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Introduction Inner automorphisms

Let G be a group. If g is an element of G, then the map

ιg : G −→ G; h 7−→ hg = g ◦ h ◦ g−1.

is an automorphism of G. We call ιg the inner automorphism of G
corresponding to g.

We let Inn(G) denote the group of all inner automorphisms of G.

The map
ιG : G −→ Aut(G); g 7−→ ιg

is a homomorphism of groups with ker(ιG) = C(G).



Introduction Inner automorphisms

Given g ∈ G and π ∈ Aut(G), an easy computation shows that

ιπ(g) = π ◦ ιg ◦ π−1

holds and this implies that Inn(G) is a normal subgroup of Aut(G).

If G is a group with trivial centre, then ιG is an embedding of groups
and the above equality implies that

CAut(G)(Inn(G)) = {idG}

holds. In particular, Aut(G) is also a group with trivial center in this
case.

By iterating the process of forming automorphism groups, we
construct the automorphism tower of a group G.



Introduction Automorphism towers

Definition
Given a group G, we say that a direct system

〈〈Gn | n ∈ N〉, 〈ιm,n : Gm −→ Gn | m < n〉〉

of groups is the automorphism tower of G if the following statements
hold:

G0 = G.
If n ∈ N, then Gn+1 = Aut(Gn) and ιn,n+1 = ιGn .

It is now natural to ask if the above process stops at some point.

Definition
We say that the automorphism tower 〈〈Gn | n ∈ N〉, 〈ιm,n | m < n〉〉
of a group G terminates after N -many steps if the map ιN,N+1 is an
isomorphism.



Introduction Wielandt’s theorem

The following classical result of Helmut Wielandt is the starting point
of the work presented in this talk.

Theorem (Wielandt, 1939)

If G is a finite group with trivial center, then the automorphism tower
of G terminates.

This result raises the following question.

Question

Does the automorphism tower of every group terminate?

In the following, we present two examples that show that both
assumptions made in the theorem are necessary for the conclusion.



Introduction D∞

The infinite dihedral group D∞

Remember that the infinite dihedral group D∞ is the free product
〈a〉 ∗ 〈b〉 of cyclic subgroups generated by involutions a and b.

Let π be the automorphism of D∞ that interchanges the elements a
and b. Then π /∈ Inn(D∞). Moreover, a short proof yields the
following statement.

Lemma
There is an ismorphism f : D∞ −→ Aut(D∞) of groups with
f(a) = ιa and f(b) = π.

Corollary

The automorphism tower of D∞ does not terminate.



Introduction D8

The dihedral group D8

Remember that the dihedral group D8 is given by the following presentation

D8 = 〈a, b | a2 = b2 = (ab)4 = 1〉.

Then C(D8) = 〈(ab)2〉 6= {1} and hence ιD8 is not an isomorphism.

As above, we let π denote the automorphism of D8 that interchanges the
elements a and b.

Lemma

There is an ismorphism f : D8 −→ Aut(D8) of groups with f(a) = ιa and
f(b) = π.

Corollary

The automorphism tower of D8 does not terminate.



Introduction Higher towers

The above examples show that the automorphism tower of a group might
not terminate after finitely many steps.

Since we can form the direct limit of a direct system of groups, there is a
natural way to continue the above construction of automorphism towers:
we first form the direct limit G∞ of the above direct system of groups,
then we form Aut(G∞) and so on.

It turns out that this extended construction terminates for both of the
above groups.

Let 〈〈Gn | n ∈ N〉, 〈ιm,n | m < n〉〉 denote the automorphism tower of D8

and let
〈G∞, 〈ιn : Gn −→ G∞ | n ∈ N〉〉

denote the direct limit of this system. An easy computation shows that
G∞ = 〈ι0(a)〉 is a cyclic group of order 2. In particular, Aut(G∞) is the
trivial group and ιAut(G∞) is an isomorphism.



