The influence of closed maximality principles on generalized Baire spaces

Philipp Moritz Lücke

Mathematisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn http://www.math.uni-bonn.de/people/pluecke/

MALOA Set Theory Research Workshop Münster, 10/27/2012

Σ_1^1 -subsets of generalized Baire spaces

Let κ be an infinite cardinal, $\kappa \kappa$ be the set of all functions $f : \kappa \longrightarrow \kappa$ and ${}^{<\kappa}\kappa$ be the set of all functions f with $\operatorname{dom}(f) \in \kappa$ and $\operatorname{ran}(f) \subseteq \kappa$.

The generalized Baire space of κ is the set $\kappa \kappa$ equipped with the topology whose basic open sets are of the form

$$U_s = \{ f \in {}^{\kappa}\kappa \mid s \subseteq f \}$$

for some $s \in {}^{<\kappa}\kappa$. Note that closed sets in this topology are of the form

$$[T] = \{ f \in {}^{\kappa}\kappa \mid (\forall \alpha < \kappa) f \upharpoonright \alpha \in T \}$$

for some subtree T of ${}^{<\kappa}\kappa$.

We call a subset of $({}^{\kappa}\kappa)^n$ a Σ_1^1 -subset if it is the projection of a closed subset of $({}^{\kappa}\kappa)^{n+1}$. A subset is a Π_1^1 -subset if it is the compliment of a Σ_1^1 -subset and it is a Δ_1^1 -subset if it is both a Σ_1^1 - and a Π_1^1 -subset.

We want to study the generalized Baire spaces of uncountable regular cardinals κ with $\kappa = \kappa^{<\kappa}$ and the Σ_1^1 -subsets of these spaces. The following proposition shows that this class is both interesting and rich.

Proposition

Let κ be an uncountable regular cardinal with $\kappa = \kappa^{<\kappa}$. A subset A of ${}^{\kappa}\kappa$ is a Σ_1^1 -subset if and only if it is definable over the structure $\langle H(\kappa^+), \epsilon \rangle$ by a Σ_1 -formula with parameters.

It is a well-known phenomenon that many basic and interesting questions about Σ_1^1 - and Π_1^1 -subsets of generalized Baire spaces of regular uncountable cardinals κ with $\kappa = \kappa^{<\kappa}$ are independent from the axioms of set theory plus large cardinal axioms. We will discuss three examples of such questions.

Complexity of the λ -club-filter

Given an uncountable regular cardinal κ and an infinite regular cardinal $\lambda < \kappa$, we define $\operatorname{Club}(S_{\lambda}^{\kappa})$ to be the set of all characteristic functions of subsets $X \subseteq \kappa$ containing a λ -club subset of κ , i.e. a subset C that is unbounded in κ and contains all of its limit points of cofinality λ .

It is easy to see that $\operatorname{Club}(S_{\lambda}^{\kappa})$ is a Σ_1^1 -subset of κ_{κ} . But the question whether this set can be a Π_1^1 -subset turns out to be independent from the axioms of **ZFC** plus large cardinal axioms.

Theorem (Mekler/Shelah, Hyttinen/Rautila, Friedman/Hyttinen/Kulikov)

Assume (GCH). Let ν be an infinite regular cardinal and $\kappa = \nu^+$. Then there is a partial order \mathbb{P} such that forcing with \mathbb{P} preserves cardinalities and cofinalities and $\operatorname{Club}(S_{\nu}^{\kappa})$ is a Δ_1^1 -subset of $\kappa \kappa$ in every \mathbb{P} -generic extension of the ground model.

Theorem (Friedman/Hyttinen/Kulikov)

If κ is a regular uncountable cardinal with $\kappa = \kappa^{<\kappa}$, $\lambda < \kappa$ is a regular cardinal and G is $Add(\kappa, \kappa^+)$ -generic over V, then $Club(S^{\kappa}_{\lambda})$ is not a Δ^1_1 -subset of $\kappa \kappa$ in V[G].

