Descriptive set theory at uncountable cardinals ${\bf \Delta}_1^1\text{-subsets of }{}^\kappa\kappa$

Philipp Moritz Lücke

Institut für Mathematische Logik und Grundlagenforschung Fachbereich Mathematik und Informatik der Universität Münster wwwmath.uni-muenster.de/logik/Personen/Luecke/

Bonn, 13.12.2010

Motivation

Let κ be an uncountable regular cardinal with $\kappa = \kappa^{<\kappa}$. The space of all functions $f : \kappa \longrightarrow \kappa$ is called generalized Baire Space for κ . We want to study the definable subsets of this space and their regularity properties.

Notation

- ▶ If X is a non-empty set, $n < \omega$ and $A \subseteq X^{n+1}$, then we define $\exists^x A = \{ \langle x_0, \dots, x_{n-1} \rangle \in X^n \mid (\exists x_n) \langle x_0, \dots, x_n \rangle \in A \}.$
- ▶ If $\lambda \in On$, then we let ${}^{\lambda}X$ denote the set of all functions f with dom $(f) = \lambda$ and ran $(f) \subseteq X$. Set ${}^{<\lambda}X = \bigcup_{\alpha < \lambda} {}^{\alpha}X$.
- If λ is closed under Gödel-Pairing ≺·, ·≻, f ∈ ^λX and α < λ, then we define (f)_α to be the unique function g ∈ ^λX with g(β) = f(≺α, β≻) for all β < λ.</p>

Notation (cont.)

- Given a non-empty set X, we call a set T a *tree on* X^n if $T \subseteq ({}^{<\gamma}X)^n$ for some $\gamma \in \text{On}$ and the following statements hold.
 - For all $\langle s_0, \ldots, s_{n-1} \rangle \in T$, $\ln(s_0) = \cdots = \ln(s_{n-1})$.
 - If $\langle s_0, \ldots, s_{n-1} \rangle \in T$ and $\alpha < \ln(s_0)$, then $\langle s_0 \upharpoonright \alpha, \ldots, s_{n-1} \upharpoonright \alpha \rangle \in T$.
- We call $|T| = \sup\{\operatorname{dom}(t) + 1 \mid t \in T\}$ the height of T.
- ► A tuple $\langle x_0, \ldots, x_{n-1} \rangle \in (|T|X)^n$ is a *cofinal branch through* T if $\langle x_0 \upharpoonright \alpha, \ldots, x_{n-1} \upharpoonright \alpha \rangle \in T$ for all $\alpha < |T|$.
- We let [T] denote the set of all cofinal branches through T.
- If T is a tree on X^{n+1} of height λ , then we define

$$\rho[T] = \exists^x [T] \subseteq (^{\lambda}X)^n.$$

Projective subsets of ${}^\kappa\kappa$

Definition

Let κ be an infinite cardinal.

- A subset A of $({}^{\kappa}\kappa)^n$ is a Σ_1^1 -subset if there is a tree T on κ^{n+1} of height κ with $A = \rho[T]$.
- ▶ A subset A of $({}^{\kappa}\kappa)^n$ is a Π^1_k -subset if $({}^{\kappa}\kappa)^n \setminus A$ is a Σ^1_k -subset.
- A subset A of (^κκ)ⁿ is a Σ¹_{k+1}-subset if there is a Π¹_k-subset B of (^κκ)ⁿ⁺¹ with A = ∃^xB.
- A subset A of (^κκ)ⁿ is a Δ¹_k-subset if it is both a Σ¹_k-subset and a Π¹_k-subset.

Proposition

Let κ be an uncountable regular cardinal with $\kappa = \kappa^{<\kappa}$ and $A \subseteq {}^{\kappa}\kappa$. The following statements are equivalent.

• A is
$$\Sigma_1(H_{\kappa^+}, \{x\})$$
 for some $x \in {}^{\kappa}\kappa$.

Harrington's Theorem

The motivation of this work is to find a version of the following result for uncountable regular cardinals κ with $\kappa^{<\kappa} = \kappa$.

Theorem (Harrington, 1977)

Assume $\omega_1 = \omega_1^L$. For every subset A of ${}^{\omega}\omega$, there is a partial order \mathbb{P} with the following properties.

- \blacktriangleright \mathbb{P} satisfies the countable chain condition.
- If G then is \mathbb{P} -generic over V, then A is a Π_2^1 -subset of ${}^{\omega}\omega$ in $\mathcal{V}[G]$.

It turns out that assumptions like " $\omega_1 = \omega_1^{L}$ " are not needed in the uncountable version. We state the main result.

