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Introduction

The present thesis is a collection of the author’s work on automorphism
towers and definability in generalized Baire spaces during the last three
years. We give a brief introduction to the contents of this work. Detailed
introductions to the individual topics can be found at the beginning of the
corresponding chapters.

Automorphism towers. It is a common practice in modern mathe-
matics to study mathematical structures via their groups of automorphisms.
The idea behind this approach is summarized by the following motto: struc-
ture is whatever is preserved by automorphisms.1 As a consequence of this
approach, automorphism groups are interesting objects on their own, as are
their groups of automorphisms.

If we take an mathematical structure and form its automorphism group,
then this group can have a higher cardinality than the original object and
its algebraic structure can be complicated. Moreover, if the original struc-
ture is infinite, then its automorphism group can also be complicated in a
set-theoretic sense. For example, there are infinite objects with the prop-
erty that basic algebraic properties of their automorphism groups are inde-
pendent from the standard axioms of set theory (see, for example, [SS88],
[Far11] and [LT11]). In particular, it is necessary to use both algebraic and
set-theoretic methods to understand the algebraic structure of these groups.

The construction of automorphism towers of centreless groups illustrates
this phenomenon by iterating the process of forming automorphism groups
transfinitely often. Given a centreless group G, the automorphism group
Aut(G) of G is again centreless and we may view G as a normal subgroup
of Aut(G) by identifying elements of G with the corresponding inner auto-
morphisms. We construct the automorphism tower �Gα | α ∈ On� of G by
setting G0 = G, Gα+1 = Aut(Gα) and Gλ =

�

α<λGα (at successor levels,
we identify Gα with the group of inner automorphisms of Gα to obtain an
ascending sequence). As suggested by the above remarks, the resulting se-
quence of groups �Gα | α ∈ On� can be a very complex object and there are
many open questions about them. The first part of this thesis focuses on
the analysis of these towers.

1This motto was formulated by Wilfried Hodges in [Hod93, p. 131]
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viii INTRODUCTION

In [Tho85], Simon Thomas proved his celebrated automorphism tower
theorem stating that the automorphism tower of every centreless group ter-
minates in the sense that there is an ordinal α with Gα = Gβ for all β ≥ α.
Therefore it makes sense to talk about the height of automorphism towers
and we can state the automorphism tower problem: construct a model of set
theory such that for some infinite cardinal κ in this model, it is possible to
compute the least upper bound of the heights of the automorphism towers of
all centreless groups of cardinality κ. This problem is still open.

The first two chapters of this thesis deal with the related question of
finding upper bounds for the heights of automorphism towers of infinite
centreless groups of cardinality κ that are uniformly definable from the pa-
rameter κ. After giving an overview on known upper bounds, we will present
a new bound that relies on admissible set theory (i.e. abstract recursion the-
ory) and improves the existing estimates. The second chapter is devoted to
the proof of this result. This proof is based on the combination of admissible
set theory with techniques developed by Itay Kaplan and Saharon Shelah in
[KS09] that allow the representation of automorphism towers as inductive
definitions.

The third chapter focuses on the non-absoluteness of the computation
of the height of automorphism towers. A result of Joel David Hamkins and
Simon Thomas in [HT00] suggests that there is no nontrivial correlation
between the heights of the automorphism towers of a group computed in
different models of set theory that is provable for all centreless groups. This
result shows that it is consistent that for every cardinal κ and ordinal α < κ
there is a group whose automorphism tower has height α and this height
can be changed to every non-zero ordinal below κ by passing to a forcing
extension of the ground model.

In joint work with Gunter Fuchs, this result was extended in two ways.
First, it is shown that it is consistent to have a centreless group whose
automorphism tower height can be changed again and again by passing to
larger and larger forcing extensions of the ground model. Second, it is also
possible to drastically change the height of automorphism towers by passing
to smaller and smaller inner models. These results are published in [FLb]
and presented in the first five sections of Chapter 3.

The last section of Chapter 3 presents an example of a group whose
automorphism tower is highly non-absolute in another sense. We show that
it is consistent to have a centreless group with the property that for every
ordinal α there is a cofinality preserving partial order that forces the auto-
morphism tower of this group to be higher than α. The presented proof is
a simplification of the original proof published in [Lüca].

In Chapter 4, it is shown that, in contrast to the results mentioned
above, it is possible to prove nontrivial absoluteness results for the second
stages of automorphism towers of countable groups. In particular, if G is
a countable centreless group and G1 �= G2 holds in a transitive model of
set theory that contains G and a bijection witnessing the countability of G,
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then this inequality will hold in any bigger transitive model of set theory.
The proof of this result uses the theory of Polish groups and the existence
of unique Polish group topologies on the automorphism groups of countable
centreless groups. This result was published in [Lücc].

Chapter 5 is devoted to the notion of special pair introduced by Itay
Kaplan and Saharon Shelah in [KS09]. This notion allows us to view the
groups appearing in the automorphism tower of an infinite centreless group
of cardinality κ as subsets of the power set of κ and talk about their com-
plexity in this way. It plays a central role in the proofs of Chapter 2.

We will strengthen the notion of special pairs and show that the results
of [KS09], which establish a connection between automorphism towers and
special pairs, also hold for strongly special pairs. Then we will use certain ac-
tions of groups on Hausdorff spaces to produce various examples of strongly
special pairs not induced by automorphism towers. Finally, we will show
that the notions of special pairs and strongly special pairs do not coincide.
The results of this chapter are contained in [Lücc].

Definability in generalized Baire spaces. Let κ be an infinite car-
dinal. The generalized Baire space for κ consists of the set κκ of all functions
f : κ −→ κ equipped with the topology whose basic open sets are of the form

Us = {f ∈ κκ | s ⊆ f} for some partial function s : κ
part
−−→ κ of cardinality

less than κ. Objects in various areas of mathematics can be represented
as subsets of these spaces. We want to study the definable subsets of such
spaces and their structural properties in the case where κ is an uncount-
able regular cardinal with the property that there are only κ-many bounded
subsets of κ.

Motivated by the work of the Helsinki school on infinitary model theory
and logic, a systematic study of these spaces was initiated by Alan Mekler
and Jouko Väänänen (see [Vää91] and [MV93]) and was extended by many
others. In addition, a number of publications revealed deep connections to
infinite combinatorics, infinitary logic and model theory (see, for example,
[NS78], [HV90], [TV99], [SV02] and [FHK]).

In the second part of the thesis, we will focus on the question whether it
is possible to produce simple definitions of arbitrary subsets of κκ by forcing
with set-sized partial orders that preserve cardinalities, cofinalities and the
value of 2κ. In this analysis, we are particularly interested in producing long
well-orderings of subsets of κκ with simple definitions.

In Chapter 6, we make precise the meaning of “ simple definition ” by
generalizing the notion of projective subset to the uncountable context. Then
we prove that the ground model V might not contain certain long well-
orderings of subsets of κκ with simple definitions; so in such cases it is
indeed necessary to pass to a forcing extension in order to construct such
well-orderings. We generalize basic structural properties of subsets of the
classical Baire space ωω to our uncountable context and show that long well-
orderings cannot satisfy all of these properties. Finally, we prove that it is
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consistent with the axioms of set theory plus large cardinal axioms that all
simply definable subsets possess these properties.

In Chapter 7, we will present the main result of [Lücb] that provides a
positive answer to the above question. This coding result states that every
subset of κκ has a simple definition in a forcing extension of the ground
model by a <κ-closed partial order that satisfies the κ+-chain condition and
has cardinality 2κ. In particular, the existence of a simply definable well-
ordering of a subset of κκ of order type greater than 2κ is consistent with
the axioms of ZFC plus large cardinal axioms. We will also use the coding
to force the existence of well-orderings of κκ with simple definitions. The
work presented in these two chapters is published in [Lücb].

The last chapter considers variations of the above question that ask for
coding forcings which preserve large cardinal properties of κ. In joint work,
Sy-David Friedman and the author showed that this question has a positive
answer in the case of supercompact cardinals if we allow class forcing.

In [FLa], it is shown that there is a class-sized forcing iteration P with the
property that forcing with P preserves ZFC, the inaccessibility of inaccessible
cardinals, the supercompactness of supercompact cardinals and the value of
2α for every inaccessible cardinal α and, if α is inaccessible and A is an
arbitrary subset of αα, then there is a P-generic extension of the ground
model in which A is simply definable. This class forcing can also be used to
force the existence of a well-ordering of Hα+ that is definable in the structure
�Hα+ ,∈� for every inaccessible cardinal α. Chapter 8 consists of a detailed
presentation of the results of [FLa].
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Notations and Conventions

We fix some notations and conventions that will be used throughout
this thesis. All other notation will be standard, as for example, in [Kun80],
[Jec03] and [Lan02].

Metatheory. Unless noted otherwise, the results of this thesis are de-
rived from the axioms of Zermelo-Fraenkel set theory with the Axiom of
Choice ZFC. If a result does not depend on the Axiom of Choice and can
be derived from the axioms of Zermelo-Fraenkel set theory ZF, then we add
a “(ZF)” to its name.

Logic. If L is a first order language and ϕ is an L-formula, then we write
ϕ ≡ ϕ(v0, . . . , vn−1) to denote that every free variable of ϕ is contained in
the set {v0, . . . , vn−1}. We use the same notation for terms. Given L-terms
t, t0, . . . , tn−1 and variables v0, . . . , vn−1, we let t

v0,...,vn−1

t0,...,tn−1
denote the term

constructed from t by substituting every occurrence of vi in t by ti. If
t ≡ t(v0, . . . , vn−1) is an L-term, M is an L-model with domain M and
x0, . . . , xn−1 ∈ M , then tM(x0, . . . , xn−1) denotes the evaluation of t in M
with respect to x0, . . . , xn−1.

We let L∈ denote the first-order language of set theory. An L∈-formula
is a Δ0-formula if it is contained in the smallest class of L∈-formulae that
contains every atomic formula and is closed under negation, conjunction and
bounded existential quantification. We call an L∈-formula ϕ a Σ1-formula
if there is a Δ0-formula ϕ0 ≡ ϕ0(u0, . . . , un+m−1) such that

ϕ ≡ (∃x0, . . . , xm−1) ϕ0(v0, . . . , vn−1, x0, . . . , xm−1).

We let LGT = �∗,−1, 1l� denote the first-order language of group theory
and GT denote the axioms of group theory. Finally, let LNT2 denote the
language of second order number theory.

Given a first order language L, a class C of L-structures and a subset X
of all domains of structures in C, we say that X is uniformly definable in C if
there is an L-formula ϕ(v0, . . . , vn) and parameters x0, . . . , xn−1 contained
in all domains of structures in C that define X in every structure in C.

Set theory. Fix a set x, a class C, a cardinal κ and an ordinal λ.
We let tc(x) denote the transitive closure of x, P(x) denote the power set
of x and Pκ(x) denote the set of all subsets of κ of cardinality less than
κ. If C is a class, then we also use [C]<κ to denote the class of all sets x
of cardinality less than κ with x ⊆ C. The class of all functions f with

xv



xvi NOTATIONS AND CONVENTIONS

dom(f) = λ and ran(f) ⊆ C is λC. We also define <λC =
�

α<λ
αC and let

κ<λ denote the cardinality of <λκ. Given sets a sequence �xi | i ∈ I�, we let
�

i∈I xi denote the corresponding disjoint union {�i, y� | i ∈ I, y ∈ xi}. We
will write x0 � x1 instead of

�

i<2 xi.
If f is a function, A is a subset of the domain of f and B is a subset of

the range of f , then f”A is the pointwise image of A under f and f−1”B
is the preimage of B under f . We denote composition of functions by f ◦ g,
i.e. (f ◦ g)(x) = f(g(x)) for all x ∈ dom(g) with g(x) ∈ dom(f). A partial

function f : A
part
−−→ B is a function with dom(f) ⊆ A and ran(f) ⊆ B. A

partial surjection is a partial function f : A
part
−−→ B with ran(f) = B.

We let ≺·, ·� : On×On −→ On denote the Gödel-Pairing function.
Given a nonempty set X and A ⊆ Xn+1, we define

∃xA = {�x0, . . . , xn−1� ∈ Xn | (∃xn) �x0, . . . , xn� ∈ A}.

