Specializing Aronszajn trees and square sequences by forcing

Philipp Moritz Lücke

Mathematisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn http://www.math.uni-bonn.de/people/pluecke/

Barcelona, 07/16/2013

Specializing κ^+ -Aronszajn trees

We start by recalling some basic definitions concerning trees of uncountable height.

Definition

Let θ be an uncountable regular cardinal. A tree T of height θ is a θ -Aronszajn tree if T has no cofinal branches and every level of T has cardinality less than θ .

Definition

Let κ be an infinite cardinal and T be a tree. We say that T is κ -special if there is a function $f: T \longrightarrow \kappa$ that is injective on chains in T.

Given an infinite cardinal κ and a κ^+ -Aronszajn tree T, there is a canonical $\langle \kappa$ -closed forcing \mathbb{P}_T that specializes T. This partial order consists of partial specializing functions $q: T \xrightarrow{part} \kappa$ of cardinality less than κ ordered by reverse inclusion.

In the case " $\kappa = \omega$ ", this forcing can be used to show that Martin's Axiom implies that all Aronszajn trees are special.

Theorem (Baumgartner-Malitz-Reinhardt)

If T is an Aronszajn tree, then \mathbb{P}_T satisfies the countable chain condition.

In contrast, it is consistent that forcings of the form \mathbb{P}_T can collapse cardinals. This can be shown using a notion introduced by Laver.

Definition (Laver)

Let θ be an uncountable regular cardinal and T be a tree of cardinality and height θ . A sequence

$$\langle x_{\gamma}: \omega \longrightarrow T(\gamma) \mid \gamma \in A \rangle$$

is an ω -ascent path through T if the following statements hold.

- A is an unbounded subset of θ .
- If $\gamma, \delta \in A$ with $\gamma < \delta$, then there is an $N < \omega$ such that

$$x_{\gamma}(n) <_T x_{\delta}(n)$$

for all $N \leq n < \omega$.

Theorem (Shelah)

Let κ be a cardinal of uncountable cofinality and T be a κ^+ -Aronszajn tree. If there is an ω -ascent paths through T, then T is not κ -special.

Theorem (Shelah-Stanley/Todorčević)

Let κ be a cardinal of uncountable cofinality. If \Box_{κ} holds, then there is a κ^+ -Aronszajn tree with an ω -ascent path.

Corollary

If \Box_{κ} holds, then there is a κ^+ -Aronszajn tree T with the property that forcing with \mathbb{P}_T collapses κ^+ .

Given an infinite cardinal κ with $\kappa = \kappa^{<\kappa}$, we want to characterize the class of all κ^+ -Aronszajn trees T such that the partial order \mathbb{P}_T satisfies the κ^+ -chain condition.

This characterization uses the following variation of the above concept.

Definition

Let κ be an infinite cardinal and T be a tree of height κ^+ . Given $\lambda < \kappa$, we call a sequence

$$\langle x_{\gamma} : \lambda \longrightarrow T(\gamma) \mid \gamma \in A \rangle$$

of injections a λ -path through T if the following statements hold.

- A is an unbounded subset of κ^+ .
- If $\gamma, \delta \in A$ with $\gamma < \delta$, then there is an $\alpha < \lambda$ with

$$x_{\gamma}(\alpha) <_T x_{\delta}(\alpha).$$

It is easy to see that the existence of a λ -path through T implies the existence of an antichain of cardinality κ^+ in \mathbb{P}_T :

Fix such a λ -path $\langle x_{\gamma} : \lambda \longrightarrow T(\gamma) \mid \gamma \in A \rangle$. Given $\gamma \in A$, define p_{γ} to be the unique condition in \mathbb{P}_T with dom $(p_{\gamma}) = \operatorname{ran}(x_{\gamma})$ and

$$p_{\gamma}(x_{\gamma}(\alpha)) = \alpha$$

for every $\alpha < \lambda$. Fix $\gamma, \delta \in A$ with $\gamma < \delta$. Then there is an $\alpha < \lambda$ with $x_{\gamma}(\alpha) <_T x_{\delta}(\alpha)$ and

$$p_{\gamma}(x_{\gamma}(\alpha)) = p_{\delta}(x_{\delta}(\alpha)).$$

This shows that the conditions p_{γ} and p_{δ} are incompatible in \mathbb{P}_T .