Lengths of Σ_1^1 -definable well-orders

Definition

Given a cardinal κ , we call a well-order $\langle A, \prec \rangle$ a Σ_1^1 -well-ordering of a subset of $\kappa \kappa$ if "<" is a Σ_1^1 -subset of $\kappa \kappa \times \kappa \kappa$.

We are interested in the relation between 2^κ and the least upper bound of the order-types of such well-orders.

The following results show that the axioms of **ZFC** plus large cardinal axioms prove only trivial statements about this relation in the case of uncountable regular cardinals κ with $\kappa = \kappa^{<\kappa}$.

Theorem (L.)

Let κ be a regular uncountable cardinal with $\kappa = \kappa^{<\kappa}$. For every subset A of ${}^{\kappa}\kappa$, there is a partial order \mathbb{P} that satisfies the following statements.

- *P* is <κ-closed, satisfies the κ⁺-chain condition and has cardinality at most 2^κ.
- If G is \mathbb{P} -generic over V, then A is a Δ^1_1 -subset of $\kappa \kappa$ in V[G].

Theorem (L.)

Assume that κ is a regular uncountable cardinal with $\kappa = \kappa^{<\kappa}$, $\nu > \kappa$ is a cardinal and G is $Add(\kappa, \nu)$ -generic over V. If $\langle A, \prec \rangle$ is a Σ_1^1 -well-ordering of a subset of $\kappa \kappa$ in V[G], then $A \neq (\kappa \kappa)^{V[G]}$ and the order-type of $\langle A, \prec \rangle$ has cardinality at most $(2^{\kappa})^V$ in V[G]. Given an infinite cardinal κ , we let \mathcal{T}_{κ} denote the class of all trees of cardinality and height κ and \mathcal{TO}_{κ} denote the class of all trees in \mathcal{T}_{κ} without a branch of length κ . We can easily identify \mathcal{TO}_{κ} with a Π_1^1 -subset of κ_{κ} .

Let \mathbb{T}_0 and \mathbb{T}_1 be elements of \mathcal{T}_{κ} . We say that \mathbb{T}_0 is order-preserving embeddable into \mathbb{T}_1 (abbreviated by $\mathbb{T}_0 \leq \mathbb{T}_1$) if there is a function $f: \mathbb{T}_0 \longrightarrow \mathbb{T}_1$ such that

$$t_0 <_{\mathbb{T}_0} t_1 \longrightarrow f(t_0) <_{\mathbb{T}_1} f(t_1)$$

holds for all $t_0, t_1 \in \mathbb{T}_0$. Note that f need not be injective. This ordering is Σ_1^1 -definable with respect to the above identification.

We are interested in the structure of the resulting partial order $\langle \mathcal{TO}_{\kappa}, \leq \rangle$. In particular, we want to determine the size of the following cardinal invariants.

- The bounding number b_(TO_κ,≤) is the smallest cardinality of a subset B ⊆ TO_κ such that there is no tree T ∈ TO_κ with S ≤ T for all S ∈ B.
- The dominating number ∂_(TO_κ,≤) is the smallest cardinality of a subset C ⊆ TO_κ such that for every S ∈ TO_κ there is a T ∈ C with S ≤ T.

The following theorem shows that it is not possible to prove non-trivial statements about the relation of these cardinals and 2^{κ} from the axioms of **ZFC** plus large cardinal axioms.

Theorem (Mekler/Väänänen)

Assume (CH). If ν is a regular cardinal with $\omega_1 < \nu \le 2^{\omega_1}$, then there is a partial order \mathbb{P} such that forcing with \mathbb{P} preserves cardinalities, cofinalities and the value of 2^{μ} for every cardinal μ and

$$\mathfrak{b}_{\langle \mathcal{TO}_{\omega_1},\leq\rangle}=\mathfrak{d}_{\langle \mathcal{TO}_{\omega_1},\leq\rangle}=\nu$$

holds in every \mathbb{P} -generic extension of the ground model.