Introduction Higher towers

Let 〈〈Gn | n ∈ N〉, 〈ιm,n | m < n〉〉 denote the automorphism tower of D∞
and let

〈G∞, 〈ιn : Gn −→ G∞ | n ∈ N〉〉

denote the direct limit of this system.

Let Z[1/2] = {m2n | m ∈ Z, n ∈ N} denote the additive group of the
dyadic rationals and let σ be the involution in Aut(Z[1/2]) with
σ(x) = −x for all x ∈ Z[1/2]. Longer calculations show that

G∞ ∼= Z[1/2] o 〈σ〉

and every automorphism of Aut(G∞) fixes Inn(G∞) setwise.

Since D∞ has a trivial centre, we know that Aut(G∞) has a trivial centre
and we can use the above statement to conclude that the map ιAut(G∞) is
an isomorphism.



Introduction Higher towers

The above examples suggests an extension of our construction of
automorphism towers into the transfinite. In order to produce a rigid
definition, we have to find suitable directed sets for such a construction.

The following notion generalizes the concept of counting from finite sets to
larger collections.

Definition (Cantor)

A strict linear ordering < of a class X is a well-order if every non-empty
subclass of X contains a <-minimal element.

Example

The canonical ordering of the natural numbers is a well-order.
If we define

mC n ⇐⇒ n = 0 < m ∨ 0 < m < n,

then 〈N,C〉 is a well-order.



Introduction Higher towers

Ordinals

Definition

A set x is transitive if every element of x is also a subset of x.

The following definition provides canonical representatives for set-sized
well-orders.

Definition (von Neumann)

A set α is an ordinal if it is transitive and well-ordered by ∈.

Lemma

If (x,<) is a set-sized well-ordering, then there is an ordinal α such that
(x,<) is order-isomorphic to (α,∈).



Introduction Higher towers

Lemma

If α is an ordinal, then exactly one of the following statements holds:
α = ∅ (“ α=0”).
There is a unique β ∈ α with α = β + 1 = β ∪ {β} (“ α is the direct
successor of β ”).
α =

⋃
β∈α β (“ α is a limit ordinal ”).

Lemma

The class Ord of all ordinals is well-ordered by ∈.

Example

We let ω denote the first limit ordinal. Then (N, <) is order-isomorphic to
(ω,∈) and we can identify the natural numbers with the elements of ω.



Introduction Higher towers

The automorphism tower of a group (revised)

We can use the above notions to define transfinite automorphism towers.

Definition (revised)

Given a group G, we say that a direct system

〈〈Gα | α ∈ Ord〉, 〈ια,β : Gα −→ Gβ | α ∈ β〉〉

of groups is the automorphism tower of G if the following statements hold:
G0 = G.
If α ∈ Ord, then Gα+1 = Aut(Gα) and ια,α+1 = ιGα .
If β ∈ Ord is a limit ordinal, then 〈Gβ, 〈ια,β | α ∈ β〉〉 is the direct
limit of 〈〈Gα | α ∈ β〉, 〈ια0,α1 | α0 ∈ α1 ∈ β〉〉.

We say that the automorphism tower of G terminates after α-many steps if
the map ια,α+1 is an isomorphism.



Introduction Higher towers

The above definition naturally leads to the following question.

Question

Does the automorphism tower of every group terminate?

In the following, we will present results of Simon Thomas and Joel
Hamkins that yield an affirmative answer to this question.

We will first show that the automorphism tower of every group with
trivial centre terminates. Then we show that the automorphism tower
of an arbitrary group contains a group with trivial centre.



Automorphism towers of centreless groups

Automorphism towers of
centreless groups



Automorphism towers of centreless groups

In this section, we will discuss the proof of the following result of
Simon Thomas.

Theorem (Thomas, 1985)

The automorphism tower of every centreless group terminates.

In order to prove this result, we need to introduce more fundamental
set-theoretic concepts.



