by taking successive pullbacks and pushouts in E .
(3) For k = 2, the simplicial category S〈2〉(E) was introduced by Hesselholt-Madsen [14].

An element A ∈ S〈2〉4 (E) of its 4-cells is a diagram of the following form.

A012 A013 A014

A023 A024

A123 A124

A034

A134

A234

·y

p·

(4.3)

Note that the middle square is neither cartesian nor cocartesian. Rather, the diagram
consists of bicartesian cubes (cf. Remark 4.5), as indicated in the following picture.

A012 A013 A014

0 0 0

0 A023 A024

0 A123 A124

0 A034 0

0 A134

0 A234

(4.4)

Remark 4.5. In general, S〈k〉(E) is composed of (k+1)-dimensional bicartesian hypercubes.

More precisely, let A ∈ S[k]
n (E). Then A lies in S

〈k]
n (E) if and only if

Aβ = lim←−
β<β′

β′−β≤1

Aβ′ (4.5)

for every k-simplex β in ∆n with βk−i < n− i for 0 ≤ i ≤ k. Then Lemma 4.6 below implies

that the dual condition defines S
[k〉
n (E) inside S

[k]
n (E), so that A ∈ S[k〉

n (E) if and only if

lim−→
β′<β
β−β′≤1

Aβ′ = Aβ
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for every k-simplex β in ∆n with i < βi for all 0 ≤ i ≤ k. Together, these yield the claim for

S〈k〉n (E) ' S〈k]
n (E)×

S
[k]
n (E)

S[k〉
n (E).

In order to see the first statement, note that the sequence of admissible morphisms Ad∗•γ
corresponding to some (k + 1)-simplex γ in ∆n defines a hypercube conv(Ad∗•γ), formed by
all Aβ with d∗k+1γ ≤ β ≤ d∗0γ. If the maps (4.5) are isomorphisms, the minimal subhypercubes
of conv(Ad∗•γ) are cartesian, and hence so is conv(Ad∗•γ) as their composition. Therefore,

Ad∗k+1γ
= lim←−
d∗k+1γ<β≤d

∗
0γ

Aβ = ker(Ad∗kγ → Ad∗k−1γ
).

Conversely, let β be a k-simplex in ∆n with βk−i < n− i for all 0 ≤ i ≤ k. Then we can infer
inductively that the hypercube Qβ on all β′ ≥ β with β′ − β ≤ 1 is cartesian. First, assume
that |β| =

∑
βi is maximal. Thus, β = (d∗0)n−k∆n

n − 1 = d∗k+1(d∗0)n−k−1∆n
n. But then Qβ is

exactly given by the hypercube conv(Ad∗•(d∗0)n−k−1∆n
n
).

In general, consider γ = β q {n}. Then d∗k+1γ = β ≤ β + 1 ≤ d∗0γ, and hence conv(Ad∗•γ)

contains Qβ entirely. But its complement is covered by hypercubes Qβ̃ with |β̃| > |β|, which

are cartesian by induction. Therefore, so are all of their compositions, and thus so is Qβ .

The following observation makes the inherent symmetry by duality precise.

Lemma 4.6. The duality on ∆ induces equivalences of simplicial categories

S〈k〉(E) '−−→ S〈k〉(Eop),

S〈k](E) '−−→ S[k〉(Eop),

S[k](E) '−−→ S[k](Eop).

Proof. This is immediate from the definitions. �

Lemma 4.7. Let k ≥ 0, n ≥ 1, 0 ≤ i ≤ n, and let E be a proto-exact category. The face map

∂i : S
[k]
n (E)→ S

[k]
n−1(E)

is an isofibration. In particular, the analogous statements hold for S〈k](E) and S[k〉(E), as
well as the higher Waldhausen construction of E.

Proof. Let Φ: ∂i(A) ∼−−→ B′ be an isomorphism in S
[k]
n−1(E). We construct a lift B ∈ S[k]

n (E)
of B′ as follows,

B : ([k]
β−→ [n]) 7−→

{
Aβ if β /∈ im(di)∗,
B′α if β = (di)∗α.

The map in B for β ≤ β̃ is given by the corresponding arrow in A, resp. B′, if β, β̃ /∈ im(di)∗,

resp. both β = (di)∗α and β̃ = (di)∗α̃. Otherwise, we define

(Bβ → Bβ̃) =

{
(Aβ → Aβ̃

Φ−→ B′α̃) if β /∈ im(di)∗ and β̃ = (di)∗α̃,

(B′α
Φ←− Aβ → Aβ̃) if β = (di)∗α and β̃ /∈ im(di)∗.

The lifting of Φ itself is then straightforward. �

Remark 4.8. In particular, all the limits with transition maps given by compositions of ∂i
we consider throughout are computed by the respective 1-categorical limits; we will make no
further mention of this henceforth.

This also applies to Theorem 4.12, whose proof in turn can be used to provide an alternative
argument for Lemma 4.7 by reducing to the classical case k = 1 (which further reduces to

the case k = 0 via the equivalences S
〈0]
n−1(E) ' S〈1〉n (E) ' S[0〉

n−1(E) from Lemma 4.9 below).

