The height of the automorphism tower of a centreless group

Philipp Moritz Lücke

Institut für Mathematische Logik und Grundlagenforschung Fachbereich Mathematik und Informatik der Universität Münster http://wwwmath.uni-muenster.de/logik/Personen/Luecke/

Mülheim an der Ruhr, 05/31/2011

Automorphism towers

Let G be a group with trivial centre. For each $g\in G,$ we let ι_g denote the corresponding inner automorphism. The map

$$\iota_G: G \longrightarrow \operatorname{Aut}(G); \ g \mapsto \iota_g$$

is an embedding of groups that maps G onto the subgroup Inn(G) of all inner automorphisms of G. An easy computation shows that Inn(G) is a normal subgroup of Aut(G) and Aut(G) is again a group with trivial centre.

By iterating this process, we construct the *automorphism tower* of G.

Definition

A sequence $\langle G_{\alpha} \mid \alpha \in \text{On} \rangle$ of groups is an automorphism tower of a centreless group G if the following statements hold.

- $G = G_0$.
- \blacksquare If $\alpha\in {\rm On},$ then G_α is a normal subgroup of $G_{\alpha+1}$ and the induced homomorphism

$$\varphi_{\alpha}: G_{\alpha+1} \longrightarrow \operatorname{Aut}(G_{\alpha}); \ g \mapsto \iota_g \upharpoonright G_{\alpha}$$

is an isomorphism.

If
$$\alpha \in \text{Lim}$$
, then $G_{\alpha} = \bigcup \{G_{\beta} \mid \beta < \alpha \}$.

In this definition we replaced $\operatorname{Aut}(G_{\alpha})$ by an isomorphic copy $G_{\alpha+1}$ that contains G_{α} as a normal subgroup. This allows us to take unions at limit stages.

Given a centreless group G, we can construct an automorphism tower of G and it is unique up to isomorphisms that induce the identity on G.

We say that the automorphism tower of a centerless group terminates if there is an $\alpha \in On$ with $G_{\alpha} = G_{\alpha+1}$ and therefore $G_{\alpha} = G_{\beta}$ for all $\beta \geq \alpha$. It is natural to ask whether the automorphism tower of every centreless group finally terminates.

Theorem (S. Thomas)

If G is an infinite centreless group of cardinality κ , then there is an $\alpha < (2^{\kappa})^+$ with $G_{\alpha} = G_{\alpha+1}$.

This result allows us to make the following definitions.

Definition

Given a centreless group G, we let $\tau(G)$ denote the least ordinal α satisfying $G_{\alpha} = G_{\alpha+1}$ and call this ordinal the *height of the automorphism tower of* G. If κ is an infinite cardinal, then we define

 $\tau_{\kappa} = \text{lub}\{\tau(G) \mid G \text{ is a centreless group of cardinality } \kappa\}.$

There are only 2^{κ} -many centreless groups of cardinality κ and therefore the above result implies " $\tau_{\kappa} < (2^{\kappa})^+$ " for all infinite cardinals κ . Simon Thomas also proved " $\tau_{\kappa} \ge \kappa^+$ ".

It is known that $(2^{\kappa})^+$ is the best *cardinal* upper bound for τ_{κ} provable in ZFC for regular uncountable cardinal κ (Just/Shelah/Thomas). In addition, Simon Thomas showed that "($\forall \kappa \text{ regular}) \tau_{\kappa} < 2^{\kappa}$ " is consistent with the axioms of ZFC.

The following problem is still open.

Problem (The automorphism tower problem)

Find a model M of ZFC and an infinite cardinal κ in M such that it is possible to "compute" the exact value of τ_{κ} in M.

In this talk I present a new upper bound for τ_{κ} .

A new upper bound

To define this bound, we need to introduce some notions from *abstract recursion theory*.

Let \mathcal{L}_{\in} denote the language of set theory.

- An \mathcal{L}_{\in} -formula is Δ_0 if it is contained in the smallest class of \mathcal{L}_{\in} -formulae that contains every atomic formula and is closed under negation, conjunction and bounded existential quantification.
- An \mathcal{L}_{\in} -formula φ is Σ_1 if there is a Δ_0 -formula φ_0 such that $\varphi \equiv (\exists x) \ \varphi_0(x, v_0, \dots, v_{n-1}).$

Admissible sets

Definition

A set \mathbb{A} is *admissible* if it has the following properties.

- \blacksquare \mathbbm{A} is nonempty, transitive and closed under pairing and union.
- $\langle \mathbb{A}, \in \rangle$ satisfies Δ_0 -Seperation, i.e.