Main Result

Theorem

Let κ be a regular uncountable cardinal with $\kappa = \kappa^{<\kappa}$. If A is a subset of ${}^{\kappa}\kappa$, then there is a partial order \mathbb{P} with the following properties.

- ▶ P is < κ-closed, satisfies the κ⁺-chain condition and has cardinality at most 2^κ.
- If G is \mathbb{P} -generic over V, then A is a Δ_1^1 -subset of $\kappa \kappa$ in V[G].

Absoluteness

The proof of this result shows that this coding has certain absoluteness properties in V[G]: There are trees $T_0, T_1 \in V[G]$ on $\kappa \times \kappa$ of height κ and a non-trivial class Γ of $< \kappa$ -closed forcings that satisfy the κ^+ -chain condition such that $\rho[T_0]^{V[G][G']} = A$ and $\rho[T_1]^{V[G][G']} = ({}^{\kappa}\kappa)^{V[G][G']} \setminus A$ holds whenever G' is \mathbb{Q} -generic over V[G] with $\mathbb{Q} \in \Gamma$.

The Cohen-Forcing $Fn(\kappa, 2, \kappa)$ is contained in this class Γ and this allows us to analyze certain regularity properties of A in V[G].

Moreover, this absoluteness allows us to prove the following result.

Δ_2^1 -well-orderings of $\kappa \kappa$

Theorem

If κ is a regular uncountable cardinal with $\kappa = \kappa^{<\kappa}$, then there is a partial order \mathbb{P} with the following properties.

- ▶ P is < κ-closed, satisfies the κ⁺-chain condition and has cardinality at most 2^κ.
- If G is P-generic over V, then there is a well-ordering of (^κκ)^{V[G]} whose graph is a Δ¹₂-subset of ^κκ × ^κκ in V[G].

Δ_1^1 -well-orderings of $\kappa \kappa$

It is natural to ask whether the above result is optimal. If $2^{\kappa} = \kappa^+$ holds, then it is possible to modify the proof of the last result to force a Δ_1^1 -well-ordering of κ_{κ} .

Theorem

If κ is a regular uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a partial order \mathbb{P} with the following properties.

- If G is P-generic over V, then there is a well-ordering of (^κκ)^{V[G]} whose graph is a Δ¹₁-subset of ^κκ × ^κκ in V[G].

In this talk, I would like to present ...

- ► ...a forcing that codes subsets of ^κκ into the cofinal branches of a κ-tree and the strong absoluteness properties of this forcing. This absoluteness will replace assumptions like "ω₁ = ω₁^L".
- ► ... the idea behind the construction of the forcing that produces a Δ¹₂-well-ordering of ^κκ. Using the above forcing, I will outline the proof of a *baby-version* of the well-ordering result that forces a Δ¹₃-well-ordering of ^κκ.

Kurepa Tree Coding

Theorem

Let κ be a regular uncountable cardinal with $\kappa^{<\kappa} = \kappa$. For every subset A of ${}^{\kappa}\kappa$, there is a partial order \mathbb{P} with the following properties.

- ▶ P is < κ-closed, satisfies the κ⁺-chain condition and has cardinality at most 2^κ.
- If G is \mathbb{P} -generic over V, then there is a tree $T \in V[G]$ on $\kappa \times \kappa$ of height κ such that

$$\mathcal{V}[G] \models \left[\mathbb{1}_{\mathbb{Q}} \Vdash \check{A} = \rho[\check{T}]\right]$$

holds for all $< \kappa$ -closed partial orders $\mathbb{Q} \in \mathcal{V}[G]$.

The forcing $\mathbb{P}(A)$

Remember that a tree T on X^n of height κ is a κ -tree if the α -th level $T_{\alpha} = \{t \in T \mid \ln(t) = \alpha\}$ has cardinality less than κ for all $\alpha < \kappa$. A κ -Kurepa tree is a κ -tree that has at least κ^+ -many distinct cofinal branches. Given $A \subseteq {}^{\kappa}\kappa$, we will construct a forcing $\mathbb{P}(A)$ that adds a binary κ -tree whose cofinal branches code the individual elements of A. This forcing is a modification of the standard forcing that adds a κ -Kurepa tree.

From now on, we fix a regular uncountable cardinal κ with $\kappa = \kappa^{<\kappa}$ and an enumeration $\langle s_{\alpha} \mid \alpha < \kappa \rangle$ of ${}^{<\kappa}\kappa$ with $\ln(s_{\alpha}) \leq \alpha$ for all $\alpha < \kappa$ and $\{\alpha < \kappa \mid s = s_{\alpha}\}$ unbounded in κ for all $s \in {}^{<\kappa}\kappa$.