Observation (Schlicht)

If κ is an uncountable regular cardinal with $\kappa = \kappa^{<\kappa}$, ν is a cardinal and G is $Add(\kappa, \nu)$ -generic over V, then

$$\mathfrak{b}^{\mathrm{V}[G]}_{\langle \mathcal{TO}_{\kappa}, \leq \rangle} \leq \mathfrak{b}^{\mathrm{V}}_{\langle \mathcal{TO}_{\kappa}, \leq \rangle} \quad \text{and} \quad \nu \leq \mathfrak{d}^{\mathrm{V}[G]}_{\langle \mathcal{TO}_{\kappa}, \leq \rangle}.$$

Question

Are there axioms that decide *many interesting* questions about Σ_1^1 -subsets of $\kappa \kappa$ for uncountable regular κ with $\kappa = \kappa^{<\kappa}$?

In the following, we will show that forcing axioms called *closed maximality principle* are examples of such axioms.

Maximality principles

Definition

A sentence φ in the language of set theory is *forceably necessary* if there is a partial order \mathbb{P} such that $1_{\mathbb{P}*\dot{\mathbb{Q}}} \Vdash \varphi$ holds whenever $\dot{\mathbb{Q}}$ is a \mathbb{P} -name for a partial order.

Example

The sentence " $\omega_1 > \omega_1^L$ " is forceably necessary.

Definition

The *Maximality Principle* MP is the scheme of axioms stating that every forceably neccessary sentence is true.

This principle was introduced by Jonathan Stavi and Jouko Väänänen and independently by Joel Hamkins. The theory $\mathbf{ZFC} + \mathbf{MP}$ was shown to be equiconsistent with \mathbf{ZFC} .

We will discuss variations of this principle that allow formulas with parameters and restrict the class of partial orders considered.

Definition

Fix a pair $\Gamma = \langle \varphi_{\Gamma}, p_{\Gamma} \rangle$ where $\varphi_{\Gamma} \equiv \varphi_{\Gamma}(v_0, v_1)$ is a formula and p_{Γ} is a parameter.

Given a formula $\psi \equiv \psi(v_0, \dots, v_{n-1})$ and parameters x_0, \dots, x_{n-1} , we say that the statement $\psi(x_0, \dots, x_{n-1})$ is Γ -forceably necessary if there is a partial order \mathbb{P} with $\varphi_{\Gamma}(\mathbb{P}, p_{\Gamma})$ such that

$$1_{\mathbb{P}^*\dot{\mathbb{Q}}} \vdash \psi(\check{x}_0, \ldots, \check{x}_{n-1})$$

holds whenever $\dot{\mathbb{Q}}$ is a \mathbb{P} -name for a partial order with $\mathbb{1}_{\mathbb{P}} \Vdash \varphi_{\Gamma}(\dot{\mathbb{Q}}, \check{p}_{\Gamma}).$

Given a class P and n < ω, the axiom MPⁿ_Γ(P) is the statement that every Γ-forceably necessary Σ_n-statement with parameters in P is true. We present an example to show how such axioms can be used. In the following, let κ denote an uncountable regular cardinal with $\kappa = \kappa^{<\kappa}$.

Assume that the pair $\Gamma = \langle \varphi, \kappa \rangle$ satisfies $\varphi(Add(\kappa, (2^{\kappa})^+), \kappa)$ and

 $\mathbb{1}_{Add(\kappa,(2^{\kappa})^{+})} \Vdash \forall \mathbb{Q}[\mathbb{Q} \text{ is a partial order with } \varphi(\mathbb{Q},\check{\kappa}) \\ \longrightarrow \mathbb{Q} \text{ is } \langle\check{\kappa}\text{-closed and preserves all cardinals}].$

If $\mathbf{MP}_{\Gamma}^{3}(\mathbf{H}(\kappa^{+}))$ holds and A = p[T] is a Σ_{1}^{1} -subset of ${}^{\kappa}\kappa$ of cardinality 2^{κ} , then there is a $<\kappa$ -closed partial order \mathbb{P} with $\mathbb{1}_{\mathbb{P}} \Vdash "p[\check{T}] \neq \check{A}"$, because otherwise the Σ_{3} -statement " $|p[T]| < 2^{\kappa}$ " would be Γ -forceably necessary and therefore true.