If X is a nonempty set, then we call a set T a tree on Xn if there is a
γ ∈ On such that T ⊆ (<γX)n and the following statements hold.

(1) If �s0, . . . , sn−1� ∈ T , then lh(s0) = · · · = lh(sn−1).
(2) If �s0, . . . , sn−1� ∈ T and α < lh(s0), then

�s0 � α, . . . , sn−1 � α� ∈ T.

In the above situation, we call T a subtree of <γX. Given a tuple t =
�t0, . . . , tn−1� ∈ T , we define lh(t) = lh(t0) and call the ordinal ht(T ) =
lub{lh(t) | t ∈ T} the height of T . We say that a tree T0 on X is an end-

extension of a tree T1 on X if T1 = T0 ∩
<ht(T1)X holds.

Given a tree T on X, a tuple of functions �x0, . . . , xn−1� ∈
�

ht(T )X
�n
is

called a cofinal branch through T if the tuple �x0 � α, . . . , xn−1 � α� is an
element of T for every α < ht(T ). We let [T ] denote the set of all cofinal
branches through T . If T is a tree on Xn+1 of height λ, then we define
p[T ] = ∃x[T ] ⊆ (λX)n.

Given a partial order P, we also use the letter P to denote the domain
of P, ≤P to denote the ordering of P and 1lP to denote the maximal element
of P.

Fix cardinals κ and ν. We let Add(κ, ν) denote the partial order that
adds ν-many Cohen-subsets of κ by forcing with partial function of cardi-
nality less than κ and Col(κ,<ν) denote the corresponding Levy Collapse.

Group theory. Given a group G, we will also use the letter G to denote
the domain of G and use 1G to denote the identity element of G. We denote
applications of the group operation by g ·h if it is clear which group is meant.
Otherwise, we write g ·G h. We will abbreviate the term g · h · g−1 by hg.

If A is a subset of the domain of G, then we let �A�G denote the subgroup
of G generated by A and CG(A) to denote the centralizer of A in G, i.e.
the set {g ∈ G | (∀h ∈ A) hg = h}. The set CG(G) is called the centre of G
and is also denoted by Z(G). The normal closure of a subset A of G is the
intersection of all normal subgroups of G that contain A as a subset.
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Given a homomorphism ϕ : G −→ H of groups, we use ker(ϕ) to denote
the kernel of ϕ.

We let Sym(X) denote the symmetric group of a set X and Alt(X)
denote the corresponding alternating group consisting of all finite even per-
mutations of X. If a, b ∈ X, then (a b) denotes the transposition of the
elements a and b.

Graph theory. In the following, graph will always mean undirected
graph, i.e. a pair Γ = �V,E� consisting of a nonempty set V (the vertices of
Γ) and an irreflexive, symmetric binary relation E on V (the edges of Γ).
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CHAPTER 1

The heights of automorphism towers

In this chapter, we give an introduction to the automorphism tower
problem and the related problem of finding upper bounds for the heights
of automorphism towers of centreless groups of a given cardinality. An
extensive account of all aspects of the automorphism tower problem can be
found in Simon Thomas’ forthcoming monograph [Tho].

We start by giving a detailed introduction to the construction of auto-
morphism towers of centreless groups and the automorphism tower problem
in the first section. Section 1.2 contains an overview on existing upper
bounds for the heights of automorphism towers of groups of a given cardi-
nality. We will also present independence results that restrict the class of
possible strengthenings of these bounds. In the last section of this chapter,
we define the notion of x-admissible ordinals to state our new upper bound.
Chapter 2 consists of the proof of this result.

1.1. Introduction

Let G be a group. Then composition of functions induces a group struc-
ture on the set Aut(G) of all automorphisms of G. If g is an element of G,
then the map

ιg : G −→ G; h �−→ hg = g · h · g−1.

is an automorphism of G and we call ιg the inner automorphism of G corre-
sponding to g. We let Inn(G) denote the group of all inner automorphisms
of G. The map

ιG : G −→ Aut(G); g �−→ ιg

is a homomorphism of groups with ker(ιG) = Z(G). Given g ∈ G and
π ∈ Aut(G), an easy computation shows that

ιπ(g) = π ◦ ιg ◦ π
−1

holds and this implies that Inn(G) is a normal subgroup of Aut(G).
If G is a group with trivial centre, then ιG is an embedding of groups

and the above equality implies that

CAut(G)(Inn(G)) = {idG}

holds. In particular, this assumption causes Aut(G) to be a group with
trivial centre. By iterating this process, we construct the automorphism
tower of a centreless group G.

3



4 1. THE HEIGHTS OF AUTOMORPHISM TOWERS

Definition 1.1.1. Let G be a group with trivial centre. We call a se-
quence �Gα | α ∈ On� of groups an automorphism tower of G if the following
statements hold.

(1) G = G0.
(2) If α ∈ On, then Gα is a normal subgroup of Gα+1 and the induced

homomorphism

ϕα : Gα+1 −→ Aut(Gα); g �→ ιg � Gα

is an isomorphism.
(3) If α ∈ Lim, then Gα =

�

{Gβ | β < α}.

In this definition, we replaced Aut(Gα) by an isomorphic copy Gα+1 that
contains Gα as a normal subgroup. This allows us to take unions at limit
stages. Without this isomorphic correction, we would have to take direct
limits at limit stages. By induction, we can construct such a tower for each
centreless group and it is easy to show that each group Gα in such a tower
is uniquely determined up to an isomorphism which is the identity on G.
We can therefore speak of the α-th group Gα in the automorphism tower of
a centreless group G.

It is natural to ask whether the automorphism tower of every centreless
group eventually terminates in the sense that there is an ordinal α with
Gα = Gα+1 and therefore Gα = Gβ for all β ≥ α. A classical result due
to Helmut Wielandt shows that the automorphism tower of every finite
centreless group terminates.

Theorem 1.1.2 ([Wie39]). If G is a finite group with trivial centre,
then there is an n < ω with Gn = Gn+1.

In [Tho85] and [Tho98], Simon Thomas showed that the automorphism
tower of every centreless group eventually terminates by proving the follow-
ing result. An application of Fodor’s Lemma (and hence of the Axiom of
Choice) lies at the heart of the proof of this result.

Theorem 1.1.3 ([Tho98, Theorem 1.3]). If G is an infinite centreless
group of cardinality κ, then there is an α < (2κ)+ with Gα = Gα+1.

This result allows us to make the following definitions.

Definition 1.1.4. Given a centreless group G, we let τ(G) denote the
least ordinal α with Gα = Gα+1. We call this ordinal the height of the
automorphism tower of G. If κ is an infinite cardinal, then we define

τκ = lub{τ(G) | G is a centreless group of cardinality κ}.

We are interested to determine the possible values of these ordinals. The
following result of Simon Thomas implies that κ+ is a lower bound for τκ.

Theorem 1.1.5 ([Tho85, Theorem 2]). If κ is a an infinite cardinal and
α < κ+, then there is a centreless group G of cardinality κ with τ(G) = α.
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There are only 2κ-many centreless groups of cardinality κ and (2κ)+ is
a regular cardinal. This allows us to combine the above results to conclude
that

κ+ ≤ τκ < (2
κ)+

holds for every infinite cardinal κ.
Next to nothing is known about the possible values of τκ. The following

open questions are supposed to illustrate this lack of knowledge.

Question 1.1.6. Is it consistent with the axioms of set theory that there
is an infinite cardinal κ such that τκ is a . . .

(1) . . . successor ordinal?
(2) . . . limit ordinal?
(3) . . . limit ordinal of cofinality greater than cof(κ)?
(4) . . . cardinal?

The automorphism tower problem asks for the computation of the actual
value of τκ in some model of set theory. This open problem motivates the
work of the first part of this thesis.

Problem 1.1.7 (The automorphism tower problem). Find a model M
of ZFC and an infinite cardinal κ in M such that it is possible to compute
the exact value of τκ in M.

In the above statement, the phrase “compute the value of τκ ” should be
interpreted as “give a set-theoretic characterizations of τκ ”. Examples of
such characterizations would beM |= “τκ = κ+ ” orM |= “τκ = 2

κ ”.

1.2. Upper bounds for τκ

Our aim is to find upper bounds for τκ that are uniformly definable from
the parameter κ. This means that we want to find a set-theoretic charac-
terizations of an ordinal ακ from the parameter κ such that the estimate
τκ ≤ ακ follows from the axioms of set theory.

We start by presenting consistency results about the possible cardinali-
ties of τκ that restrict the class of possible bounds. By constructing partial
orders that force the existence of groups with long automorphism towers,
Winfried Just, Saharon Shelah and Simon Thomas showed that there can-
not be a uniformly definable upper bound for τκ (in the above sense) that
is always equal to a cardinal smaller than (2κ)+.

Theorem 1.2.1 ([JST99, Theorem 1.4]). Assume that the GCH holds in
the ground model V. Let κ be an uncountable regular cardinal with κ = κ<κ

and ν be a cardinal with κ < cof(ν). If α < ν+, then there is a partial order
P with the following properties.

(1) P is <κ-closed and satisfies the κ+-chain condition.
(2) If F is P-generic over V, then (2κ) = ν and there is a centreless

group G ∈ V[F ] such that τ(G) = α holds in V[F ].



6 1. THE HEIGHTS OF AUTOMORPHISM TOWERS

In particular, it is consistent with the axioms of ZFC that τκ is bigger
than 2κ for some uncountable regular cardinal κ. In contrast, it is not known
if τω > ω1 is consistent with the axioms of set theory or if the statement
τω = ω1 is the consequence of some extension of ZFC by large cardinal
axioms.

In another direction, Simon Thomas showed that the cardinality of τκ
can consistently be smaller than 2κ.

Theorem 1.2.2 ([Tho98, Theorem 1.8]). It is consistent with the ax-
ioms of ZFC that τκ < 2

κ holds for every regular cardinal κ.

A model of the above statement is produced with the help of the follow-
ing theorem and a class-sized forcing iteration with Easton support.

Theorem 1.2.3 ([Tho98, Theorem 4.1]). Let κ, λ and ν be regular
cardinals with κ = κ<κ, κ ≤ λ, 2λ = λ+, ν ≥ λ++ and ν = νλ. If G is
Add(κ, ν)-generic over V, then τλ ≤ λ++ and 2λ = ν hold in V[G].

In [KS09], Itay Kaplan and Saharon Shelah analyse automorphism tow-
ers in the absence of the Axiom of Choice. Their work provides two examples
of upper bounds for τκ and it motivates the work presented in the first two
chapters of this thesis.

Given a centreless group G, it is possible to construct an automorphism
tower of G without using the Axiom of Choice and this tower is still uniquely
determined up to isomorphisms that induce the identity on G. Since Simon
Thomas’ proof of Theorem 1.1.3 uses Fodor’s Lemma, it is a priori not clear
whether the axioms of ZF imply that every automorphism tower terminates.
The results of [KS09] show that this is indeed the case and they also produce
an upper bound for the heights of automorphism towers of centreless groups
with a given domain.

Theorem 1.2.4 (ZF, [KS09, Main Theorem 3.16]). Let κ be an infinite
cardinal. There is an ordinal α such that there is a surjection of P(κ) onto
α and, if �Gγ | γ ∈ On� is an automorphism tower of a centreless group with
domain κ, then there is an ordinal β < α with Gβ = Gβ+1.

Hence, it already follows from the axioms of ZF that the ordinal τκ exists
for every infinite cardinal κ. Moreover, this result also gives us an uniformly
definable upper bound for τκ. Given a set A, remember that L(A) denotes
the smallest inner model of set theory that contains A (see [Jec03, page
193]).

Definition 1.2.5. Define

θA = lub{α ∈ On | (∃f ∈ L(A)) f : A −→ α is a surjection}.

If κ is an infinite cardinal, then it is easy to see that κ+ < θP(κ) ≤ (2
κ)+.

Theorem 1.2.6 (ZF, [KS09, Theorem 3.18]). If κ is an infinite cardinal,
then τκ < θP(κ).
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This estimate is an easy consequence of Theorem 1.2.4 and the following
Absoluteness Lemma.