Lemma 4.9. The path spaces of the one-dimensional Waldhausen construction are given by

P /S〈1〉(E) ' S〈0](E) ' NE(E/), and dually, P .S〈1〉(E) ' S[0〉(E) ' NE(E .).
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Proof (cf. [8], Lemma 2.4.9). Let n ≥ 1. We construct an inverse to the forgetful functor

P .S
〈1〉
n−1(E) −→ S

[0〉
n−1(E).

Given A ∈ S[0〉
n−1(E), we define Â ∈ S〈1〉n (E) ' P .S

〈1〉
n−1(E) as its right Kan extension along

[n− 1]
dn−→ [n]

−∪{n}−−−−→ C ↪−→ Fun([1], [n]),

where C = {β ∈ Fun([1], [n]) | β0 = β1 or β1 = n} is considered as a full subcategory.
Explicitly, this results in extending A ∼= (A0n � . . . � A(n−1)n) by zeroes on the diagonal
as in (4.1), then taking successive pullbacks to recover the whole Waldhausen cell. �

We are now prepared to state our main result.

Theorem 4.10. Let E be a proto-exact category, and k ≥ 0. The k-dimensional Waldhausen
construction S〈k〉(E) is a 2k-Segal category.

Proof. The case k = 0 is settled by Example 4.4 (1). For k = 1, this is one of the main
results of [8], namely Proposition 2.4.8. As observed in op.cit., Example 6.3.3, we can apply
the path space criterion to Lemma 4.9 to conclude.

In general, this strategy only works under additional assumptions, as explained in §5.
Instead, the result follows from Theorem 4.12 below, together with Proposition 2.18. �

In light of work in progress by Bergner, Osorno, Ozornova, Rovelli, and Scheimbauer,
another proof for k = 1 is provided by Example 4.4 (2), where we have seen that ES〈1〉(E) is
lower 1-Segal.

An analogue of Theorem 4.10 in the context of stable ∞-categories is a result of work in
progress by Dyckerhoff and Jasso.

Definition 4.11. We write S(k)(E) ∈ Cat∆×k for the k-fold iterate of the 1-dimensional

Waldhausen construction, where each S
〈1〉
n (E) carries the point-wise proto-exact structure.

Theorem 4.12. Let k ≥ 0, and let E be a proto-exact category. There is a natural equivalence
of simplicial categories between the k-dimensional Waldhausen construction of E and the total
simplicial object of its k-fold Waldhausen construction,

S〈k〉(E) '−−→ TS(k)(E).

Proof. For k ≤ 1, this is tautological. By the same reasoning as in the proof of Theorem 3.6,
it is sufficient to construct, for all n, k ≥ 1, a natural equivalence of categories

S〈k〉n (E) '−−→ lim←−
I∪J=[n]
I≤J

S
〈k−1〉
I (S

〈1〉
J (E)).

To define the functor, we use that the right-hand side is a full subcategory of

lim←−
I∪J=[n]
I≤J

Fun(Fun([k − 1], I),Fun(Fun([1], J), E))

' lim←−
I∪J=[n]
I≤J

Fun(Fun([k − 1], I)× Fun([1], J), E)

' Fun( lim−→
I∪J=[n]
I≤J

Fun([k − 1], I)× Fun([1], J), E).

Consider the following full subcategory of the indexing category for its elements.

{(α, ε) ∈ lim−→
I∪J=[n]
I≤J

Fun([k − 1], I)× Fun([1], J) | αk−1 = ε0}
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This is equivalent to Fun([k], [n]) via (α, ε) 7→ α ∪ ε, with inverse induced by the functor

Fun([k], [n]) −→ lim−→
I∪J=[n]
I≤J

Fun([k − 1], I)× Fun([1], J), β 7−→ (β|[k−1], β|{k−1,k}).

Now let A ∈ S〈k〉n (E). Then its left Kan extension A! along the inclusion

Fun([k], [n]) ↪−→ {(α, ε) ∈ lim−→
I∪J=[n]
I≤J

Fun([k − 1], I)× Fun([1], J) | αk−1 = ε0 or ε0 = ε1}

amounts to an (iterated) extension by zero, as in the proof of Lemma 4.9. Then we define

the image Â ∈ lim←−
I∪J=[n]
I≤J

S
〈k−1〉
I (S

〈1〉
J (E)) of A as a further left Kan extension to the whole

indexing category lim−→
I∪J=[n]
I≤J

Fun([k − 1], I) × Fun([1], J), which again is an iterated version of

the corresponding construction in the proof of Lemma 4.9. Recall that for every 0 ≤ i < n,

S
〈k−1〉
{0,...,i}(S

〈0]
{i+1,...,n}(E)) '−−→ S

〈k−1〉
{0,...,i}(S

〈1〉
{i,...,n}(E))

is an equivalence of categories, which is compatible with the transition maps in the limit.
This construction is well-defined, fully faithful, and essentially surjective, which completes
the proof. �

Example 4.13. As a special case of Theorem 4.12, we illustrate the equivalence of categories

S
〈2〉
4 (E) ' S(2)

{0,1},{1,2,3,4}(E)×
S

(2)

{0,1},{2,3,4}(E)
S

(2)
{0,1,2},{2,3,4}(E)×

S
(2)

{0,1,2},{3,4}(E)
S

(2)
{0,1,2,3},{3,4}(E)

in the following diagram, where the glueing is represented by the two dashed sequences.