It turns out that the converse of the above implication is also true.

Theorem

Let κ be an infinite cardinal with $\kappa = \kappa^{<\kappa}$. The following statements are equivalent for every κ^+ -Aronszajn tree T.

- \mathbb{P}_T does not satisfy the κ^+ -chain condition.
- There is a λ -path through T for some $\lambda < \kappa$.

This characterization also shows that the forcing \mathbb{P}_T is the canonical way to obtain an outer model in which T is κ -special, the cardinals κ and κ^+ are preserved and the assumption $\kappa = \kappa^{<\kappa}$ still holds.

Corollary

In the situation of the above theorem, the following statements are equivalent.

- \mathbb{P}_T satisfies the κ^+ -chain condition.
- There in an outer model W of V such that κ is a cardinal with $\kappa = \kappa^{<\kappa}$ in W, $(\kappa^+)^{V} = (\kappa^+)^{W}$ and T is κ -special in W.

Proof of " \Leftarrow ".

Assume, towards a contradiction, that there is a λ -path $\langle x_{\gamma} : \lambda \longrightarrow T(\gamma) \mid \gamma \in A \rangle$ through T for some $\lambda < \kappa$ and let $f: T \longrightarrow \kappa$ denote the specializing function in W. Since $\kappa = \kappa^{\lambda}$ in W, there are $\gamma, \delta \in A$ with $\gamma \neq \delta$ and $f(x_{\gamma}(\alpha)) = f(x_{\delta}(\alpha))$ for all $\alpha < \lambda$. Then there is an $\alpha < \lambda$ with $x_{\gamma}(\alpha) <_{T} x_{\delta}(\alpha)$, a contradiction.

Specializing $\Box(\kappa^+)$ -sequences

We are interested in examples of κ^+ -Aronszajn trees without λ -paths. These examples will be provided by $\Box(\kappa^+)$ -sequences.

Definition

Given an uncountable regular cardinal θ , we call a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha < \theta \rangle$ a $\Box(\theta)$ -sequence if the following statements hold for all $\alpha < \theta$.

- C_{α} is a club subset of α and $C_{\alpha+1} = \{\alpha\}$.
- If $\bar{\alpha} \in \text{Lim}(C_{\alpha})$, then $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$.
- If C is a club subset of θ , then there is a $\beta \in \text{Lim}(C)$ with $C_{\beta} \neq C \cap \beta$.

Given such a $\Box(\theta)$ -sequence \vec{C} , we define $T(\vec{C})$ to be the tree $\langle \theta, <_{\vec{C}} \rangle$ with

$$\alpha <_{\vec{C}} \beta \iff \alpha \in \operatorname{Lim}(C_{\beta}).$$

If $\theta = \kappa^+$, then we say that the sequence \vec{C} is *special* if the tree $T(\vec{C})$ is κ -special.

Let κ be an infinite cardinal and \vec{C} be a $\Box(\kappa^+)$ -sequence. Todorčević constructed a canonical κ^+ -Aronszajn tree $T(\rho_0^{\vec{C}})$ from \vec{C} using minimal walks through \vec{C} .

It can be shown that there is no λ -path through a tree of the form $T(\rho_0^{\vec{C}})$. Since the tree $T_{\vec{C}}$ is κ -special if and only if the tree $T(\rho_0^{\vec{C}})$ is κ -special, this gives rise to the following result.

