THE HEIGHT OF THE AUTOMORPHISM TOWER OF A CENTRELESS GROUP

PHILIPP LÜCKE

Let G be a centreless group. We call a sequence $\langle G_{\alpha} \mid \alpha \in \text{On} \rangle$ of groups an *automorphism tower of* G if the following statements hold.

(1) $G = G_0$.

(2) For all $\alpha \in On$, G_{α} is a normal subgroup of $G_{\alpha+1}$ and the induced map

$$\varphi_{\alpha}: G_{\alpha+1} \longrightarrow \operatorname{Aut}(G_{\alpha}); h \longmapsto [g \mapsto g^h]$$

is an isomorphism.

(3) If λ is a limit ordinal, then $G_{\lambda} = \bigcup_{\alpha < \lambda} G_{\alpha}$.

It is easy to see that each group G_{α} is uniquely determined up to isomorphisms that induce the identity map on G.

Simon Thomas showed that for every infinite centreless group G of cardinality κ , there is an $\alpha < (2^{\kappa})^+$ with $G_{\alpha} = G_{\alpha+1}$ and therefore $G_{\alpha} = G_{\beta}$ for all $\beta \ge \alpha$. We let $\tau(G)$ denote the minimal ordinal with this property. Given an infinite cardinal κ , we define

 $\tau_{\kappa} = \operatorname{lub}\{\tau(G) \mid G \text{ is a centreless group of cardinality } \kappa\}.$

By Thomas' result, $\tau_{\kappa} < (2^{\kappa})^+$ holds. The following problem is still open.

Problem. Find a model $\langle M, \in_M \rangle$ of ZFC and an infinite cardinal κ in M such that it is possible to "compute" the exact value of τ_{κ} in M.

Building upon results and methods developed by Itay Kaplan and Saharon Shelah, I want to show how smaller upper bounds for τ_{κ} can be obtained by combining group-theoretic arguments with *admissible set theory* and *fine structure theory for* the inner model $L(\mathcal{P}(\kappa))$.

INSTITUT FÜR MATHEMATISCHE LOGIK UND GRUNDLAGENFORSCHUNG, FACHBEREICH MATHE-MATIK UND INFORMATIK, UNIVERSITÄT MÜNSTER, EINSTEINSTR. 62, 48149 MÜNSTER, GERMANY *E-mail address*: philipp.luecke@uni-muenster.de