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Automorphism towers

Let G be a group with trivial centre. For each g ∈ G, we let ιg
denote the corresponding inner automorphism. The map

ιG : G −→ Aut(G); g 7→ ιg

is an embedding of groups that maps G onto the subgroup Inn(G)
of all inner automorphisms of G. An easy computation shows that
Inn(G) is a normal subgroup of Aut(G) and Aut(G) is again a
group with trivial centre.

By iterating this process, we construct the automorphism tower of

G.
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Definition

A sequence 〈Gα | α ∈ On〉 of groups is an automorphism tower of a

centreless group G if the following statements hold.

G = G0.

If α ∈ On, then Gα is a normal subgroup of Gα+1 and the induced
homomorphism

ϕα : Gα+1 −→ Aut(Gα); g 7→ ιg ↾ Gα

is an isomorphism.

If α ∈ Lim, then Gα =
⋃
{Gβ | β < α}.

In this definition we replaced Aut(Gα) by an isomorphic copy Gα+1 that
contains Gα as a normal subgroup. This allows us to take unions at limit
stages.

Given a centreless group G, we can construct an automorphism tower of

G and it is unique up to isomorphisms that induce the identity on G.
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We say that the automorphism tower of a centerless group terminates if
there is an α ∈ On with Gα = Gα+1 and therefore Gα = Gβ for all
β ≥ α. It is natural to ask whether the automorphism tower of every
centreless group finally terminates.

Theorem (S. Thomas)

If G is an infinite centreless group of cardinality κ, then there is an

α < (2κ)
+

with Gα = Gα+1.

This result allows us to make the following definitions.

Definition

Given a centreless group G, we let τ(G) denote the least ordinal α

satisfying Gα = Gα+1 and call this ordinal the height of the

automorphism tower of G. If κ is an infinite cardinal, then we define

τκ = lub{τ(G) | G is a centreless group of cardinality κ}.
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There are only 2κ-many centreless groups of cardinality κ and
therefore the above result implies “ τκ < (2κ)+ ” for all infinite
cardinals κ. Simon Thomas also proved “ τκ ≥ κ+ ”.

It is known that (2κ)+ is the best cardinal upper bound for τκ

provable in ZFC for regular uncountable cardinal κ

(Just/Shelah/Thomas). In addition, Simon Thomas showed that
“ (∀κ regular) τκ < 2κ ” is consistent with the axioms of ZFC.

The following problem is still open.

Problem (The automorphism tower problem)

Find a model M of ZFC and an infinite cardinal κ in M such that

it is possible to “compute” the exact value of τκ in M .

In this talk I present a new upper bound for τκ.
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A new upper bound

To define this bound, we need to introduce some notions from
abstract recursion theory.

Let L∈ denote the language of set theory.

An L∈-formula is ∆0 if it is contained in the smallest class of
L∈-formulae that contains every atomic formula and is closed
under negation, conjunction and bounded existential
quantification.

An L∈-formula ϕ is Σ1 if there is a ∆0-formula ϕ0 such that
ϕ ≡ (∃x) ϕ0(x, v0, . . . , vn−1).
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Admissible sets

Definition

A set A is admissible if it has the following properties.

A is nonempty, transitive and closed under pairing and union.

〈A,∈〉 satisfies ∆0-Seperation, i.e.

(∀x0, . . . , xn)(∃y)(∀z) [z ∈ y ↔ [y ∈ x0 ∧ ϕ(x0, . . . , xn, z)]]

holds in 〈A,∈〉 for every ∆0-formula ϕ(u0, . . . , un, v).

〈A,∈〉 satisfies ∆0-Collection, i.e.

(∀x0, . . . , xn)[(∀y ∈ x0)(∃z) ϕ(x0, . . . , xn, y, z)

→ (∃w)(∀y ∈ x0)(∃z ∈ w) ϕ(x0, . . . , xn, y, z)]

holds in 〈A,∈〉 for every ∆0-formula ϕ(u0, . . . , un, v0, v1).
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The result

Definition

Given a set x, an ordinal α is x-admissible if there is an admissible
set A with x ∈ A and α = A ∩ On.