A123

A023 A124

• A024 •
• •

A013 A014 • A034 A134

A012 A234

Let k ≥ 1. As can be seen either directly or with the help of Theorem 4.12, the functor

Φ: ExCat −→ Top∗, E 7−→ |S〈k−1〉(E)×|, (4.6)

satisfies the hypotheses of [13], §1.3. This permits us to draw the following consequences on
geometric realizations.

Corollary 4.14 (Additivity). Let E be an exact category, k ≥ 1. There is a weak equivalence

|S〈k〉(S2(E))×| '−−→ |S〈k〉(E)×| × |S〈k〉(E)×|

induced by the functor (∂2, ∂0) : S2(E) → E × E. In fact, the simplicial space |S〈k〉(S•(E))×|
is a lower 1-Segal space.
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Proof. By Theorem 4.12, this is precisely [13], Theorem 1.3.5 (2), with Φ as in (4.6). �

Needless to say, the other versions of additivity in [13], Theorem 1.3.5, hold as well; this
also allows us to deduce the following as in loc.cit. via the proof of [15], Proposition 3.6.2.

Corollary 4.15 (Delooping). Let k ≥ 1, and let K(E) denote the algebraic K-theory space
of the exact category E. There is a natural homotopy equivalence

Ωk|S〈k〉(E)×| '−−→ K(E).

Remark 4.16. Similarly to Corollary 3.7, we can also use Theorem 4.12 to immediately
reduce to the case k = 1 ([23], Theorem 1.4.2 and Proposition 1.3.2, resp. Proposition 1.5.3).

In conclusion, the algebraic K-theory spectrum of E is given by the sequence of maps

|S〈0〉(E)×| −→ Ω|S〈1〉(E)×| −→ Ω2|S〈2〉(E)×| −→ . . . ,

where, for each k ≥ 0, the morphism

|S〈k〉(E)×| −→ Ω|S〈k+1〉(E)×|

is induced by the inclusions of the cells ιn : S
〈k〉
n (E) ↪−→ S

〈k+1〉
n+1 (E) as S

〈1〉
1 (S

〈k〉
n (E)), extended

by zeroes appropriately, for all n ≥ 0. Namely, [23], Lemma 1.5.2, constructs the map via

S(k)(E) −→ P /S(k+1)(E) −→ S(k+1)(E), (4.7)

inducing a map S(k)(E)→ L/S(k+1)(E) to the simplicial loop space. Totalizing (4.7) yields

S〈k〉(E)
ι−−→ P /S〈k+1〉(E) −→ S〈k+1〉(E)

by Lemma 2.17. As before, this produces the desired map S〈k〉(E) −→ L/S〈k+1〉(E).

5. Stringent base categories

Let E be a proto-exact category. In this section, we investigate which further higher Segal
conditions the higher dimensional Waldhausen construction of E and its variants satisfy under
additional homological assumptions on E , based on the following characterization.

Lemma 5.1. Let E be a pointed category. The following conditions are equivalent.

(i) There exists a proto-exact structure on E, in which a morphism is admissible only if
it admits a kernel or a cokernel.

(ii) The class of all kernel-cokernel pairs defines a proto-exact structure on E, and a
morphism in E is admissible if and only if it admits a kernel and a cokernel.

(iii) The pushout of a kernel by a cokernel exists in E and is a kernel again, and the
pullback of a cokernel by a kernel exists in E and is a cokernel again. Furthermore,
if a map f in E admits a kernel and a cokernel, then it is strict, that is, it factors as
the composition of a cokernel and a kernel. Equivalently, the natural map

coim(f)→ im(f)

is an isomorphism.

Proof. Assume (i). The proto-exact structure on E necessarily contains all kernel-cokernel
pairs, since kernels and cokernels are admissible morphisms. Moreover, admissible morphisms
admit kernels and cokernels, implying (ii). The converse is tautological.

Given (iii), we need to see that the class of all kernel-cokernel pairs defines a proto-exact
structure on E . Indeed, a composition of cokernels B � B′ � C admits a kernel

A A′ 0

B B′ C

·y
�

and therefore is a cokernel in E . Then we can conclude that (iii) ⇔ (ii) by definition.
Finally, the equivalence in (iii) is immediate from the fact that a factorization as in (iii)

is unique (up to unique isomorphism). �
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Definition 5.2. A pointed category E satisfying the equivalent conditions in Lemma 5.1 will
be called a stringent category.

Remark 5.3. In [7], Definition 1.2, a proto-abelian category is defined as a pointed category
on which the classes of all monomorphisms and epimorphisms define a proto-exact structure.
For us, it will prove convenient to change this terminology slightly by additionally requiring
the existence of all kernels and cokernels (rather than introducing another different term).
This does not exclude any of the main examples of interest (like Example 5.4 (1) below).

Example 5.4. A pointed category which admits all kernels and cokernels is stringent if and
only if it is proto-abelian (in the sense of Remark 5.3). Similarly, a pre-abelian category is
stringent if and only if it is abelian. Moreover, E is stringent if and only if Eop is.

(1) In particular, the category Fun(Q, vectF1
) of representations of any small category Q

in (finite) F1-vector spaces is stringent.
(2) Consider the pointed category E on a non-zero object V with End(V ) = {0, 1, ε},

such that ε2 = 0. It can easily be verified directly that ε admits neither a kernel nor
a cokernel, and thus E is stringent.