Theorem 1.2.7 (ZF, [KS09, Lemma 3.17]). Let κ be an infinite cardinal
and G be a centreless group with domain κ. If �Gα | α ∈ On� is an auto-
morphism tower of G in L(P(κ)), then �Gα | α ∈ On� is an automorphism
tower of G.

The other upper bound developed in [KS09] uses the theory of inductive
definitions on first order structures. In the following, we briefly define the
objects of interest in this theory. Extensive introductions to this topic can
be found in [Mos74] and [Mos75].

Definition 1.2.8. Let L be a finite first-order language, M be an L-
structure with domain M and n be a natural number.

• We let LnM denote the first-order language that extends L by a new

n-ary predicate Ṙ and a constant symbol ẋ for every x ∈M .
• If X is a subset ofMn, then we defineM(X) to be the unique LnM-

expansion N ofM with ṘN = X and ẋN = x for every x ∈M .
• Given an LnM-formula ϕ ≡ ϕ(v0, . . . , vn−1) with n free variables,
we let �Iϕα ⊆Mn | α ∈ On� denote the unique sequence of subsets
of Mn that satisfies the following statements for all α ∈ On.
(1) Iϕ0 = {�x ∈Mn | M(∅) |= ϕ(�x)}.
(2) Iϕα+1 = Iϕα ∪ {�x ∈Mn | M(Iϕα ) |= ϕ(�x)}.
(3) If α ∈ Lim, then Iϕα =

�

ᾱ<α I
ϕ
ᾱ .

It follows from the axioms of ZF that for every such LnM-formula ϕ ≡
ϕ(v0, . . . , vn−1) there is an ordinal α with I

ϕ
α = Iϕα+1 and therefore I

ϕ
α = Iϕβ

for all β ≥ α. This allows us to make the following definition.

Definition 1.2.9. Let L be a finite first-order language and M be an
L-structure with domain M .

(1) If n < ω and ϕ ≡ ϕ(v0, . . . , vn−1) is an L
n
M-formula, then we define

�ϕ� = min{α ∈ On | Iϕα = Iϕα+1}

and Iϕ = Iϕ�ϕ�.

(2) The inductive ordinal of M is the ordinal

sup{�ϕ� | ϕ ≡ ϕ(v0, . . . , vn−1) is an LnM-formula for some n < ω}.

We are now ready to present the second bound derived in [KS09].

Theorem 1.2.10 (ZF, [KS09, Conclusion 4.4]). If A is the standard
model of second order number theory and α is the inductive ordinal of A,
then τω ≤ α.

The arguments used in the proof of this result directly generalize to
higher cardinalities κ and the corresponding structures with domain κ�P(κ).
This generalization and all results presented in this section will be a direct
consequence of the results presented in the next section.
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1.3. Admissible ordinals as upper bounds

In the next chapter, we will extend methods developed in [KS09] to find
a better upper bound for τκ that is uniformly definable from the parameter
κ. To formulate this bound, we need to introduce some notions from the
theory of admissible sets.

Richard Platek introduced admissible sets in [Pla66] as natural domains
on which abstract recursion theory can be developed. The related notion of
admissible ordinals was defined by Saul Kripke in [Kri64]. In the next
chapter, we will present some basic results from the theory of admissible
set that will be needed in our proofs. Detailed treatments of admissible set
theory can be found in [Bar75],[Jen72, Section 2.3] and [Mos74, Section
9D].

Definition 1.3.1. A set M is admissible if it satisfies the following
statements.

(1) M is nonempty, transitive and closed under forming pairs and
unions.

(2) The structure �M,∈� satisfies Δ0-Separation, i.e. the sentence

(∀x0, . . . , xn)(∃y)(∀z)
�

z ∈ y ←→ [y ∈ x0 ∧ ϕ(x0, . . . , xn, z)]
�

holds in �M,∈� for every Δ0-formula ϕ ≡ ϕ(v0, . . . , vn+1).
(3) The structure �M,∈� satisfies Δ0-Collection, i.e. the sentence

(∀x0, . . . , xn)
�

(∀y ∈ x0)(∃z) ϕ(x0, . . . , xn, y, z)

−→ (∃w)(∀y ∈ x0)(∃z ∈ w) ϕ(x0, . . . , xn, y, z)
�

holds in �M,∈� for every Δ0-formula ϕ ≡ ϕ(v0, . . . , vn+3).

This means that a nonempty transitive setM is admissible if and only if
the structure �M,∈� is a model of Kripke-Platek set theory KP (see [Bar75,
Chapter 1, Section 2]).

Definition 1.3.2. Let x be an arbitrary set. We say that an ordinal α
is x-admissible if there is an admissible setM with x ∈M and α =M ∩On.

Let x be an arbitrary set and κ be the cardinality of tc({x}). Then κ+

is x-admissible, because x ∈ Hκ+ and Hκ+ is an admissible set (see [Bar75,
Theorem 3.1]). In particular, (2κ)+ is P(κ)-admissible and, by forming the
Skolem hull of P(κ) in H(2κ)+ and considering its transitive collapse, we see

that there is a P(κ)-admissible ordinal smaller than (2κ)+.
It follows directly from Definition 1.3.1 that every x-admissible ordinal

is a limit ordinal. Using admissible set theory and codes for well-orderings of
an infinite cardinal κ, it is easy to show that every P(κ)-admissible ordinal
is bigger than κ+ (this will follow directly from Theorem 1.3.9 and Δ0-
Separation).

We are now ready to formulate our new upper bound for τκ. As above,
the Axiom of Choice is not needed in the proof of this result.
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Theorem 1.3.3 (ZF). Let κ be an infinite cardinal and α be a P(κ)-
admissible ordinal. If τκ �= α+ 1, then τκ < α.

In [Bec11], Howard Becker independently derived the upper bound for
τω produced by the above result. His proof uses descriptive set theory and
the theory of positive inductive definitions on the reals.

Theorem 1.3.3 is proven by refining methods developed in [KS09] and
combining them with basic techniques from admissible set theory. The next
chapter contains a detailed proof of this result and starts with an outline of
the idea behind it.

In the remainder of this section, we will discuss the relation of this upper
bound and the bounds given by Theorem 1.2.6 and Theorem 1.2.10.

By analysing the fine structure of L(P(κ)), it is possible to derive the fol-
lowing statement that directly implies that the first P(κ)-admissible ordinal
is smaller than θP(κ) for every infinite cardinal κ.

Theorem 1.3.4 (ZF). Let κ be an infinite cardinal and α be the least
P(κ)-admissible ordinal. If M is admissible with P(κ) ∈M and α =M∩On,
then there is a partial surjection

s : P(κ)
part
−−→ α

that is definable in the structure �M,∈� by a Σ1-formula with parameters.

Corollary 1.3.5 (ZF). If κ is an infinite cardinal, then there is a
P(κ)-admissible ordinal α with α < θP(κ). �

The first section of [Ste83] contains a proof of the statement of Theorem
1.3.4 in the case “κ = ω ”. The arguments used in that proof directly
generalizes to higher cardinalities.

In the following, we present the classical Barwise-Gandy-Moschovakis
theorem. This result connects the theory of inductive definitions with re-
cursion theory on admissible sets. We will use it to show that the first
P(ω)-admissible ordinal is smaller than the inductive ordinal of the stan-
dard model of second order number theory. To state this result, we need to
introduce some concepts.

Definition 1.3.6. Let L be a finite first order language and M be an
L-structure with domain M .

(1) We say that an LnM-formula ϕ is Ṙ-positive if it is contained in
the smallest class of LnM-formulae that contains all atomic for-

mulae and all formulae in which Ṙ does not occur and is closed
under conjunction, disjunction, existential quantification and uni-
versal quantification.

(2) A subset X ofMn is inductive on M if there are y0, . . . , ym−1 ∈M

and an Ṙ-positive Ln+mM -formula ϕ ≡ ϕ(v0, . . . , vn+m−1) such that

�x0, . . . , xn−1� ∈ X ←→ �x0, . . . , xn−1, y0, . . . , ym−1� ∈ Iϕ.
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(3) A subset X ofMn is hyperelementary on M if both X andMn \X
are inductive onM.

As usual, we call a function f : Mn −→ Mm hyperelementary on some
structure M if its graph is hyperelementary on M. It is easy to see that
every subset of Mn that is definable in the structure M is also hyperele-
mentary onM.

The Barwise-Gandy-Moschovakis theorem applies to structures that al-
low a certain amount of coding. This property is made precise by the fol-
lowing definition.

Definition 1.3.7. Let L be a finite first order language and M be an
L-structure with domain M .

(1) A coding scheme on M is a pair �o, c� that consists of injections
o : ω −→M and c : <ωM −→M .

(2) We say that M admits a hyperelementary coding scheme if there
is a coding scheme �o, c� such that the following objects are hyper-
elementary onM.
• ran(c).
• l :M −→M with

l(x) :=

�

o(0), if x /∈ ran(c),
o(n+ 1), if x = c(s) and n = lh(s).

• q :M ×M −→M with

q(x, y) :=

�

s(i), if x = c(s), y = o(n) and i ∈ dom(s),
o(0), otherwise.

If A is the standard model of second order number theory, then A admits
a hyperelementary coding scheme, because there is a coding scheme on A
such that the corresponding objects ran(c), l and q are definable in A.

We are now ready to state the Barwise-Gandy-Moschovakis theorem.

Theorem 1.3.8 ([BGM71]). Let L be a first order language that extends

the language of set theory by finitely many relation symbols Ṙ0, . . . , Ṙn−1
and N be an L-structure with domain N . Assume that N is transitive,

∈̇N =∈� (N × N) and N admits a hyperelementary coding scheme. If we
define

N+ =
�

{M | M is admissible and N, ṘN
0 , . . . , Ṙ

N
n−1 ∈M}

and α = N+∩On, then N+ is an admissible set and the following statements
hold.

(1) A subset X ⊆ Nn is hyperelementary on N if and only if X is an
element of N+.

(2) A subset X ⊆ Nn is inductive on N if and only if X is definable
in the structure �N+,∈� by a Σ1-formula with parameters.

(3) Given an Ṙ-positive LnM-formula ϕ ≡ ϕ(v0, . . . , vn−1), we have
�ϕ� ≤ α and Iϕ ∈ N

+ if and only if �ϕ� < α.
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Proof. The above statement follows directly from the combination of
[Mos74, Theorem 2B.1] and [Mos74, Theorem 9F.2]. �

We need one more result from admissible set theory to show that the
first P(ω)-admissible ordinal is smaller than the inductive ordinal of the
standard model of second order number theory. The following theorem will
also play a central role in the proof of Theorem 1.3.3 in the next chapter.
Section 2.4 contains a proof of this statement.

Theorem 1.3.9 (ZF). Let M be an admissible set with α =M ∩On and
f : M −→ α be a function that is definable in �M,∈� by a Σ1-formula with
parameters. If X ∈M , then there is an ordinal β < α with f”X ⊆ β.

Corollary 1.3.10. If A is the standard model of second order number
theory and α is the least P(ω)-admissible ordinal, then the inductive ordinal
of A is bigger than α+ 1.

Proof. If we define A+ as in Theorem 1.3.8, then we get α = A+∩On,
because every admissible set that contains P(ω) also contains A. We let

s : P(ω)
part
−−→ α denote the partial surjection given by Theorem 1.3.4. Since

dom(s) is definable in �A+,∈� by a Σ1-formula with parameters, Theorem
1.3.8 shows that there is an Ṙ-positive (LNT2)n+1A -formula and y1, . . . , yn
contained in the domain of A such that

dom(s) = {x ∈ P(ω) | �x, y1, . . . , yn� ∈ Iϕ}.

By Theorem 1.3.9, dom(s) is not an element of A+ and another application
of the Barwise-Gandy-Moschovakis theorem yields �ϕ� = α.

Since dom(s) /∈ A+, there is a y0 ∈ P(ω) \ dom(s) such that the domain
of A is not equal to dom(s) ∪ {y0}. Define ψ ≡ ψ(v0, . . . , vn) to be the
(LNT2)n+1A -formula

ϕ(v0, . . . , vn) ∨ Ṙ(ẏ0, . . . , ẏn)

∨
�

(∀x0, . . . , xn) [ϕ(x0, . . . , xn)→ Ṙ(x0, . . . , xn)] ∧ v0 = ẏ0 ∧ · · · ∧ vn = ẏn
�

.