Lemma

Let A = p[T] be a Σ_1^1 -subset of $\kappa \kappa$ such that $\mathbb{1}_{\mathbb{P}} \Vdash "p[\check{T}] \neq \check{A}"$ holds for some $<\kappa$ -closed partial order \mathbb{P} , then A contains a perfect subset, i.e. κ_2 embeds continuously into A.

Therefore $\mathbf{MP}^3_{\Gamma}(\mathrm{H}(\kappa^+))$ implies that every Σ^1_1 -subset of ${}^{\kappa}\kappa$ of cardinality 2^{κ} contains a perfect subset.

Maximality Principles

Closed maximality principles

Let $\Gamma_{\langle\kappa-cl.}$ be the pair defining the class of all $\langle\kappa$ -closed partial orders. The princples $\mathbf{MP}^n_{\Gamma_{\langle\kappa-cl.}}(\mathbf{H}(\kappa^+))$ have been extensively studied by Gunter Fuchs.

Theorem (Fuchs)

Let M be a set-sized transitive model of **ZFC** and κ be a regular cardinal with $\kappa = \kappa^{<\kappa}$ in M.

- If $\kappa < \delta \in M$ is regular in M with $\langle V_{\delta}^{M}, \epsilon \rangle < \langle M, \epsilon \rangle$ and G is $\operatorname{Col}(\kappa, <\delta)^{M}$ -generic over M, then $\operatorname{MP}^{n}_{\Gamma_{<\kappa-cl.}}(\operatorname{H}(\kappa^{+}))$ holds in $\langle M[G], \epsilon \rangle$ for all $n < \omega$.
- If $\mathbf{MP}^n_{\Gamma_{<\kappa-cl.}}(\mathbf{H}(\kappa^+))$ holds in $\langle M, \epsilon \rangle$ for all $n < \omega$ and $\delta = (\kappa^+)^M$, then $\langle \mathbf{L}_{\delta}, \epsilon \rangle < \langle \mathbf{L}_{\mathbf{M} \cap \mathbf{On}}, \epsilon \rangle$.

The axiom $\mathbf{MP}^2_{\Gamma_{\langle\kappa-cl.}}(\mathrm{H}(\kappa^+))$ settles the first two questions proposed above.

Theorem

Let κ be an uncountable regular cardinal with $\kappa = \kappa^{<\kappa}$ and assume that $\mathbf{MP}^2_{\Gamma_{<\kappa-cl}}(\mathrm{H}(\kappa^+))$ holds.

- The least upper bound for the order-types of Σ₁¹-well-orderings of subsets of κ_κ is equal to κ⁺.
- If λ < κ is a regular cardinal, then Club(S^κ_λ) is not a Δ¹₁-subset of ^κκ.

Observation

The statements $\mathfrak{b}_{\langle \mathcal{TO}_{\kappa,\leq} \rangle} = \mathfrak{d}_{\langle \mathcal{TO}_{\kappa,\leq} \rangle}$ and $\mathfrak{b}_{\langle \mathcal{TO}_{\kappa,\leq} \rangle} < 2^{\kappa}$ are not decided by $\mathbf{MP}_{\Gamma_{<\kappa-cl.}}^{n}(\mathbf{H}(\kappa^{+}))$ for all $n < \omega$.

Maximality principles with more parameters

Question

Is it possible to have such maximality principles for statements with parameters in $H(2^{\kappa})$ with $2^{\kappa} > \kappa^+$ if we only allow classes of forcings that preserve cardinals, like classes of $<\!\kappa$ -closed forcings that satisfy the κ^+ -chain condition?