If F is a field, then the F -linear Cauchy completion of E is an additive stringent
category, namely the category of finite free F [x]/(x2)-modules.

Remark 5.5. An additive category E is stringent if and only if the class of all kernel-cokernel
pairs defines an exact structure on E and a morphism in E is admissible if and only if it admits
a kernel and a cokernel. Similarly, the other conditions in Lemma 5.1 have evident additive
analogues.

Remark 5.6. An additive stringent category E is in particular weakly idempotent complete,
in the sense of [3], Proposition 7.6. In fact, E satisfies the stronger statement of [19], Propo-
sition 1.1.8, whose proof applies verbatim. Indeed, note that if a composition of the form

A′ � A
f−→ B is admissible, then its cokernel

A′ A B

0 0 C
p·

f

p·
(5.1)

also defines a cokernel for f , which is therefore strict, and thus admits a kernel. In particular,
the snake lemma for admissible morphisms holds in E , as shown in [3], Corollary 8.13.

In fact, the snake lemma holds in any stringent category E . The neat argument presented
in loc.cit. does not quite apply here (as it ultimately relies on the additive structure of an
exact category); however, the proof of [12], Proposition 4.3, does apply.

For this, we need to verify Heller’s axioms for E (cf. [3], Proposition B.1; with the obvious
exception of additivity). Since cancellation follows directly from (5.1) by the coimage-image
isomorphism, it only remains to prove the following result.

Proposition 5.7. Let E be a stringent category, and consider a diagram of the form

A′ B′ C ′

A B C

A′′ B′′ C ′′

in E, where all rows as well as all columns but the first are exact. Then A′ � A � A′′ is a
short exact sequence as well.
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Proof. First of all, by cancellation, A′� A. Then we have the following cartesian squares.

A′ B′ A′ B′ A′ A A′ A

0 C ′ A B B′ B 0 A′′

0 C 0 C 0 B′′ 0 B′′

�

·y
� �

·y

The first diagram implies that the outer rectangle of the second is a pullback, hence so is
its upper square, which agrees with the upper square of the third, implying that the outer
rectangle of the fourth is a pullback, and thus its upper square. Therefore,

coker(A′� A) coker(ker(A→ A′′)) ker(coker(A→ A′′)) A′′.∼ ∼

On the other hand, dually, we have the following cocartesian squares,

B′ C ′ C B′ B C

0 0 C ′′ 0 B′′ C ′′
p·

� �

which together imply that the right-hand square of the second diagram is again a pushout.
But then the dual of Lemma 5.8 below tells us that A� A′′. �

Lemma 5.8. Let E be a stringent category, and consider a pullback square of admissible
morphisms in E of the following form.

B1 A1

B0 A0

·y (5.2)

The induced map C1 � C0 is an admissible monomorphism, where Ci = coker(Bi� Ai).

Proof. We have the following composition of cartesian squares.

B1 A1

B0 A0

0 C0

·y

�

Thus, the composition A1 → A0 � C0 is admissible with kernel B1, and therefore admits a
factorization A1 � C1 � C0, which fits uniquely into the diagram

A1 C1

A0 C0

yielding the claim. �

We are now prepared to state the first main result of this section.

Proposition 5.9. Suppose E is a stringent category. Then the simplicial categories S〈k](E)
and S[k〉(E) are lower (2k − 1)-Segal.
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Remark 5.10. When k ≥ 2, the assumption in Proposition 5.9 that E be stringent is
necessary, which is illustrated by the following observation, at least in the additive case.
Suppose E is an exact category which is not stringent; then S〈1](E) is not lower 3-Segal.

By [10], Proposition 3.1, there is a morphism f : A→ B in E which is not strict. However,
by [3], Remark 8.2, it can be written as the composition of strict morphisms

A
(1,f)−−−→ A⊕B (0,1)−−−→ B.

Now suppose f admits a kernel C and consider the following possible element of S
〈1]
4 (E).

0 0 C C A

0 A A A⊕B

0 0 B

0 B

0

·y ·y ·y
(1,f)

·y ·y
(0,1)

·y
(5.3)

Then the triple of diagrams

0 C C 0 C A A A A⊕B

0 A A 0 A A⊕B 0 0 B

0 0 0 B 0 B

·y ·y ·y ·y
(1,f)

·y ·y
(0,1)

·y ·y ·y

defines an element in the right-hand side of the lower 3-Segal map for S
〈1]
4 (E). However, it

does not lie in its essential image, because the sequence

C A B
f

indexed by {0, 2, 4} is not left exact (the map f not being strict), so (5.3) /∈ P /S〈2〉4 (E).

Dually, since there exist non-strict maps admitting a cokernel in E , the 4-cells of S[1〉(E)
do not satisfy the lower 3-Segal condition (by Lemma 4.6).

Example 5.11. Let us illustrate the lowest 3-Segal conditions for S〈2〉(E), which is more
conveniently done by depicting an element of its 4-cells as the following projection of (4.3).