An easy induction shows that Iϕβ = Iψβ holds for all β ≤ α. Moreover, we

have Iψα+1 = Iϕα ∪ {�y0, . . . , yn�} and Iψα+1 is equal to the domain of A. In
particular, the inductive ordinal of A is strictly bigger than α+ 1. �





CHAPTER 2

A new upper bound for τκ

This chapter is devoted to the proof of Theorem 1.3.3: if κ is an infinite
cardinal and α is P(κ)-admissible, then either τκ = α+ 1 or τκ < α.

Section 2.1 is supposed to illustrate the idea behind this proof. We
will formulate a theorem that shows how automorphism towers of centreless
groups with domain κ can be constructed inside admissible sets which con-
tain the power set of κ and how the actions of automorphism in higher stages
on elements in the lower stages can be reconstructed within the admissible
set. We will then sketch how this statement implies Theorem 1.3.3.

The next section will deal with special pairs. This notion was introduced
by Itay Kaplan and Saharon Shelah in [KS09] to analyse automorphism
towers in the absence of the Axiom of Choice. It allows us to code the
automorphisms that appear in the automorphism tower of some centreless
group G with domain κ into subsets of κ. In particular, this coding allows
us to view automorphism towers as increasing sequences of subsets of P(κ).

In Section 2.3, we will present a strengthening of this result and show
that the sequence of subsets associated with an automorphism towers is
induced by an inductive definition on some first order structure. This rep-
resentation was developed by Itay Kaplan and Saharon Shelah in [KS09,
Section 4]. We will give a detailed presentation of their construction and ex-
tend it to show that it is possible to reconstruct the actions of automorphism
from their codes inside admissible sets.

This representation will allow us to construct automorphism towers of
groups with domain κ inside admissible structures containing P(κ) and prove
the theorem stated in Section 2.1. The final proof of Theorem 1.3.3 in Sec-
tion 2.4 will follow from this result, the Σ1-Recursion Principle of admissible
set theory and the Σ1-Boundedness Theorem 1.3.9.

2.1. Introduction

As mentioned above, this section is supposed to illustrate the idea behind
the proof of Theorem 1.3.3 and explain its structure.

We start with a result of J. Hulse that shows that the automorphisms
appearing in the automorphism tower of a centreless group G are uniquely
determined by their interactions with elements of G. This result plays a
central role in Simon Thomas’ proof of Theorem 1.1.3 in [Tho98].

13
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Theorem 2.1.1 ([Hul70, Lemma 8.1.1]). If �Gα | α ∈ On� is the au-
tomorphism tower of a centreless group G, then CGα(G) = {1G} holds for
every α ∈ On.

In the next section, we will present a strengthening of this statement
using methods developed in [KS09]. The following consequence of Theorem
2.1.1 is the starting point of our approach.

Proposition 2.1.2. Let �Gα | α ∈ On� be the automorphism tower of
a centreless group G, λ be a limit ordinal with cof(λ) > ω and h ∈ Gλ+1.
Assume that, for every α < λ, there is a β < λ with the property that

ιh(g), ιh−1(g) ∈ Gβ

for every g ∈ Gα. Then h ∈ Gλ.

Proof. Recursively define a strictly increasing sequence �αn | n < ω�
of ordinals in λ by setting α0 = 0 and

αn+1 = min{β ∈ (αn, λ) | (∀g ∈ Gαn) ιh(g), ιh−1(g) ∈ Gβ}.

By our assumptions, we have α∗ = supn<ω αn ∈ λ ∩ Lim. If g ∈ Gα∗ ,
then there is an n < ω with g ∈ Gαn and

ιh(g), ιh−1(h) ⊆ Gαn+1 ⊆ Gα∗ .

We can conclude ιh � Gα∗ ∈ Aut(Gα∗) and, by the definition of auto-
morphism towers, there is a h∗ ∈ Gα∗+1 with ιh � Gα∗ = ιh∗ � Gα∗ . Since
Gα∗+1 ⊆ Gλ+1, we have

h−1 ◦ h∗ ∈ CGλ+1
(Gα∗) ⊆ CGλ+1

(G) = {1G}

and this means h = h∗ ∈ Gα∗+1 ⊆ Gλ. �

Combined with Wielandt’s Theorem 1.1.2, this proposition has the fol-
lowing direct consequence.

Corollary 2.1.3. Let �Gα | α ∈ On� be the automorphism tower of a
centreless group G and κ be an infinite regular cardinal. If |Gα| < κ holds
for every α < κ, then τ(G) ≤ κ. �

The idea behind the proof of Theorem 1.3.3 is to modify the statement
of the above corollary in the following way.

• Replace the regular cardinal by the ordinal height α of some ad-
missible set M .

• Replace the cardinality assumption by the assumption that there
is an automorphism tower of G with the property that both the
function that lists the groups in this tower up to α and the actions
of the automorphisms in the (α+ 1)-th groups are Σ1-definable in
�M,∈�.

• Use admissible set theory to show that these assumptions cause the
automorphism tower to terminate at the some stage less or equal
to α.
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The main consequence of admissibility used in this argument is the Σ1-
Boundedness Theorem 1.3.9: given an admissible set M with α =M ∩On,
there is no cofinal map from an element of M into α that is Σ1-definable in
the structure �M,∈�. Since our proofs will only deal with the Σ1-cofinality
of admissible ordinals, this result enables us to replace regularity by admis-
sibility.

The following theorem will allow us to run the argument sketched above
if κ is an infinite cardinal, α is P(κ)-admissible and G is a centreless group
of cardinality κ.

Theorem 2.1.4 (ZF). Let κ be an infinite cardinal, Gκ be the set of all
centreless groups with domain κ and M be an admissible set with P(κ) ∈M
and α =M ∩On. Then there are

• Σ1-formulae Φ∗ ≡ Φ∗(w0, . . . , w3) and Ψ∗ ≡ Ψ∗(w0, . . . , w5),
• parameters y, z ∈M , and
• an injection c : Gκ −→M with ran(c) ∈M

with the property that, whenever G is an element of Gκ, then there is a group
G0 isomorphic to G and an automorphism tower �Gβ | β ∈ On� of G0 such
that the following statements hold.

(1) For all β ∈ On, the domain of Gβ is a subset of M .
(2) If β < α, then the domain of Gβ is an element of M and it is the

unique X ∈M with

�M,∈� |= Φ∗(β,X, c(G), y).

(3) If h ∈ Gα+1 and g ∈ Gα, then �ιh(g), ιh−1(g)� is the unique pair
�g0, g1� in Gα ×Gα with

�M,∈� |= Ψ∗(g, g0, g1, h, c(G), z).

One way to describe the complexity of a set-theoretic construction is to
isolate fragments of ZFC (or some extension of ZFC by large cardinal ax-
ioms) with the property that transitive models of this theory containing the
necessary parameters compute the outcome of this construction correctly.
In combination with Theorem 1.3.3, the above result shows that the com-
plexity of automorphism towers of centreless groups of cardinality κ can be
described by the class of admissible sets containing the power set of κ.

The following sections contain the proof of Theorem 2.1.4. It is based
on the representation of automorphism towers as inductive definitions devel-
oped in [KS09]. Given a centreless group G with domain κ, we will use this
method to show that there is a first-order structure Nκ and an L

4
Nκ
-formula

Φ ≡ Φ(w0, . . . , w3) such that the set I
Φ
α codes the group operation of Gα. We

will then show that each admissible set M with P(κ) ∈M and α =M ∩On
contains such a structure and the actions of automorphisms of Gα+1 are
Σ1-definable in �M,∈� from certain codes contained in the domains of N .

In the remainder of this section, we will sketch how Theorem 1.3.3 can
be derived from Theorem 2.1.4 using the axioms of ZFC. Note that, if the
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Countable Axiom of Choice (AC)ω holds, then Theorem 1.3.4 and Theorem
1.3.9 imply that the least P(κ)-admissible ordinal has uncountable cofinality.
The final proof of Theorem 1.3.3 in Section 2.4 will work without this extra
assumption.

Let κ be an infinite cardinal, α be the least P(κ)-admissible ordinal and
M be an admissible set with P(κ) ∈M and α =M ∩On. Given a centreless
group G with domain κ, we let �Gβ | β ∈ On� denote the automorphism
tower produced by an application of Theorem 2.1.4. Fix h ∈ Gα+1 and
β < α. Let fβ :M −→ α denote the map defined by

fβ(g) :=

�

min{δ < α | ιh(g), ιh−1(g) ∈ Gδ+1}, if g ∈ Gβ ,
0, if g /∈ Gβ .

By the properties ofM and the closure properties of the class of Σ1-definable
subsets of admissible sets, the function fβ is definable in �M,∈� by a Σ1-
formula with parameters. Since Gβ is an element ofM , Theorem 1.3.9 gives
us an ordinal γ < α with fβ”Gβ ⊆ γ. This argument shows that, for every
β < α, there we can find a γ < α such that

ιh(g), ιh−1(g) ∈ Gγ

for every g ∈ Gβ . By Proposition 2.1.2, this implies that h is an element of
Gα. We can conclude τκ ≤ α+ 1.

Now, assume that τ(G) < α holds for every G in Gκ. If G is an element
of Gκ, then our assumption and Theorem 2.1.4 imply that τ(G) is equal to
the least ordinal β < α with

�M,∈� |= (∃X) [Φ∗(β,X, c(G), y) ∧ Φ∗(β + 1, X, c(G), y)] .

Since ran(c) is an element of M and Φ∗ is a Σ1-formula, the closure
properties of admissible sets imply that the function

c :M −→ α; c(x) :=

�

τ(G), if x = c(G) ∈ ran(c)
0, otherwise.

is definable in �M,∈� by a Σ1-formula with parameters. Another application
of Theorem 1.3.9 yields τκ < α.

2.2. Special pairs

We introduce the notion of special pairs defined by Itay Kaplan and
Saharon Shelah in [KS09]. This notion allows us to code automorphisms
appearing in the automorphism tower of a centreless group of cardinality κ
into subsets of κ. In this way, we can identify the stages of an automor-
phism tower with subsets of P(κ) and talk about the complexity of these
groups. Moreover, we will represent the tower as an inductive definition on
a structure whose domain contains all such codes.

Definition 2.2.1. Let A be a set and LA be the first-order language
that expands the language of group theory LGT by a constant symbols ȧ for
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each element a of A. If G is a group whose domain contains A as a subset,
then we regard G as an LA-model in the obvious way.

Let �vn | n < ω� be an enumeration of all variables in LA. We define
T nA to be the set of all LA-terms of the form t ≡ t(v0, . . . , vn−1), i.e. the set
of all terms whose free variables are contained in the set {v0, . . . , vn−1}. If
�g ∈ Gn, then we define

qftG,A(�g) = {t(�v) ∈ T nA | tG(�g) = 1G}

and call this set the quantifier-free A-type of g.

Definition 2.2.2. Given a group G and a subset A of the domain of G,
the pair �G,A� is special if the function

qftG,A : G −→ P(T 1A); g �−→ qftG,A(g)

is injective.

It is also possible to characterize special pairs by the non-existence of
certain local isomorphisms.

Lemma 2.2.3 (ZF, [KS09, Remark 3.5 (1)]). If G is a group and A is a
subset of the domain of G, then the following statements are equivalent for
all g0, g1 ∈ G.

(1) qftG,A(g0) = qftG,A(g1).
(2) There is a group monomorphism ϕ : �A ∪ {g}�G −→ G with ϕ(g0) =

g1 and ϕ � A = idA.

This characterization directly shows that the computation of quantifier-
free types is local.

Corollary 2.2.4 (ZF). Let �H,A� be a special pair and G be a subgroup
of H that contains A. Then �G,A� is a special pair and qftG,A(g) = qftH,A(g)
for all g ∈ G. �

The following theorem due to Itay Kaplan and Saharon Shelah estab-
lishes a connection between automorphism towers and special pairs. It may
be viewed as a strengthening of Theorem 2.1.1, in the sense that it provides
stronger characterizations of elements in the automorphism tower of a cen-
treless group G in terms of their interactions with the elements of G. It also
shows that the Axiom of Choice is not needed to derive the statement of
Theorem 2.1.1. This result lies at the heart of the proof of Theorem 1.2.4.

