Lightface Σ_1^1 -subsets of ${}^{\omega_1}\omega_1$

Philipp Moritz Lücke

Joint work in progress with Ralf Schindler and Philipp Schlicht

Mathematisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn http://www.math.uni-bonn.de/people/pluecke/

Hamburg Workshop on Set Theory 2015 Hamburg, 20.09.2015

Introduction

Assume that κ is an uncountable regular cardinal.

The generalized Baire space of κ is the set $\kappa \kappa$ of all functions from κ to κ equipped with the topology whose basic open sets are of the form

$$N_s = \{ x \in {}^{\kappa} \kappa \mid s \subseteq x \}$$

for some s contained in the set ${}^{<\kappa}\kappa$ of all functions $t:\alpha\longrightarrow\kappa$ with $\alpha<\kappa.$

A subset of ${}^{\kappa}\kappa$ is a Σ_1^1 -set if it is equal to the projection of a closed subset of ${}^{\kappa}\kappa \times {}^{\kappa}\kappa$.

A subset X of ${}^{\kappa}\kappa$ is a Δ^1_1 -set if both X and ${}^{\kappa}\kappa \setminus X$ are Σ^1_1 -sets.

The following folklore result shows that the class of Σ_1^1 -sets contains many interesting objects.

Proposition

As subset of $\kappa \kappa$ is a Σ_1^1 -set if and only if it is definable over the structure $\langle H(\kappa^+), \in \rangle$ by a Σ_1 -formula with parameters.

This observation can also be used to show that many basic questions about the class of Σ_1^1 -subsets of ${}^{\kappa}\kappa$ are not settled by the axioms of **ZFC** together with large cardinal axioms.

In the following, we discuss two important examples of such questions.

Separating the club filter from the nonstationary ideal

Define

$$\mathsf{CLUB}_{\kappa} = \{ x \in {}^{\kappa}\kappa \mid \exists C \subseteq \kappa \textit{ club } \forall \alpha \in C \ x(\alpha) > 0 \}$$

and

$$\mathsf{NS}_{\kappa} \ = \ \{ x \in {}^{\kappa}\kappa \ | \ \exists C \subseteq \kappa \ \textit{club} \ \forall \alpha \in C \ x(\alpha) = 0 \}.$$

Then the *club filter* $CLUB_{\kappa}$ on κ and the *non-stationary ideal* NS_{κ} on κ are disjoint Σ_{1}^{1} -subsets of $\kappa \kappa$.

In the light of the *Lusin Separation Theorem theorem* it is natural to ask the following question.

Question

Is there a Δ_1^1 -subset A of ${}^{\kappa}\kappa$ that separates $CLUB_{\kappa}$ from NS_{κ} , in the sense that $CLUB_{\kappa} \subseteq A \subseteq {}^{\kappa}\kappa \setminus NS_{\kappa}$ holds?

For a large class of cardinals it is known that the above question is not settled by the axioms of \mathbf{ZFC} together with large cardinal axioms.

With the help of results of Mekler-Shelah and Hyttinen-Rautila, the following theorem produces positive answers to the above question.

Theorem (Friedman-Hyttinen-Kulikov)

Assume that the GCH holds and κ is not the successor of a singular cardinal. In a cofinality preserving forcing extension of the ground model, there is a Δ_1^1 -subset of $\kappa \kappa$ that separates CLUB_{κ} from NS_{κ}.

In contrast, it is possible to combine results of Halko-Shelah and Friedman-Hyttinen-Kulikov (or L.-Schlicht) to show that a negative answer to the above question is also consistent.

Theorem

If $\kappa = \kappa^{<\kappa}$ and G is $Add(\kappa, \kappa^+)$ -generic over V, then there is no Δ^1_1 -subset A of $\kappa \kappa$ that separates $CLUB(\kappa)$ from $NS(\kappa)$ in V[G].

Existence of Σ_1^1 -definable well-orders

Given $x \subseteq \omega$, a classical theorem of Mansfield shows that there is a well-ordering of the reals that is definable over $\langle H(\omega_1), \in \rangle$ by a Σ_1 -formula with parameter x if and only if all reals are contained in L[x].

In particular, the existence of large cardinals implies that no well-ordering of the reals is definable in this way.

Since Σ_1^1 -definable well-orderings of $\kappa \kappa$ exist in models of the form L[x] with $x \subseteq \kappa$, Mansfield's result motivates the following questions.