We are now ready to state our result.

Theorem

Let κ be an infinite cardinal and α be P(κ)-admissible. If

τκ 6= α + 1, then τκ < α.

In the proof of this statement, we use results of Itay Kaplan and
Saharon Shelah to establish a connection between automorphism
towers and admissible set theory by representing automorphism
towers as inductive definitions on a certain structure.
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Inductive Definitions

Let L be a finite first order language, M be an L-structure and
n < ω. We let Ln

M
denote the first order language that extends L

by a new n-ary predicate Ṙ and a constant symbol ẋ for every
x ∈ M . If X is a subset of Mn, then we define M(X) to be the
unique Ln

M
-expansion of M with ṘM(X) = X and ẋM(X) = x for

all x ∈ M .
Given an Ln

M
-formula ϕ ≡ ϕ(v0, . . . , vn−1) with n free variables,

we define a sequence 〈Iα
ϕ | α ∈ On〉 of subsets of Mn in the

following way.

I0
ϕ = {~x ∈ Mn | M(∅) |= ϕ(~x)}.

Iα+1
ϕ = Iα

ϕ ∪ {~x ∈ Mn | M(Iα
ϕ) |= ϕ(~x)} for all α ∈ On.

Iα
ϕ =

⋃
β<α I

β
ϕ for all α ∈ Lim.
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The following definition will allow us to construct automorphism towers
as inductive definition.
Let G be a group and LG be the language of group theory expanded by a
constant symbol ġ for every g ∈ G. We let T n

G denote the set of all
LG-terms t ≡ t(v0, . . . , tn−1) with exactly n free variables. If H is a
group containing G, then we interpret H as an LG-structure and for each
~h ∈ Hn we define

qftH,G(~h) = {t(~v) ∈ T n
G | H |= “ t(~h) = 1l”}.

Theorem (I. Kaplan & S. Shelah)

If 〈Gα | α ∈ On〉 is the automorphism tower of a centreless group G,

then the map

qftGα,G : Gα −→ P(T 1
G); g 7−→ qftGα,G(~g)

is injective for all α ∈ On.

If g ∈ Gτ(G) and α ∈ On, then qftGα,G(g) = qftGτ(G),G
(g) and we can

call this set qftG(g).
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We reformulate results of Itay Kaplan and Saharon Shelah to our
setting.

Theorem (I. Kaplan & S. Shelah)

There is a finite first order language L such that for every infinite

cardinal κ there is an L-structure Mκ = 〈Mκ; . . . 〉 and a

L4
Mκ

-formula ϕ ≡ ϕ(v0, . . . , v3) with the following properties.

Mκ is an element of every admissible set that contains P(κ).

If G is a centreless group with domain κ and 〈Gα | α ∈ On〉
is an automorphism tower of G, then P(T 2

G) ⊆ Mκ and

〈x, y, z, qftG(1lG))〉 ∈ Iα
ϕ ⇐⇒

(∃g0, g1 ∈ Gα)[x = qftG(g0) ∧ y = qftG(g1) ∧ z = qftG(g0 ◦ g1)]

holds for all α ∈ On and x, y, z ∈ Mκ × Mκ × Mκ.
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Some admissible set theory

The Recursion Theorem holds in admissible sets and this allows us to
prove the following statements.

Proposition

Let A be an admissible set, α = On ∩ A and L be a finite first order

language. If M is an L-model with M ∈ A and ϕ(v0, . . . , vn−1) is a

Ln
M

-formula, then Iβ
ϕ ∈ A for all β < α and the map

Fϕ : α −→ A; β 7−→ Iβ
ϕ

is definable in 〈A,∈〉 by a Σ1-formula using parameters.

Proposition

Let A be an admissible set, α = On ∩ A and F : A −→ α be a function

that is definable in 〈A,∈〉 by a Σ1-formula using parameters. If x ∈ A,

then F”x is bounded in α.
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We are now ready to show how the proof of the theorem works.

