Continuous images of closed sets in generalized Baire spaces

ESI Workshop: Forcing and Large Cardinals

Philipp Moritz Lücke (joint work with Philipp Schlicht)

Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn http://www.math.uni-bonn.de/people/pluecke/

Vienna, 09/26/2013

Generalized Baire spaces

Let κ be an infinite cardinal with $\kappa = \kappa^{<\kappa}$.

Given a cardinal μ , we equip the set ${}^{\kappa}\mu$ consisting of all functions $x: \kappa \longrightarrow \mu$ with the topology whose basic open sets are of the form

$$N_s = \{ x \in {}^{\kappa} \mu \mid s \subseteq x \},$$

where s is an element of the set ${}^{<\kappa}\mu$ of all functions $t: \alpha \longrightarrow \mu$ with $\alpha < \kappa$.

We call the space ${}^{\kappa}\kappa$ the generalized Baire space of κ .

Σ_1^1 -subsets of $\kappa \kappa$

A subset A of $\kappa \kappa$ is a Σ_1^1 -subset if it is equal to the projection of a closed subset of $\kappa \kappa \times \kappa \kappa$. We let $\Sigma_1^1(\kappa)$ denote the class of all such subsets.

It is easy to see that a subset of ${}^{\kappa}\kappa$ is an element of $\Sigma_1^1(\kappa)$ if and only if it is equal to a continuous image of a closed subset of ${}^{\kappa}\kappa$.

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$, then a subset of ${}^{\kappa}\kappa$ is contained in $\Sigma_1^1(\kappa)$ if and only if it is definable over the structure (H_{κ^+}, \in) by a Σ_1 -formula with parameters.

This shows that in this case many interesting and important sets are equal to continuous images of closed subsets.

We present an example of such a subset.

Example

The club filter

 $\operatorname{Club}_{\kappa} = \{ x \in {}^{\kappa}\kappa \mid \exists C \subseteq \kappa \ club \ \forall \alpha \in C \ x(\alpha) = 1 \}$

is a continuous image of the space ${}^\kappa\kappa.$

Let T denote the tree consisting of all pairs (s,t) in $\gamma 2 \times \gamma 2$ such that $\gamma \in \text{Lim} \cap \kappa$, $t(\alpha) \leq s(\alpha)$ for all $\alpha < \gamma$ and t is the characteristic function of a club subset of γ .

Then T is isomorphic to the tree ${}^{<\kappa}\kappa$, because it is closed under increasing sequences of length $<\kappa$ and every node has κ -many direct successors.

If we equip the set [T] of all κ -branches through T with the topology whose basic open sets consists of all extensions of elements of T, then we obtain a topological space homeomorphic to $\kappa \kappa$.

Since the projection $p:[T] \longrightarrow {}^{\kappa}\kappa$ onto the union of the first coordinate is continuous, we can conclude that the set $\operatorname{Club}_{\kappa}$ is equal to a continuous image of ${}^{\kappa}\kappa$.

Classes of continuous images

Given an uncountable cardinal κ with $\kappa = \kappa^{<\kappa}$, we study the following subclasses of $\Sigma_1^1(\kappa)$ that arise by restricting the classes of used continuous functions and closed subsets.

- The class $\Sigma_1^1(\kappa)$ of continuous images of closed subsets of ${}^{\kappa}\kappa$.
- The class $\mathbf{C}(\kappa)$ of continuous images of $\kappa \kappa$.
- The class $\mathbf{I}_{cl}(\kappa)$ of continuous injective images of closed subsets of ${}^{\kappa}\kappa$.
- The class $\mathbf{I}(\kappa)$ of continuous injective images of $\kappa \kappa$.

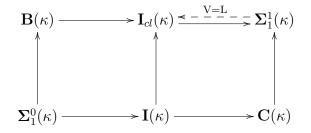
We will compare these classes with the following collections.

- The class $\Sigma_1^0(\kappa)$ of open subsets of ${}^{\kappa}\kappa$.
- The class $\mathbf{B}(\kappa)$ of κ -Borel subsets of $\kappa \kappa$, i.e. the subsets contained in the smallest algebra of sets on $\kappa \kappa$ that contains all open subsets and is closed under κ -unions.