Note that $\mathbf{MP}^{1}_{\Gamma}(\mathrm{H}(\nu))$ implies $\mathbf{FA}_{<\nu}(\mathbb{P})$ for every partial order \mathbb{P} of cardinality less than ν with $\varphi_{\Gamma}(\mathbb{P}, p_{\Gamma})$, i.e. for every collection \mathcal{D} of less than ν -many dense subsets of \mathbb{P} , there is a \mathcal{D} -generic filter in \mathbb{P} .

Saharon Shelah showed that there is a $< \kappa$ -closed partial order \mathbb{P} of cardinality κ^+ satisfying the κ^+ -chain condition such that $\mathbf{FA}_{\kappa^+}(\mathbb{P})$ fails.

Therefore we have to look for strengthenings of the above properties.

Definition

Given a cardinal κ , we call a partial order $\mathbb{P} < \kappa$ -coupling if there is a function $c: \mathbb{P} \longrightarrow \kappa$ such that for all $\leq_{\mathbb{P}}$ -descending chains $\langle p_{\alpha} \mid \alpha < \lambda \rangle$ and $\langle q_{\alpha} \mid \alpha < \lambda \rangle$ in \mathbb{P} with $\lambda < \kappa$, $c(p_{\alpha}) = c(q_{\alpha})$ and p_{α} and q_{α} are compatible for all $\alpha < \lambda$ there is a condition r in \mathbb{P} with $r \leq_{\mathbb{P}} p_{\alpha}, q_{\alpha}$ for all $\alpha < \lambda$.

Observation

If $\mathbb P$ is ${<}\kappa\text{-coupling, then }\mathbb P$ is ${<}\kappa\text{-closed.}$

Observation

If \mathbb{P} is $<\kappa$ -closed and well-met, then \mathbb{P} is $<\kappa$ -coupling. In particular, $Add(\kappa, \nu)$ is $<\kappa$ -coupling.

Definition

Given partial orders \mathbb{P} and \mathbb{Q} , we say that \mathbb{P} *is antichain reducible to* \mathbb{Q} if there is a function $r : \mathbb{P} \longrightarrow \mathbb{Q}$ that maps pairs of incompatible conditions in \mathbb{P} to incompatible conditions in \mathbb{Q} .

Observation

If $\mathbb P$ is antichain reducible to $\mathbb Q$ and $\mathbb Q$ satisfies the $\nu\text{-chain condition},$ then $\mathbb P$ satisfies the $\nu\text{-chain condition}.$

Theorem

Forcing iterations with $<\kappa$ -support of $<\kappa$ -coupling forcings that are antichain reducible to partial orders of the form $Add(\kappa,\nu)$ satisfy the κ^+ -chain condition.

Let Γ_{κ} be the pair defining the class of all $<\kappa$ -coupling partial orders that are antichain reducible to a partial order of the form $Add(\kappa, \nu)$.

Theorem

Let M be a set-sized transitive model of **ZFC** and κ be a regular cardinal with $\kappa = \kappa^{<\kappa}$ in M.

- If $\kappa < \delta \in M$ is regular in M with $\langle V_{\delta}^{M}, \epsilon \rangle < \langle M, \epsilon \rangle$, then there is a partial order $\mathbb{P} \in M$ such that the following statements hold.
 - \mathbb{P} is $<\kappa$ -closed and satisfies the κ^+ -chain condition in M.
 - If G is \mathbb{P} -generic over M, then $\delta = (2^{\kappa})^{M[G]}$ and $\mathbf{MP}^{n}_{\Gamma_{\kappa}}(\mathbf{H}(\delta))$ holds in $\langle M[G], \epsilon \rangle$ for all $n < \omega$.
- If $\delta = (2^{\kappa})^{M}$ and $\mathbf{MP}_{\Gamma_{\kappa}}^{n}(\mathbf{H}(\delta))$ holds in $\langle M, \epsilon \rangle$ for all $n < \omega$, then δ is regular in M and $\langle \mathbf{L}_{\delta}, \epsilon \rangle < \langle \mathbf{L}_{\mathbf{M} \cap \mathbf{On}}, \epsilon \rangle$.