A123

A023 A124

A024

A013 A014 A034 A134

A012 A234

(5.4)

The dashed part marks the image of (5.4) in the right-hand side of the upper 3-Segal map

S
〈2〉
4 (E) −→ S

〈2〉
3 (E)×

S
〈2〉
2 (E)

S
〈2〉
3 (E).
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The upper 3-Segal condition says that the whole diagram (5.4) is uniquely recovered from the
dashed subdiagram. Note that the complementary statement (for the lower 3-Segal map) is
false in general. In fact, it is equivalent to uniquely filling the frame of short exact sequences

C4 A023 A123

C3 A′024 A124

C2 C1 C0

(5.5)

where Ci = coker(Ad∗3d∗i∆4
4
� Ad∗2d∗i∆4

4
) ∼= ker(Ad∗1d∗i∆4

4
� Ad∗0d∗i∆4

4
). However, there is an

obstruction to this, which is parametrized by the quotient groupoid

[Ext1(C0, C4)/Hom(C0, C4)],

as calculated in [7], Lemma 2.30 and Proposition 2.38, assuming that E is abelian.

Remark 5.12. Suppose E is additive. Then Theorem 5.18 does not generalize to the higher
dimensional Waldhausen constructions, that is, S〈k〉(E) is not upper (2k−1)-Segal for k 6= 2.
Indeed, the diagram

0 0 0 A A

0 A A⊕A A

0 A 0

0 0

0

=

(0,1) =

(1,0)

(1,1)

(0,1)

(5.6)

is an element of the right-hand side of the lower 3-Segal map for P /P .S
〈3〉
4 (E), but does not

lie in its essential image.

Our next observation will prove essential for our inductive arguments.

Proposition 5.13 (Hyperplane lemma). Let 1 ≤ k ≤ l < m ≤ n, and let E be a stringent
category. Then there is a natural functor

η/lm : S〈k]
n (E) −→ S

〈k−1]
l (E), A 7−→ (β 7→ coker(Aβ∪{l}� Aβ∪{m})).

Dually, there is a corresponding natural functor

η.lm : S[k〉
n (E) −→ S

[k−1〉
l (E), A 7−→ (β 7→ ker(A{n−m}∪β � A{n−l}∪β)).

Moreover, both of these restrict to functors on the higher Waldhausen construction,

S
〈k〉
n (E) S

〈k−1〉
l (E).

η/lm

η.lm

Proof. Let γ be a k-simplex in ∆l, and γ′ = γ q {m}. If l ∈ γ, then the sequence η/lm(A)d∗•γ
is given by

coker(Ad∗k+1γ
′ � Ad∗kγ′) Ad∗k−1γ

′ Ad∗k−2γ
′ . . . Ad∗0γ′

which of course is indeed left exact. Furthermore, it is exact if and only if A lies in S
〈k〉
n (E),

by definition.
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Now assume that l /∈ γ. Then, for each vertex 0 < i < k, let us write

(Ad∗i+1γ∪{l} �) Bi+1 Ad∗i γ∪{l} Bi (� Ad∗i−1γ∪{l})

(Ad∗i+1γ∪{m} �) Ci+1 Ad∗i γ∪{m} Ci (� Ad∗i−1γ∪{m})

for the corresponding short exact sequence. Taking cokernels yields a diagram as follows.

Bi+1 Ci+1 Di+1

Ad∗i γ∪{l} Ad∗i γ∪{m} η/lm(A)d∗i γ

Bi Ci Di

By the snake lemma, the right vertical sequence is short exact. Note that if A ∈ S〈k〉n (E),

B1
∼−−→ Ad∗0γ∪{l} and C1

∼−−→ Ad∗0γ∪{m}

which immediately implies also D1
∼−−→ η/lm(A)d∗0γ by definition. It remains to prove that

η/lm(A)d∗kγ −→ η/lm(A)d∗k−1γ

is an admissible monomorphism. In order to see this, we may show that the diagram

Ad∗kγ∪{l} Ad∗kγ∪{m}

Ad∗k−1γ∪{l} Ad∗k−1γ∪{m}

(5.7)

is pullback, by Lemma 5.8. In fact, we claim that it is the composition of pullback diagrams

Ad∗kγ∪{l} Ad∗kγ∪{l+1} . . . Ad∗kγ∪{m−1} Ad∗kγ∪{m}

Ad∗k−1γ∪{l} Ad∗k−1γ∪{l+1} . . . Ad∗k−1γ∪{m−1} Ad∗k−1γ∪{m}.

To prove this claim, for each l ≤ j < m, we have the diagram

Ad∗kγ∪{j} Ad∗kγ∪{j+1}

Ad∗k−1γ∪{j} Ad∗k−1γ∪{j+1}

0 Ad∗k−1d
∗
kγ∪{j,j+1}

in which the lower and outer rectangles are pullback, and therefore, so is the upper.
Finally, the functor η.lm is given by the map η/lm for Eop, via Lemma 4.6. �

The following result constitutes a generalization of Lemma 4.9.

Proposition 5.14. Let k ≥ 1, and assume that E is a stringent category. Then there are
equivalences of simplicial categories

P /S〈k〉(E) '−−→ S〈k−1](E), A 7−→ A[0]⊕−,

P .S〈k〉(E) '−−→ S[k−1〉(E), A 7−→ A−⊕[0],
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induced by the forgetful functors. For k ≥ 2, there is an equivalence

P /P .S〈k〉(E) '−−→ S[k−2](E), A 7−→ A[0]⊕−⊕[0].

Proof. We prove the second statement first. For a diagram A ∈ S[k−1〉
n (E), we construct its

image in P .S
〈k〉
n (E) ' S

〈k〉
n+1(E) under the inverse functor as a right Kan extension. Namely,

we extend by zero appropriately, and then into the kth dimension, as follows.

