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Introduction Examples

The Axiom of Choice implies the existence of a great variety of
mathematical objects without providing explicit constructions for them.

We list some prominent examples of such objects:

Non-Lebesgue measurable sets of real numbers.

Q-bases of the real numbers.

Well-orderings of the real numbers.

Three distinct automorphisms of the field of complex numbers.

Stationary and co-stationary subsets of uncountable regular cardinals.

In all of the above cases, it can be shown that the existence of these
objects is not a consequence of the axioms of ZF alone.
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Three distinct automorphisms Field automorphisms of C

The field C of all complex numbers has two obvious automorphisms:

The identity idC.

Complex conjugation kC.

With the help of transcendence bases, it is easy to show that C has many
other automorphisms.

Lemma

|Aut(C)| = 22ℵ0 .

The proof of this lemma does not provide a concrete construction of a
third automorphism of C.



Three distinct automorphisms Continuous automorphisms

We now present results that show that the axioms of ZF do not
imply the existence of such an automorphism.

In the following, we work in the theory ZF + DC, where DC denotes
the Principle of Dependent Choices:

“ For every nonempty set X and every binary relation R on
X with dom(R) = X, there exists a sequence
〈xn ∈ X | n ∈ N〉 with xn R xn+1 for all n ∈ N ”.

This choice principle suffices for the development of the topological
theory of the reals and measure theory.



Three distinct automorphisms Continuous automorphisms

We now show that the identity and complex conjugation are the only field
automorphisms of C that are topological simple.

Proposition

The maps idC and kC are the only continuous field automorphisms of C.

Proof.

Let π ∈ Aut(C) be continuous with π(i) = i. Since π is a field
automorphism, we have π � Q = idQ therefore

π � (Q + i ·Q) = idQ+i·Q.

Since Q + i ·Q is dense in C, the continuity of π implies that π = idC.



Three distinct automorphisms Baire-measurable automorphisms

To extend the above result to larger classes of functions, we need to review
some fundamental topological concepts.

Definition

Let X und Y be topological spaces.

A subset N of X is nowhere dense, if the closure of N has empty
interior.

A subset M of X is meager, if it is a countable union of nowhere
dense subsets.

A subset A of X has the Baire property, if there is an open subset U
of X such that the symmetric difference A∆U = (A \ U) ∪ (U \A) is
meager.

A function f : X −→ Y is Baire-measurable, if f−1[U ] has the Baire
property in X for every open subset U of Y .



Three distinct automorphisms Baire-measurable automorphisms

Definition

A Polish space is a separable completely metrizable topological space.
A Polish group is a topological group whose topology is Polish.

Example

〈C,+, 0〉 and 〈C∗, · , 1〉 are Polish groups.

Lemma

Every Baire-measurable group homomorphism between Polish groups is
continuous.

Corollary

The maps idC and kC are the only Baire-measurable field automorphisms
of C.



Three distinct automorphisms Baire-measurable automorphisms

All of the above results were proven in the theory ZF + DC.

The following result allows to show that the existence of a third
automorphism of C is not provable in ZF + DC.

Theorem (Shelah)

If the theory ZFC is consistent, then the theory

ZF + DC + “ Every set of reals has the Baire property ”

is consistent.

Corollary

If the theory ZFC is consistent, then the statement

“ Aut(C) = {idC, kC} ”

is consistent with the axioms of ZF + DC.
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Definability in second-order arithmetic

It is natural to ask if there is some way to distinguish between objects
constructed with the help of the Axiom of Choice and the ones with
explicit constructions.

Classical results from descriptive set theory provide an answer to this
question by showing that certain pathological objects cannot be
defined by simple formulas in second-order arithmetic.



Definability in second-order arithmetic

In second-order arithmetic, we work in the two-sorted structure

A2 = 〈N,P(N),∈,+, · , exp, 0, 1〉.

We identify Q with a subset of N by coding triples of natural numbers
into natural numbers.

We view R as a subset of P(N) by considering Dedekind cuts in Q.

These identifications allow us to view products of R as subsets of
products of P(N) and we can therefore talk about the definability of
subsets of Rk in the structure A2.

We measure the complexity of such definable subsets by the number
of second-order quantifiers in the defining formulas.