Given $A \subseteq {}^{\kappa}\kappa$, we define $\mathbb{P}(A)$ to be the partial order consisting of conditions $p = \langle T_p, f_p, h_p \rangle$ with the following properties.

- ▶ T_p is a subtree of ${}^{<\kappa}2$ that satisfies the following statements.
 - T_p has cardinality less than κ .
 - ▶ Each $t \in T_p$ with dom $(t) + 1 < |T_p|$ has two immediate successors in T_p .
 - Each $t \in T_p$ is contained in a cofinal branch through T_p .
- ► $f_p : A \xrightarrow{part} [T_p]$ is a partial function such that $dom(f_p)$ has cardinality less than κ .
- ▶ $h_p: A \xrightarrow{part} \kappa$ is a partial function with the following properties.
 - $\bullet \ \operatorname{dom}(h_p) = \operatorname{dom}(f_p).$
 - ▶ For all $x \in dom(h_p)$ and $\alpha, \beta < |T_p|$ with $\alpha = \prec h_p(x), \beta \succ$, we have

$$s_{\beta} \subseteq x \iff f_p(x)(\alpha) = 1.$$

We define $p\leq_{\mathbb{P}(A)}q$ to hold if the following statements are satisfied.

- T_p is an end-extension of T_q .
- ▶ For all $x \in \text{dom}(f_q)$, $x \in \text{dom}(f_p)$ and $f_q(x)$ is an initial segment of $f_p(x)$.

$$\blacktriangleright h_q = h_p \restriction \operatorname{dom}(h_q).$$

Lemma

 $\mathbb{P}(A)$ is $< \kappa$ -closed, satisfies the κ^+ -chain condition and has cardinality at most 2^{κ} .

The next lemma will allow us to show that various subset of $\mathbb{P}(A)$ are dense.

Lemma

Fix a condition $p \in \mathbb{P}(A)$ and sequences \vec{c} and \vec{t} as follows.

$$\quad \bullet \ \vec{c} = \langle c_x \in {}^{\kappa}2 \mid x \in \operatorname{dom}(f_p) \rangle.$$

There is a $\leq_{\mathbb{P}(A)}$ -descending sequence $\langle p_{\mu} \in \mathbb{P}(A) \mid |T_p| \leq \mu < \kappa \rangle$ such that $p = p_{|T_p|}$ and the following statements hold for all $|T_p| \leq \mu < \kappa$.

•
$$\operatorname{dom}(f_{p_{\mu}}) = \operatorname{dom}(f_p)$$
 and $|T_{p_{\mu}}| = \mu$.

- If $x \in \text{dom}(f_p)$ and $\mu \neq \prec h_p(x), \beta \succ$ for all $\beta < \kappa$, then $f_{p_{\mu+1}}(x)(\mu) = c_x(\mu).$
- If $\mu \in \text{Lim}$ and $t_{\mu} \in T_{p_{\mu+1}}$, then $t_{\mu} \in \text{ran}(f_{p_{\mu}})$.

Proof.

We construct the sequences inductively. If $\mu \in \text{Lim}$, then we define $T_{p_{\mu}} = \bigcup \{T_{p_{\bar{\mu}}} \mid |T_p| \leq \bar{\mu} < \mu\}$. Given $x \in \text{dom}(f_p)$, we define $f_{p_{\mu}}(x) = \bigcup \{f_{p_{\bar{\mu}}}(x) \mid |T_p| \leq \bar{\mu} < \mu\}$. If $\mu = \bar{\mu} + 1$ with $\bar{\mu} \notin \text{Lim}$, then $T_{p_{\bar{\mu}}}$ has a maximal level and there is only one suitable tree $T_{p_{\mu}}$ of height μ end-extending it. For all $x \in \text{dom}(f_p)$, we define $f_{p_{\mu}}(x)$ to be the unique element s of $\mu 2$ with $f_{p_{\bar{\mu}}}(x) \subseteq s$ and

$$s(\bar{\mu}) = \begin{cases} 1, & \text{if } \bar{\mu} = \prec h_p(x), \beta \succ \text{ and } s_\beta \subseteq x, \\ 0, & \text{if } \bar{\mu} = \prec h_p(x), \beta \succ \text{ and } s_\beta \nsubseteq x, \\ c_x(\bar{\mu}), & \text{otherwise.} \end{cases}$$