Theorem

Let κ be an infinite cardinal and α be P(κ)-admissible. If

τκ 6= α + 1, then τκ < α.

Proof of the Theorem

Fix an admissible set A with α = On ∩ A and P(κ) ∈ A. Let G be

a centreless group of cardinality κ and 〈Gα | α ∈ On〉 be an

automorphism tower of G. We may assume that the domain of G

is κ. For β ∈ On, we set

Gβ = {qftG(g) | g ∈ Gβ} ∈ A.

We sketch the idea behind the proof of the theorem.
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Given π ∈ Gα+1 and β < α, we show that the function

cβ : Gβ −→ α; qftG(g) 7−→ min{γ < α | gπ, gπ−1

∈ Gγ}

is definable in A by a Σ1-formula with parameters. In

particular, the range of cβ is bounded below α.

We construct a strictly increasing function f : ω −→ α that is

definable in A by a Σ1-formula with parameters and satisfies

cf(n)(qftG(g)) < f(n + 1) for all g ∈ Gf(n) and n < ω. Then

α∗ = supn<ω f(n) ∈ Lim ∩ α and ιπ ↾ Gα∗ ∈ Aut(Gα∗).

There is a π∗ ∈ Gα∗+1 with ιπ∗ ↾ Gα∗ = ιπ ↾ Gα∗ and this

means π = π∗ ∈ Gα∗+1 ⊆ Gα, because

π∗π−1 ∈ CGα+1
(G) = {1lG}.
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This shows τκ ≤ α + 1.

If τκ ≤ α, then the function

t : {qftG(1lG) | G is centreless group with domain κ} → α ;

qftG(1lG) 7−→ τ(G)

is definable in A by a Σ1-formula with parameters and

therefore its range is bounded in α.

Details?

Thank you for listening!
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We let Mκ ∈ A denote the structure produced by the above theorem

and ϕ be the corresponding formula.

Given a term t ≡ t(v0, v1) in T 2
G, we define

Ψt : P(T 2
G) −→ P(T 1

G); X 7−→ {s(v0) | s(t(v0, v1)) ∈ X}.

Given β ∈ On, g, h ∈ Gβ and k ∈ 〈G ∪ {g, h}〉 with k = t(g, h), it is

easy to see that qftG(k) = Ψt(qftG(g, h)).
We define N to be the smallest class of terms in T 2

G that contains v1 and

ġ for every g ∈ G and is closed under ◦, −1 and [t 7→ v0tv
−1
0 ].

Let π ∈ Gα+1 and g ∈ Gα. The function

c : N −→ α; t 7−→ min{β < α | Ψt(qftG(π, g)) ∈ Gβ}

is well-defined and definable in 〈A,∈〉 by a Σ1-formula with parameters.

Since N ∈ A, the above Proposition shows that there is a β < α such

that Ψt(qftG(π, g)) ∈ Gβ for all t ∈ N and this implies gπ, gπ−1

∈ Gβ .



Introduction Inductive definitions Some admissible set theory Proof of the theorem

If h ∈ Gα, then the following statements are equivalent.

h = gπ.

There is X ⊆ T 2
G and β < α with

X is closed under ◦, −1, [t 7→ v0tv
−1
0 ] and reductions,

qftG(π) = Ψv0
(X), qftG(g) = Ψv1

(X) and

qftG(h) = Ψv0v1v
−1
0

(X),

For all t0, t1, t2 ∈ N, we have t0t1t
−1
2 ∈ X if and only if

〈Ψt0(X),Ψt1(X),Ψt2(X), qftG(1lG)〉 ∈ Iβ
ϕ ,

qftG(k) = Ψk̇(X) for all k ∈ G.

This shows that for each β < α the function

cβ : Gβ −→ α; qftG(g) 7−→ min{γ < α | gπ, gπ−1

∈ Gγ}

is definable in A by a Σ1-formula with parameters.
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Thank you for listening!
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