Theorem 2.2.5 (ZF, [KS09, Conclusion 3.10]). Let �G,A� be a special
pair with CG(A) = {1G} and �Gα | α ∈ On� be an automorphism tower of
G. If α ∈ On, then �Gα, A� is a special pair and CGα(A) = {1G} holds.

Corollary 2.2.6 (ZF). If �Gα | α ∈ On� is the automorphism tower of
a centreless group G with domain A, then �Gα, A� is a special pair for every
α ∈ On. �
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In Chapter 5, we will strengthen the notion of special pairs and prove
that the above statements about automorphism towers also hold with respect
to this stronger notion. These proofs will be almost identical to the ones
presented in [KS09].

In our representation of the automorphism tower of a centreless group
G with domain A as an inductive definition, the set T 2A ∪ P(T

2
A) will form

the domain of the structure in which the inductive definition takes place
and we will identify the automorphisms that appear in this tower with their
quantifier-free A-type.

In the remainder of this section, we will introduce relations and func-
tions on the above domain that will allow us to translate group-theoretic
statements into the language of quantifier-free types. Then we will prove
some basic facts about these objects. All statements will be derived

from the axioms of ZF.
Remember that we let tvt∗ denote the term produced by substituting all

occurrences of a variable v in a term t by a term t∗.

1. We define

EA : P(T
2
A)× T 2A −→ P(T 1A); �z, t∗� �−→ {t ∈ T 1A | tv0t∗ ∈ z}.

Proposition 2.2.7. Let �G,A� be a special pair and g, h ∈ G.

(1) If k ∈ �A ∪ {g, h}�G and t∗ ∈ T
2
A , then k = tG∗ (g, h) if and only if

qftG,A(k) = EA(qftG,A(g, h), t∗).

(2) If k ∈ �A ∪ {g}�G and t∗ ∈ T
1
A , then k = tG∗ (g) if and only if

qftG,A(k) = EA(qftG,A(g), t∗).

Proof. (1) Assume k = tG∗ (g, h). If t ∈ T
1
A , then

t ∈ qftG,A(k)⇔ tG(k) = 1G ⇔ (tv0t∗ )
G(g, h) = 1G ⇔ tv0t∗ ∈ qftG,A(g, h).

This implies qftG,A(k) = EA(qftG,A(g, h), t∗). In the other direction, a simi-

lar argument shows EA(qftG,A(g, h), t∗) = qftG,A(t
G
∗ (g, h)) and we can con-

clude k = tG∗ (g, h), because �G,A� is a special pair.
(2) Since tv0t∗ ∈ T 1A , t

G
∗ (g) = tG∗ (g, h) and qftG,A(g) = qftG,A(g, h) ∩ T

1
A ,

we have EA(qftG,A(g), t∗) = EA(qftG,A(g, h), t∗) and the statement follows
directly from this first part of the proposition. �

2. Let ≈A be the equivalence relation on T
2
A defined by

t0 ≈A t1 ⇐⇒ GT � (∀x, y) t0(x, y) = t1(x, y).

3. Given i < 2, we define NiA to be the set of all z ∈ P(T iA) with the
following properties.

(1) 1l ∈ z.
(2) If t0, t1 ∈ z and t ∈ T iA, then t

−1
0 , t0 ∗ t1, t ∗ t0 ∗ t−1 ∈ z.

(3) z is closed under ≈A in T
i
A.
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Proposition 2.2.8. If G is a group, A is a subset of the domain of G
and g, h ∈ G, then qftG,A(g) ∈ N

1
A and qftG,A(g, h) ∈ N

2
A. �

Proposition 2.2.9. Let z ∈ N2A and t0, t1 ∈ T
2
A . If t−10 ∗ t1 ∈ z, then

EA(z, t0) = EA(z, t1).

In particular, EA(z, t) = EA(z, 1l) for all t ∈ z and, if t0 ≈A t1, then
EA(z, t0) = EA(z, t1).

Proof. An easy induction shows that

(tv0t0 )
−1 ∗ tv0t1 , (t

v0
t1
)−1 ∗ tv0t0 ∈ z

holds for every t ∈ T 1A . Hence, we have

t ∈ EA(z, t0)⇔ tv0t0 ∈ z ⇔ tv0t0 ∗ (t
v0
t0
)−1 ∗ tv0t1 ∈ z ⇔ tv0t1 ∈ z ⇔ t ∈ EA(z, t1)

for every t ∈ T 1A . �

4. We define NA to be the intersection of all z ∈ N
2
A with v1 ∈ z and

ȧ ∈ z for all a ∈ A.

5. We define

IA : P(T
1
A) −→ P(T 1A); z �−→ {t ∈ T 1A | tv0

v−1
0

∈ z}.

Proposition 2.2.10. If z ∈ P(T 2A) and t∗ ∈ T
2
A , then

EA(z, t
−1
∗ ) = (IA ◦ EA) �z, t∗�.

Proof. If t ∈ T 1A , then

t ∈ EA(z, t
−1
∗ )⇔ ((tv0

v−1
0

)v0t∗ ) ∈ z ⇔ tv0
v−1
0

∈ EA(z, t∗)⇔ t ∈ (IA ◦ EA) (z, t∗).

�

Proposition 2.2.11. If �G,A� is a special pair and g ∈ G, then

qftG,A(g
−1) = IA(qftG,A(g)).

Proof. If t ∈ T 1A , then

t ∈ qftG,A(g
−1)⇔ (tv0

v−1
0

) ∈ qftG,A(g)⇔ t ∈ IA(qftG,A(g)).

�

We close this section with an argument that shows that the set of all
quantifier-free types of identity elements of centreless groups with domain
A has an easy definition.
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6. Let GA denote the set of all x ∈ P(T 1A) that satisfy the following
statements.

(1) x ∈ N1A and x = EA(x, 1l).
(2) If t ∈ T 1A , then there is a unique a ∈ A with EA(x, t) = EA(x, ȧ).

(3) If t0, t1 ∈ T 1A , then EA(x, t0) = EA(x, t1) if and only if t
−1
0 ∗ t1 ∈ x.

(4) If a0 ∈ A, then EA(x, a0 ∗ a1) �= EA(x, a1 ∗ a0) for some a1 ∈ A.

Proposition 2.2.12. Let x be an element of P(T 1A). Then x is an
element of GA if and only if x = qftG(x),A(1G(x)) for some centreless group

G(x) with domain A.

Proof. Let x ∈ GA. If t ∈ T
1
A , then we let at denote the unique element

a of A with t−1 ∗ ȧ ∈ x. Then a1l = av0 and aȧ = a for all a ∈ A.
We define an LA-structure M with domain A by setting 1lM = a1l,

ȧM = a, a−1 = aȧ−1 and a0 ·M a1 = aȧ0∗ȧ1 for all a, a0, a1 ∈ A. Given
t0, t1 ∈ T

1
A , the closure properties of x imply

(at0∗at1)
−1 ∗ at0∗t1

≈A (a
−1
t1
∗ t1) ∗ (t

−1
1 ∗ (a−1t0 ∗ t0) ∗ t1) ∗ ((t0 ∗ t1)

−1 ∗ at0∗t1) ∈ x

and therefore at0∗t1 = at0 ·M at1 . This allows us to run an easy induction to
show that tM(a1l) = at holds for every t ∈ T

1
A .

Let t0, t1 ∈ T
0
A with GT � t0 = t1. Then t

−1
0 ∗ t1 ∈ x and

EA(x, at0) = EA(x, t0) = EA(x, t1) = EA(x, at1).

This means at0 = at1 and t
M
0 = tM1 . We can concludeM |= GT.

If G(x) denotes the LGT-reduct of M, then G(x) is a group and the
centre of G(x) is trivial by the definition of the group operation and the last
clause in the definition of GA. If t ∈ T

1
A , then

tG(x)(1G(x)) = 1G(x) ⇔ at = a1l ⇔ EA(x, t) = EA(x, 1l)⇔ t ∈ x.

The opposite implication follows directly from Proposition 2.2.7, Propo-
sition 2.2.8 and the assumption Z(G(x)) = {1G(x)}. �

2.3. Representing automorphism towers as inductive definitions

In this section, we give a detailed outline of the representation of au-
tomorphism towers as inductive definitions on certain structures developed
in [KS09, Section 4]. Then we show how the actions of automorphisms
can be reconstructed from certain codes contained in the domains of these
structures. We start by defining the language of this inductive definition
and constructing the underlying model. Then we will define the formula
used in the inductive definition in several steps. Throughout this section
we derive our result from the axioms of ZF.

We let LC denote the first order language that extends the language
L∈ of set theory by a ternary relation symbol Ċ. From now on, we assume
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that A is a set of ordinals that contains ω as a subset and is closed

under Gödel Pairing ≺·, ·�.
To keep our constructions simple, we will equip our model with a coding

relation. This coding is based on the following assignment of ordinals αt ∈ A
to LA-terms t.

• α1l = 0 and αvn = ≺1, n� for all n < ω.
• αȧ = ≺2, a� for all a ∈ A.
• αt−1 = ≺3, αt� for every LA-term t.
• αt0∗t1 = ≺4,≺αt0 , αt1�� for all LA-terms t0 and t1.

The constructions in the proof of Theorem 2.1.4 in Section 2.4 will ex-
plain this particular choice of coding.

Definition 2.3.1. We defineMA to be the unique LC-model with the
following properties.

(1) The domain ofMA is the set T
2
A ∪ P(T

2
A).

(2) ∈MA=∈� (T 2A × P(T 2A)).

(3) ĊMA = {�t0, t1, t2� ∈ (T
2
A)

3 | (∃a ∈ A) [t0 ≡ ȧ ∧ a = ≺αt1 , αt2�]}.

We let LA denote the extended language (LC)
4
MA

.

By iterating applications of the coding relations and using subsets of T 2A
as parameters, the following statements follow directly.

Proposition 2.3.2. (1) Every function and every relation on T 2A
is uniformly definable in the class of all LA-models of the form
MA(C) with C ⊆ P(T 1A)

4.
(2) The functions EA and IA and the relations P(T 1A), P(T

2
A), N

1
A, N2A

and GA are uniformly definable in the class of all LA-models of the
form MA(C) with C ⊆ P(T 1A)

4. �

Since we will only work with models of the form MA(C) with C ⊆
P(T 1A)

4, this proposition allows us to include all functions and relations
introduced in the last section into our vocabulary by identifying their names
with their uniform definitions.

The following definition and the subsequent theorem clarify what we
mean by representing automorphism towers as inductive definitions.

Definition 2.3.3. Let �G,A� be a special pair and C be a set. Then
�G,A� is coded by C if C ⊆ P(T 1A)

4 and

{�x, y, z� | �x, y, z, qftG,A(1G)� ∈ C}

= {�qftG,A(g), qftG,A(h), qftG,A(g ·G h)� | g, h ∈ G}.

Theorem 2.3.4. If A is a set of ordinals that contains ω as a subset
and is closed under Gödel Pairing ≺·, ·�, then there are LA-formulae Φ ≡
Φ(w0, . . . , w3) and Ψ ≡ Ψ(w0, . . . , w4) such that the following statements
hold whenever �Gα | α ∈ On� is an automorphism tower of a centreless group
G with domain A.
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(1) If α ∈ On, then the special pair �Gα, A� is coded by IΦα for all
α ∈ On.

(2) Let λ ∈ Lim, h ∈ Gλ+1 and g ∈ Gλ with the property there is
an α < λ such that tGλ+1(h, g) ∈ Gα for every t ∈ NA. Then
�ιh(g), ιh−1(g)� is the unique pair �g0, g1� in Gλ ×Gλ such that the
statement

Ψ(qftGλ,A(g), qftGλ,A(g0), qftGλ,A(g1), qftGλ+1,A
(h), qftG,A(1G))

holds in the structure MA(I
Φ
α ) for some α < λ.