It turns out that the axiom $\mathbf{MP}^3_{\Gamma_{\kappa}}(\mathrm{H}(2^{\kappa}))$ settles all of the above questions.

Theorem

Let κ be an uncountable regular cardinal with $\kappa = \kappa^{<\kappa}$ and assume that $\mathbf{MP}^3_{\Gamma_{\kappa}}(\mathrm{H}(2^{\kappa}))$ holds.

- The least upper bound for the order-types of Σ₁¹-well-orderings of subsets of ^κκ is equal to 2^κ.
- If λ < κ is a regular cardinal, then Club(S^κ_λ) is not a Δ¹₁-subset of ^κκ.

$$\bullet \mathfrak{b}_{\langle \mathcal{TO}_{\kappa}, \leq \rangle} = \mathfrak{d}_{\langle \mathcal{TO}_{\kappa}, \leq \rangle} = 2^{\kappa}.$$

The above statements can be derived from certain structural properties of Σ_1^1 -subsets that follow from $MP^3_{\Gamma_{\kappa}}(H(2^{\kappa}))$. In the following, I want to show how to derive the first statement. Fix an uncountable regular cardinal κ with $\kappa = \kappa^{<\kappa}$.

We consider degrees of forcing absoluteness under $<\kappa$ -closed forcings.

Proposition

If \mathbb{P} is a $\langle \kappa$ -closed partial order, then $\Sigma_1^1(\kappa \kappa)$ -absoluteness holds for \mathbb{P} , i.e. $H(\kappa^+)^V \prec_{\Sigma_1} H(\kappa^+)^{V[G]}$ holds whenever G is \mathbb{P} -generic over V.

Proposition

Let Γ be a pair defining a class of $<\kappa$ -closed partial orders and assume that $\mathbf{MP}^2_{\Gamma}(\mathrm{H}(\kappa^+))$ holds. If \mathbb{P} is a partial order with $\varphi_{\Gamma}(\mathbb{P}, p_{\Gamma})$, then $\Sigma_2^1(\kappa\kappa)$ -absoluteness holds for \mathbb{P} , i.e. we have $\mathrm{H}(\kappa^+)^{\mathrm{V}} <_{\Sigma_2} \mathrm{H}(\kappa^+)^{\mathrm{V}[G]}$ whenever G is \mathbb{P} -generic over V .

Remark

There is a $<\kappa$ -coupling partial order \mathbb{P} that is antichain reducible to $\operatorname{Add}(\kappa, (2^{\kappa}))$ such that $\Sigma_3^1({}^{\kappa}\kappa)$ -absoluteness fails for \mathbb{P} .

Our upper bound for the length of Σ_1^1 -well-orderings will be a consequence of the following lemma.

Lemma

Assume that $\Sigma_2^1(\kappa\kappa)$ -absoluteness holds for $\operatorname{Add}(\kappa, 1)$. If $\langle A, \prec \rangle$ is a Σ_1^1 -well-ordering of a subset of $\kappa\kappa$, then A contains no perfect subset.

Assume, toward a contradiction, that A has a perfect subset.

Pick trees S and T with A = p[S] and $\prec = p[T]$. Set $\mathbb{P} = \text{Add}(\kappa, 1)$ and let G be \mathbb{P} -generic over V.

By $\Sigma_2^1({}^{\kappa}\kappa)$ -absoluteness, $\prec^* = p[T]^{V[G]}$ is a well-ordering of $A^* = p[S]^{V[G]}$ and $A \notin A^*$. By the homogeneity of \mathbb{P} , there is a \mathbb{P} -name \dot{x}_0 with $\mathbb{1}_{\mathbb{P}} \Vdash "\dot{x}_0 \in p[\check{S}] \smallsetminus \check{A}"$.