Fun([k − 1], [n]) E

Fun([k − 1], [n+ 1])

Cyl(ι|∆n
k−1

)

Fun([k], [n+ 1])

A

ι

incl

A!

λ

Â
(5.8)

Here, we have set ι = (dn+1)∗, and the category Cyl(ι|∆n
k−1

) is the cograph of its restriction

to the skeleton. The functor λ is defined by (sk−1)∗ on ∆n
k−1, and on Fun([k− 1], [n+ 1]), it

maps

α 7→ α ∪ {n+ 1}.

Explicitly, Â is given by the diagram

β 7−→ lim←−
β≤λ(α)

A!
α
∼=
{
Aβr{n+1} if n+ 1 ∈ β,
ker(Ad∗kβ → Ad∗k−1β

) otherwise.

Indeed, d∗kβ is initial amongst those objects of the indexing category of the limit which come
from Fun([k − 1], [n+ 1]). If n+ 1 ∈ β, then this is the only contribution. Otherwise, there
are additionally the objects of the form

[α] ∈ ∆n
k−1 with d∗k−1β ≤ α.

Therefore, in that case, the limit reduces to just the pullback

Âβ ∼= lim←−


A!
d∗kβ

A!
[d∗k−1β] A!

d∗k−1β

 ∼= lim←−


Ad∗kβ

0 Ad∗k−1β

 = ker(Ad∗kβ → Ad∗k−1β
).

Now let γ be a (k + 1)-simplex in ∆n+1. We claim that the corresponding sequence Âd∗•γ is
exact. If n+ 1 ∈ γ, then this is simply given by

ker(Ad∗kd∗k+1γ
→ Ad∗k−1d

∗
k+1γ

) Ad∗kγr{n+1} . . . Ad∗1γr{n+1} Ad∗0γr{n+1}

which is an exact sequence in E by definition.
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Otherwise, the relevant sequence is given by

ker(Ad∗kd∗k+1γ
→ Ad∗k−1d

∗
k+1γ

) ker(Ad∗kd∗k+1γ
→ Ad∗k−1d

∗
k+1γ

)

ker(Ad∗kd∗kγ → Ad∗k−1d
∗
kγ

) ker(Ad∗kd∗k+1γ
→ Ad∗k−1d

∗
kγ

)

ker(Ad∗kd∗k−1γ
→ Ad∗k−1d

∗
k−1γ

) ker(Ad∗k−1d
∗
k+1γ

→ Ad∗k−1d
∗
kγ

)

ker(Ad∗kd∗k−2γ
→ Ad∗k−1d

∗
k−2γ

) ker(Ad∗k−2d
∗
k+1γ

→ Ad∗k−2d
∗
kγ

)

...
...

ker(Ad∗kd∗0γ → Ad∗k−1d
∗
0γ

) ker(Ad∗0d∗k+1γ
→ Ad∗0d∗kγ).

or equivalently,

We prove exactness inductively. The first part of the sequence fits into a diagram of the form

Âd∗k+1γ
Âd∗kγ Ad∗kd∗k+1γ

0 Âd∗k−1γ
Ad∗k−1d

∗
k+1γ

0 Ad∗k−1d
∗
kγ
.

·y ·y

·y

By definition, the bottom left square is pullback, so we can pull it back to the top and then
to the left, since each outer rectangle is a pullback square by construction. Thus,

Âd∗k+1γ
Âd∗kγ Âd∗k−1γ

is a left exact sequence. Now, for each 0 < i < k, let us write

(Ad∗i+1d
∗
k+1γ

�) Bi+1 Ad∗i d∗k+1γ
Bi (� Ad∗i−1d

∗
k+1γ

)

(Ad∗i+1d
∗
kγ
�) Ci+1 Ad∗i d∗kγ Ci (� Ad∗i−1d

∗
kγ

)

(5.9)

for the corresponding short exact sequences at the ith vertex of d∗k+1γ and d∗kγ, respectively.
First, we show that Bk → Ck is an admissible epimorphism. But we have

Bk = coker(Âd∗k+1γ
� Ad∗kd∗k+1γ

), and Ck = coker(Âd∗kγ � Ad∗kd∗kγ).

Therefore, they fit into a diagram of the following form, which yields the claim.

Âd∗k+1γ
Âd∗kγ Ad∗kd∗k+1γ

0 B′k Bk

0 Ck

p· p·

p·
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In particular, B′k = ker(Bk � Ck). Next, we show that Bk−1 → Ck−1 admits a kernel B′k−1

in E . In fact, consider the following diagram.

Bk Ad∗k−1d
∗
k+1γ

Bk−1

Ck E D

Ck Ad∗k−1d
∗
kγ

Ck−1

0 C ′k−1 C ′k−1

(3)

(1)

=

(1′)

(2)

(2′)

=

We have (1) by Remark 5.6, and (1′) is its cokernel. The snake lemma yields (2) and (2′),
and (3) is obtained dually to (1).

Now the snake lemma implies that the top row of the following diagram is short exact.