By translating the above statement into the language of admissible sets,
we will derive Theorem 2.1.4 from this result. To prove Theorem 2.3.4, we
construct the formula Φ in seven steps with the help of six auxiliary formulae
ΦI, . . . ,ΦVI. Let �wn | n < ω� list the free variables in LA.

1. Define ΦI ≡ ΦI(w0, w1) to be the L
A-formula

w0, w1 ∈ P(T
1
A) ∧ Ṙ(w0, w1, w0, w1).

Proposition 2.3.5. If C codes the special pair �G,A� and x is an ele-
ment of the domain of MA(C), then the following statements are equivalent.

(1) x = qftG,A(g) for some g ∈ G.
(2) MA(C) |= ΦI(x, qftG,A(1G)). �

2. Define ΦII ≡ Φ(w0, w1) to be the conjunction of the following LA-
statements.

• w0 ∈ N
2
A and EA(w0, 1l) = w1.

• If a ∈ A, then ȧ ∗ v−10 ∈ EA(w0, ȧ).
• If t0, t1 ∈ T

2
A with EA(w0, t0) = EA(w0, t1), then t

−1
0 ∗ t1 ∈ w0.

• If t0, t1 ∈ NA, then Ṙ(EA(w0, t0),EA(w0, t1),EA(w0, t0 ∗ t1), w1).

Proposition 2.3.6. Let �H,A� be a special pair, G be a subgroup of H
that contains A, g ∈ G and h ∈ H with the property that tH(h, g) ∈ G for
every t ∈ NA. If the special pair �G,A� is coded by C, then

MA(C) |= ΦII(qftH,A(h, g), qftG,A(1G)).

Proof. Proposition 2.2.8 implies qftH,A(h, g) ∈ N2A and we can use
Proposition 2.2.7 to get EA(qftH,A(h, g), 1l) = qftG,A(1G). Given a ∈ A,
the same proposition implies qftG,A(a) = EA(qftH,A(h, g), ȧ) and, by the

definition of quantifier-free types, we have ȧ ∗ v−10 ∈ qftG,A(a). If

EA(qftH,A(h, g), t0) = EA(qftH,A(h, g), t1)

for some t0, t1 ∈ T
2
A , then t

H
0 (h, g) = tH1 (h, g) by Proposition 2.2.7 and this

means that t−10 ∗ t1 ∈ qftH,A(h, g). Another application of Proposition 2.2.7
and our assumptions imply that

EA(qftH,A(h, g), t0∗t1) = qftG,A((t0∗t1)
H(h, g)) = qftG,A(t

H
0 (h, g)·t

H
1 (h, g)).
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for all t0, t1 ∈ NA. This equality implies that the last clause in the definition
of ΦII is also satisfied by qftG,A(h, g) and qftG,A(1G). �

3. Define ΦIII ≡ ΦIII(w0, . . . , w3) to be the L
A-formula

w0 ∈ N
1
A ∧ ΦI(w1, w3) ∧ ΦII(w2, w3)∧EA(w2, v0) = w0 ∧ EA(w2, v1) = w1.

Lemma 2.3.7. Let �G,A� be a special pair coded by C, x, z ∈ P(T 2A) and
g ∈ G with

MA(C) |= ΦIII(x, qftG,A(g), z, qftG,A(1G)).

Then

Gz = {k ∈ G | (∃t ∈ NA) qftG,A(k) = EA(z, t)}

is a subgroup of G containing A ∪ {g} and there is a unique automorphism
πz of Gz with

qftG,A(πz(k)) = EA(z, v0 ∗ t ∗ v
−1
0 )

for all k ∈ Gz and t ∈ NA with qftG,A(k) = EA(z, t).

Proof. Let k0, k1 ∈ Gz and t0, t1 ∈ NA with qftG,A(ki) = EA(z, ti). By
the definition of ΦII, we have

�qftG,A(k0), qftG,A(k1),EA(z, t0 ∗ t1), qftG,A(1G)� ∈ C.

This means qftG,A(k0 ·k1) = EA(z, t0 ∗ t1) and k0 ·k1 ∈ Gz, because �G,A� is
coded by C and t0 ∗ t1 ∈ NA. By Proposition 2.2.10 and Proposition 2.2.11,
we have

qftG,A(k
−1
0 ) = IA(qftG,A(k0)) = (IA ◦ EA)�z, t0� = EA(z, t

−1
0 )

and, since t−10 ∈ NA, this shows k
−1
0 ∈ Gz. We can use the definition of ΦII

to see that qftG,A(1G) = EA(z, 1l) and therefore 1G ∈ Gz. This shows that
Gz is a subgroup of G.

Given t ∈ NA, we have

(2.1) �EA(z, t), qftG,A(1G),EA(z, t ∗ 1l), qftG,A(1G)� ∈ C

and there is a unique k ∈ Gz with qftG,A(k) = EA(z, t). In particular, if

a ∈ A, then qftG,A(a) = EA(z, ȧ), because ȧ ∈ NA and ȧ ∗ v−10 ∈ EA(z, ȧ)
by the definition of ΦII. Since v1 ∈ NA and qftG,A(g) = EA(z, v1), we can
conclude that A ∪ {g} is contained in Gz.

Pick k ∈ Gz and t0, t1 ∈ NA with EA(z, t0) = qftG,A(k) = EA(z, t1).

Then t−10 ∗ t1 ∈ z, because z ∈ N2A. By the definition of N
2
A, this implies

(v0 ∗ t0 ∗v
−1
0 )−1 ∗ (v0 ∗ t1 ∗v

−1
0 ) ∈ z and we can use Proposition 2.2.9 to show

EA(z, v0 ∗ t0 ∗ v
−1
0 ) = EA(z, v0 ∗ t1 ∗ v

−1
0 ).

In combination with (2.1), this argument shows that for each k ∈ Gz
there is a unique πz(k) in Gz with the property that, whenever t ∈ NA with
qftG,A(k) = EA(z, t), then qftG,A(πz(k)) = EA(z, v0 ∗ t ∗ v

−1
0 ).
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Pick k0, k1 ∈ Gz and t0, t1 ∈ NA with qftG,A(ki) = EA(z, ti). The above
argument shows that qftG,A(k0 · k1) = EA(z, t0 ∗ t1) and this implies

qftG,A(πz(k0 · k1)) = EA(z, v0 ∗ t0 ∗ t1 ∗ v
−1
0 )

= EA(z, (v0 ∗ t0 ∗ v
−1
0 ) ∗ (v0 ∗ t1 ∗ v

−1
0 ))

by Proposition 2.2.9. The definition of ΦII implies that

�qftG,A(πz(k0)), qftG,A(πz(k1)),EA(z, (v0 ∗ t0 ∗ t1 ∗ v
−1
0 )), qftG,A(1G)�

is an element of C and therefore

πz(k0 · k1) = πz(k0) · πz(k1).

The first part of the definition of ΦII and Proposition 2.2.9 imply πz(1G) =
1G. We have shown that πz is a homomorphism.

Let k ∈ Gz and t ∈ NA with qftG,A(k) = EA(z, t) and πz(k) = 1G. Then

EA(z, v0 ∗ t ∗ v
−1
0 ) = qftG,A(1G) = EA(z, 1l)

and this implies t ∈ z by the definition of ΦII and N
2
A. An application of

Proposition 2.2.9 yields EA(z, t) = qftG,A(1lG) and k = 1G.
Finally, fix k ∈ Gz with qftG,A(k) = EA(z, t) for some t ∈ NA. By (2.1)

and the closure properties of NA, there is a k∗ ∈ Gz with

qftG,A(k∗) = EA(z, v
−1
0 ∗ t ∗ v0)

and hence πz(k∗) = k by Proposition 2.2.9. �

Proposition 2.3.8. Let �H,A� be a special pair, G be a subgroup of
H that contains A, g ∈ G and h ∈ H with the property that tH(h, g) ∈ G
for every t ∈ NA. If the special pair �G,A� is coded by C, then following
statements hold.

(1) MA(C) |= ΦIII(qftH,A(h), qftG,A(g), qftH,A(h, g), qftG,A(1G)).
(2) πqftH,A(h,g)

(k) = ιh(k) for all k ∈ GqftH,A(h,g)
.

Proof. The first part of the propositions follow directly from the Propo-
sitions 2.2.7, 2.2.8, 2.3.5 and 2.3.6.

If k ∈ GqftH,A(h,g)
and t ∈ NA with qftG,A(k) = EA(qftH,A(h, g), t), then

qftG,A(πqftH,A(h,g)
(k)) = EA(qftH,A(h, g), v0 ∗ t ∗ v

−1
0 ) = qftH,A(ιh(k))

by Proposition 2.2.7 and Lemma 2.3.7. �

4. Define ΦIV ≡ ΦIV(w0, . . . , w3) to be the L
A-formula

(∀z)
�

ΦIII(w1, w2, z, w3) −→ EA(z, v0 ∗ v1 ∗ v
−1
0 ) = w0

�

.

Proposition 2.3.9. Let �G,A� be a special pair coded by C, g ∈ G and
x ∈ P(T 2A). If

(2.2) MA(C) |= ΦIII(x, qftG,A(g), z0, qftG,A(1G))

holds for some z0 ∈ P(T
2
A), then πz0(g) is the unique element k of G with

(2.3) MA(C) |= ΦIV(qftG,A(k), x, qftG,A(g), qftG,A(1G)).
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Proof. Assume z1 ∈ P(T 2A) satisfies

MA(C) |= ΦIII(x, qftG,A(g), z1, qftG,A(1G)).

By the definition of ΦII, we have

z0 ∩ T
1
A = EA(z0, v0) = x = EA(z1, v0) = z1 ∩ T

1
A .

This directly implies EA(z0, t) = EA(z1, t) for all t ∈ T
1
A . By the definition

of πzi , we can conclude that π
−1
z0
(a) = π−1z1 (a) for all a ∈ A. Therefore

π−1z0 ” �A ∪ {πz0(g)}�G ⊆ Gz1 = dom(πz1)

and the map

ϕ : �A ∪ {πz0(g)}�G −→ G; k �−→ πz1(π
−1
z0
(k))

is a monomorphism with ϕ � A = idA and ϕ(πz0(g)) = πz1(g). By Lemma
2.2.3, this implies πz0(g) = πz1(g) and we can conclude

EA(z0, v0∗v1∗v
−1
0 ) = qftG,A(πz0(g)) = qftG,A(πz1(g)) = EA(z1, v0∗v1 ∗v

−1
0 ).

This equality implies that (2.3) holds if k = πz0(g). If follows from (2.2) and
the definitions of ΦIV and πz0 that πz0(g) is the unique element of G with
this property. �

5. Define ΦV ≡ ΦV(w0, w1) to be the conjunction of the following LA-
statements.

• If ΦI(y, w1) holds for some y, then there is a z with ΦIII(w0, y, z, w1).
• ΦIV(w1, w0, w1, w1).
• For all y0, . . . , y5 with Ṙ(y0, y1, y2, w1) and ΦIV(y3+i, w0, yi, w1) for
every i < 3, we have Ṙ(y3, y4, y5, w1).

Lemma 2.3.10. Let �G,A� be a special pair coded by C and x ∈ P(T 2A)
with

MA(C) |= ΦV(x, qftG,A(1G)).

Then there is an endomorphism σC,x : G −→ G such that the following
properties are equivalent for all g, k ∈ G.

(1) σC,x(g) = k.
(2) MA(C) |= ΦIV(qftG,A(k), x, qftG,A(g), qftG,A(1G)).

Proof. Let g ∈ G. Then there is a z0 ∈ P(T 2A) with (2.2) and there
is a unique k ∈ G with (2.3). If we denote this unique element by σC,x(g),
then the second and the third clause in the definition of ΦV ensure that the
the resulting map σC,x is an endomorphism. �

Proposition 2.3.11. Let �H,A� be a special pair, G be a normal sub-
group of H that contains A and h ∈ H. If the special pair �G,A� is coded
by C, then

MA(C) |= ΦV(qftH,A(h), qftG,A(1G))

and σC,qftH,A(h)
= ιh � G.
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Proof. Pick g ∈ G and define

z = {t ∈ T 2A | tH(h, g) ∈ G}.

