Σ_1^1 -definability at uncountable regular cardinals

Philipp Moritz Lücke

Mathematisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn http://www.math.uni-bonn.de/people/pluecke/

Warsaw, 07/09/2012

Let κ be an infinite cardinal, κ be the set of all functions $f:\kappa\longrightarrow\kappa$ and κ be the set of all functions f with $\mathrm{dom}(f)\in\kappa$ and $\mathrm{ran}(f)\subseteq\kappa$.

The generalized Baire space of κ is the set κ equipped with the topology whose basic open sets are of the form

$$U_s = \{ f \in {}^{\kappa} \kappa \mid s \subseteq f \}$$

for some $s \in {}^{<\kappa}\kappa$. Note that closed sets in this topology are of the form

$$[T] = \{ f \in {}^{\kappa}\kappa \mid (\forall \alpha < \kappa) \ f \upharpoonright \alpha \in T \}$$

for some subtree T of ${}^{<\kappa}\kappa$.

We call a subset of $(\kappa_{\kappa})^n$ a Σ_1^1 -subset if it is the projection of a closed subset of $(\kappa_{\kappa})^{n+1}$. Given $0 < 1 < \omega$, we define Σ_n^1 -, Π_n^1 - and Δ_n^1 -subsets in the usual way.

We want to study the generalized Baire spaces of uncountable regular cardinals κ with $\kappa = \kappa^{<\kappa}$ and the Σ^1_1 -subsets of these spaces.

The following proposition shows that this class is both interesting and rich.

Proposition

Let κ be an uncountable regular cardinal with $\kappa = \kappa^{<\kappa}$. The following statements are equivalent for a subset A of ${}^{\kappa}\kappa$.

- A is a Σ_1^1 -subset of κ .
- A is definable in the structure $\langle H(\kappa^+), \epsilon \rangle$ by a Σ_1 -formula with parameters.

The initial motivation of this work was to find generalizations of the following coding result due to Leo Harrington to uncountable regular cardinals κ and $<\kappa$ -closed forcings that satisfy the κ^+ -chain condition.

Theorem (L. Harrington, 1977)

Assume $\omega_1 = \omega_1^L$. For every subset A of ${}^\omega\omega$, there is a partial order $\mathbb P$ with the following properties.

- P satisfies the countable chain condition.
- If G is \mathbb{P} -generic over V, then A is a Π_2^1 -subset of ω in V[G].

This is achieved by the following result.

Theorem (P.L., 2012)

Let κ be a regular uncountable cardinal with $\kappa = \kappa^{<\kappa}$. For every subset A of ${}^{\kappa}\kappa$, there is a partial order $\mathbb P$ that satisfies the following statements.

- \blacksquare \mathbb{P} is $<\kappa$ -closed, satisfies the κ^+ -chain condition and has cardinality 2^{κ} .
- If G is \mathbb{P} -generic over V, then A is a Δ^1_1 -subset of ${}^{\kappa}\kappa$ in V[G].

In contrast to previous coding results for subsets of κ , we do not need to assume that " $2^{\kappa} = \kappa^{+}$ " holds.

The proof of this result relies on a technique called *generic tree coding*. In the remainder of this talk, I want to give a brief introduction to this technique. The following theorem sums up its properties.

Theorem

Let κ be a regular uncountable cardinal with $\kappa = \kappa^{<\kappa}$. For every subset A of κ , there is a partial order $\mathbb P$ that satisfies the following statements.

- \mathbb{P} is $<\kappa$ -closed, satisfies the κ^+ -chain condition and has cardinality 2^{κ} .
- If $\hat{\mathbb{Q}}$ is a \mathbb{P} -name with

 $1\!\!1_{\mathbb{P}} \Vdash \text{``$\dot{\mathbb{Q}}$ is a σ-strategically closed partial order}$ and forcing with $\dot{\mathbb{Q}}$ preserves the regularity of $\check{\kappa}$ ".

and G * H is $(\mathbb{P} * \dot{\mathbb{Q}})$ -generic over V, then A is a Σ_1^1 -subset of κ in V[G][H].