In the case " $\kappa = \omega$ ", the relationship of the above classes is described by the following complete diagram.

$$\Sigma_1^0(\omega) \longrightarrow \mathbf{I}(\omega) \longrightarrow \mathbf{I}_{cl}(\omega) = \mathbf{B}(\omega) \longrightarrow \Sigma_1^1(\omega) = \mathbf{C}(\omega)$$

Our results will show that these classes behave in a very different way if κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$. These results are summarized by the following complete diagram.



In particular, we will show that the following statements fail to generalize to higher cardinalities.

- Every closed subset of the space ${}^{\omega}\omega$ is equal to a continuous image of ${}^{\omega}\omega$.
- Every continuous injective image of the space ${}^{\omega}\omega$ is a Borel subset.

In the following, we construct the corresponding counterexamples.

Continuous images of ${}^\kappa\kappa$

Continuous images of $\kappa \kappa$

Retracts

An important topological property of spaces of the form ${}^{\omega}\mu$ is the fact that non-empty closed subsets are retracts of the whole space, i.e. given an non-empty closed subset A of ${}^{\omega}\mu$ there is a continuous surjection $f:{}^{\omega}\mu \longrightarrow A$ such that $f \upharpoonright A = \mathrm{id}_A$.

An easy argument shows that this property fails if κ is uncountable.

Proposition

Suppose that κ is an uncountable regular cardinal and $\mu > 1$ is a cardinal. Let A denote the set of all x in ${}^{\kappa}\mu$ such that $x(\alpha) = 1$ for only finitely many $\alpha < \kappa$. Then A is a closed subset of ${}^{\kappa}\mu$ that is not a retract of ${}^{\kappa}\mu$.

Proof.

Assume, towards a contradiction, that there is a continuous function $f: {}^{\kappa}\mu \longrightarrow A$ with $f \upharpoonright A = \mathrm{id}_A$. We construct a strictly increasing sequence $\langle \gamma_n < \kappa \mid n < \omega \rangle$ of ordinals such that $\gamma_0 = 1$ and

$$N_{x_n \upharpoonright \gamma_{n+1}} \subseteq f^{-1} " N_{x_n \upharpoonright (\gamma_n+1)}$$

holds for all $n < \omega$ and the unique $x_n \in {}^{\kappa}2$ with

$$x_n^{-1}$$
 " {1} = { $\gamma_0, \ldots, \gamma_n$ }.

Let $x \in {}^{\kappa}2$ be the unique function with

$$x^{-1}$$
 " {1} = { $\gamma_n \mid n < \omega$ }.

Then our construction yields

$$f(x) \upharpoonright \sup_{n < \omega} \gamma_n = x \upharpoonright \sup_{n < \omega} \gamma_n$$

and this implies that $f(x) \notin A$, a contradiction.

Continuous Images

Every closed subset of ${}^{\omega}\omega$ is a continuous image of ${}^{\omega}\omega$ and hence every Σ_1^1 -subset is equal to a continuous image of ${}^{\omega}\omega$.

The following result shows that this statement also does not generalize to uncountable regular cardinals.

Theorem (L.-Schlicht)

Let κ be an uncountable cardinal with $\kappa = \kappa^{<\kappa}$. Then there is a closed non-empty subset of ${}^{\kappa}\kappa$ that is not equal to a continuous image of ${}^{\kappa}\kappa$.

Proof.

It suffices to construct a closed subset A of $\kappa \kappa$ with the property that A is not equal to the projection p[T] of a $<\kappa$ -closed subtree T of $<\kappa \kappa < <\kappa \kappa$ without terminal nodes.

Given $\lambda \leq \kappa$ closed under Gödel pairing and $x \in {}^{\lambda}2$, define a binary relation \in_x on λ by setting

$$\alpha \in_x \beta \iff x(\prec \alpha, \beta \succ) = 1.$$

Define

$$W = \{x \in {}^{\kappa}2 \mid (\kappa, \in_x) \text{ is a well-order}\}.$$

Then W is a closed subset of $\kappa \kappa$.

Assume, towards a contradiction, that there is a $<\kappa$ -closed subtree T of ${}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ without terminal nodes such that W = p[T].

Proof (cont.).

Given $(s,t) \in T$ and $\alpha < \kappa$, define

$$r(s,t,\alpha) = \sup\{\operatorname{rnk}_{\in_x}(\alpha) \mid x \in p([T] \cap N_{(s,t)})\} \leq \kappa^+$$

Then $r(\emptyset, \emptyset, \alpha) = \kappa^+$ for every $\alpha < \kappa$.