Then z ∈ N2A, v1 ∈ z and ȧ ∈ z for all a ∈ A. Hence NA ⊆ z and tH(h, g) ∈ G
for all t ∈ NA.

Proposition 2.3.8 implies

MA(C) |= ΦIII(qftH,A(h), qftG,A(g), qftH,A(h, g), qftG,A(1G)).

A combination of Proposition 2.3.8 and Proposition 2.3.9 yields

MA(C) |= ΦIV(qftG,A(ιh(g)), qftH,A(h), qftG,A(g), qftG,A(1G)).

The above conclusions directly imply the statement of the proposition. �

6. Define ΦVI ≡ ΦV(w0, w1) to be the conjunction of the following LA-
statements.

• w0 ∈ N
1
A and ΦV(EA(w0, t), w1) for all t ∈ T

1
A .

• If t ∈ T 1A , then

t ∈ w0 ←→ (∀x ∈ P(T 1A)) [ΦI(x,w1)→ ΦIV(x,EA(w0, t), x, w1)]

• If t0, t1 ∈ T 1A and x0, x1, x2 ∈ P(T 1A) with ΦI(xi, w1) for all i < 3
and ΦIV(xi+1,EA(w0, ti), xi, w1) for all i < 2, then

ΦIV(x2,EA(wo, t1 ∗ t0), x0, w1).

• If a ∈ A, then

ΦIV(EA(x, ȧ ∗ v0 ∗ ȧ
−1),EA(w0, ȧ), x, w1)

holds for all x with ΦI(x,w1).

Proposition 2.3.12. Let �H,A� be a special pair with CH(A) = {1H}
and G be a normal subgroup of H that contains A. If the special pair �G,A�
is coded by C, then the following statements hold.

(1) If h ∈ H, then

MA(C) |= ΦVI(qftH,A(h), qftG,A(1G)).

(2) If x ∈ P(T 1A) with MA(C) |= ΦVI(x, qftG,A(1G)), then

MA(C) |= ΦV(x, qftG,A(1G))

and σC,x ∈ Aut(G). Moreover, if σC,x = ιh � G for some h ∈ H,
then x = qftH,A(h).

Proof. (1) Pick h ∈ H. By Proposition 2.2.8, we have qftH,A(h) ∈ N
1
A.

If t ∈ T 1A , then EA(qftt(h), t) = qftH,A(t
H(h)) by Proposition 2.2.7 and

Proposition 2.3.11 implies

MA(C) |= ΦV(EA(qftH,A(h), t), qftG,A(1G))

and σC,EA(qftH,A(h),t)
= ιtH(h) � G. In particular, if t ∈ qftH,A(h), then

σC,EA(qftH,A(h),t)
= idG and

(2.4) MA(C) |= ΦIV(qftG,A(g),EA(qftH,A(h), t), qftG,A(g), qftG,A(1G))
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for all g ∈ G. In the other direction, assume that (2.4) holds for all g ∈ G.
Then

idG = σC,EA(qftH,A(h),t)
= ιtH(h) � G

and this implies
tH(h) ∈ CH(G) ⊆ CH(A) = {1H}

and t ∈ qftH,A(h).

Next, fix t0, t1 ∈ T
1
A and g0, g1, g2 ∈ G with

MA(C) |= ΦIV(qftG,A(gi+1),EA(qftH,A(h), ti), qftG,A(gi), qftG,A(1G))

for all i < 2. Then

σC,EA(qftH,A(h),ti)
(gi) = ιtHi (h)

(gi) = gi+1

for all i < 2 and therefore

σC,EA(qftH,A(h),t1∗t0)
(g0) = σC,qftH,A(t

H
1 (h)·t

H
0 (h))

(g0)

= (ιtH1 (h)
◦ ιtH0 (h)

)(g0) = g2

and we can conclude

MA(C) |= ΦIV(qftG,A(g2),EA(qftH,A(h), t1 ∗ t0), qftG,A(g0), qftG,A(1G)).

Finally, if a ∈ A and g ∈ G, then

qftG,A(σC,EA(qftH,A(h),ȧ)
(g)) = qftG,A(ιa(g)) = EA(qftG,A(g), ȧ ∗ v0 ∗ ȧ

−1)

and this shows that the last clause in the definition of ΦVI also holds in this
case.

(2) Fix x ∈ P(T 2A) with MA(C) |= ΦVI(x, qftG,A(1G)). Since x =

EA(x, v0) and IA(x) = EA(x, v
−1
0 ), the first part of the definition of ΦVI

ensures that the functions σC,x, σC,IA(x) and σC,EA(x,1l) are defined. By the
third clause in the definition of ΦVI and Proposition 2.2.9, we know that

σC,x ◦ σC,IA(x) = σC,EA(x,1l) = σC,IA(x) ◦ σC,x.

Since 1l ∈ x, the second clause in the definition of ΦVI implies σC,EA(x,1l) =
idG and we can conclude σC,x ∈ Aut(G).

Now assume that h ∈ H satisfies

ιh � G = σC,x = σC,EA(x,v0).

The last clause in the definition of ΦVI implies that σC,EA(x,ȧ) = ιa � G holds
for all a ∈ A and a trivial modification of the above argument shows that
σC,EA(x,t−1) = σ−1

C,EA(x,t)
holds for all t ∈ T 1A . This allows us to use the third

clause in the definition of ΦVI to see that

σC,EA(x,t) = ιtH(h) � G

holds for all t ∈ T 1A . We can conclude that

t ∈ x⇔ σC,EA(x,t) = idG ⇔ ιtH(h) � G = idG ⇔ tH(h) = 1H ⇔ t ∈ qftH,A(h)

holds for all t ∈ T 1A . �
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7. Define Φ ≡ Φ(w0, . . . , w3) to be the conjunction of the following LA-
statements.

• If ¬Ṙ(w3, . . . , w3), then there are a0, a1, a2 ∈ A with the property
that ȧ0 ∗ ȧ1 ∗ ȧ

−1
2 ∈ w3 and xi = EA(w3, ȧi) for all i < 3.

• If Ṙ(w3, . . . , w3), then the following statements hold.
– ΦVI(wi, w3) for all i < 3.
– If y0, y1, y2 ∈ P(T 1A) with ΦIV(y2−i, wi, y1−i, w3) for all i < 2
and ΦI(yi, w3) for all i < 3, then ΦIV(y2, w2, y0, w3).

Proof of Theorem 2.3.4. (1) We prove that the special pair �Gα, A�
is coded by IΦα by induction on α.

Let α = 0 and g0, g1, g2 ∈ G with g0 · g1 = g2. Then

ġ0 ∗ ġ1 ∗ ġ
−1
2 ∈ qftG,A(1G)

and qftG,A(gi) = EA(qftG,A(1G), ġi) for all i < 3. This implies

MA(∅) |= Φ(qftG,A(g0), qftG,A(g1), qftG,A(g2), qftG,A(1G)).

In the other direction assume that MA(∅) |= Φ(x0, x1, x2, qftG,A(1G)).

Then there are a0, a1, a2 ∈ A such that ȧ0 ∗ ȧ1 ∗ ȧ
−1
2 ∈ qftG,A(1G) and

xi = EA(qftG,A(1G), ȧi) = qftG,A(ai)

for all i < 3. In particular, a0 ·G a1 = a2.
Now, let α = β+1 and assume that the special pair �Gβ , A� is coded by

the set IΦβ . Then �qftG,A(1G), . . . , qftG,A(1G)� ∈ IΦβ .
Let h0, h1, h2 ∈ Gβ+1 with h0 ·Gβ+1

h1 = h2. By Corollary 2.2.6 and

Proposition 2.3.12, we have MA(I
Φ
β ) |= ΦVI(qftGβ+1,A

(hi), qftG,A(1G)) and

σIΦ
β
,qftGβ+1,A

(hi)
= ιhi � Gβ for all i < 3. In particular,

σIΦ
β
,qftGβ+1,A

(h2)
= σIΦ

β
,qftGβ+1,A

(h0)
◦ σIΦ

β
,qftGβ+1,A

(h1)
.

Since �qftG,A(1G), . . . , qftG,A(1G)� ∈ IΦβ , we can use Lemma 2.3.10 to get

MA(I
Φ
β ) |= Φ(qftGβ+1,A

(h0), qftGβ+1,A
(h1), qftGβ+1,A

(h2), qftG,A(1G)).

Pick x0, x1, x2 ∈ P(T
2
A) with �x0, x1, x2, qftG,A(1G)� ∈ IΦβ+1. If the tuple

is an element of IΦβ , then the induction hypothesis gives us g0, g1, g2 ∈ Gβ ⊆

Gβ+1 with xi = qftGβ ,A(gi) = qftGβ+1,A
(gi) for all i < 3. We may therefore

assume
MA(I

Φ
β ) |= Φ(x0, x1, x2, qftG,A(1G)).

By Proposition 2.3.12, the maps σIΦ
β
,xi
are well-defined and elements of

Aut(Gβ). The construction of automorphism towers gives us h0, h1, h2 ∈
Gβ+1 with σIΦ

β
,xi
= ιhi � Gβ for all i < 3. By combining Corollary 2.2.6 and

Proposition 2.3.12 we can conclude that xi = qftGβ+1,A
(hi) holds for i < 3.

The last clause in the definition of Φ ensures that σIΦ
β
,x0
◦σIΦ

β
,x1
= σIΦ

β
,x2
and,

by the definition of the successor stage in the definition of automorphism
towers, we can conclude h0 ·Gβ+1

h1 = h2.
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Finally, if α is a limit ordinal and the special pair �Gβ , A� is coded by
IΦβ for all β < α, then the statement follows directly from the induction
hypothesis and Corollary 2.2.4.

(2) Define Ψ ≡ Ψ(w0, . . . , w4) to be the LA-formula

(∃z)
�

ΦIII(w3, w0, z, w4) ∧ w1 = EA(z, v0∗v1∗v
−1
0 ) ∧ w2 = EA(z, v

−1
0 ∗v1∗v0)

�

.

Let λ ∈ Lim, h ∈ Gλ+1 and g ∈ Gλ such that there is an α < λ
with tGλ+1(h, g) ∈ Gα for every t ∈ NA. Then g, ιh(g), ιh−1(g) ∈ Gα. By
Proposition 2.3.8, we have

MA(I
Φ
α ) |= ΦIII(qftGλ+1,A

(h), qftGα,A(g), qftGλ+1,A
(h, g), qftG,A(1G))

and Proposition 2.2.7 implies

EA(qftGλ+1,A
(h, g), v0 ∗ v1 ∗ v

−1
0 ) = qftGλ,A(ιh(g))

and

EA(qftGλ+1,A
(h, g), v−10 ∗ v1 ∗ v0) = qftGλ,A(ιh−1(g)).

The combination of these statements shows that

Ψ(qftGλ,A(g), qftGλ,A(ιh(g)), qftGλ,A(ιh−1(g)), qftGλ+1,A
(h), qftG,A(1G))

holds inMA(I
Φ
α ).

Assume that g0, g1 ∈ Gλ, ᾱ < λ and z ∈ P(T 2A) with

MA(I
Φ
ᾱ ) |= ΦIII(qftGλ+1,A

(h), qftGλ(g), z, qftG,A(1G)),

EA(z, v0∗v1∗v
−1
0 ) = qftGλ,A(g0) and EA(z, v

−1
0 ∗v1∗v0) = qftGλ,A(g1). Then

g ∈ Gᾱ by the definition of ΦIII and

z ∩ T 1A = EA(z, v0) = qftGλ+1,A
(h) = qftGλ+1,A

(h, g) ∩ T 1A .

