Specializing Aronszajn trees and square sequences by forcing

Philipp Moritz Lücke

Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn
http://www.math.uni-bonn.de/people/pluecke/

Barcelona, 07/16/2013
Specializing κ^+-Aronszajn trees
We start by recalling some basic definitions concerning trees of uncountable height.

Definition

Let θ be an uncountable regular cardinal. A tree T of height θ is a θ-Aronszajn tree if T has no cofinal branches and every level of T has cardinality less than θ.

Definition

Let κ be an infinite cardinal and T be a tree. We say that T is κ-special if there is a function $f : T \rightarrow \kappa$ that is injective on chains in T.
Given an infinite cardinal κ and a κ^+-Aronszajn tree T, there is a canonical $<\kappa$-closed forcing \mathbb{P}_T that specializes T. This partial order consists of partial specializing functions $q : T \xrightarrow{\text{part}} \kappa$ of cardinality less than κ ordered by reverse inclusion.

In the case “$\kappa = \omega$”, this forcing can be used to show that Martin’s Axiom implies that all Aronszajn trees are special.

Theorem (Baumgartner-Malitz-Reinhardt)

If T is an Aronszajn tree, then \mathbb{P}_T satisfies the countable chain condition.
In contrast, it is consistent that forcings of the form \mathbb{P}_T can collapse cardinals. This can be shown using a notion introduced by Laver.

Definition (Laver)

Let θ be an uncountable regular cardinal and T be a tree of cardinality and height θ. A sequence

$$\langle x_\gamma : \omega \rightarrow T(\gamma) \mid \gamma \in A \rangle$$

is an ω-ascent path through T if the following statements hold.

- A is an unbounded subset of θ.
- If $\gamma, \delta \in A$ with $\gamma < \delta$, then there is an $N < \omega$ such that
 $$x_\gamma(n) <_T x_\delta(n)$$

for all $N \leq n < \omega$.
$A \subseteq \theta$

$T(\gamma)$

$x_\gamma(n)$

$n < \omega$

$\gamma \in A$

θ

0
$A \subseteq \theta$

$T(\gamma)$

$T(\delta)$

$\exists N < \omega$

$\forall N \leq m < \omega$

$x_\delta(m) <_T x_\gamma(m)$
Theorem (Shelah)

Let \(\kappa \) be a cardinal of uncountable cofinality and \(T \) be a \(\kappa^+ \)-Aronszajn tree. If there is an \(\omega \)-ascent paths through \(T \), then \(T \) is not \(\kappa \)-special.

Theorem (Shelah-Stanley/Todorčević)

Let \(\kappa \) be a cardinal of uncountable cofinality. If \(\Box_\kappa \) holds, then there is a \(\kappa^+ \)-Aronszajn tree with an \(\omega \)-ascent path.

Corollary

If \(\Box_\kappa \) holds, then there is a \(\kappa^+ \)-Aronszajn tree \(T \) with the property that forcing with \(\mathbb{P}_T \) collapses \(\kappa^+ \).
Given an infinite cardinal κ with $\kappa = \kappa^{<\kappa}$, we want to characterize the class of all κ^+-Aronszajn trees T such that the partial order \mathbb{P}_T satisfies the κ^+-chain condition.

This characterization uses the following variation of the above concept.

Definition

Let κ be an infinite cardinal and T be a tree of height κ^+. Given $\lambda < \kappa$, we call a sequence

$$\langle x_\gamma : \lambda \rightarrow T(\gamma) \mid \gamma \in A \rangle$$

of injections a λ-path through T if the following statements hold.

- A is an unbounded subset of κ^+.
- If $\gamma, \delta \in A$ with $\gamma < \delta$, then there is an $\alpha < \lambda$ with

 $$x_\gamma(\alpha) <_T x_\delta(\alpha).$$
T \\

$A \subseteq \theta$ \\

$T(\gamma)$ \\

$x_\gamma(\alpha)$ \\

$\alpha < \lambda$ \\

$\gamma \in A$
$A \subseteq \theta$

$\exists \alpha < \lambda$

$x_\delta(\alpha) \prec_T x_\gamma(\alpha)$
It is easy to see that the existence of a λ-path through T implies the existence of an antichain of cardinality κ^+ in \mathbb{P}_T:

Fix such a λ-path $\langle x_\gamma : \lambda \longrightarrow T(\gamma) \mid \gamma \in A \rangle$. Given $\gamma \in A$, define p_γ to be the unique condition in \mathbb{P}_T with $\text{dom}(p_\gamma) = \text{ran}(x_\gamma)$ and

$$p_\gamma(x_\gamma(\alpha)) = \alpha$$

for every $\alpha < \lambda$.