Finally, if $\mu = \overline{\mu} + 1$ with $\overline{\mu} \in \text{Lim}$, then we define B to be the set of all branches through $T_{p_{\overline{\mu}}}$. By the definition of $\mathbb{P}(A)$, for each $t \in T_{p_{\overline{\mu}}}$ there is a $b_t \in B$ with $t \subseteq b_t$ and $b_t \neq t_{\overline{\mu}}$. We define

$$T_{p_{\mu}} = T_{p_{\bar{\mu}}} \cup \{ f_{p_{\bar{\mu}}}(x) \mid x \in \operatorname{dom}(f_p) \} \cup \{ b_t \mid t \in T_{p_{\bar{\mu}}} \}.$$

The partial function $f_{p_{\mu}}$ is defined as in the first successor case.

Now it is easy to check that the following subsets are dense in $\mathbb{P}(A).$

- $\blacktriangleright \ C_{\mu} = \{p \in \mathbb{P}(A) \ | \ |T_p| > \mu\} \text{ for all } \mu < \kappa.$
- $D_x = \{ p \in \mathbb{P}(A) \mid x \in \operatorname{dom}(f_p) \}$ for all $x \in A$.
- ► $E_{x,y} = \{p \in \mathbb{P}(A) \mid x, y \in \text{dom}(f_p), f_p(x) \neq f_p(y)\}$ for all $x, y \in A$.
- $\blacktriangleright \ F_z = \{ p \in \mathbb{P}(A) \ | \ |T_p| = \mu + 1, \ z \upharpoonright \mu \notin T_p \} \text{ for all } z \in {}^{\kappa}2.$

Corollary

Let G be $\mathbb{P}(A)$ -generic over V. The following statements hold in $\mathcal{V}[G]$.

- $T_G = \bigcup_{p \in G} T_p$ is a binary κ -tree with $[T_G] \cap V = \emptyset$.
- ▶ If we define $F_G(x) = \bigcup \{ f_p(x) \mid p \in G, x \in \text{dom}(f_p) \}$ for all $x \in A$, then $F_G : A \longrightarrow [T_G]$ is an injection.
- Let $H_G = \bigcup_{p \in G} h_g$. Then $H_G : A \longrightarrow \kappa$ and

$$s_{\beta} \subseteq x \iff F_G(x)(\prec H_G(x), \beta \succ) = 1$$

for all $x \in A$ and $\beta < \kappa$.

Next, we show that the branches of $T_{\cal G}$ correspond to elements of ${\cal A}$ in an absolute way.

Lemma

Let G_0 be $\mathbb{P}(A)$ -generic over V, $\mathbb{Q} \in V[G_0]$ be a $< \kappa$ -closed forcing and G_1 be \mathbb{Q} -generic over $V[G_0]$. Then

 $V[G_0][G_1] \models "F_{G_0} : A \longrightarrow [T_{G_0}]^{V[G_0][G_1]}$ is surjective".

Proof.

There is $\dot{\mathbb{Q}} \in \mathrm{V}^{\mathbb{P}(A)}$ with $\mathbb{1}_{\mathbb{P}(A)} \Vdash$ " $\dot{\mathbb{Q}}$ is a $< \check{\kappa}$ -closed forcing" and $\mathbb{Q} = \dot{\mathbb{Q}}^{G_0}$. Let $\dot{T} \in \mathrm{V}^{\mathbb{P}*\dot{\mathbb{Q}}}$ be the canonical name for T_{G_0} and $\dot{F} \in \mathrm{V}^{\mathbb{P}*\dot{\mathbb{Q}}}$ be the canonical name for F_{G_0} . Assume, toward a contradiction, that there is an $x \in [T_{G_0}]^{\mathrm{V}[G_0][G_1]} \setminus \mathrm{ran}(F_{G_0})$. Let $\tau \in \mathrm{V}^{\mathbb{P}*\dot{\mathbb{Q}}}$ be a name for x. By the above corollary, $x \notin \mathrm{V}$ and there is a $\langle p_0, \dot{q}_0 \rangle \in G_0 * G_1$ with

$$\langle p_0, \dot{q}_0 \rangle \Vdash [\tau \in [\dot{T}] \land \tau \notin \check{\mathbf{V}} \land \tau \notin \operatorname{ran}(\dot{F})].$$

Since $\mathbb{P} * \dot{\mathbb{Q}}$ is $< \kappa$ -closed, we can apply the above assumptions to construct a $\langle p, \dot{q} \rangle \leq_{\mathbb{P}*\dot{\mathbb{Q}}} \langle p_0, \dot{q}_0 \rangle$ and $t \in [T_p]$ with $|T_p| \in \text{Lim}$, $t \notin \text{ran}(f_p)$ and $\langle p, \dot{q} \rangle \Vdash \check{t} \subseteq \tau$. In particular, $\langle p, \dot{q} \rangle \Vdash \check{t} \in \dot{T}$. Using the Extension-Lemma, we can find a $p_* \leq_{\mathbb{P}(A)} p$ with $|T_{p_*}| = |T_p| + 1$ and $t \notin T_{p_*}$. But this means $\langle p_*, \dot{q} \rangle \Vdash \check{t} \notin \dot{T}$, a contradiction.

