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Introduction

The work presented in this talk studies the following well-known
property of partial orders.

De�nition

Given an uncountable regular cardinal κ, we say that a partial order P
is κ-Knaster if every set of κ-many conditions in P contains a subset
of cardinality κ consisting of pairwise compatible conditions.

This property clearly strengthens the κ-chain condition. It is typically
used because of its nice product behavior.

For example, the product of a κ-Knaster partial order and a partial
order satisfying the κ-chain condition satis�es the κ-chain condition.

We present another well-known example of such a productivity
property that motivates the work presented in this talk.
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Lemma

If κ is an uncountable regular cardinal, then the class of κ-Knaster partial
orders is closed under products.

Proof.

Let P and Q be κ-Knaster partial orders and let A be a subset of P×Q of

cardinality κ.

We may assume that for all p ∈ P and all q ∈ Q, the sets

Ap = {s ∈ Q | 〈p, s〉 ∈ A} and Aq = {r ∈ P | 〈r, q〉 ∈ A}

have cardinality less than κ.

In this situation, there is an injective partial function F : P part−−→ Q of

cardinality κ with F ⊆ A. Pick D ∈ [dom(F )]κ consisting of pairwise

compatible conditions in P and R ∈ [ran(F � D)]κ consisting of pairwise

compatible conditions in Q. Then the set F � (F−1[R]) consists of

pairwise compatible conditions in the product P×Q.



Introduction

With the help of the ∆-System Lemma, the above lemma yields the
following result.

Corollary

If κ is an uncountable regular cardinal, then the class of κ-Knaster
partial orders is closed under �nite support products.

The above observation leads to the question whether there are
uncountable regular cardinals κ with the property that the class of
κ-Knaster partial orders is closed under products with larger supports.

It turns out that this productivity holds for certain large cardinals.
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Proposition

Let κ be a weakly compact cardinal and let λ < κ be a cardinal. If

〈Pα | α < λ〉 is a sequence of partial orders satisfying the κ-chain condition,

then the corresponding full support product ~P =
∏
α<λ Pα is κ-Knaster.

Proof.

Fix a sequence 〈~pγ ∈ ~P | γ < κ〉 and let c : [κ]2 −→ λ+ 1 denote the

unique function such that the following statements hold for all γ < δ < κ:

If c(γ, δ) = λ, then the conditions ~pγ and ~pδ are compatible in ~P.
Otherwise, c(γ, δ) is the minimal α < λ with the property that the

conditions ~pγ(α) and ~pδ(α) are incompatible in Pα.
Since κ is weakly compact, there is H ∈ [κ]κ and β ≤ λ with c[H]2 = {β}.
Then β = λ, because otherwise Pβ would contain an antichain of size κ.

This shows that the sequence 〈~pγ | γ ∈ H〉 consists of pairwise compatible

conditions.
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Corollary

If κ is a weakly compact cardinal, then the class of κ-Knaster partial orders
is closed under λ-support products for every λ < κ.

It is now natural to ask whether this productivity characterizes weak

compactness.

Question

Are the following statements equivalent for every uncountable regular

cardinal κ?

κ is weakly compact.

The class of κ-Knaster partial orders is closed under λ-support
products for every λ < κ.

In the following, we present results showing that the axioms of ZFC do

not answer this question.
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Ascending paths

The following result shows that the above statement about the productivity

of the Knaster property characterizes weak compactness in canonical inner

models.

Theorem (L.)

Let L[E] be a Jensen-style extender model. In L[E], the following

statements are equivalent for every uncountable regular cardinal κ:

κ is weakly compact.

The class of κ-Knaster partial orders is closed under λ-support
products for all λ < κ.

Moreover, if κ is not the successor of a subcompact cardinal in L[E], then
the above statements are also equivalent to the following statement:

The class of κ-Knaster partial orders is closed under countable support

products.

We brie�y outline the concepts used in the proof of this result.
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The partial orders constructed in the proof of the above result will be of

the following form.

De�nition

Given a tree T, we let P(T) denote the partial order whose conditions are

�nite partial functions p : T part−−→ ω that are injective on chains in T and

whose ordering is given by reversed inclusion.

In order to show that partial orders of the form P(T) can be κ-Knaster for
certain trees of height κ, we need to introduce the nonstationary ideal of a

tree T.
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De�nition (Todor£evi¢)

Let κ be an uncountable regular cardinal, let S be a subset of κ and let T
be a tree of height κ.