Question

What are the provable consequences of the existence of a $\Sigma^1_1\text{-definable}$ well-ordering of ${}^\kappa\kappa?$

Question

Does the existence of Σ_1^1 -definable well-orderings of $\kappa \kappa$ imply the non-existence of certain large cardinals above κ ?

It turns out that the existence of Σ_1^1 -definable well-orderings of κ_{κ} is independent from **ZFC** together with large cardinal axioms.

Theorem

If $\kappa = \kappa^{<\kappa}$ and G is $Add(\kappa, \kappa^+)$ -generic over V, then no well-ordering of $({}^{\kappa}\kappa)^{V[G]}$ is definable over the structure $\langle H(\kappa^+)^{V[G]}, \in \rangle$ by a formula with parameters.

Theorem (Holy-L.)

Assume that $\kappa = \kappa^{<\kappa}$ holds and 2^{κ} is regular. Then there is a partial order \mathbb{P} with the following properties.

- \mathbb{P} is $<\kappa$ -closed and forcing with \mathbb{P} preserves cofinalities less than or equal to 2^{κ} and the value of 2^{κ} .
- If G is \mathbb{P} -generic over the ground model V, then there is a well-ordering of $H(\kappa^+)^{V[G]}$ that is definable over the structure $\langle H(\kappa^+)^{V[G]}, \in \rangle$ by a Σ_1 -formula with parameters.

The results presented above show that there are many interesting questions about Σ_1^1 -subsets that are not settled by the axioms of **ZFC** together with large cardinal axioms. In particular, these axioms do not provide a nice structure theory for the class of Σ_1^1 -sets.

If we do not want to restrict ourselves to consistency proofs of individual structural statements, then there are two obvious ways to proceed:

- Consider other canonical extensions of ZFC that provide a rich structure theory for Σ¹₁-sets (Example: *Closed maximality principles*).
- Consider smaller classes of sets that still contain many interesting subsets and have the property that the axioms of ZFC together with large cardinal axioms prove a nice structure theory for these classes.

We will discuss examples of the second approach.

Lightface Σ_1^1 -subsets of ${}^{\omega_1}\omega_1$

Definition

Let κ be an uncountable regular cardinal and A be a subset of $\kappa \kappa$.

- We say that A is a Σ_1^1 -set if A is definable over the structure $\langle H(\kappa^+), \in \rangle$ by a Σ_1 -formula with parameter κ .
- We say that A is a Δ_1^1 -set if both A and ${}^{\kappa}\kappa \setminus A$ are Σ_1^1 -sets.

This class contains many interesting and important subsets of $\kappa \kappa$. For example, it contains the club filter, the nonstationary ideal and the isomorphism relations for structures of cardinality κ .

We present results that suggest that this class is suitable for the second approch outlined above in the case where either $\kappa = \omega_1$ or κ itself is a large cardinal.

Theorem

Assume that there is a Woodin cardinal with a measurable cardinal above it. Then there is no Σ_1^1 -definable well-ordering of $\omega_1 \omega_1$.

Using results of Woodin on the Π_2 -maximality of the \mathbb{P}_{max} -extension of $L(\mathbb{R})$, it is easy to derive the conclusion of this theorem from the existence of infinitely many Woodin cardinals with a measurable cardinal above them.

Theorem

Assume that there is a Woodin cardinal with a measurable cardinal above it. Then there is no Δ_1^1 -subset of $\omega_1 \omega_1$ that separates CLUB_{ω_1} from NS_{ω_1} .

Friedman and Wu used Woodin's \mathbb{P}_{max} -results to show that the existence of infinitely many Woodin cardinals with a measurable cardinal above them implies that the club filter CLUB_{ω_1} is not definable over $\langle \mathrm{H}(\omega_2), \in \rangle$ by a Π_1 -formula with parameter ω_1 .

We start by discussing the proof of the second theorem.

The statement of the theorem follows from the following result.

Theorem

Assume $M_1^{\#}(X)$ exists for every $X \subseteq \omega_1$. Then the following statements hold for every Σ_1^1 -subset A of $\omega_1 \omega_1$.

- $A \setminus NS_{\omega_1}$ is contained in the closure of $A \cap CLUB_{\omega_1}$ in $^{\omega_1}\omega_1$.
- $A \setminus \mathsf{CLUB}_{\omega_1}$ is contained in the closure of $A \cap \mathsf{NS}_{\omega_1}$ in $^{\omega_1}\omega_1$.