 $(\forall x_0, \dots, x_n)(\exists y)(\forall z) \ [z \in y \leftrightarrow [y \in x_0 \land \varphi(x_0, \dots, x_n, z)]]$

holds in $\langle \mathbb{A}, \in \rangle$ for every Δ_0 -formula $\varphi(u_0, \ldots, u_n, v)$. • $\langle \mathbb{A}, \in \rangle$ satisfies Δ_0 -*Collection*, i.e.

$$(\forall x_0, \dots, x_n) [(\forall y \in x_0) (\exists z) \ \varphi(x_0, \dots, x_n, y, z) \\ \rightarrow (\exists w) (\forall y \in x_0) (\exists z \in w) \ \varphi(x_0, \dots, x_n, y, z)]$$

holds in $\langle \mathbb{A}, \in \rangle$ for every Δ_0 -formula $\varphi(u_0, \ldots, u_n, v_0, v_1)$.

The result

Definition

Given a set x, an ordinal α is x-admissible if there is an admissible set \mathbb{A} with $x \in \mathbb{A}$ and $\alpha = \mathbb{A} \cap \text{On}$.

We are now ready to state our result.

Theorem

Let κ be an infinite cardinal and α be $\mathcal{P}(\kappa)$ -admissible. If $\tau_{\kappa} \neq \alpha + 1$, then $\tau_{\kappa} < \alpha$.

In the proof of this statement, we use results of Itay Kaplan and Saharon Shelah to establish a connection between automorphism towers and admissible set theory by representing automorphism towers as *inductive definitions* on a certain structure.

Inductive Definitions

Let \mathcal{L} be a finite first order language, \mathcal{M} be an \mathcal{L} -structure and $n < \omega$. We let $\mathcal{L}^n_{\mathcal{M}}$ denote the first order language that extends \mathcal{L} by a new *n*-ary predicate \dot{R} and a constant symbol \dot{x} for every $x \in \mathcal{M}$. If X is a subset of \mathcal{M}^n , then we define $\mathcal{M}(X)$ to be the unique $\mathcal{L}^n_{\mathcal{M}}$ -expansion of \mathcal{M} with $\dot{R}^{\mathcal{M}(X)} = X$ and $\dot{x}^{\mathcal{M}(X)} = x$ for all $x \in \mathcal{M}$.

Given an $\mathcal{L}^n_{\mathcal{M}}$ -formula $\varphi \equiv \varphi(v_0, \ldots, v_{n-1})$ with n free variables, we define a sequence $\langle I^{\alpha}_{\varphi} \mid \alpha \in \mathrm{On} \rangle$ of subsets of M^n in the following way.

$$\begin{array}{l} \bullet \ I^0_{\varphi} = \{ \vec{x} \in M^n \mid \mathcal{M}(\emptyset) \models \varphi(\vec{x}) \}. \\ \bullet \ I^{\alpha+1}_{\varphi} = I^{\alpha}_{\varphi} \cup \{ \vec{x} \in M^n \mid \mathcal{M}(I^{\alpha}_{\varphi}) \models \varphi(\vec{x}) \} \text{ for all } \alpha \in \text{On.} \\ \bullet \ I^{\alpha}_{\varphi} = \bigcup_{\beta < \alpha} I^{\beta}_{\varphi} \text{ for all } \alpha \in \text{Lim.} \end{array}$$

The following definition will allow us to construct automorphism towers as inductive definition.

Let G be a group and \mathcal{L}_G be the language of group theory expanded by a constant symbol \dot{g} for every $g \in G$. We let \mathcal{T}_G^n denote the set of all \mathcal{L}_G -terms $t \equiv t(v_0, \ldots, t_{n-1})$ with exactly n free variables. If H is a group containing G, then we interpret H as an \mathcal{L}_G -structure and for each $\vec{h} \in H^n$ we define

$$\mathsf{qft}_{H,G}(\vec{h}) = \{t(\vec{v}) \in \mathcal{T}_G^n \mid H \models ``t(\vec{h}) = \mathbb{1}"\,\}.$$

Theorem (I. Kaplan & S. Shelah)

If $\langle G_{\alpha} \mid \alpha \in \mathrm{On} \rangle$ is the automorphism tower of a centreless group G, then the map

$$\mathsf{qft}_{G_\alpha,G}:G_\alpha\longrightarrow \mathcal{P}(\mathcal{T}^1_G);\ g\longmapsto \mathsf{qft}_{G_\alpha,G}(\vec{g})$$

is injective for all $\alpha \in On$.