Definability in second-order arithmetic

A formula in the language L2 of second-order arithmetic is a
Σ1

0-formula, if it is contained in the smallest class of formulas that
contains all atomic formulas and is closed under ¬, ∧, ∨, ∀n ∈ N and
∃n ∈ N.

Given n ∈ N, an L2-formula is a Σ1
n+1-formula, if it is contained in

the smallest class of formulas that contains all negations of
Σ1

n-formulas and is closed under ∧, ∨, ∀n ∈ N, ∃n ∈ N and ∃x ∈ R.

Given n ∈ N, a subset X of Rk is a Σ1
n-definable if there is a

Σ1
n-formula with parameters that defines X in A2.

Given n ∈ N, a subset X of Rk is a ∆1
n-definable if both X and

Rk \X are Σ1
n-definable.



Definability in second-order arithmetic

The above hierarchy of complexities can also be defined topologically.

Theorem (Lusin)

A subset of Rk is Borel if and only if it is ∆1
1-definable.

Proposition

A subset of Rk is Σ1
1-definable if and only if it is the projection of

a Borel subset of Rk+1.

A subset of Rk is Σ1
n+1-definable if and only if it is the projection

of the complement of a Σ1
n-definable subset of Rk+1.



Definability in second-order arithmetic Σ1
1-definable automorphisms

Proposition

If a function f : Rk −→ Rl is Σ1
n-definable as a subset of Rk+l, then f is

already ∆1
n-definable.

Corollary

The maps idC and kC are the only Σ1
1-definable field automorphisms of C.

Proof.

Assume that π ∈ Aut(C) is Σ1
1-definable. By the above remarks, π is a

Borel subset of C× C. But then π is a Borel-measurable function (i.e. the
π-preimages of open sets are Borel) and hence π is Baire-measurable.



Definability in second-order arithmetic Σ1
2-definable automorphisms

We now consider the next level in the above complexity hierarchy.

Theorem (Gödel)

In Gödel’s constructible universe L, the canonical well-ordering of R has
the order-type ω1 and the collection of codes for initial segments of this
well-ordering is Σ1

2-definable.

This well-ordering of the R can be used in the construction of
automorphisms through transcendence bases to obtain a simply definable
discontinuous automorphism.

Corollary

In L, there is a discontinuous field automorphism of C that is Σ1
2-definable.



Definability in second-order arithmetic Σ1
2-definable automorphisms

In contrast, it is also possible that such simply definable automorphisms do
not exist.

Theorem

After forcing with the partial order that adds ℵ1-many Cohen reals to the
ground model, every ∆1

2-definable subset of Rk has the Baire property.

Corollary

After forcing with the partial order that adds ℵ1-many Cohen reals to the
ground model, the maps idC and kC are the only Σ1

2-definable field
automorphisms of C.
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Large cardinal axioms

The above results show that the existence of a Σ1
2-definable

discontinuous field automorphism of C is independent of the axioms
of ZFC.

The techniques introduced by Gödel and Cohen that were applied in
the above results can be used to show that various mathematical
statements are not decided by ZFC.

The discovery of various independences initiated the programme to
search for intrinsically justified extensions of these axioms that settle
important mathematical questions left open by the axioms of ZFC.



Large cardinal axioms

Among the axiom systems studied in the course of this programme,
strong axioms of infinities, or large cardinal assumptions, play an
outstanding role.

Originating from the work of Hausdorff on cardinal arithmetics and
the work of Ulam on the measure problem, these axioms postulate
the existence of cardinal numbers having certain properties that make
them very large, and whose existence cannot be proved in ZFC,
because it implies the consistency of ZFC itself.



Large cardinal axioms

Example

A cardinal is (strongly) inaccessible, if it is an uncountable regular
strong limit cardinal.

Example

An uncountable cardinal κ is measurable if there exists a κ-complete
ultrafilter over κ.

Woodin cardinals are a strengthening of the property of being an
inaccessible limit of measurable cardinals.



Large cardinal axioms

The special role of these axioms arises from two empirical facts:

First, there is strong evidence that for every extension of ZFC, the
consistency of the given theory is either equivalent to the consistency
of ZFC, or to the consistency of some extension of ZFC by strong
axioms of infinity.

Second, all large cardinal axioms studied so far are linearly ordered by
their consistency strength, i.e. given two such axioms, either the
consistency of one of the axioms was derived from the other axiom or
the consistency of both axioms was shown to be equivalent.