We sketch how the second theorem can be derived from this theorem.

Theorem

If $M_1^{\#}(X)$ exists for every $X \subseteq \omega_1$, then the following statements hold for every Σ_1^1 -subset A of $^{\omega_1}\omega_1$.

- $A \setminus NS_{\omega_1}$ is contained in the closure of $A \cap CLUB_{\omega_1}$ in $^{\omega_1}\omega_1$.
- $A \setminus \mathsf{CLUB}_{\omega_1}$ is contained in the closure of $A \cap \mathsf{NS}_{\omega_1}$ in ${}^{\omega_1}\omega_1$.

Theorem

Assume that there is a Woodin cardinal with a measurable cardinal above it. Then there is no Δ_1^1 -subset of ${}^{\omega_1}\omega_1$ that separates CLUB_{ω_1} from NS_{ω_1} .

Proof.

Assume that there is a Woodin cardinal with a measurable cardinal above it. Then $M_1^{\#}(X)$ exists for every $X \subseteq \omega_1$. Let A and B be Σ_1^1 -subsets of ${}^{\omega_1}\omega_1$ with $A \cap B = \emptyset$, $\mathsf{CLUB}_{\omega_1} \subseteq A$ and $\mathsf{NS}_{\omega_1} \subseteq B$.

By the above theorem, we know that $A \setminus \mathsf{CLUB}_{\omega_1}$ is contained in the closure of $A \cap \mathsf{NS}_{\omega_1} = \emptyset$ and hence $A = \mathsf{CLUB}_{\omega_1}$. Another application of the above theorem shows that $B \setminus \mathsf{NS}_{\omega_1}$ is contained in the closure of $B \cap \mathsf{CLUB}_{\omega_1} = \emptyset$ and hence $B = \mathsf{NS}_{\omega_1}$. This shows that $A \cup B \neq {}^{\omega_1}\omega_1$.

To motivate the proof of the last theorem, we discuss the proof of an analogous result for large cardinals.

Theorem

Let κ be a regular uncountable cardinal with the property that the set

 $E = \{\delta < \kappa \mid \delta \text{ is a measurable cardinal}\}$

is stationary in κ . Then there is

$$x \in {}^{\kappa}2 \setminus (\mathsf{CLUB}_{\kappa} \cup \mathsf{NS}_{\kappa})$$

with the property that x is a limit point of $A \cap \mathsf{CLUB}_{\kappa}$ for every Σ_1^1 -subset A of ${}^{\kappa}\kappa$ with $x \in A$.

Corollary

If κ satisfies the above assumptions, then the set ${}^{\kappa}\kappa \setminus \mathsf{CLUB}_{\kappa}$ is not a Σ_1^1 -subset of ${}^{\kappa}\kappa$.

Note that Friedman and Wu showed that ${}^{\kappa}\kappa \setminus \text{CLUB}_{\kappa}$ is not a Σ_1^1 -subset of ${}^{\kappa}\kappa$ whenever κ is weakly compact.

Proof of the Theorem.

Set $S = \kappa \setminus E$, where E is the stationary set of measurable cardinals less than κ . Then our assumptions imply that E is a bistationary subset of κ .

Let $x \in {}^{\kappa}2 \setminus (\mathsf{CLUB}_{\kappa} \cup \mathsf{NS}_{\kappa})$ denote the characteristic function of S.

Pick $\beta < \kappa$ and a Σ_0 -formula $\varphi(v_0, v_1, v_2)$ such that $\varphi(x, y, \kappa)$ holds for some $y \in H(\kappa^+)$.

Pick a strictly increasing continuous chain $\langle M_{\alpha} \mid \alpha < \kappa \rangle$ of elementary submodels of $H(\kappa^+)$ of cardinality less than κ such that $\beta \cup \{x, y\} \subseteq M_0$ and $\kappa_{\alpha} = \kappa \cap M_{\alpha} \in \kappa$ for all $\alpha < \kappa$.

Then $C = \{\kappa_{\alpha} \mid \alpha \in \kappa \cap \text{Lim}\}$ is a club in κ .

Let δ denote the minimal element of $\kappa \cap \text{Lim}$ with $\kappa_{\delta} \in E$. Since κ_{δ} is a measurable cardinal and therefore regular, we know that $\delta = \kappa_{\delta} > \beta$.