Claim.

Let $(s,t) \in T$ and $\alpha < \kappa$ with $r(s,t,\alpha) = \kappa^+$. If $\gamma < \kappa^+$, then there is $(u,v) \in T$ extending (s,t) and $\alpha < \beta < \kappa$ such that dom(u) is closed under Gödel pairing, $\beta < \ln(u)$, $\beta \in_u \alpha$, and $r(u,v,\beta) \ge \gamma$.

Proof of the Claim.

There is a $(x, y) \in [T] \cap N_{(s,t)}$ with $\operatorname{rnk}_{\in x}(\alpha) \geq \gamma + \kappa$. Hence we can find $\alpha < \beta < \kappa$ with $\gamma \leq \operatorname{rnk}_{\in x}(\beta) < \gamma + \kappa$. Pick $\delta > \max\{\alpha, \beta, \ln(s)\}$ closed under Gödel pairing and define (u, v) to be the node $(x \upharpoonright \delta, y \upharpoonright \delta)$ extending (s, t). Since \in_u is a well-ordering of $\ln(u)$, we have $\beta \in_u \alpha$. Finally, (x, y) witnesses that $r(u, v, \beta) \geq \gamma$.

Proof (cont.).

Claim.

If $(s,t) \in T$ and $\alpha < \kappa$ with $r(s,t,\alpha) = \kappa^+$, then there is a node (u,v)in T extending (s,t) and $\alpha < \beta < \ln(u)$ such that $\ln(u)$ is closed under Gödel pairing, $\beta \in_u \alpha$ and $r(u,v,\beta) = \kappa^+$.

This claim shows that there are strictly increasing sequences $\langle (s_n, t_n) \mid n < \omega \rangle$ of nodes in T and $\langle \beta_n \mid n < \omega \rangle$ of elements of κ with $\blacksquare \ln(s_n)$ is closed under Gödel pairing,

Let $s = \bigcup_{n < \omega} s_n$ and $t = \bigcup_{n < \omega} t_n$. Then $(s, t) \in T$, since T is ω -closed. By our assumptions on T, there is a cofinal branch (x, y) in [T] through (s, t). Then $\beta_{n+1} \in_x \beta_n$ for every $n < \omega$ and this shows that $x \notin W = p[T]$, a contradiction.

Continuous injective images of $\kappa \kappa$

Next we construct a continuous injective image of $\kappa \kappa$ that is not a κ -Borel subset of $\kappa \kappa$. In order to prove that certain sets are not κ -Borel, we need to introduce an important regularity property of subsets of $\kappa \kappa$.

We say that a subset A of ${}^{\kappa}\kappa$ is κ -Baire measurable if there is an open subset U of ${}^{\kappa}\kappa$ and a sequence $\langle N_{\alpha} \mid \alpha < \kappa \rangle$ of nowhere dense subsets of ${}^{\kappa}\kappa$ such that the symmetric difference $A_{\Delta}U$ is a subset of $\bigcup_{\alpha < \kappa} N_{\alpha}$.

A standard prove shows that every κ -Borel subset of ${}^{\kappa}\kappa$ is κ -Baire measurable. Moreover it is consistent that all Δ_1^1 -subsets of ${}^{\kappa}\kappa$ are κ -Baire measurable.

Theorem (L.-Schlicht)

Let κ be an uncountable cardinal with $\kappa = \kappa^{<\kappa}$. Then there is a continuous injective image of κ that is not κ -Baire measurable.

To motivate this result, we first consider the case $\kappa = \aleph_1 = 2^{\aleph_0}$ and show that a well-known collection of combinatorial objects provides an example of a set with the above properties.

Definition

- Given $\gamma \in On$, a sequence $\langle C_{\alpha} \mid \alpha < \gamma \rangle$ is a *coherent C*-sequence if the following statements hold for all $\alpha < \gamma$.
 - If α is a limit ordinal, then C_{α} is a closed unbounded subset of α .
 - If $\alpha = \bar{\alpha} + 1$, then $C_{\alpha} = \{\bar{\alpha}\}.$
 - If $\bar{\alpha} \in \text{Lim}(C_{\alpha})$, then $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$.
- A coherent C-sequence $\langle C_{\alpha} \mid \alpha < \gamma \rangle$ with $\gamma \in \text{Lim is trivial if}$ there is a closed unbounded subset C_{γ} of γ that threads \vec{C} , i.e. the sequence $\langle C_{\alpha} \mid \alpha \leq \gamma \rangle$ is also a coherent C-sequence.

