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Introduction

Automorphism towers

Let G be a group with trivial centre. For each g € G, we let ¢,
denote the corresponding inner automorphism. The map

tg: G — Aut(G); g— 14

is an embedding of groups that maps G onto the subgroup Inn(G)
of all inner automorphisms of G. An easy computation shows that
Inn(G) is a normal subgroup of Aut(G) and Aut(G) is again a
group with trivial centre.

By iterating this process, we construct the automorphism tower of
G.
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A sequence (G, | a € On) of groups is an automorphism tower of a
centreless group G if the following statements hold.

| | G = Go.
m If @ € On, then G, is a normal subgroup of G41 and the induced
homomorphism

Vo i Gay1 — Aut(Ga); g tg | Ga

is an isomorphism.

m If o € Lim, then G, = | {Gp | B < a}.

In this definition we replaced Aut(G,) by an isomorphic copy G471 that
contains G, as a normal subgroup. This allows us to take unions at limit
stages.

Given a centreless group GG, we can construct an automorphism tower of
G and it is unique up to isomorphisms that induce the identity on G.
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We say that the automorphism tower of a centerless group terminates if
there is an o € On with G, = G411 and therefore G, = G for all

B > «. It is natural to ask whether the automorphism tower of every
centreless group finally terminates.

Theorem (S. Thomas)

If G is an infinite centreless group of cardinality k, then there is an
a < (2"‘)+ with G, = Gt1-

This result allows us to make the following definitions.

Definition
Given a centreless group G, we let 7(G) denote the least ordinal «

satisfying G, = G+1 and call this ordinal the height of the
automorphism tower of G. If k is an infinite cardinal, then we define

7. = lub{7(G) | G is a centreless group of cardinality k}.
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There are only 2%-many centreless groups of cardinality x and
therefore the above result implies “7,, < (2%)"" for all infinite
cardinals k. Simon Thomas also proved “7,, > k1"

It is known that (2%)7 is the best cardinal upper bound for 7,
provable in ZFC for regular uncountable cardinal x
(Just/Shelah/Thomas). In addition, Simon Thomas showed that
“(Vk regular) T,, < 2%" is consistent with the axioms of ZFC.

The following problem is still open.

Problem (The automorphism tower problem)

Find a model M of ZFC and an infinite cardinal k in M such that
it is possible to “compute” the exact value of 7., in M.

In this talk | present a new upper bound for 7.
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A new upper bound

To define this bound, we need to introduce some notions from
abstract recursion theory.

Let Lc denote the language of set theory.

m An Lc-formula is Ag if it is contained in the smallest class of
Lc-formulae that contains every atomic formula and is closed
under negation, conjunction and bounded existential
quantification.

m An Lc-formula ¢ is 31 if there is a Ag-formula ¢( such that
v = (3x) po(z,vo,...,0n—-1).



Introduction

Admissible sets

A set A is admissible if it has the following properties.

m A is nonempty, transitive and closed under pairing and union.
m (A, €) satisfies Ag-Seperation, i.e.

(Vzo,...,2n)(Fy)(V2) [z €y < [y € zo A (0, . .., Tn, 2)]]

holds in (A, €) for every Ag-formula ¢(ug, ..., un,v).
m (A, €) satisfies Ay-Collection, i.e.

(Vzo, ..., zn)[(Vy € 20)(32) @(zo,...,Tn,Y,2)
— (Fw)(Vy € x0)(Tz € w) p(zg, ..., Zn, Y, 2)]

holds in (A, €) for every Ag-formula ¢(uq, ..., up, v, v1).
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The result

Definition
Given a set z, an ordinal « is z-admissible if there is an admissible
set A with z € A and . = AN On.

We are now ready to state our result.

Theorem

Let k be an infinite cardinal and o be P(k)-admissible. If
Tw # a+ 1, then 7, < a.

In the proof of this statement, we use results of Itay Kaplan and
Saharon Shelah to establish a connection between automorphism
towers and admissible set theory by representing automorphism
towers as inductive definitions on a certain structure.
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Inductive Definitions

Let £ be a finite first order language, M be an L-structure and

n < w. We let L7}, denote the first order language that extends £
by a new n-ary predicate R and a constant symbol & for every

x € M. If X is a subset of M™, then we define M(X) to be the
unique L -expansion of M with RMX) = X and :M&X) = g for
all x € M.

Given an L7 -formula ¢ = (v, ...,v,—1) with n free variables,
we define a sequence (I | o € On) of subsets of M™ in the
following way.

w 0= {F e M| M) E o(@).
m [0t = T2 U{F e M™ | M(I2) = ¢(F)} for all a € On.
- ISZUﬁ<aI£ for all o € Lim.
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The following definition will allow us to construct automorphism towers
as inductive definition.