Automorphism towers of centreless groups Cardinals

Cardinals

Definition (Cantor)

An ordinal β is a cardinal if there is no injection i : β −→ α with α ∈ β.

Observation

Every finite ordinal is a cardinal.
ω is a cardinal.
Every infinite cardinal is a limit ordinal.

Theorem

For every set x, there is a unique cardinal |x| with the property that there
is a bijection b : x −→ |x|.



Automorphism towers of centreless groups Cardinals

Definition

The power set P(x) of a set x is the set consisting of all subsets of x.

Theorem (Cantor)

Given a set x, there is no injection i : P(x) −→ x.

Proof.

Assume that i : P(x) −→ x is such an injection and define

z = {y ∈ x | ∃u ⊆ x [i(u) = y ∧ y /∈ u]} ∈ P(x).

Then i(z) ∈ z if and only if i(z) /∈ z, a contradiction.

Corollary

For every cardinal κ, there is an ∈-minimal cardinal κ+ with κ ∈ κ+.



Automorphism towers of centreless groups Special pairs

The following notion will allow us to use the above set-theoretic concepts
to show that the automorphism tower of a centreless group terminates.

Definition (Kaplan-Shelah)

Let G be a group, let A be a subset of G and let v /∈ A.
We let F∗(A) denote the free group with basis A ∪ {v}.
Given g ∈ G, we let πA,g : F∗(A) −→ G denote the unique
homomorphism with πA,g(v) = g and πA,g � A = idA.
We define

ΠG,A : G −→ P(F∗(A)); g 7−→ ker(πA,g).

We say (G,A) is a special pair if the function ΠG,A is an injection.

Theorem (Kaplan-Shelah, 2009)

Let 〈〈Gα | α ∈ Ord〉, 〈ια,β | α ∈ β〉〉 be the automorphism tower of a
centreless group G. Then (Gα, ι0,α[G]) is a special pair for all α ∈ Ord.



Automorphism towers of centreless groups Thomas’ theorem

This result allows us to prove Thomas’ theorem.

Proof of the Theorem.

Let 〈〈Gα | α ∈ Ord〉, 〈ια,β | α ∈ β〉〉 be the automorphism tower of a
centreless group G. By our assumptions, the maps ια,β are all injective.

If bα : P(F∗(ι0,α[G])) −→ P(F∗(G)) denotes the canonical bijection, then

bα ◦ ΠGα,ι0,α[G] = bβ ◦ ΠGβ ,ι0,β [G] ◦ ια,β

for all α ∈ β. Set κ = |P(F∗(G))|. Then we find a sequence

〈ϕα : Gα −→ κ | α ∈ κ+〉

of injections with ϕα = ϕβ ◦ ια,β for all α ∈ β ∈ κ+.

Assume that for every α ∈ κ+ there is a gα ∈ Aut(Gα) \ Inn(Gα). Then

Φ : κ+ −→ κ; α 7−→ ϕα+1(gα)

is an injection of κ+ into κ, a contradiction.



Automorphism towers of arbitrary groups

Automorphism towers
of arbitrary groups



Automorphism towers of arbitrary groups Hamkins’ theorem

We discuss the proof of the following result.

Theorem (Hamkins, 1998)

If 〈〈Gα | α ∈ Ord〉, 〈ια,β | α ∈ β〉〉 is the automorphism tower of a group
G, then there is an α ∈ Ord with C(Gα) = {1Gα}.

Corollary

The automorphism tower of every group terminates.

The proof of the theorem relies on the following simple set-theoretic fact.

Proposition

If F : Ord −→ Ord is a class function, then there is a limit ordinal β with
F (α) ∈ β for all α ∈ β.



Automorphism towers of arbitrary groups Hamkins’ theorem

Proof of the Theorem.

Let 〈〈Gα | α ∈ Ord〉, 〈ια,β | α ∈ β〉〉 be the automorphism tower of a
group G. Given α ∈ Ord, define

Hα = {g ∈ Gα | ∃β ∈ Ord [α ∈ β ∧ ια,β(g) = 1Gβ ]}.

