Automorphism groups and set theory

Philipp Moritz Lücke

Institut für Mathematische Logik und Grundlagenforschung Fachbereich Mathematik und Informatik der Universität Münster http://wwwmath.uni-muenster.de/logik/Personen/Luecke/

> SFB-Conference Münster, 07/11/2011

If G is an infinite group, then the group $\operatorname{Aut}(G)$ of all automorphisms of G can be a complicated object from the set-theoretical point of view.

In this talk, I want to introduce a class of interesting groups with the property that basic statements about the algebraic structure of the corresponding automorphism groups are not decided by the standard axioms of set theory.

Definition

A collection $\mathcal U$ of sets of natural numbers is a *non-principal ultrafilter* over $\mathbb N$ if the following statements hold.

- U contains no finite sets.
- If $X \subseteq \mathbb{N}$, then either $X \in \mathcal{U}$ or $\mathbb{N} \setminus X \in \mathcal{U}$.
- If $X, Y \in \mathcal{U}$, then $X \cap Y \in \mathcal{U}$.
- If $X \in \mathcal{U}$ and $X \subseteq Y \subseteq \mathbb{N}$, then $Y \in \mathcal{U}$.

If $\mathcal U$ is a non-principal ultrafilter over $\mathbb N$, then we define

$$N_{\mathcal{U}} = \left\{ (\pi_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \operatorname{Sym}(n) \mid \{ n \in \mathbb{N} \mid \pi_n = \operatorname{id}_n \} \in \mathcal{U} \right\}.$$

It is easy to see that $N_{\mathcal{U}}$ is a normal subgroup of $\prod_{n\in\mathbb{N}}\mathrm{Sym}(n)$. The ultraproduct of all finite symmetric groups with respect to \mathcal{U} is the group

$$G_{\mathcal{U}} = \prod_{n \in \mathbb{N}} \operatorname{Sym}(n) / N_{\mathcal{U}}.$$

Proposition

Let \mathcal{U} be a non-principal ultrafilter over \mathbb{N} . If the Continuum Hypothesis holds, then $G_{\mathcal{U}}$ is a saturated structure of cardinality \aleph_1 and $\operatorname{Aut}(G_{\mathcal{U}})$ has cardinality $2^{\aleph_1} > \aleph_1$.

Corollary

Let $\mathcal U$ be a non-principal ultrafilter over $\mathbb N$. If the Continuum Hypothesis holds, then $G_{\mathcal U}$ has non-inner automorphisms, i.e. $G_{\mathcal U}$ has an automorphism that is not induced by conjugation with an element of $G_{\mathcal U}$.

If $n \neq 6$, then every automorphism of $\mathrm{Sym}(n)$ is inner; and consequently, it appears to be difficult to exhibit *explicit* non-inner automorphisms of groups of the form $G_{\mathcal{U}}$.

The following theorem shows that there is a good reason for these difficulties.

Theorem (P.L. & Simon Thomas)

It is consistent with the axioms of set theory that there is a non-principal ultrafilter $\mathcal U$ over $\mathbb N$ such that every automorphism of $G_{\mathcal U}$ is inner.

I want to conclude this talk with a result showing that groups of the form $G_{\mathcal{U}}$ can have non-inner automorphisms if the Continuum Hypothesis fails. Remember that *Cantor space* is the product space of countably infinitely many copies of the discrete space with two elements. The statement

"the intersection of less than continuum-many dense open subsets of Cantor space is non-empty"

is independent from the axioms of set theory.

Theorem (P.L. & Saharon Shelah)

Assume that the intersection of less than continuum-many dense open subsets of Cantor space is non-empty. Then there is a non-principal ultrafilter $\mathcal U$ over $\mathbb N$ such that $G_{\mathcal U}$ has a non-inner automorphism.