Let $\pi : M_{\delta} \longrightarrow M$ denote the transitive collapse of M_{δ} . Then $\pi(\kappa) = \delta$, $\pi(x) = x \upharpoonright \delta$ and Σ_0 -absoluteness implies that $\varphi(x \upharpoonright \delta, \pi(y), \delta)$ holds in V.

Moreover, $C \cap \delta$ is a club in δ , the minimality of δ implies that $C \cap \delta \subseteq S \cap \delta$ and therefore $x(\gamma) = 1$ for all $\gamma \in C \cap \delta$.

Proof (cont.).

In the above computations, we found $\beta < \delta < \kappa$ measurable, $D \subseteq \delta$ club and $z \in H(\delta^+)$ such that $\varphi(x \upharpoonright \delta, z, \delta)$ holds in V and D witnesses that $x \upharpoonright \delta$ is an element of CLUB_{δ} .

Pick a normal ultrafilter U on δ and let

$$\langle \langle N_{\alpha} \mid \alpha \in \mathrm{On} \rangle, \ \langle j_{\bar{\alpha},\alpha} : N_{\bar{\alpha}} \longrightarrow N_{\alpha} \mid \bar{\alpha} \le \alpha \in \mathrm{On} \rangle \rangle$$

denote the corresponding iteration of V by U. Set $j = j_{0,\kappa} : V \longrightarrow N_{\kappa}$. Then $j(\delta) = \kappa$ and j(D) is a club in κ that witnesses that $j(x \upharpoonright \delta)$ is an element of CLUB_{κ} .

In this situation, Σ_0 -absoluteness and elementarity imply that $\varphi(j(x \restriction \delta), j(z), \kappa)$ holds in V and $j(z \restriction \delta) \in N_{x \restriction \beta}$.

In order to derive the above conclusion, it suffices to assume that κ is regular and a stationary limit of ω_1 -iterable cardinals.

Next, we discuss the proof of the related result for $\kappa = \omega_1$.

Theorem

If $M_1^{\#}(X)$ exists for every $X \subseteq \omega_1$, then the following statements hold for every Σ_1^1 -subset A of $^{\omega_1}\omega_1$.

- $A \setminus NS_{\omega_1}$ is contained in the closure of $A \cap CLUB_{\omega_1}$ in $^{\omega_1}\omega_1$.
- $A \setminus \mathsf{CLUB}_{\omega_1}$ is contained in the closure of $A \cap \mathsf{NS}_{\omega_1}$ in $^{\omega_1}\omega_1$.

Proof of the Theorem.

Fix $x \in {}^{\kappa}\kappa \setminus NS_{\omega_1}$, $\beta < \omega_1$ and a Σ_0 -formula $\varphi(v_0, v_1, v_2)$ such that $\varphi(x, y, \omega_1)$ holds for some $y \in H(\omega_2)$. Then the set

$$S = \{\alpha < \omega_1 \mid x(\alpha) > 0\}$$

is stationary. Fix $A \subseteq \omega_1$ such that $\omega_1 = \omega_1^{L[A]}$ and $x, y \in L[A]$.

Pick a countable elementary submodel N of $M_1^{\#}(A)$ with $x, y \in M$, $\beta \subseteq M$ and let $\pi : N \longrightarrow M$ denote the corresponding transitive collapse. Then $\varphi(\pi(x), \pi(y), \omega_1^M)$ holds. Let $\mathbb{P} = \mathbb{C}(S)^{M_1^{\#}(A)}$ denote the canonical partial order in $M_1^{\#}(A)$ that shoots a club through the stationary set S using countable conditions and let g be $\pi(\mathbb{P})$ -generic over M.

Then there is a club $C \subseteq \omega_1^M$ with $C \in M[g]$ and $\pi(x)(\alpha) > 0$ for all $\alpha \in C$.