Fix $\gamma, \delta \in A$ with $\gamma < \delta$. Then there is an $\alpha < \lambda$ with $x_\gamma(\alpha) <_T x_\delta(\alpha)$ and

$$p_\gamma(x_\gamma(\alpha)) = p_\delta(x_\delta(\alpha)).$$

This shows that the conditions p_γ and p_δ are incompatible in \mathbb{P}_T.
It turns out that the converse of the above implication is also true.

Theorem

Let κ be an infinite cardinal with $\kappa = \kappa^{<\kappa}$. The following statements are equivalent for every κ^+-Aronszajn tree T.

- \mathbb{P}_T does not satisfy the κ^+-chain condition.
- There is a λ-path through T for some $\lambda < \kappa$.

This characterization also shows that the forcing \mathbb{P}_T is the canonical way to obtain an outer model in which T is κ-special, the cardinals κ and κ^+ are preserved and the assumption $\kappa = \kappa^{<\kappa}$ still holds.
Corollary

In the situation of the above theorem, the following statements are equivalent.

- \mathbb{P}_T satisfies the κ^+-chain condition.
- There is an outer model W of V such that κ is a cardinal with $\kappa = \kappa^{<\kappa}$ in W, $(\kappa^+)^V = (\kappa^+)^W$ and T is κ-special in W.

Proof of “\Leftarrow”.

Assume, towards a contradiction, that there is a λ-path $\langle x_\gamma : \lambda \rightarrow T(\gamma) \mid \gamma \in A \rangle$ through T for some $\lambda < \kappa$ and let $f : T \rightarrow \kappa$ denote the specializing function in W.

Since $\kappa = \kappa^\lambda$ in W, there are $\gamma, \delta \in A$ with $\gamma \neq \delta$ and $f(x_\gamma(\alpha)) = f(x_\delta(\alpha))$ for all $\alpha < \lambda$. Then there is an $\alpha < \lambda$ with $x_\gamma(\alpha) <_T x_\delta(\alpha)$, a contradiction.
Specializing □(κ⁺)-sequences
We are interested in examples of κ^+-Aronszajn trees without λ-paths. These examples will be provided by $\Box(\kappa^+)$-sequences.

Definition

Given an uncountable regular cardinal θ, we call a sequence $\vec{C} = \langle C_\alpha \mid \alpha < \theta \rangle$ a $\Box(\theta)$-sequence if the following statements hold for all $\alpha < \theta$.

- C_α is a club subset of α and $C_{\alpha+1} = \{\alpha\}$.
- If $\bar{\alpha} \in \text{Lim}(C_\alpha)$, then $C_{\bar{\alpha}} = C_\alpha \cap \bar{\alpha}$.
- If C is a club subset of θ, then there is a $\beta \in \text{Lim}(C)$ with $C_\beta \neq C \cap \beta$.

Given such a $\Box(\theta)$-sequence \vec{C}, we define $T(\vec{C})$ to be the tree $\langle \theta, <_{\vec{=}}) \rangle$ with

$$\alpha <_{\vec{=}} \beta \iff \alpha \in \text{Lim}(C_\beta).$$

If $\theta = \kappa^+$, then we say that the sequence \vec{C} is special if the tree $T(\vec{C})$ is κ-special.
Let κ be an infinite cardinal and \vec{C} be a $\square(\kappa^+)$-sequence. Todorčević constructed a canonical κ^+-Aronszajn tree $T(\rho_0\vec{C})$ from \vec{C} using minimal walks through \vec{C}.

It can be shown that there is no λ-path through a tree of the form $T(\rho_0\vec{C})$. Since the tree $T_{\vec{C}}$ is κ-special if and only if the tree $T(\rho_0\vec{C})$ is κ-special, this gives rise to the following result.