Corollary

Let G_0 be $\mathbb{P}(A)$ -generic over V, $\mathbb{Q} \in V[G_0]$ be a $< \kappa$ -closed forcing and G_1 be \mathbb{Q} -generic over $V[G_0]$. The following statements are equivalent for $y \in ({}^{\kappa}\kappa)^{V[G_0][G_1]}$.

▶ $y \in A$.

• There is $z \in [T_{G_0}]^{V[G_0][G_1]}$ and $\gamma < \kappa$ such that

$$s_{\beta} \subseteq y \iff z(\prec \gamma, \beta \succ) = 1$$
 (1)

holds for all $\beta < \kappa$

Proof.

We prove the non-trivial implication. Let $z \in [T_{G_0}]^{V[G_0][G_1]}$ and $\gamma < \kappa$ witness that (1) holds for $y \in ({}^{\kappa}\kappa)^{V[G_0][G_1]}$. By the above lemma, we have $z = F_{G_0}(x) \in V[G_0]$ for some $x \in A$. Pick $p \in G_0$ with $x \in \operatorname{dom}(f_p)$.

Proof (cont.).

Assume, toward a contradiction, that $\gamma \neq h_p(x) = H_{G_0}(x)$. By the Extension-Lemma, this implies that the set

$$D_s = \{q \leq_{\mathbb{P}(A)} p \ | \ |T_q| = \mu + 1, \ \mu = \prec \gamma, \beta \succ, \ f_q(x)(\mu) = 0, \ s_\beta = s \}$$

is dense below p for all $s \subseteq y$. Hence $z(\prec \gamma, \beta \succ) = F_{G_0}(x)(\prec \gamma, \beta \succ) = 0$ for some $\beta < \kappa$ with $s_\beta = s \subseteq y$ and this means $s \nsubseteq y$, a contradiction. Therefore $\gamma = H_{G_0}(x)$ and we can conclude that

$$s_{\beta} \subseteq y \iff z(\prec \gamma, \beta \succ) = 1$$
$$\iff F_{G_0}(x)(\prec H_{G_0}(x), \beta \succ) = 1 \iff s_{\beta} \subseteq x$$

holds for all $\beta < \kappa$. This proves $y = x \in A$.

Proof of the Σ_1^1 -Coding Theorem.

Let G_0 be $\mathbb{P}(A)$ -generic over V. In $V[G_0]$, we define T to be the tree on $\kappa \times \kappa$ consisting of elements $\langle s, t \rangle \in {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ such there are $\gamma < \kappa$ and $t_0 \in T_G$ with the following properties.

- ▶ $\operatorname{lh}(s) = \operatorname{lh}(t) = \operatorname{lh}(t_0)$ and $t(\alpha) = \prec t_0(\alpha), \gamma \succ$ for all $\alpha \in \operatorname{dom}(s)$.
- ▶ For all $\alpha \in dom(s)$ and $\beta < \kappa$ with $\alpha = \prec \gamma, \beta \succ$, we have

$$s_{\beta} \subseteq s \iff t_0(\alpha) = 1.$$

Fix $x \in A$ and define $z \in {}^{\kappa}\kappa$ by $z(\alpha) = \prec F_{G_0}(x)(\alpha), H_{G_0}(x) \succ$ for all $\alpha < \kappa$. Given $\alpha < \mu < \kappa$ with $\alpha = \prec H_{G_0}(x), \beta \succ$, we have

$$s_{\beta} \subseteq x \upharpoonright \mu \iff s_{\beta} \subseteq x \iff (F_{G_0}(x) \upharpoonright \mu)(\alpha) = 1.$$

This shows that $F_{G_0}(x) \upharpoonright \mu$ and $H_{G_0}(x)$ witness that $\langle x \upharpoonright \mu, z \upharpoonright \mu \rangle \in T$ for all $\mu < \kappa$ and therefore $x \in \rho[T]$.

