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can be used to distinguish sets constructed with the help of the
Axiom of Choice from objects that are explicitly constructed.

For paradoxical sets consisting of real numbers, classical results from
descriptive set theory show that these objects cannot be defined by
simple formulas in second-order arithmetic.

Moreover, both strong large cardinal assumptions and forcing axioms
imply that this implication can be extended to arbitrary formulas.
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Definition
A formula ϕ(v0, . . . , vn) in the language L∈ = {ε} of set theory and
parameters z0, . . . , zn−1 define a set X if

X = {x | ϕ(x, z0, . . . , zn−1)}.

Given an uncountable regular cardinal κ, we consider the question
which formulas with parameters in H(κ) ∪ {κ} can define sets of the
form {E} for a bi-stationary subset E of κ.

The above restriction of parameters is supposed to exclude trivial
definitions that use bi-stationary subsets as parameters.



Introduction

Definition
A formula ϕ(v0, . . . , vn) in the language L∈ = {ε} of set theory and
parameters z0, . . . , zn−1 define a set X if

X = {x | ϕ(x, z0, . . . , zn−1)}.

Given an uncountable regular cardinal κ, we consider the question
which formulas with parameters in H(κ) ∪ {κ} can define sets of the
form {E} for a bi-stationary subset E of κ.

The above restriction of parameters is supposed to exclude trivial
definitions that use bi-stationary subsets as parameters.



Introduction

Definition
A formula ϕ(v0, . . . , vn) in the language L∈ = {ε} of set theory and
parameters z0, . . . , zn−1 define a set X if

X = {x | ϕ(x, z0, . . . , zn−1)}.

Given an uncountable regular cardinal κ, we consider the question
which formulas with parameters in H(κ) ∪ {κ} can define sets of the
form {E} for a bi-stationary subset E of κ.

The above restriction of parameters is supposed to exclude trivial
definitions that use bi-stationary subsets as parameters.



Introduction The Levy hierarchy

We measure the complexity of L∈-formulas through the Levy
hierarchy.

An L∈-formula is a Σ0-formula if it is contained in the smallest
collection of L∈-formulas that contains all atomic formulas and is
closed under negations, conjunctions and bounded quantification.

Moreover, an L∈-formula is a Σn+1-formula for some n < ω if it is of
the form ∃x ¬ϕ for some Σn-formula ϕ.

Note that the class of all formulas that are ZFC-provably equivalent
to a Σn+1-formula is closed under existential quantification, bounded
quantification, conjunctions and disjunctions.



Introduction The Levy hierarchy

We measure the complexity of L∈-formulas through the Levy
hierarchy.

An L∈-formula is a Σ0-formula if it is contained in the smallest
collection of L∈-formulas that contains all atomic formulas and is
closed under negations, conjunctions and bounded quantification.

Moreover, an L∈-formula is a Σn+1-formula for some n < ω if it is of
the form ∃x ¬ϕ for some Σn-formula ϕ.

Note that the class of all formulas that are ZFC-provably equivalent
to a Σn+1-formula is closed under existential quantification, bounded
quantification, conjunctions and disjunctions.



Introduction The Levy hierarchy

We measure the complexity of L∈-formulas through the Levy
hierarchy.

An L∈-formula is a Σ0-formula if it is contained in the smallest
collection of L∈-formulas that contains all atomic formulas and is
closed under negations, conjunctions and bounded quantification.

Moreover, an L∈-formula is a Σn+1-formula for some n < ω if it is of
the form ∃x ¬ϕ for some Σn-formula ϕ.

Note that the class of all formulas that are ZFC-provably equivalent
to a Σn+1-formula is closed under existential quantification, bounded
quantification, conjunctions and disjunctions.



Introduction The Levy hierarchy

We measure the complexity of L∈-formulas through the Levy
hierarchy.