Let $Coh(\omega_1)$ be the set of all coherent *C*-sequences of length ω_1 equipped with the topology whose basic open sets consist of all extensions of coherent *C*-sequences of limit length less than ω_1 .

Claim.

The space $Coh(\omega_1)$ is homeomorphic to $\omega_1 \omega_1$.

Proof of the Claim.

Let \mathcal{T} denote the tree of all coherent *C*-sequences of limit length less than ω_1 . Then \mathcal{T} is isomorphic to ${}^{<\omega_1}\omega_1$, because \mathcal{T} is σ -closed and every node in \mathcal{T} has \aleph_1 -many direct successors. This isomorphism gives us a homeomorphism of the above spaces. \Box Define $\mathcal{Thr}(\omega_1)$ to be set of all pairs (\vec{C}, C) such that \vec{C} is an element of $\mathcal{Coh}(\omega_1)$ and C is a thread through \vec{C} . We equip $\mathcal{Thr}(\omega_1)$ with the topology whose basic open sets consist of all component-wise extensions of pairs (\vec{D}, D) such that \vec{D} is a coherent C-sequence of length $\gamma \in \text{Lim} \cap \omega_1$ and D is a thread through \vec{D} .

Claim.

The space $Thr(\omega_1)$ is homeomorphic to $\kappa \kappa$.

Let $Triv(\omega_1) = p[Thr(\omega_1)]$ denote the set of all trivial coherent *C*-sequences of length ω_1 .

Claim.

The set $Triv(\omega_1)$ is a continuous injective image of $\kappa \kappa$.

Proof of the Claim.

Since every coherent C-sequence of length ω_1 is threaded by at most one club subset of ω_1 , the projection $p: Thr(\kappa, \nu) \longrightarrow Coh(\kappa, \nu)$ is injective. By the definition of the topologies, it is also continuous. We call a subset A of ${}^{\kappa}\kappa$ super-dense if $A \cap \bigcap_{\alpha < \kappa} U_{\alpha} \neq \emptyset$ whenever $\langle U_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of dense open subsets of some non-empty open subset of ${}^{\kappa}\kappa$.

Proposition

Assume that A and B are disjoint super-dense subsets of $\kappa \kappa$. If $A \subseteq X \subseteq \kappa \wedge B$, then X is not κ -Baire measurable.

The club filter Club_{κ} is always a super-dense subset of $\kappa \kappa$.

We will show that both $Triv(\omega_1)$ and its complement are super-dense. By the above claims, this shows that there is a continuous injective image of $\omega_1 \omega_1$ that is not \aleph_1 -Baire measurable. Let \vec{C}_0 be a coherent *C*-sequence of length $\gamma_0 < \omega_1$ and $\langle U_\alpha \mid \alpha < \kappa \rangle$ be a sequence of dense open subsets of $N_{\vec{C}_0}$.

We construct a sequence $\vec{C} = \langle C_{\alpha} \mid \alpha < \omega_1 \rangle$ and a strictly increasing continuous sequence $\langle \gamma_{\alpha} \mid \alpha < \omega_1 \rangle$ of ordinals less than ω_1 such that the following statements hold for every $\alpha < \omega_1$.

• $\langle C_{\beta} \mid \beta < \gamma_{\alpha} \rangle$ is a coherent *C*-sequence extending \vec{C}_0 .

•
$$N_{\langle C_{\beta} | \beta < \gamma_{\alpha+1} \rangle}$$
 is a subset of U_{α} .

• If $\alpha \in \text{Lim}$, then $C_{\gamma_{\alpha}} = \{\gamma_{\bar{\alpha}} \mid \bar{\alpha} < \alpha\}.$

Then \vec{C} is a coherent *C*-sequence that is contained in $\bigcap_{\alpha < \kappa} U_{\alpha}$ and the club $C = \{\gamma_{\alpha} \mid \alpha < \omega_1\}$ witnesses that \vec{C} is trivial.