Proof (cont.).

Next, let $\mathbb{Q} \in V[G_0]$ be a $< \kappa$ -closed forcing and G_1 be \mathbb{Q} -generic over $V[G_0]$. For all $\langle y, z \rangle \in [T]^{V[G_0][G_1]}$, there is $\gamma < \kappa$ and $z_0 \in [T_{G_0}]^{V[G_0][G_1]}$ with $z(\alpha) = \prec z_0(\alpha), \gamma \succ$ for all $\alpha < \kappa$. Let $\alpha, \beta, \mu < \kappa$ with $\alpha = \prec \gamma, \beta \succ$ and $\alpha < \mu$. We have

$$s_\beta \subseteq y \iff s_\beta \subseteq y \upharpoonright \mu \iff z_0(\alpha) = 1$$

and, by the above Corollary, this implies $y \in A$. This shows

$$A = \rho[T]^{\mathcal{V}[G_0][G_1]}.$$

Generic F_{σ} -Covers

Given $A \subseteq {}^{\kappa}\kappa$, we define $\mathbb{Q}(A)$ to be the partial order consisting of conditions $p = \langle t_p, a_p \rangle$ with $t_p \in {}^{<\kappa}2$ and $a_p \in [A]^{<\kappa}$. The ordering $p \leq_{\mathbb{Q}(A)} q$ is defined by the following clauses.

•
$$t_q \subseteq t_p$$
 and $a_q \subseteq a_p$.

$$(\forall x \in a_q) (\forall \alpha \in \operatorname{dom}(t_p) \setminus \operatorname{dom}(t_q)) \ [s_\alpha \subseteq x \to t_p(\alpha) = 0].$$

It is easy to check that this is in fact a partial order. In addition, it is easy to see that two conditions p and q are compatible if and only if t_p and t_q are compatible as elements of $\langle \kappa 2 \rangle$ and $\langle t_p \cup t_q, a_p \cup a_q \rangle \leq_{\mathbb{Q}(A)} p, q$.

Lemma

 $\mathbb{Q}(A)$ is $< \kappa$ -closed, satisfies the κ^+ -chain condition and has cardinality at most 2^{κ} .

Theorem

Let G be $\mathbb{Q}(A)$ -generic over V. If we define $t_G = \bigcup \{t_p \mid p \in G\}$, then $t_G \in {}^{\kappa}2$ and

$$x \in A \iff (\exists \beta < \kappa) (\forall \beta \le \alpha < \kappa) \ [s_{\alpha} \subseteq x \to t_G(\alpha) = 0]$$

for all $x \in ({}^{\kappa}\kappa)^{V}$. Moreover,

$$G = \{ p \in \mathbb{Q}(A) \mid t_p \subseteq t_G \land (\forall \alpha \in \kappa \setminus \operatorname{dom}(t_p)) (\forall x \in a_p) \\ [s_\alpha \subseteq x \to t_G(\alpha) = 0] \}.$$

Δ_2^1 -well-orderings of ${}^\kappa\kappa$

In this section, we will construct a partial order that forces the existence of a well-ordering of ${}^{\kappa}\kappa$ whose graph is a Δ_3^1 -subset of ${}^{\kappa}\kappa \times {}^{\kappa}\kappa$.

We sketch the idea behind this construction.

- Use the above result to find partial order \mathbb{P} that makes a well-ordering $<_V$ of $({}^{\kappa}\kappa)^V \Sigma_1^1$ -definable in any further forcing extension by a $< \kappa$ -closed partial order. Since \mathbb{P} has cardinality at most 2^{κ} , we may assume $\mathbb{P} \subseteq {}^{\kappa}\kappa$. Let G_0 be \mathbb{P} -generic over V.
- ▶ In V[G₀], find a partial order $\mathbb{Q} = \dot{\mathbb{Q}}^{G_0} = \mathbb{Q}(\dot{A}^{G_0})$ that makes $G_0 \subseteq (\kappa \kappa)^{\mathrm{V}}$ definable. Let G_1 be \mathbb{Q} -generic over V[G₀].
- In $V[G_0 * G_1]$, there is a definable function

$$\eta^*: ({}^{\kappa}\kappa)^{\mathcal{V}[G_0*G_1]} \longrightarrow ({}^{\kappa}\kappa)^{\mathcal{V}}$$

that sends each $x \in ({}^{\kappa}\kappa)^{V[G_0*G_1]}$ to the $<_V$ -least $x_0 \in ({}^{\kappa}\kappa)^V$ that codes a $(\mathbb{P} * \dot{\mathbb{Q}})$ -nice name for x. This function induces a definable well-ordering of $({}^{\kappa}\kappa)^{V[G_0*G_1]}$.