An L∈-formula is a Σ0-formula if it is contained in the smallest
collection of L∈-formulas that contains all atomic formulas and is
closed under negations, conjunctions and bounded quantification.

Moreover, an L∈-formula is a Σn+1-formula for some n < ω if it is of
the form ∃x ¬ϕ for some Σn-formula ϕ.

Note that the class of all formulas that are ZFC-provably equivalent
to a Σn+1-formula is closed under existential quantification, bounded
quantification, conjunctions and disjunctions.



The Σn-club property

The Σn-club property



The Σn-club property

We will now study the non-definability of bi-stationary subsets
through the following property.
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Given n < ω, an uncountable regular cardinal κ has the Σn-club
property if for every bi-stationary subset E of κ, the set {E} is not
definable by a Σn-formula with parameters in H(κ) ∪ {κ}.
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Every uncountable regular cardinal has the Σ0-club property.
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A cardinal has the Σ2-club property if and only if it has the
Σn-club property for all n < ω.

Cardinals greater than ω1 do not have the Σ2-club property.
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The following results show that all constellations that are not ruled
out by the above lemma are consistent.

Theorem (L.–Schindler–Schlicht)

Ramsey cardinals have the Σ1-club property.

Theorem (L.)

If κ is an inaccessible cardinal with the Σ1-club property and G is
either Add(ω, κ)- or Col(ω,<κ)-generic over V, then κ has the
Σ1-club property in V[G].
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κ is an inaccessible cardinal with the Σ1-club property in the
Dodd-Jensen core model.
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Given a singular cardinal λ, the above results show that the cardinal
λ+ does not have the Σ1-club property.

This failure is witnessed by the set Sλ+ω consisting of all elements of
λ+ of countable cofinality.

The set {Sλ+ω } can be defined by a Σ1-formula that uses λ+ and the
set of all regular cardinals less than λ as parameters.
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The following results show that fragments of the Σ1-club property for
smaller parameter sets can consistently hold at successors of singular
cardinals.

Theorem (L.)

The following statements are equiconsistent over ZFC:

There is a singular cardinal λ and an uncountable regular cardinal
δ < λ such that for every bi-stationary subset E of λ+, the set
{E} is not definable by a Σ1-formula with parameters δ and λ+.

There is a measurable cardinal.
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The main argument in proof of the above result relies on the Covering
Lemma for the Dodd–Jensen core model and the representation of
this model as the union of all lower parts of mice.

Philip Welch came up with an analogous argument for canonical inner
model containing many measurable cardinals.

Theorem (L., Welch)

The following statements are equiconsistent over ZFC:

There is a singular cardinal λ such that for every bi-stationary
subset E of λ+, the set {E} is not definable by a Σ1-formula
with parameters in H(λ) ∪ {λ+}.

There are infinitely many measurable cardinals.
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Question

Given a singular cardinal λ, is there a bi-stationary subset E of λ+

with the property that the set {E} is definable by a Σ1-formula with
parameters λ and λ+?

Question

Let λ be a singular cardinal with the property that for every
bi-stationary subset E of λ+, the set {E} is not definable by a
Σ1-formula with parameter λ+.

Is there an inner model with a measurable cardinal?



Open Questions

Question

Given a singular cardinal λ, is there a bi-stationary subset E of λ+

with the property that the set {E} is definable by a Σ1-formula with
parameters λ and λ+?

Question

Let λ be a singular cardinal with the property that for every
bi-stationary subset E of λ+, the set {E} is not definable by a
Σ1-formula with parameter λ+.

Is there an inner model with a measurable cardinal?



Open Questions

Question

Given a cardinal κ > ω1, is there an uncountable regular cardinal
δ < κ with the property that the set {δ} is definable by a Σ1-formula
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Is it consistent that the set {ω1} is not definable by a Σ1-formula
with parameter ωω?

Note that if ωω is Rowbottom, then the set {ω1} is not definable by a
Σ1-formula with parameter ωω.
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Thank you for listening!
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