Then there is a class function F : Ord −→ Ord with α ∈ F (α) and
ια,F (α)(g) = 1GF (α)

for all α ∈ Ord and g ∈ Hα.

Pick a limit ordinal β with F (α) ∈ β for all α ∈ β and fix g ∈ C(Gβ).

Since Gβ is a direct limit, there is α ∈ β and h ∈ Gα with g = ια,β(h).

Then g ∈ C(Gβ) implies ια,β+1(h) = ιβ,β+1(g) = 1Gβ+1
and h ∈ Hα.

This allows us to conclude that

g = ια,β(h) = (ιF (α),β ◦ ια,F (α))(h) = ιF (α),β(1GF (α)
) = 1Gβ .



The heights of automorphism towers

The heights of
automorphism towers



The heights of automorphism towers

The above results allow us to make the following definitions.

Definition

Let G be a group with automorphism tower
〈〈Gα | α ∈ Ord〉, 〈ια,β | α ∈ β〉〉. We let τ(G) denote the ∈-minimal
ordinal with the property that ιτ(G),τ(G)+1 is an isomorphism.

Definition

Given a cardinal κ, we let τκ denote the ∈-minimal ordinal with the
property that τ(G) ∈ τκ for every group G with |G| = κ.

The following problem is completely open (even for finite cardinals):

Problem

Given a cardinal κ, find a non-trivial upper bound for τκ.



The heights of automorphism towers

In contrast to Hamkins’ proof, the above argument for centreless group
provides an upper bound for the heights of automorphism towers of such
groups.
Given a cardinal κ, we write 2κ to denote |P(κ)|.

Theorem (Thomas, 1998)

If G is an infinite centreless group and κ = |G|, then τ(G) ∈ (2κ)+.

This result motivates the following definition.

Definition

Given a cardinal κ, we let τ cκ denote the ∈-minimal ordinal with the
property that τ(G) ∈ τ cκ for every centreless group G with |G| = κ.

The following theorem is an easy consequence of the above theorem.

Theorem (Thomas, 1998)

If κ is an infinite cardinal, then τ cκ ∈ (2κ)+.



The heights of automorphism towers

Since the upper bound (2κ)+ is never optimal, it is natural to ask whether
it is possible to give a set-theoretic characterization of the ordinal τ cκ.

The following result shows that this is extremely difficult.

Following Cantor, we write ω1 to denote the first uncountable cardinal ω+.

Theorem (Just-Shelah-Thomas, 1998)

The statement “ τ cω1
∈ 2ω1 ” is independent of the standard axioms of set

theory.

The following problem is again completely open.

Problem

Construct a model of set theory such that it is possible to give a set
theoretic characterization of the value of τ cκ in that model for some infinite
cardinal κ in that model.

The main obstacle for a solution of the above problems is the fact that the
value of τ(G) can differ in different models of set theory.



The heights of automorphism towers

We conclude this talk by presenting better upper bounds for the value of τ cκ.

Theorem (Kaplan-Shelah, 2009)

Let κ be an infinite cardinal and let θP(κ) be the least ordinal such that
there is no surjection from P(κ) onto θP(κ) in L(P(κ)), the smallest inner
model of set theory containing all ordinals and P(κ). Then τ cκ < θP(κ).

Theorem (L., 2012)

Let κ be an infinite cardinal and let δP(κ) be the ordinal height of the least
transitive model of Kripke-Platek set theory that contains P(κ). Then
either τ cκ < δP(κ) or τ cκ = δP(κ) + 1.

In contrast to the above results, the proof of this theorem does not already
show that the provided bound is not optimal.

Conjecture (L.)

It is consistent that “ τ cκ = δP(κ) + 1 ” holds for some infinite cardinal κ.



The heights of automorphism towers

Thank you for listening!
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