If we replace the third statement by

•
$$\operatorname{otp}(C_{\gamma_{\alpha}}) \leq \omega,$$

then \vec{C} is a non-trivial coherent *C*-sequence in $\bigcap_{\alpha < \kappa} U_{\alpha}$.

The above constructions also allow us to prove the following result.

Theorem (L.-Schlicht)

Assume that CH holds and every Aronszajn tree that does not contain a Souslin subtree is special. Then there is a Δ_1^1 -subset of $\omega_1 \omega_1$ that is not \aleph_1 -Baire measurable.

Sketch of the Proof.

By considering the canonical Aronszajn tree $T(\rho_0)$ constructed from a *C*-sequence using Todorčević's technique of walks through such sequences, it is possible to show that the above assumption implies that the set $Triv(\omega_1)$ is Δ_1^1 -definable in $Coh(\omega_1)$. To prove the general theorem stated above, we pick an uncountable cardinal κ with $\kappa = \kappa^{<\kappa}$, fix a bijection $f: {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa \longrightarrow \kappa$ and define A to be the set of all $x \in {}^{\kappa}\kappa$ such that the following statements hold for some $y \in {}^{\kappa}\kappa$ and a club subset C of κ .

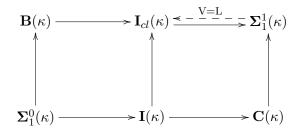
$$\label{eq:constraint} \blacksquare \ C \ = \ \{\alpha < \kappa \ | \ x(\alpha) = y(\alpha)\}.$$

• If $\alpha \in C$, then $x(\alpha) = f(x \upharpoonright \alpha, y \upharpoonright \alpha)$.

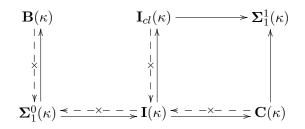
Given $x \in A$, it is easy to see that y and C with the above properties are uniquely determined.

A small modification of the above arguments shows that A is a continuous injective image of $\kappa \kappa$ and a super-dense subset of $\kappa \kappa$. Since A is disjoint from the club filter, it follows that A is not κ -Baire measurable. The remaining results

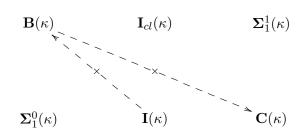
The remaining implications



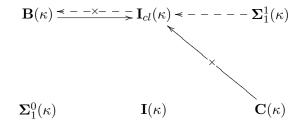
The following implications are trivial.



The above constructions yields the following implications.



We present results that yield the following implications.



Theorem

Let κ be an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and A be a subset of ${}^{\kappa}\kappa$ such that

$$A = \{ y \in {}^{\kappa}\kappa \mid \mathbf{L}[x, y] \models \varphi(x, y) \}$$

for some $x \in {}^{\kappa}\kappa$ and a Σ_1 -formula $\varphi(u, v)$. Then A is a continuous injective image of a closed subset of ${}^{\kappa}\kappa$.

Corollary

Every κ -Borel subset of $\kappa \kappa$ is a continuous injective image of a closed subset of $\kappa \kappa$.

Corollary

There is a continuous injective image of a closed subset of $\kappa \kappa$ that is not a κ -Borel subset of $\kappa \kappa$.

Corollary

Assume that V = L[x] for some subset x of κ . Then every Σ_1^1 -subset of $\kappa \kappa$ is a continuous injective image of a closed subset of $\kappa \kappa$.

Theorem

Let κ be an uncountable regular cardinal, $\delta > \kappa$ be an inaccessible cardinal and G be $\operatorname{Col}(\kappa, <\delta)$ -generic over V. In V[G], the club filter $\operatorname{Club}_{\kappa}$ is not equal to a continuous injective image of $\kappa \kappa$.

Corollary

It is consistent that there is a continuous image of $\kappa \kappa$ that is not equal to a continuous injective image of a closed subset of $\kappa \kappa$.

Trees of higher cardinalities

Trees of higher cardinalities

Let W be the closed set of all x in $\kappa \kappa$ coding a well-order of κ . By the above results, W is not a continuous image of $\kappa \kappa$. But it is easy to show that W equal to a continuous image of $\kappa (\kappa^+)$.

Therefore it is also interesting to investigate continuous images of closed subsets of ${}^{\mu}\kappa$ for some cardinal $\mu \geq \kappa$.