If $g \in G_{\tau(G)}$ and $\alpha \in \text{On}$, then $qft_{G_{\alpha},G}(g) = qft_{G_{\tau(G)},G}(g)$ and we can call this set $qft_G(g)$.

We reformulate results of Itay Kaplan and Saharon Shelah to our setting.

Theorem (I. Kaplan & S. Shelah)

There is a finite first order language \mathcal{L} such that for every infinite cardinal κ there is an \mathcal{L} -structure $\mathcal{M}_{\kappa} = \langle M_{\kappa}; \ldots \rangle$ and a $\mathcal{L}^{4}_{\mathcal{M}_{\kappa}}$ -formula $\varphi \equiv \varphi(v_{0}, \ldots, v_{3})$ with the following properties.

- \mathcal{M}_{κ} is an element of every admissible set that contains $\mathcal{P}(\kappa)$.
- If G is a centreless group with domain κ and $\langle G_{\alpha} \mid \alpha \in \text{On} \rangle$ is an automorphism tower of G, then $\mathcal{P}(\mathcal{T}_{G}^{2}) \subseteq M_{\kappa}$ and

$$\begin{split} \langle x, y, z, \mathsf{qft}_G(\mathbb{1}_G)) \rangle &\in I_{\varphi}^{\alpha} \iff \\ (\exists g_0, g_1 \in G_{\alpha}) [x = \mathsf{qft}_G(g_0) \land y = \mathsf{qft}_G(g_1) \land z = \mathsf{qft}_G(g_0 \circ g_1)] \\ \textit{holds for all } \alpha \in \mathrm{On} \textit{ and } x, y, z \in M_{\kappa} \times M_{\kappa} \times M_{\kappa}. \end{split}$$

Some admissible set theory

The *Recursion Theorem* holds in admissible sets and this allows us to prove the following statements.

Proposition

Let \mathbb{A} be an admissible set, $\alpha = On \cap \mathbb{A}$ and \mathcal{L} be a finite first order language. If \mathcal{M} is an \mathcal{L} -model with $\mathcal{M} \in \mathbb{A}$ and $\varphi(v_0, \ldots, v_{n-1})$ is a $\mathcal{L}^n_{\mathcal{M}}$ -formula, then $I^{\beta}_{\varphi} \in \mathbb{A}$ for all $\beta < \alpha$ and the map

$$F_{\varphi}: \alpha \longrightarrow \mathbb{A}; \ \beta \longmapsto I_{\varphi}^{\beta}$$

is definable in $\langle \mathbb{A}, \in \rangle$ by a Σ_1 -formula using parameters.

Proposition

Let \mathbb{A} be an admissible set, $\alpha = On \cap \mathbb{A}$ and $F : \mathbb{A} \longrightarrow \alpha$ be a function that is definable in $\langle \mathbb{A}, \in \rangle$ by a Σ_1 -formula using parameters. If $x \in \mathbb{A}$, then $F^n x$ is bounded in α .

We are now ready to show how the proof of the theorem works.

Theorem

Let κ be an infinite cardinal and α be $\mathcal{P}(\kappa)$ -admissible. If $\tau_{\kappa} \neq \alpha + 1$, then $\tau_{\kappa} < \alpha$.

Proof of the Theorem

Fix an admissible set \mathbb{A} with $\alpha = On \cap \mathbb{A}$ and $\mathcal{P}(\kappa) \in \mathbb{A}$. Let G be a centreless group of cardinality κ and $\langle G_{\alpha} \mid \alpha \in On \rangle$ be an automorphism tower of G. We may assume that the domain of G is κ . For $\beta \in On$, we set

$$\mathcal{G}_{\beta} = \{\mathsf{qft}_G(g) \mid g \in G_{\beta}\} \in \mathbb{A}.$$

We sketch the idea behind the proof of the theorem.

• Given $\pi \in G_{\alpha+1}$ and $\beta < \alpha$, we show that the function

$$c_{\beta}: \mathcal{G}_{\beta} \longrightarrow \alpha; \ \mathsf{qft}_G(g) \longmapsto \min\{\gamma < \alpha \mid g^{\pi}, g^{\pi^{-1}} \in G_{\gamma}\}$$

is definable in \mathbb{A} by a Σ_1 -formula with parameters. In particular, the range of c_β is bounded below α .