Let G be a group and L be the language of group theory expanded by a
constant symbol g for every g € G. We let 7% denote the set of all
La-terms t = t(vo,...,t,—1) with exactly n free variables. If H is a
group containing GG, then we interpret H as an Lg-structure and for each
h € H" we define

aft.c(F) = (18) € T4 | H | “t(F) = 1"},

Theorem (I. Kaplan & S. Shelah)

If (Go | @ € On) is the automorphism tower of a centreless group G,
then the map

aftg, ¢ : Ga — P(15); 9— afte, (9)
is injective for all « € On.

If g € Gr(c) and a € On, then aftg, o(9) = aftg_, ¢(9) and we can
call this set qfts(g).
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We reformulate results of ltay Kaplan and Saharon Shelah to our
setting.

Theorem (I. Kaplan & S. Shelah)

There is a finite first order language L such that for every infinite
cardinal k there is an L-structure M,, = (M,;...) and a
Ejl\,lﬁ—formu/a © = (v, . ..,v3) with the following properties.

m M, is an element of every admissible set that contains P (k).

m /f G is a centreless group with domain k and (G, | @ € On)
is an automorphism tower of G, then P(72) C M, and

(z,9,2,0ftg(1g))) € I; <
(390,91 € Go)lr = aftg(go) Ny = afta(g1) Az = aftg(go 0 g1)]

holds for all « € On and z,y,z € M, X M, X M,.
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Some admissible set theory

The Recursion Theorem holds in admissible sets and this allows us to
prove the following statements.

Proposition
Let A be an admissible set, « = On N A and L be a finite first order
language. If M is an L-model with M € A and ¢(vg,...,v,_1) is a
L7 -formula, then Ig € A for all < a and the map

Fo:a— A; fr— I[g

is definable in (A, €) by a ¥,-formula using parameters.

Proposition

Let A be an admissible set, « = OnN A and F' : A — « be a function
that is definable in (A, €) by a X1-formula using parameters. If x € A,
then I’ x is bounded in c.
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We are now ready to show how the proof of the theorem works.

Theorem

Let k be an infinite cardinal and o be P(k)-admissible. If
T 7 a+ 1, then 7, < a.

Proof of the Theorem

Fix an admissible set A with o = OnN A and P(k) € A. Let G be
a centreless group of cardinality k and (G4, | @ € On) be an
automorphism tower of G. We may assume that the domain of G
is k. For B8 € On, we set

Gs = {dftg(9) | g € Gg} € A,

We sketch the idea behind the proof of the theorem.
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m Given m € Go41 and B < «, we show that the function
cg:Gs — a; dftg(g) — min{y <o | g™, 9" € Gy}

is definable in A by a Y1-formula with parameters. In
particular, the range of cg is bounded below c.

m We construct a strictly increasing function f : w — « that is
definable in A by a ¥1-formula with parameters and satisfies
crmy(aftg(g)) < f(n+1) forallg € Gyy and n < w. Then
a* =sup,., f(n) € LimNa and iy [ Gor € Aut(Gox).

m Thereisa ™ € Gyry1 With i« | Gox = 1 | Go» and this
means m = % € Go+41 C G, because

e Ca,..(G) = {1g}.
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|
m This shows 7. < o + 1.
m If 7. < «, then the function
t : {aftq(1g) | G is centreless group with domain K} — « ;

qfte(la) — 7(G)

is definable in A by a Y1-formula with parameters and
therefore its range is bounded in «.

O

Thank you for listening!
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|
We let M, € A denote the structure produced by the above theorem

and ¢ be the corresponding formula.

Given a term t = t(vo, v1) in T2, we define

U, : P(TE) — P(T3); X — {s(vo) | s(t(vg,v1)) € X}.

Given 3 € On, g,h € Gg and k € (G U {g, h}) with k =t(g,h), it is
easy to see that qft-(k) = i(qfts(g, h)).

We define N to be the smallest class of terms in TG2 that contains v; and
g for every g € G and is closed under o, ~' and [t + votvy '].

Let m € Goy1 and g € G. The function

¢:N— a; t— min{f < a | ¥(qftg(m,g)) € G}

is well-defined and definable in (A, €) by a ¥1-formula with parameters.
Since N € A, the above Proposition shows that there is a 8 < « such
that W (qfts(m, g)) € Gg for all t € N and this implies g™, g™ € Gg.



Proof of the theorem

|
If h € G, then the following statements are equivalent.

mh=g".
m There is X C 72 and 3 < a with

m X is closed under o, 71, [t votvo_l] and reductions,
m gftg(m) = Voo (X), aftg(g) = Ve, (X) and
aftc(h) = ¥, - (X),
m For all tg,t1,t2 € N, we have totltgl € X if and only if

<\Ptn (X)7 \I]h (X)7 \Ijtz (X)v qftG(]lG)> € Igv
m gftg(k) = ¥, (X) forall k € G.
This shows that for each 3 < « the function
. PP
cs:Gs — a; qftg(9) — min{y < a | ¢", 9" €G,}

is definable in A by a Y, -formula with parameters. [
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Thank you for listening!
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