Pick $G_{0,0} \times G_{0,1} \in V[G]$ that is $(\mathbb{P} \times \mathbb{P})$ -generic over V with $V[G] = V[G_{0,0}][G_{0,1}]$. Then $\dot{x}_0^{G_{0,0}} \neq \dot{x}_0^{G_{0,1}}$ and we may assume $\dot{x}_0^{G_{0,1}} \prec^* \dot{x}_0^{G_{0,0}} =: y_0$.

As above, the homogeneity of $\mathbb P$ implies that there is a $\mathbb P$ -name $\dot{x}_0 \in V[G_{0,0}]$ such that $1\!\!1_{\mathbb P} \Vdash ``\dot{x}_1 \notin \dot{V} \land \langle \dot{x}_1, \check{y}_0 \rangle \in p[\check{T}]"$. Pick $G_{1,0} \times G_{1,1} \in V[G]$ that is $(\mathbb P \times \mathbb P)$ -generic over $V[G_{0,0}]$ with $V[G] = V[G_{0,0}][G_{1,0}][G_{1,1}]$. Then $\dot{x}_1^{G_{1,0}} \neq \dot{x}_1^{G_{1,1}}$ and we may assume $\dot{x}_1^{G_{1,1}} \prec^* \dot{x}_1^{G_{1,0}} =: y_1 \prec^* y_0$.

By repeating this process, we can construct a <*-descending sequence $\langle y_n \in A^* \mid n < \omega \rangle$ in V[G], a contradiction.

Lemma

Assume that $\Sigma_2^1({}^{\kappa}\kappa)$ -absoluteness holds for $\operatorname{Add}(\kappa,1)$. If $\langle A, \prec \rangle$ is a Σ_1^1 -well-ordering of a subset of ${}^{\kappa}\kappa$, then A contains no perfect subset.

Corollary

If $\mathbf{MP}^3_{\Gamma_{\kappa}}(\mathrm{H}(\kappa^+))$ holds, then every Σ^1_1 -well-ordering of a subset of ${}^{\kappa}\kappa$ has length less than 2^{κ} .

The following theorem allows us to show that 2^{κ} is the correct upper bound in the above situation.

Theorem (L.)

Let κ be an uncountable regular cardinal with $\kappa = \kappa^{<\kappa}$ and A be a subset of ${}^{\kappa}\kappa$. Then there is a partial order $\mathbb{P}(A)$ with the following properties.

- $\mathbb{P}(A)$ is $<\kappa$ -coupling and is antichain reducible to $\mathrm{Add}(\kappa, 2^{\kappa})$.
- If G is P(A)-generic over V, Q is a σ-closed partial order in V[G] that preserves the regularity of κ and H is Q-generic over V[G], then A is a Σ₁¹-subset in V[G][H].

Corollary

If $\mathbf{MP}_{\Gamma_{\kappa}}^{2}(\mathrm{H}(2^{\kappa}))$ holds, then every subset of ${}^{\kappa}\kappa$ of cardinality less than 2^{κ} is a Σ_{1}^{1} -subset.

We can also use the above result to show that our maximality principle determines the value of the bounding and the dominating number of $\langle TO_{\kappa}, \leq \rangle$. We need the following lemma.

Lemma (Boundedness Lemma, Mekler/Väänänen)

If A is a Σ_1^1 -subset of \mathcal{TO}_{κ} , then there is an element T of \mathcal{TO}_{κ} with $S \leq T$ for all $S \in A$.

Corollary

If $\mathbf{MP}^2_{\Gamma_{\kappa}}(\mathrm{H}(2^{\kappa}))$ holds, then $\mathfrak{b}_{\langle \mathcal{TO}_{\kappa}, \leq \rangle} = \mathfrak{d}_{\langle \mathcal{TO}_{\kappa}, \leq \rangle} = 2^{\kappa}$.

Maximality Principles with more parameters

Thank you for listening!