B′k Âd∗k−1γ
B′k−1

Bk Ad∗k−1d
∗
k+1γ

Bk−1

Ck Ad∗k−1d
∗
kγ

Ck−1

In particular, this settles the case k = 2. For k ≥ 3, we can rewrite the diagram

B2 Ad∗1d∗k+1γ
B1 = Ad∗0d∗k+1γ

C2 Ad∗1d∗kγ C1 = Ad∗0d∗kγ

in terms of the hyperplane lemma (Proposition 5.13), namely as the upper part of the short
exact sequence of acyclic sequences

η.(n−γ1)(n−γ0)(A)d∗k−1α
A{γ0}∪d∗k−1α

A{γ1}∪d∗k−1α

η.(n−γ1)(n−γ0)(A)d∗k−2α
A{γ0}∪d∗k−2α

A{γ1}∪d∗k−2α

η.(n−γ1)(n−γ0)(A)d∗k−3α
A{γ0}∪d∗k−3α

A{γ1}∪d∗k−3α

...
...

...

(5.10)

where α = d∗0d
∗
1γ. In particular, B2 → C2 is an admissible morphism. Applying the snake

lemma to the third morphism of short exact sequences in (5.10) tells us that the map

C ′2 = coker(B2 → C2) −→ coker(Ad∗1d∗k+1γ
→ Ad∗1d∗kγ)

is an admissible monomorphism, and therefore, by applying it to the first, that Âd∗1γ � Âd∗0γ .
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Finally, we can iterate the argument, realizing (5.9) as the upper part of the diagram

η(i)(A)d∗k−iα(i) A{γ0,...,γi−1}∪d∗k−iα(i) η(i−1)(A)d∗k−i+1α
(i−1)

η(i)(A)d∗k−i−1α
(i) A{γ0,...,γi−1}∪d∗k−i−1α

(i) η(i−1)(A)d∗k−iα(i−1)

η(i)(A)d∗k−i−2α
(i) A{γ0,...,γi−1}∪d∗k−i−2α

(i) η(i−1)(A)d∗k−i−1α
(i−1)

...
...

...

where η(i) = η.(n−γi)(n−γi−1) ◦ . . . ◦ η
.
(n−γ1)(n−γ0) and α(i) = d∗0 . . . d

∗
i γ. Then the sequence

B′i+1 Âd∗i γ B′i

is the beginning of the corresponding long exact snake, where B′i = ker(Bi → Ci), and is
therefore a short exact sequence, as above.

Finally, the equivalence P /S〈k〉(E) '−−→ S〈k−1](E) follows via Lemma 4.6 from the one
we have proven above. Furthermore, if k ≥ 2, we obtain P /P .S〈k〉(E) '−−→ S[k−2](E) as an

immediate consequence of the two. Namely, let A ∈ S[k−2]
n (E). Then the left Kan extension

analogous to (5.8) produces a diagram

Â ∈ S[k−1〉
n+1 (E) = P /S[k−1〉

n (E) ' P /P .S〈k〉n (E),

as all arguments above apply verbatim to show that Â consists of right exact sequences. �

Remark 5.15. Proposition 5.14 can be seen as a higher analogue of the third isomorphism

theorem, in that the equivalence of categories S
〈k−1]
k+1 (E) '−−→ P /S

〈k〉
k+1(E) = S

〈k〉
k+2(E) boils

down to the following statement. Given a configuration of left exact sequences of the form

Ak+1
k Ak+1

k−1 Ak+1
1 Ak+1

0

Akk−1

Ak1
Ak0

Ak−1
1

Ak−1
0

A0
0
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where Aji = Ad∗i d∗j∆k+1
k+1

in the previous notation, the induced maps between the cokernels

coker(Ak+1
1 → Ak+1

0 ) −→ coker(Ak1 → Ak0) −→ . . . −→ coker(A0
1 → A0

0)

constitute an exact sequence in E .

Corollary 5.16. If E is stringent, there are natural equivalences of simplicial categories

S〈k](E) '−−→ T (S〈0]S(k)(E)),

S[k〉(E) '−−→ T (S(k)S[0〉(E)),

S[k](E) '−−→ T (S〈0]S(k)S[0〉(E)).

Proof. This is an immediate consequence of Proposition 5.14 and Theorem 4.12, as

S〈k](E) ' P /S〈k+1〉(E) ' P /TS(k+1)(E) ' TP /S(k+1)(E) ' T (S〈0]S(k)(E)),

by Lemma 2.17. �

Example 5.17. Let us consider the situation of (2.6). We see that its essential image cannot
contain π0(S〈1](E)×) for every stringent category E , as the corresponding double category
would have precisely one object, which precludes the existence of a bijection on the higher
cells in general. One non-trivial exception is E = vectF1

where S〈1〉(E)× is lower 1-Segal.

Theorem 5.18. Let E be a proto-exact category. The two-dimensional Waldhausen con-
struction S〈2〉(E) is an upper 3-Segal category if and only if E is proto-abelian.

Proof. By the path space criterion, it suffices to show that P /P .S〈2〉(E) is lower 1-Segal.
But Proposition 5.14 below shows that for all n ≥ 2, the forgetful functor

P /P .S
〈2〉
n−2(E) −→ S

[0]
n−2(E), A 7−→ (A01n → A02n → · · · → A0(n−1)n),

is an equivalence of categories, identifying the double path space P /P .S〈2〉(E) '−−→ NE(E)
with the categorified nerve of E , cf. Example 4.4 (1).