In combination, these two phenomena allow for an ordering of all
extensions of ZFC (and therefore of all mathematical statements!) in a
linear hierarchy based on their consistency strength.



Large cardinal axioms

In addition to this fundamental role in the study of mathematical theories,
deep results have shown that strong axioms of infinity themselves answer
many important questions left open by ZFC in a desirable way.

This leads many set theorists to think that these axioms should be included
in the correct axiomatization of set theory, and therefore of mathematics.

In particular, seminal work of Martin, Shelah, Steel and Woodin who
showed that large cardinals determine second-order arithmetics (and
therefore of large parts of mathematics), in the sense that they provide a
strong structure theory for definable sets of real numbers that is immune to
independence phenomena.



Large cardinal axioms

Theorem (Solovay)

If there is a measurable cardinal, then all Σ1
2-definable subsets of Rk have

the Baire property.

Theorem (Shelah–Woodin, Martin–Steel)

If there are n Woodin cardinals below a measurable cardinal, then all
Σ1

n+2-definable subsets of Rk have the Baire property.

Corollary

If there are infinitely many Woodin cardinals, then the maps idC and kC
are the only field automorphisms of C that are definable in A2.
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Set-theoretic definability

I now want to present results dealing with the set-theoretic
definability of objects obtained from the Axiom of Choice, i.e. with
the question whether such objects can be defined in the structure
〈V,∈〉 using simple formulas.

We start by making the notion of simple formulas more precise.

First, we will restrict ourselves to formulas that only use cardinals and
sets of small hereditary cardinality as parameters.

Next, we measure the complexity of formulas using the Levy hierarchy.



Set-theoretic definability

A formula in the language L∈ = {∈} of set theory is a Σ0-formula if it is
contained in the smallest collection of L∈-formulas that contains all atomic
formulas and is closed under ¬, ∧, ∨, ∀x ∈ y and ∃x ∈ y.

Example

The sets N and {N} can be defined by a Σ0-formulas without parameters.

Given n ∈ N, an L∈-formula is a Σn+1-formula if it is contained in the
smallest collection of L∈-formulas that contains all negations of
Σn-formulas and is closed under ∧, ∨, ∀x ∈ y and ∃x.

Example

The set ω1 of all countable ordinals can be defined by a Σ1-formula
without parameters.
The set {ω1} cannot be defined by a Σ1-formula with hereditary
countable parameters.



Set-theoretic definability

Standard arguments show that complicated objects (like
discontinuous automorphisms of C) cannot be defined by Σ0-formulas
with parameters of small hereditary cardinalities.

In contrast, the question whether such objects can be defined by
Σ2-formulas without parameters is often independent of the axioms of
ZFC together with large cardinal assumptions.

Therefore, we will focus on Σ1-definitions of such objects.



Set-theoretic definability Parameters in H(ω1)

Lemma

The following statements are equivalent for every subset X of R:

X is Σ1
2-definable.

X is definable by a Σ1-formula with parameters in H(ω1).

Corollary

If there is a measurable cardinal, then the maps idC and kC are the only
field automorphisms of C that are definable by a Σ1-formula with
parameters in H(ω1).



Set-theoretic definability Parameters in H(ω1) ∪ {ω1}

The next result extends the above characterization of Σ1
2-sets to the next

complexity class.

Theorem (L.–Schindler–Schlicht)

If there is a measurable cardinal above a Woodin cardinal, then the
following statements are equivalent for every subset X of R:

X is Σ1
3-definable.

X is definable by a Σ1-formula with parameters in H(ω1) ∪ {ω1}.

Corollary

If there is a measurable cardinal above a Woodin cardinal, then the maps
idC and kC are the only field automorphisms of C that are definable by a
Σ1-formula with parameters in H(ω1) ∪ {ω1}.



Set-theoretic definability Parameter ω2

In contrast, the nature of Σ1-definability completely changes when we allow
the second uncountable cardinal ω2 as a parameter.

Theorem (L.)

The existence of a well-order C of the reals with the property that the set
of all initial segments of C is definable by a Σ1-formula with parameter ω2

is consistent with all large cardinal assumptions.

Corollary

The existence of a discontinuous field automorphism of C that is definable
by a Σ1-formula with parameter ω2 is consistent with all large cardinal
assumptions.



Set-theoretic definability Parameter ω2

Thank you for listening!
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