Let $<_V$ be a well-ordering of ${}^\kappa\kappa$ and $\mathbb P$ be the partial order that codes the set

$$W = \{ x \in {}^{\kappa}\kappa \mid (x)_0 <_{\mathcal{V}} (x)_1, \ (x)_\alpha = \mathrm{id}_{\kappa} \text{ for all } 1 < \alpha < \kappa \}$$

as a Σ_1^1 -subset using the above result. Since \mathbb{P} has cardinality at most 2^{κ} and satisfies the κ^+ -chain condition, there is a surjection

$$\xi: {}^{\kappa}\kappa \longrightarrow \{\mathcal{A} \subseteq \mathbb{P} \mid \mathcal{A} \text{ is an anti-chain in } \mathbb{P}\}.$$

There are canonical names $\dot{A}, \dot{\mathbb{Q}} \in V^{\mathbb{P}}$ with

 $\dot{A}^{G_0} = \{ x \in ({}^{\kappa}\kappa)^{\mathcal{V}} \mid \xi(x) \cap G_0 \neq \emptyset \},\$

and $\dot{\mathbb{Q}}^{G_0} = \mathbb{Q}(\dot{A}^{G_0})$ whenever G_0 is \mathbb{P} -generic over V.

Let $G = G_0 * G_1$ be $(\mathbb{P} * \dot{\mathbb{Q}})$ -generic over V. From now on, we work in V[G].

Claim.

 $({}^{\kappa}\kappa)^{V}$ and $\dot{A}^{G_{0}}$ are Σ_{1}^{1} -subsets of ${}^{\kappa}\kappa$ and $<_{V}$ is a Σ_{1}^{1} -subset of ${}^{\kappa}\kappa \times {}^{\kappa}\kappa$ in V[G].

Given $x \in (\kappa \kappa)^{V}$, we define

$$\sigma_x = \{ \langle \check{\alpha}, p \rangle \in \mathbf{V}^{\mathbb{P}} \times \mathbb{P} \mid \alpha < \kappa, \ p \in \xi((x)_{\alpha}) \} \in \mathbf{V}^{\mathbb{P}}$$

 σ_x is clearly a \mathbb{P} -nice name for a subset of κ and for every nice name $\sigma \in V^{\mathbb{P}}$ for a subset of κ there is an $x \in ({}^{\kappa}\kappa)^{V}$ with $\sigma = \sigma_x$.

We define E^{G_0} to be the set of all pairs $\langle x, y \rangle$ with the following properties.

Claim.

 E^{G_0} is a Δ_2^1 -subset of $\kappa \kappa \times \kappa \kappa$ and $(\kappa \kappa)^{V[G_0]} = \exists^x E^{G_0}$. In particular, $(\kappa \kappa)^{V[G_0]}$ is a Σ_2^1 -subset of $\kappa \kappa$ in V[G].

Given $x \in {}^{\kappa}\kappa$, we define a condition $p_x \in \mathbb{Q}({}^{\kappa}\kappa)$ by setting

 $s_{p_x} = (x)_1 \upharpoonright ((x)_0(0))$

and

$$a_{p_x} = \{ (x)_{\alpha} \in {}^{\kappa}\kappa \mid 1 < \alpha \le (x)_0(1) \}.$$

Clearly, for every $p \in \mathbb{Q}(\kappa \kappa)$, there is an $x \in \kappa \kappa$ with $p = p_x$.

Claim.

The set $\overline{G}_1 = \{x \in ({}^{\kappa}\kappa)^{V[G]} \mid p_x \in G_1\}$ is a Δ_2^1 -subset of ${}^{\kappa}\kappa$ in V[G].

Next, we define N to be the set consisting of all $x \in {}^{\kappa}\kappa$ such that

$$\{p_{(x)_{\prec\alpha,\beta\succ}} \in \mathbb{Q}(^{\kappa}\kappa) \mid \beta < \kappa\}$$

is an anti-chain in $\mathbb{Q}({}^{\kappa}\kappa)$ for all $\alpha < \kappa$.

Claim. N is a Δ_1^1 -subset of $\kappa \kappa$.