Conversely, the lower 1-Segal condition for P /P .S〈2〉(E) ' S[0](E) requires admissible
morphisms in E be closed under composition, hence E must be proto-abelian already. �

We are now prepared to prove our main result. In particular, by Proposition 5.14 as well
as Lemma 4.6, the path space criterion provides a new proof of Theorem 4.10...

Proof of Proposition 5.9. Let n ≥ 2k. We show inductively that the lower (2k−1)-Segal map

S〈k−1]
n (E) −→ lim←−

I∈L([n],2k−1)

S
〈k−1]
I (E) (5.11)

is an equivalence. Throughout, for 0 ≤ i ≤ n, let δi refer to the ith face map of ∆n
n, even

when applied to any subsimplex of it. That is, δ∗i removes the vertex i, and δ̂∗i adjoins it.
First, consider the case n = 2k. By Lemma 5.19, the only k-simplex in ∆2k not contained

in an even subset of [2k] of cardinality 2k already is

ε = {0, 2, . . . , 2k} = δ∗2k−1δ
∗
2k−3 · · · δ∗1∆2k

2k.

But if A lies in the right-hand side of (5.11), then we can form the unique compositions

Aδ∗2kε Aδ∗2k−2ε
. . . Aδ∗0ε

Aδ∗2k δ̂∗2k−1δ
∗
2k−2ε

Aδ∗2k−2δ̂
∗
2k−3δ

∗
2k−4ε

. . . Aδ∗2 δ̂∗1δ∗0ε

completing A to an element of S
〈k−1]
2k (E). It remains to be shown that the resulting sequence

Aδ∗2kε −→ Aδ∗2k−2ε
−→ . . . −→ Aδ∗0ε
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is left exact. We proceed by induction. The case k = 2 is settled by Theorem 5.18. In general,
since Aδ∗2kε� Aδ∗2k−2ε

is an admissible monomorphism (as a composition of such), it suffices

to prove that

coker(Aδ∗2kε� Aδ∗2k−2ε
) −→ Aδ∗2k−4ε

−→ . . . −→ Aδ∗0ε (5.12)

is a left exact sequence. For this, we use the hyperplane lemma. Namely, the functor

η/(2k−2)2k : S
〈k−1]
2k (E) −→ S

〈k−2]
2k−2 (E)

constructed in Proposition 5.13 is compatible with the corresponding lower Segal maps on
both sides, in that it induces a commutative diagram of the following form.

S
〈k−1]
2k (E) lim←−

I∈L([2k],2k−1)

S
〈k−1]
I (E)

S
〈k−2]
2k−2 (E) lim←−

J∈L([2k−2],2k−3)

S
〈k−2]
J (E)

η/(2k−2)2k η/(2k−2)2k

Indeed, this is because we have d∗0d
∗
0ε = δ∗2k−3δ

∗
2k−5 · · · δ∗1∆2k−2

2k−2. But then, by induction, the
lower horizontal map is an equivalence, which by the above means precisely that (5.12) is a
left exact sequence.

In order to prove the Segal conditions for the higher cells S
〈k−1]
n (E), we once again employ

induction, now on the dimension n. If A lies in the right-hand side of the lower (2k−1)-Segal

map for S
〈k−1]
n (E), we first need to see that taking compositions completes A to a well-defined

diagram of shape Fun([k − 1], [n]) in E .
By Lemma 5.19, we need only consider sequences indexed by simplices γ with all vertices

separated by gaps. For gaps i ∈ [n] of size 1, there is (as before) a unique composition,

Aδ∗i+1γ
Aδ∗i−1γ

.

Aδ∗i+1δ̂
∗
i δ
∗
i−1γ

For a gap of γ of size l + 1, say {i, . . . , i+ l} ⊆ [n], each 0 ≤ j ≤ l defines the composition

Aδ∗i+l+1γ
Aδ∗i−1γ

.

Aδ∗i+l+1δ̂
∗
i+jδ

∗
i−1γ

By induction, all possible compositions can be reduced to one of these. On the other hand,
they all agree, since for all 0 ≤ j < j′ ≤ l, the following diagram commutes.

Aδ∗i+l+1γ
Aδ∗i+l+1δ̂

∗
i+j′δ

∗
i−1γ

Aδ∗i+l+1δ̂
∗
i+jδ

∗
i−1γ

Aδ∗i−1γ

Finally, we apply induction to obtain the remaining exactness conditions for the completed
diagram of A. Namely, the sequence indexed by γ is left exact, since ∂i(A) lies in the right-

hand side of the lower (2k − 1)-Segal map of S
〈k−1]
n−1 (E), for any gap i of γ. �

Lemma 5.19. Let n ≥ 2k. Let γ be a k-subsimplex of ∆n with a pair of adjacent simplices.
Then γ is contained in an even subset I ⊆ [n] of cardinality #I = 2k.



32 THOMAS POGUNTKE

Proof. For n = 2k, this is clear. For the induction step, we can assume that n ∈ γ, otherwise
the statement follows tautologically from the induction hypothesis. Let 0 < m < n be the
maximal gap of γ. By induction, (γ ∪ {m})r {n} is contained in an even subset I ′ ⊆ [n− 1]
with #I ′ = 2k. But then γ is contained in I = (I ′ r {m}) ∪ {n}, which is even in [n]. �
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