- We construct a strictly increasing function $f: \omega \longrightarrow \alpha$ that is definable in \mathbb{A} by a Σ_1 -formula with parameters and satisfies $c_{f(n)}(qft_G(g)) < f(n+1)$ for all $g \in G_{f(n)}$ and $n < \omega$. Then $\alpha^* = \sup_{n < \omega} f(n) \in \operatorname{Lim} \cap \alpha$ and $\iota_{\pi} \upharpoonright G_{\alpha^*} \in \operatorname{Aut}(G_{\alpha^*})$.
- There is a π^{*} ∈ G_{α*+1} with ι_{π*} ↾ G_{α*} = ι_π ↾ G_{α*} and this means π = π^{*} ∈ G_{α*+1} ⊆ G_α, because

$$\pi^* \pi^{-1} \in \mathcal{C}_{G_{\alpha+1}}(G) = \{\mathbb{1}_G\}.$$

- This shows $\tau_{\kappa} \leq \alpha + 1$.
- If $\tau_{\kappa} \leq \alpha$, then the function
 - $$\begin{split} t: \{ \mathsf{qft}_G(\mathbb{1}_G) \mid G \text{ is centreless group with domain } \kappa \} &\to \alpha ; \\ \mathsf{qft}_G(\mathbb{1}_G) \longmapsto \tau(G) \end{split}$$

is definable in \mathbb{A} by a Σ_1 -formula with parameters and therefore its range is bounded in α .

Details?

Thank you for listening!

We let $\mathcal{M}_{\kappa} \in \mathbb{A}$ denote the structure produced by the above theorem and φ be the corresponding formula. Given a term $t \equiv t(v_0, v_1)$ in $\mathcal{T}_{\mathcal{C}}^2$, we define

$$\Psi_{\mathsf{t}}: \mathcal{P}(\mathcal{T}_G^2) \longrightarrow \mathcal{P}(\mathcal{T}_G^1); \ X \longmapsto \{\mathsf{s}(v_0) \mid \mathsf{s}(\mathsf{t}(v_0, v_1)) \in X\}.$$

Given $\beta \in \text{On}$, $g, h \in G_{\beta}$ and $k \in \langle G \cup \{g, h\} \rangle$ with k = t(g, h), it is easy to see that $qft_G(k) = \Psi_t(qft_G(g, h))$. We define N to be the smallest class of terms in \mathcal{T}_G^2 that contains v_1 and \dot{g} for every $g \in G$ and is closed under \circ , $^{-1}$ and $[t \mapsto v_0 t v_0^{-1}]$. Let $\pi \in G_{\alpha+1}$ and $g \in G_{\alpha}$. The function

$$c: \mathbb{N} \longrightarrow \alpha; t \longmapsto \min\{\beta < \alpha \mid \Psi_{t}(\mathsf{qft}_{G}(\pi, g)) \in \mathcal{G}_{\beta}\}$$

is well-defined and definable in $\langle \mathbb{A}, \in \rangle$ by a Σ_1 -formula with parameters. Since $\mathbb{N} \in \mathbb{A}$, the above Proposition shows that there is a $\beta < \alpha$ such that $\Psi_t(qft_G(\pi, g)) \in \mathcal{G}_\beta$ for all $t \in \mathbb{N}$ and this implies $g^{\pi}, g^{\pi^{-1}} \in G_\beta$. If $h \in G_{\alpha}$, then the following statements are equivalent.

- $h = g^{\pi}$.
- There is $X \subseteq T_G^2$ and $\beta < \alpha$ with
 - X is closed under \circ , $^{-1}$, $[t \mapsto v_0 t v_0^{-1}]$ and reductions,
 - $qft_G(\pi) = \Psi_{v_0}(X)$, $qft_G(g) = \Psi_{v_1}(X)$ and $qft_G(h) = \Psi_{v_0v_1v_0^{-1}}(X)$,
 - \blacksquare For all $t_0,t_1,t_2\in N,$ we have $t_0t_1t_2^{-1}\in X$ if and only if

$$\langle \Psi_{\mathbf{t}_0}(X), \Psi_{\mathbf{t}_1}(X), \Psi_{\mathbf{t}_2}(X), \mathsf{qft}_G(1\!\!1_G) \rangle \in I_\varphi^\beta,$$

• $\operatorname{qft}_G(k) = \Psi_k(X)$ for all $k \in G$.

This shows that for each $\beta < \alpha$ the function

$$c_{\beta}: \mathcal{G}_{\beta} \longrightarrow \alpha; \ \mathsf{qft}_G(g) \longmapsto \min\{\gamma < \alpha \mid g^{\pi}, g^{\pi^{-1}} \in G_{\gamma}\}$$

is definable in \mathbb{A} by a Σ_1 -formula with parameters.

Thank you for listening!