Given $x \in N$, we define

 $\tau_x = \{ \langle \check{\alpha}, p_{(x)_{\prec \alpha, \beta \succ}} \rangle \in \mathbf{V}^{\mathbb{Q}^{(\kappa_{\kappa})}} \times \mathbb{Q}^{(\kappa_{\kappa})} \mid \alpha, \beta < \kappa \}.$

 τ_x is a $\mathbb{Q}(\kappa\kappa)$ -nice name for a subset of κ and for every $\mathbb{Q}(\kappa\kappa)$ -nice name τ for a subset of κ there is an $x \in \kappa\kappa$ with $\tau = \tau_x$.

We define E^{G_1} to be the set of all pairs $\langle x, y \rangle$ with the following properties.

•
$$x \in ({}^{\kappa}\kappa)^{\mathcal{V}[G]}$$
, $y \in N \cap \mathcal{V}[G_0]$ and $\tau_y \in \mathcal{V}[G_0]^{\dot{\mathbb{Q}}^{G_0}}$.

For all
$$\alpha, \beta < \kappa$$
, $\tau_y^{G_1} = \{ \prec \beta, \alpha \succ \mid x(\alpha) = \beta \}.$

Claim.

 $E^{G_1} \text{ is a } \Sigma^1_2 \text{-subset of } {}^\kappa \kappa \times {}^\kappa \kappa \text{ in } \mathcal{V}[G] \text{ and } ({}^\kappa \kappa)^{\mathcal{V}[G]} = \exists^x E^{G_1}. \quad \Box$

Define a function $\eta : {}^{\kappa}\kappa \longrightarrow \mathcal{P}\left(({}^{\kappa}\kappa)^{V}\right)$ by setting

 $\eta(x) = \{x_0 \in ({}^{\kappa}\kappa)^{\mathcal{V}} \mid (\exists x_1 \in ({}^{\kappa}\kappa)^{\mathcal{V}[G_0]}) \ [E^{G_0}(x_1,x_0) \wedge E^{G_1}(x,x_1)]\}.$

The above claims show that $\eta(x) \neq \emptyset$ and $\eta(x) \cap \eta(y) = \emptyset$ for all $x, y \in ({}^{\kappa}\kappa)^{\mathcal{V}[G]}$ with $x \neq y$. This shows that the induced function

$$\eta^*: {}^{\kappa}\kappa \longrightarrow ({}^{\kappa}\kappa)^{\mathcal{V}}; \ x \longmapsto \min_{<_{\mathcal{V}}}(\eta(x))$$

is injective. Define a binary relation <* on ${}^\kappa\kappa$ by setting

$$x <^* y \iff \eta^*(x) <_{\mathcal{V}} \eta^*(y)$$

for all $x, y \in {}^{\kappa}\kappa$.

Claim.

The relation $<^*$ is a well-ordering of ${}^{\kappa}\kappa$ and the graph of $<^*$ is a Δ^1_3 -subset of ${}^{\kappa}\kappa$ in V[G].

37 / 40

Some Questions

Definition

- ▶ A subset $U \subseteq {}^{\kappa}\kappa$ is open if, for every $x \in U$, there is an $\alpha < \kappa$ with $\{y \in {}^{\kappa}\kappa \mid x \upharpoonright \alpha \subseteq y\} \subseteq U$.
- A subset B ⊆ ^κκ is κ⁺-Borel if it is an element of the smallest κ⁺-algebra on ^κκ containing all open subsets of ^κκ.

Remark

Every κ^+ -Borel subset is a Δ_1^1 -subset. There are Δ_1^1 -subsets that are not κ^+ -Borel.

Some Questions

Question

Given $A \subseteq {}^{\kappa}\kappa$, is there $a < \kappa$ -closed partial order \mathbb{P} that satisfies the κ^+ -chain condition and forces A to be a κ^+ -Borel subset in every \mathbb{P} -generic extension of V?

Remark

To obtain a positive answer, it suffices to constructed a partial order \mathbb{P} with the above properties that forces $({}^{\kappa}\kappa)^{\mathrm{V}}$ to be a κ^+ -Borel subset without a perfect subset in every \mathbb{P} -generic extension of V .

Some Questions

Question

Does $2^{\kappa} > \kappa^+$ imply that there is no well-ordering of ${}^{\kappa}\kappa$ whose graph is Δ^1_1 -subset of ${}^{\kappa}\kappa \times {}^{\kappa}\kappa$?

If the answer to this question is *no*, then it is natural to ask the following question.

Question

Can we always find a < κ -closed partial order that satisfies the κ^+ -chain condition and forces the existence of a well-ordering of ${}^{\kappa}\kappa$ whose graph is a Δ_1^1 -subset of ${}^{\kappa}\kappa \times {}^{\kappa}\kappa$?

Thank you for listening!