Theorem

Let κ be an infinite cardinal with $\kappa = \kappa^{<\kappa}$. If \vec{C} is a $\square(\kappa^+)$-sequence, then the partial order $\mathbb{P}_{T_{\vec{C}}}$ satisfies the κ^+-chain condition.
An application: Generalizations of Martin’s Axiom to higher cardinalities
Motivation

We consider generalizations of Martin’s Axiom to classes of \(\sigma\)-closed forcings satisfying the \(\aleph_2\)-chain condition.

Definition

Given a partial order \(\mathbb{P}\) and an infinite cardinal \(\kappa\), we let \(\text{FA}_\kappa(\mathbb{P})\) denote the statement that for every collection \(\mathcal{D}\) of \(\kappa\)-many dense subsets of \(\mathbb{P}\), there is a filter \(G\) in \(\mathbb{P}\) that meets all elements of \(\mathcal{D}\).
The following result shows that the obvious generalization of Martin’s Axiom to this class of forcings is inconsistent.

Theorem (Shelah)

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} > \aleph_2$, then there is a σ-closed partial order \mathbb{P} satisfying the \aleph_2-chain condition such that $\text{FA}_{\aleph_2}(\mathbb{P})$ fails.

Therefore we have to restrict ourselves to certain classes of certain classes of σ-closed partial orders satisfying the \aleph_2-chain condition.
Baumgartner provided a consistent example of such a generalization.

Definition

We let BA denote the statement that $\text{FA}_{\aleph_2}(\mathbb{P})$ holds for every partial order with the following properties.

- \mathbb{P} is well-met ("compatible conditions have an infimum").
- \mathbb{P} is σ-closed.
- \mathbb{P} is \aleph_1-linked ("there is a map $c : \mathbb{P} \to \omega_1$ such that all conditions p and q in \mathbb{P} with $c(p) = c(q)$ are compatible").

Theorem (Baumgartner)

If GCH holds, then there is a σ-closed partial order satisfying the \aleph_2-chain condition that forces BA to hold.
Using ideas from Baumgartner’s proof, it is possible to prove the consistency of stronger generalizations using large cardinals.

We let C denote the *Chang Model*, i.e. the smallest inner model closed under countable sequences.

Definition

We let $\text{GMA}(C)$ denote the statement that $\text{FA}_{\aleph_2}(\mathbb{P})$ holds for every partial order with the following properties.

- \mathbb{P} is well-met.
- \mathbb{P} is σ-closed.
- \mathbb{P} is representable in a partial order \mathbb{Q} that satisfies the \aleph_2-chain condition and is an element of C ("there is a map $c : \mathbb{P} \rightarrow \mathbb{Q}$ that sends pairs of incompatible conditions to pairs of incompatible conditions").
Theorem

Assume that GCH holds, κ is a weakly compact cardinal and G is $\text{Col}(\omega_1, <\kappa)$-generic over V. In $V[G]$, there is a σ-closed partial order satisfying the \aleph_2-chain condition that forces $\text{GMA}(C)$ to hold.

This result raises the following questions.

Question

Is the use of large cardinals necessary to prove the consistency of stronger generalizations of Martin’s Axiom? More specifically, if ω_2 is not a large cardinal in L, does $\text{FA}_{\aleph_2}(P)$ fail for some σ-closed partial order P that satisfies the \aleph_2-condition and is an element of C?
The above results allow us to conclude that this axiom causes certain $\square(\omega_2)$-sequences to be special.

Corollary

Assume that $\text{GMA}(C) + \text{CH}$ holds. Then every $\square(\omega_2)$-sequence contained in C is special.

It is possible to derive consistency strength from the above conclusion with the help of classical results of Jensen and methods to construct non-special square sequences developed by Todorčević.
Theorem

Assume that CH holds and every \(\square(\omega_2) \)-sequence contained in \(L[x] \) for some \(x : \omega \rightarrow \text{On} \) is special. Let \(\theta = \omega_2 \).

- \(\theta \) is a Mahlo cardinal in \(L \).

- If \(V \) is a forcing extension of \(L \) by a forcing that either is \(\sigma \)-strategically closed in \(L \) or satisfies the \(\theta \)-chain condition in \(L \), then \(\theta \) is weakly compact in \(L \).
Thank you for listening!