Theorem

Let κ be an infinite cardinal with $\kappa = \kappa^{<\kappa}$. If \vec{C} is a $\Box(\kappa^+)$ -sequence, then the partial order $\mathbb{P}_{T_{\vec{C}}}$ satisfies the κ^+ -chain condition.

An application: Generalizations of Martin's Axiom to higher cardinalities

We consider generalizations of Martin's Axiom to classes of σ -closed forcings satisfying the \aleph_2 -chain condition.

Definition

Given a partial order \mathbb{P} and an infinite cardinal κ , we let $\mathsf{FA}_{\kappa}(\mathbb{P})$ denote the statement that for every collection \mathcal{D} of κ -many dense subsets of \mathbb{P} , there is a filter G in \mathbb{P} that meets all elements of \mathcal{D} . The following result shows that the obvious generalization of Martin's Axiom to this class of forcings is inconsistent.

Theorem (Shelah)

If $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} > \aleph_2$, then there is a σ -closed partial order \mathbb{P} satisfying the \aleph_2 -chain condition such that $\mathsf{FA}_{\aleph_2}(\mathbb{P})$ fails.

Therefore we have to restrict ourselves to certain classes of certain classes of σ -closed partial orders satisfying the \aleph_2 -chain condition.

Baumgartner provided a consistent example of such a generalization.

Definition

We let BA denote the statement that $FA_{\aleph_2}(\mathbb{P})$ holds for every partial order with the following properties.

- P is well-met ("compatible conditions have an infimum").
- **P** is σ -closed.
- \mathbb{P} is \aleph_1 -linked ("there is a map $c : \mathbb{P} \longrightarrow \omega_1$ such that all conditions p and q in \mathbb{P} with c(p) = c(q) are compatible").

Theorem (Baumgartner)

If GCH holds, then there is a σ -closed partial order satisfying the \aleph_2 -chain condition that forces BA to hold.

Using ideas from Baumgartner's proof, it is possible to prove the consistency of stronger generalizations using large cardinals.

We let C denote the *Chang Model*, i.e. the smallest inner model closed under countable sequences.

Definition

We let $\mathsf{GMA}(C)$ denote the statement that $\mathsf{FA}_{\aleph_2}(\mathbb{P})$ holds for every partial order with the following properties.

- $\blacksquare \mathbb{P}$ is well-met.
- **P** is σ -closed.
- P is representable in a partial order Q that satisfies the ℵ₂-chain condition and is an element of C ("there is a map c: P → Q that sends pairs of incompatible conditions to pairs of incompatible conditions").

Theorem

Assume that GCH holds, κ is a weakly compact cardinal and G is $\operatorname{Col}(\omega_1, <\kappa)$ -generic over V. In V[G], there is a σ -closed partial order satisfying the \aleph_2 -chain condition that forces GMA(C) to hold.

This result raises the following questions.

Question

Is the use of large cardinals necessary to prove the consistency of stronger generalizations of Martin's Axiom ? More specifically, if ω_2 is not a large cardinal in L, does $\mathsf{FA}_{\aleph_2}(\mathbb{P})$ fail for some σ -closed partial order \mathbb{P} that satisfies the \aleph_2 -condition and is an element of C ? The above results allow us to conclude that this axiom causes certain $\Box(\omega_2)$ -sequences to be special.

Corollary

Assume that $\mathsf{GMA}(C) + CH$ holds. Then every $\Box(\omega_2)$ -sequence contained in C is special.

It is possible to derive consistency strength from the above conclusion with the help of classical results of Jensen and methods to construct non-special square sequences developed by Todorčević.

Theorem

Assume that CH holds and every $\Box(\omega_2)$ -sequence contained in L[x] for some $x : \omega \longrightarrow$ On is special. Let $\theta = \omega_2$.

- θ is a Mahlo cardinal in L.
- If V is a forcing extension of L by a forcing that either is σ-strategically closed in L or satisfies the θ-chain condition in L, then θ is weakly compact in L.

Thank you for listening!