Since every subset of $\kappa \kappa$ is a continuous image of $\kappa(2^{\kappa})$, the above results show that

 $c(\kappa) = \min\{\mu \in \operatorname{On} | Closed \ subsets \ of \ \kappa \ are \ cont. \ images \ of \ \kappa \mu\}$

is a well-defined cardinal characteristic with

$$\kappa < c(\kappa) \leq 2^{\kappa}.$$

The following result shows that we can manipulate the value of $c(\kappa)$ by forcing.

Theorem (L.-Schlicht)

Assume that

- κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$,
- $\mu \geq 2^{\kappa}$ is a cardinal with $\mu = \mu^{\kappa}$, and
- $\theta \ge \mu$ is a cardinal with $\theta = \theta^{\kappa}$.

Then the following statements hold in a cofinality preserving forcing extension V[G] of the ground model V.

- $\bullet 2^{\kappa} = \theta.$
- Every closed subset of ${}^{\kappa}\mu$ is an continuous image of ${}^{\kappa}\mu$.
- There is a closed subset A of ^κκ that is not equal to an continuous image of ^κμ for some μ < μ with μ^{<κ} < μ.

This statement is a consequence of the following results.

Lemma

Let κ be an uncountable cardinal with $\kappa = \kappa^{<\kappa}$, $\mu = 2^{\kappa}$ and G be Add (κ, θ) -generic over V for some cardinal θ . In V[G], every closed subset of $^{\kappa}\mu$ is equal to a continuous image of $^{\kappa}\mu$.

Theorem

Assume that there is an inner model M such that M does not contain the reals and every countable set of ordinal in V is covered by a set that is an element of M and countable in M. If κ is an uncountable regular cardinal, then there is a closed subset A of $\kappa \kappa$ such that A is not a continuous image of $\kappa \mu$ for every cardinal μ with $\mu^{<\kappa} < |(2^{\kappa})^M|^V$.

Lemma

Let κ be an uncountable regular and T be a subtree of ${}^{<\kappa}\kappa$. If μ is a cardinal with $\mu^{<\kappa} < |[T]|$ and $c : {}^{\kappa}\mu \longrightarrow [T]$ is a continuous surjection, then there is a Lipschitz embedding $i : {}^{\leq \omega}\omega \longrightarrow T$.

Sketch of the Proof of the Theorem.

Let κ be an uncountable regular cardinal. Let $T = ({}^{<\kappa}2)^M$ and A = [T]. Assume that there is a continuous surjection $f : {}^{\kappa}\mu \longrightarrow A$ for some $\mu < |(2^{\kappa})^M|^V$.

- By the Lemma, there is a Lipschitz embedding $i : {}^{\leq \omega}\omega \longrightarrow T$.
- By the σ -cover property, there is a subtree T_* of T in M such that $\operatorname{ran}(i) \subseteq T_*$ and a Lipschitz embedding $j: T_* \longrightarrow {}^{\leq \omega} \omega$ in M.
- The image of ${}^{\omega}\omega$ under $(j \circ i)$ is a superperfect subset of $({}^{\omega}\omega)^M$.
- By a theorem of Velickovic and Woodin, this implies that all reals are contained in *M*, a contradiction.

Kurepa trees as continuous images

The techniques developed in the proofs of the above results also allows us to discuss the question whether the set of all cofinal branches through a κ -Kurepa tree can be a continuous image of $\kappa \kappa$.

Theorem (L.-Schlicht)

- Let ν be an infinite cardinal and $\kappa = \nu^+ = \nu^{\aleph_0}$. If T is a κ -Kurepa subtree of ${}^{<\kappa}\kappa$, then [T] is not a continuous image of ${}^{\kappa}\kappa$.
- Let ν be an uncountable regular cardinal, $\kappa > \nu$ be an inaccessible cardinal and (G * H) be $(Add(\omega, 1) * Col(\nu, <\kappa))$ -generic over V. In V[G, H], there is a κ -Kurepa subtree T of ${}^{<\kappa}\kappa$ such that [T] is a retract of ${}^{\kappa}\kappa$.
- Let κ be an inaccessible cardinal and T be a slim κ -Kurepa subtree of ${}^{<\kappa}\kappa$. Then [T] is not a continuous image of ${}^{\kappa}\kappa$.

Thank you for listening!