A map r : T � S −→ T is regressive if r(t) <T t holds for t ∈ T � S
that is not minimal in T.

We say that S is nonstationary with respect to T if there is a

regressive map r : T � S −→ T with the property that for every t ∈ T
there is a function ct : r−1{t} −→ κt such that κt is a cardinal smaller

than κ and ct is injective on chains in T.

Lemma (Cox-L.)

Let κ be an uncountable regular cardinal and let T be a normal

κ-Aronszajn tree. If there is a stationary subset S of κ such that S is

nonstationary with respect to T, then the partial order P(T) is κ-Knaster.
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In order to see that the productivity of the Knaster property may fail for

partial orders of the form P(T), we use the following de�nition that directly

generalizes the notion of a co�nal branch through a tree.

De�nition

Given an uncountable regular cardinal κ, a tree T of height κ and a

cardinal λ > 0, a sequence 〈bγ : λ −→ T(γ) | γ < κ〉 of functions is an
ascending path of width λ through T if for all γ̄ < γ < κ, there are

α, ᾱ < λ such that bγ̄(ᾱ) <T bγ(α).

Proposition

Let κ be an uncountable regular cardinal, let T be a tree of height κ and

let λ be an in�nite cardinal. If there is an ascending path of width λ
through T, then the full support product

∏
λ P(T) does not satisfy the

κ-chain condition.
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The following result yields the above characterizations of weakly
compact cardinals in canonical inner models.

Its proof relies on results of Todor£evi¢ on walks on ordinals and
results of Schimmerling and Zeman on the existence of square
sequences in canonical inner models that extend seminal results of
Jensen.

Theorem

Assume that V is a Jensen-style extender model. Let κ be an
uncountable regular cardinal that is not weakly compact and not the
successor of a subcompact cardinal. Then there is a normal
κ-Aronszajn tree T and a stationary subset S of Sκω such that S is
nonstationary with respect to T and there is an ascending path of
width ω through T.



Layered partial orders

Layered partial orders



Layered partial orders

Next, we present a result showing that the above statement about the

productivity of the Knaster property can consistently hold at non-weakly

compact cardinals.

This result uses the following strengthening of the Knaster property.

De�nition

Let κ be an uncountable regular cardinal, let λ ≥ κ be a cardinal, let F be

a normal �lter on Pκ(λ) and let P be a partial order.

We say P is F-layered, if it has cardinality at most λ and

{a ∈ Pκ(λ) | s[a] is a regular suborder of P} ∈ F

holds for every surjection s : λ −→ P.
We say that P is completely F -layered if every subset of P of

cardinality at most λ is contained in a regular suborder of P of

cardinality at most λ and every regular suborder of P of size at most λ
is F-layered.



Layered partial orders

Lemma (Cox-L.)

In the situation of the above de�nition, if λ = λ<κ holds, then every

completely F -layered partial order is κ-Knaster.

Theorem (Cox-L.)

Let κ be a weakly compact cardinal and let Fwc denote the weakly

compact �lter on Pκ(κ). Then a partial order P satis�es the κ-chain
condition if and only if P is completely Fwc-layered.

Lemma (Cox-L.)

In the situation of the above de�nition, assume that κ = λ is inaccessible

and ν < κ is a cardinal with

{a ∈ Pκ(κ) | ϕ[νa] ⊆ a} ∈ F

for every function ϕ : νκ −→ κ. Then the class of completely F -layered
partial orders is closed under ν-support products.
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Theorem (Cox-L.)

Let κ be an inaccessible cardinal with the property that there is a
κ-Souslin tree T with 1T 
 � κ̌ is weakly compact �. Set

F = {A ⊆ Pκ(κ) | 1T 
 � Ǎ ∈ Fwc � }.

Then:

F is a normal �lter on Pκ(κ) with {a ∈ Pκ(κ) | ϕ[νa] ⊆ a} ∈ F
for all ν < κ and every function ϕ : νκ −→ κ.

Every κ-Knaster partial order is completely F -layered.
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In combination with a classical result of Kunen, this result yields the
following theorem that shows that the above potential
characterization of weak compactness can consistently fail.

Theorem (Cox-L.)

If κ is a weakly compact cardinal, then there is a partial order P such
that the following statements hold in V[G] whenever G is P-generic
over V.

κ is inaccessible and not weakly compact.

For every ν < κ, the class of κ-Knaster partial orders is closed
under ν-support products.



Goodbye!

Thank you for listening!
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