Let δ denote the unique Woodin cardinal of M. Since M[g] is countable and transitive, δ is a Woodin cardinal in M[g] and there is a measure on M[g] above δ , the model M[g] is iterable with respect to the countable stationary tower $\mathbb{Q}^{M[g]}_{<\delta}$ and its images. Let

$$\langle \langle M_{\alpha} \mid \alpha \leq \omega_1 \rangle, \ \langle j_{\bar{\alpha},\alpha} : M_{\bar{\alpha}} \longrightarrow \alpha \mid \bar{\alpha} \leq \alpha \leq \omega_1 \rangle \rangle$$

denote such a generic iteration of M[g] and set $j = j_{0,\omega_1} : M[g] \longrightarrow M_{\omega_1}$. Then $\omega_1 = j\left(\omega_1^{M[g]}\right)$ and $\varphi((j \circ \pi)(x), (j \circ \pi)(y), \omega_1)$ holds in V. Moreover, we have $(j \circ \pi)(x) \in N_{x \restriction \beta}$, j(C) is a club in ω_1 and $(j \circ \pi)(x)(\alpha) > 0$ for all $\alpha \in j(C)$.

The above computations show that, whenever A is a Σ_1^1 -subset of $^{\omega_1}\omega_1$, then $A \setminus \mathsf{NS}_{\omega_1}$ is contained in the closure of $A \cap \mathsf{CLUB}_{\omega_1}$. The second statement of the theorem can be shown in the same way.

In the following, we sketch the proof of the well-order result.

Theorem

Assume that $M_1^{\#}(A)$ exists for every $A \subseteq \omega_1$. Then there is no Σ_1^1 -definable well-ordering of $\omega_1 \omega_1$.

Proof of the Theorem.

Given $x \in {}^{\omega}\omega$, let \bar{x} denote the unique element of ${}^{\omega_1}\omega_1$ with $\bar{x} \upharpoonright \omega = x$ and $\bar{x}(\alpha) = 0$ for all $\omega \leq \alpha < \omega_1$.

Assume that there is a Σ_0 -formula $\varphi(v_0,\ldots,v_3)$ such that

is a well-ordering of $\omega_1 \omega_1$.

Define \blacktriangleleft to be the set of all pairs $\langle x, y \rangle \in {}^{\omega}\omega \times {}^{\omega}\omega$ with the property that there is a countable transitive model M of \mathbf{ZFC}^- and $\delta \in M$ such that $x, y \in M$, δ is a Woodin cardinal in M, $\varphi(\bar{x}, \bar{y}, z, \omega_1^M)$ for some $z \in \mathrm{H}(\omega_2)^M$ and M is ω_1 -iterable with respect to the countable stationary tower $\mathbb{Q}_{\leq \delta}^M$ and its images.

Proof (cont.).

Claim

The relation \blacktriangleleft is a Σ_3^1 -subset of ${}^{\omega}\omega \times {}^{\omega}\omega$.

Claim

Given $x, y \in {}^{\omega}\omega$, then $x \blacktriangleleft y$ if and only if $\bar{x} \lhd \bar{y}$.

Our assumptions imply that Σ_2^1 -determinacy holds and therefore every Σ_3^1 -set of reals has the Baire property. This yields a contradiction, because the above claims show that \blacktriangleleft is a Σ_3^1 -well-ordering of ${}^{\omega}\omega$.

These results naturally lead to the question whether the above large cardinal assumptions are necessary.

The following theorem shows that the assumptions of the well-order result are close to optimal by showing that the existence of a Σ_1^1 -definable well-ordering of ${}^{\omega_1}\omega_1$ is compatible with the existence of a Woodin cardinal.

Theorem

Assume M_1 exists. In M_1 , the canonical well-ordering of $\omega_1 \omega_1$ is Σ_1^1 -definable.

The proof of this result can also be combined with techniques developed by Holy-L. to show that the existence of a Σ_1^1 -definable well-ordering of $\omega_1 \omega_1$ is compatible with a Woodin cardinal and a failure of the GCH at ω_1 .

A result of Friedman-Wu-Zdomskyy shows that the set $\omega_1 \omega_1 \setminus \text{CLUB}_{\omega_1}$ is Σ_1^1 -definable in a cardinal preserving forcing extension of L.

It is plausible that the same statement holds for M_1 . This would show that the large cardinal assumption of our second theorem is also close to optimal.

Open questions

Question

Is it possible to derive non-trivial structural statements about Σ_1^1 -definable equivalence relations on $\omega_1 \omega_1$ from the axioms of **ZFC** together with large cardinal axioms?

Question

Given a regular uncountable cardinal κ , does the existence of a Σ_1^1 -definable well-order of $\kappa \kappa$ imply that there are no supercompact cardinals above κ ?

Question

Is the existence of Σ_1^1 -definable well-orders of $\kappa \kappa$ consistent for supercompact cardinals κ ?

Thank you for listening!