Given a nonempty subset A of κ and an enumeration $\langle s_{\beta} \mid \beta < \kappa \rangle$ of κ , we define \mathbb{P} to be the partial order consisting of conditions

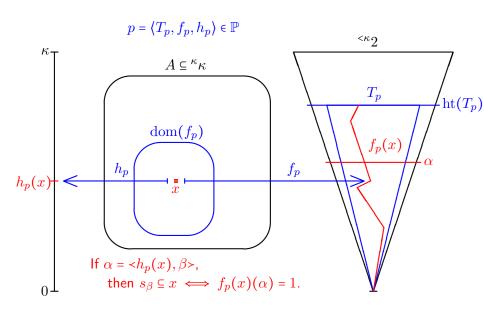
$$p = \langle T_p, f_p, h_p \rangle$$

with the following properties.

- \blacksquare T_p is a subtree of $^{<\kappa}2$ that satisfies the following statements.
 - \blacksquare T_p has cardinality less than κ .
 - If $t \in T_n$ with $lh(t) + 1 < ht(T_n)$, then t has two immediate successors in T_p .
- $f_n: A \xrightarrow{part} [T_p]$ is a partial function such that $dom(f_p)$ is a nonempty set of cardinality less than κ .
- $h_n: A \xrightarrow{part} \kappa$ is a partial function with the following properties.
 - \bullet dom (h_n) = dom (f_n) .
 - For all $x \in dom(h_p)$ and $\alpha, \beta < ht(T_p)$ with $\alpha = \langle h_p(x), \beta \rangle$, we have

$$s_{\beta} \subseteq x \iff f_p(x)(\alpha) = 1.$$

We order \mathbb{P} by end-extensions of trees and extensions of branches and functions.



If G * H is $(\mathbb{P} * \dot{\mathbb{Q}})$ -generic over V, then the following statements hold.

- $T = \bigcup \{T_p \mid p \in G\}$ is a subtree of κ of height κ with $[T] \cap V = \emptyset$.
- If we define $F(x) = \bigcup \{f_p(x) \mid p \in G, x \in \text{dom}(x)\}$ for all $x \in A$, then $F: A \longrightarrow [T]^{V[G][H]}$ is a bijection.
- If we define $H = \bigcup \{h_p \mid p \in G\}$, then $H : A \longrightarrow \kappa$ is a function with

$$s_{\beta} \subseteq x \iff F(x)(\langle H(x), \beta \rangle) = 1$$

for all $x \in A$ and $\beta < \kappa$.

This yields the following Σ_1^1 -definition of A in V[G][H]:

$$x \in A \iff (\exists y \in [T])(\exists \gamma < \kappa)(\forall \beta < \kappa) [s_{\beta} \subseteq x \iff y(\langle \gamma, \beta \rangle) = 1].$$

This result has several applications. As above, we let κ denote a regular uncountable cardinal with $\kappa = \kappa^{<\kappa}$.

- If A is an arbitrary set, then there is a $<\kappa$ -closed partial order $\mathbb P$ such that $\mathbb P$ satisfies the κ^+ -chain condition and $\mathbb 1_{\mathbb P} \Vdash \text{``}\check A \in \mathrm{L}(\mathcal P(\check\kappa))\text{''}$.
- Generic absoluteness for Σ^1_3 -formulas over ${}^\kappa\kappa$ under $<\kappa$ -closed forcings that satisfy the κ^+ -chain condition is inconsistent. (It is consistent to have such absoluteness for Σ^1_2 -formulas over ${}^\kappa\kappa$).
- There is a < κ -closed partial order $\mathbb P$ satisfying the κ^+ -chain condition such that forcing with $\mathbb P$ preserves the value of 2^κ and adds a Δ_2^1 -definable well-ordering of κ .

I close by presenting a version of the above result for large cardinals.

Theorem (S. Friedman & P.L.)

There is a **ZFC**-preserving class forcing \mathbb{P} definable without parameters that satisfies the following statements.

- Let κ be a cardinal with the property that there is no singular limit of inaccessible cardinals ν with $\nu^+ < \kappa \le 2^{\nu}$. Then forcing with $\mathbb P$ does not collapse κ and, if κ is regular, then $\mathbb P$ preserves the regularity of κ .
- P preserves the inaccessibility of inaccessible cardinals and the supercompactness of supercompact cardinals.
- If α is an inaccessible cardinal and G is \mathbb{P} generic over V, then $(2^{\alpha})^{V} = (2^{\alpha})^{V[G]}$.
- If κ is an inaccessible cardinal and A is a subset of ${}^{\kappa}\kappa$, then there is a condition p in $\mathbb P$ with the property that A is a Σ_1^1 -subset of ${}^{\kappa}\kappa$ in V[G] whenever G is $\mathbb P$ -generic over V with $p \in G$.

Thank you for listening!