The subgroup Gz and the map πz, as defined in Lemma 2.3.7, exist and
there is a monomorphism

ϕ0 : �A ∪ {π
−1
z (g)}�Gᾱ −→ Gᾱ

with ϕ0(π
−1
z (g)) = g and

qftGᾱ,A(ϕ0(a)) = EA(z, v0 ∗ ȧ ∗ v
−1
0 )

= {t ∈ T 1A | tv0
v0∗ȧ∗v

−1
0

∈ z ∩ T 1A}

= {t ∈ T 1A | tv0
v0∗ȧ∗v

−1
0

∈ qftGλ+1,A
(h, g) ∩ T 1A}

= EA(qftGλ+1,A
(h, g), v0 ∗ ȧ ∗ v

−1
0 )

= qftGλ,A(ιh(a))

for all a ∈ A. If we define

ϕ : �A ∪ {π−1z (g)}�Gλ −→ Gλ; k �−→ (ιh−1 ◦ ϕ0)(k),
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then ϕ(π−1z (g)) = ιh−1(g) and ϕ � A = idA. Since �Gλ, A� is a special pair,
we can apply Lemma 2.2.3 to see that π−1z (g) = ιh−1(g) and Lemma 2.3.7
yields

qftGλ,A(ιh−1(g)) = qftGᾱ,A(π
−1
z (g)) = EA(z, v

−1
0 ∗ v1 ∗ v0) = qftGλ,A(g1).

We can conclude g1 = ιh−1(g). The equality g0 = ιh(g) can be derived in
the same way. �

2.4. Admissible set theory and automorphism towers

In this section, we will apply admissible set theory to the results of the
last section to prove Theorem 1.3.3. As above, all results in this section

can be derived from the axioms of ZF.
In the following, we present three basic results from admissible set the-

ory. The proofs of these results can be found in [Jen72, Section 2.3] or
[Mos74, Section 9D]. The first result lists the closure properties of the class
of Σ1-definable subsets of an admissible set.

Proposition 2.4.1. Let M be an admissible set.

(1) If ϕ ≡ ϕ(v0, . . . , vn+2) is a Δ0-formula, then

(∀x0, . . . , xn)
�

(∀xn+1 ∈ x0)(∃xn+2) ϕ(x0, . . . , xn+2)

←→ (∃y)(∀xn+1 ∈ x0)(∃xn+2 ∈ y) ϕ(x0, . . . , xn+2)
�

holds in �M,∈�.
(2) The class of subsets of finite products of M that are definable in the

structure �M,∈� by a Σ1-formula with parameters is closed under
intersections, unions, restricted universal quantification and exis-
tential quantification over �M,∈�.

(3) If X is a subset of Mn that is definable in �M,∈� by a Σ1-formula
with parameters, then X is definable in �M,∈� by a Σ1-formula and
a single parameter y ∈M .

By collecting witnesses for the validity of Σ1-statements, it is easy to see
that Σ1-Collection holds in admissible sets.

Proposition 2.4.2 (Σ1-Collection). If M is an admissible set, then Σ1-
Collection holds in �M,∈�, i.e. the sentence

(∀x0, . . . , xn)
�

(∀y ∈ x0)(∃z) ϕ(x0, . . . , xn, y, z)

−→ (∃w)(∀y ∈ x0)(∃z ∈ w) ϕ(x0, . . . , xn, y, z)
�

holds in �M,∈� for every Σ1-formula ϕ ≡ ϕ(v0, . . . , vn+2).

The following Recursion Theorem may be viewed as the motivation be-
hind the definition of admissible sets and the axioms of KP.

Theorem 2.4.3 (Σ1-Recursion Principle). Let M be an admissible set
with α = M ∩On and ≺ be a well-founded relation on M such that the set
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prec≺(x) = {y ∈M | y ≺ x} is an element of M for every x ∈ M and the
function

r :M −→M ; x �−→ prec≺(x)

is definable in �M,∈� by a Σ1-formula with parameters.
If f : M ×M −→ M is a function that is definable in �M,∈� by a Σ1-

formula with parameters, then there is a function F : M −→ M such that
the following statements hold.

(1) If x ∈M , then F � prec≺(x) ∈M and F (x) = f(F � prec≺(x), x).
(2) F is definable in the structure �M,∈� by a Σ1-formula with param-

eters.

We derive some consequences from the above results that are important
in our context. First, we we show that Theorem 1.3.9 directly follows from
Proposition 2.4.2.

Proof of Theorem 1.3.9. Let f : M −→ α be a function that is
defined in �M,∈� by the Σ1-formula ϕ ≡ ϕ(v0, v1, w0, . . . , wm−1) and pa-
rameters z0, . . . , zm−1 ∈ M . Given X ∈ M , Proposition 2.4.2 shows that
there is a Y ∈M with

�M,∈� |= (∀x ∈ X)(∃y ∈ Y ) ϕ(x, y, z0, . . . , zm−1).

By Δ0-Separation, the set Ȳ = Y ∩On is an element ofM . SinceM is closed
under unions, we have β =

�

Ȳ ∈M ∩On = α and β + 1 < α contains the
image of X under f . �

As a corollary of the Σ1-Recursion Principle 2.4.3, we can conclude that
x-admissible ordinals are closed under the Gödel-Pairing function.

Corollary 2.4.4. Let M be an admissible set and α =M ∩On. Then
α is closed under Gödel-Pairing and the function ≺·, ·� � (A × A) is an
element of M for every A ∈M ∩ P(α). �

In the following, we use the Σ1-Recursion Principle to show that the
stages of an inductive definition on a structures contained in an admissible
set can be computed inside this set up to its ordinal height.

The statement of the following proposition follows from an easy induc-
tion and the iterated application of Proposition 2.4.1.

Proposition 2.4.5. Let L be a finite first-order language, N be an L-
structure with domain N and ϕ ≡ ϕ(v0, . . . , vn−1) be an LnN -formula. If
M is an admissible set with N ∈ M , then there is a Δ0-formula ϕ∗ ≡
ϕ∗(v0, . . . , vn) and a parameter y ∈ M such that the following statements
are equivalent for all x0, . . . , xn−1 ∈ N and X ∈M ∩ P(Nn).

(1) N (X) |= ϕ(x0, . . . , xn−1).
(2) �M,∈� |= ϕ∗(x0, . . . , xn−1, y,X). �

Lemma 2.4.6. Let L be a finite-first order language, N be an L-structure
with domain N and ϕ ≡ ϕ(v0, . . . , vn−1) be an LnN -formula. If M is an
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admissible set with N ∈ M and α = M ∩ On, then Iϕβ ∈ M for all β < α

and the function

F : α −→M ; β �−→ Iϕβ

is definable in the structure �M,∈� by a Σ1-formula with parameters.

Proof. Let ϕ∗ ≡ ϕ∗(v0, . . . , vn) and y ∈M be the objects produced by
Proposition 2.4.5 with respect to ϕ and M . Let f : M × α −→ V be the
function defined by the following clauses

f(g, β) :=















{�x ∈ Nn | �M,∈� |= ϕ∗(�x, y, ∅)}, if β = 0,
g(β̄) ∪ {�x ∈ Nn | �M,∈� |= ϕ∗(�x, y, g(β̄))}, if β = β̄ + 1,
�

ran(f), if β ∈ Lim,
∅, otherwise.

We have f(g, β) ∈M for every pair �g, β� ∈M ×α, because M is closed
under taking unions and satisfies Δ0-Separation. Moreover, f is definable in
the structure �M,∈� by a Δ0-formula with parameters. If F : α −→M is the
corresponding function produced by Theorem 2.4.3, then an easy induction
shows that F (β) = Iϕβ holds for all β < α. �

We are now ready to translate the statement of Theorem 2.3.4 to the
language of admissible sets and prove Theorem 2.1.4.

Proof of Theorem 2.1.4. Fix an infinite cardinal κ and let Gκ denote
the set of all centreless groups with domain κ. We let Φ ≡ Φ(w0, . . . , w3)
and Ψ ≡ Ψ(w0, . . . , w4) be the L

κ-formulae produced by Theorem 2.3.4.
Given t ∈ T 2κ , we define the ordinal αt < κ as in Section 2.3. Set

B = {αt < κ | t ∈ T 2κ }

and define a bijection b : T 2κ ∪ P(T
2
κ ) −→ B � P(B) by

b(x) :=

�

�0, αt�, if x ∈ T 2κ ,
�1, {αt < κ | t ∈ x}�, if x ∈ P(T 2κ ).

We letNκ denote the unique LC-structure with domain B�P(B) and the
property that b is an isomorphism ofMκ and Nκ. Let Φ0 ≡ Φ0(w0, . . . , w3)
be the (Lκ)

4
Nκ
-formula corresponding to Φ with respect to b and Ψ0 ≡

Ψ0(w0, . . . , w4) be the formula corresponding to Ψ. Finally, define

c : Gκ −→ B � P(B); G �−→ b(qftG,κ(1G)).

Let M be an admissible set with P(κ) ∈M and α =M ∩On. Then the
structure Nκ is an element of M , because B � P(B) ∈M ,

�i, x� ∈Nκ �j, y� ⇔ [i = 0 ∧ j = 1 ∧ x ∈ y]

for all �i, x�, �j, y� ∈ B � P(B) and

ĊNκ = {��0, α0�, �0, α1�, �0, α2�� ∈ B � P(B) | α0 = ≺2,≺α1, α2��}.

Moreover, we have ran(c) ∈M , because this set is definable in the structure
Nκ by Proposition 2.2.12.
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Let T denote the set of all �β,X, x� ∈ α×M × ran(c) with

X = {y ∈ B � P(B) | �y, x, y, x� ∈ IΦ0
β }.

By Lemma 2.4.6 and Proposition 2.4.1, the set T is definable in the structure
�M,∈� by a Σ1-formula Φ∗ ≡ Φ∗(w0, . . . , w3) and a parameter y ∈M .

Let A denote the set of all tuples �x0, . . . , x3, x� ∈ M5 such that x ∈
ran(c), x0, . . . , x3 ∈ B � P(B) and

Nκ(I
Φ0
β ) |= Ψ0(x0, . . . , x3, x)

holds for some β < α. By Proposition 2.4.1, Proposition 2.4.5 and Lemma
2.4.6, there is a Σ1-formula Ψ∗ ≡ Ψ∗(w0, . . . , w5) and a parameter z ∈ M
that define the set A in �M,∈�.

Let G be an element of Gκ and �Ḡβ | β ∈ On� be an automorphism
tower of G. By Theorem 2.2.5, the special pair �Ḡβ , κ� is coded by I

Φ
β for

all β ∈ On. Given β ∈ On, there is a unique group Gβ with domain

{b(qftḠβ ,κ(ḡ)) ∈ B � P(B) | g ∈ Ḡβ}

and the property that the function

bGβ : Ḡβ −→ Gβ ; ḡ �−→ b(qftḠβ ,κ(ḡ))

is an isomorphism of groups. In particular, G is isomorphic to G0, the
sequence �Gβ | β ∈ On� is an automorphism tower of G0 and Corollary 2.2.4
shows that bGγ � Ḡβ = bGβ holds for all β < γ.

Pick β < α. Then Lemma 2.4.6 implies that the set

X = {x ∈ κ � P(κ) | �x, c(G), x, c(G)� ∈ IΦ0
β }

is an element of M and X is the unique set in M such that Φ∗(β,X, c(G))
holds in �M,∈�. Given an arbitrary x ∈M , we have

x ∈ Gβ ⇔ (∃ḡ ∈ Ḡβ) x = b(qftḠβ ,κ(ḡ))

⇔ (∃x̄ ∈ P(T 1κ )) [x = b(x̄) ∧ �x̄, qftG,κ(1G), x̄, qftG,κ(1G)� ∈ IΦβ ]

⇔ �x, c(G), x, c(G)� ∈ IΦ0
β

⇔ x ∈ X.

This shows that the set X is equal to the domain of Gβ .

Fix h ∈ Gα+1 and g ∈ Gα. Define h̄ = b
−1
Gα+1

(h), ḡ = b
−1
Gα
(g) and z̄ =

qftḠα+1,κ
(h̄, ḡ). Let Ξ0 ≡ Ξ(v0, v1, v2) be the (Lκ)

4
Nκ
-formula corresponding

to the Lκ-formula Ξ(v0, v1, v2) ≡ ΦI(Eκ(v0, v1), v2).
If we define

n = {t ∈ T 2κ | tḠα+1(h̄, ḡ) ∈ Ḡα},

then v1 ∈ n, ȧ ∈ n for every a ∈ κ and n ∈ N2κ. This shows Nκ ⊆ n and

tḠα+1(h̄, ḡ) ∈ Ḡα for every t ∈ Nκ. In particular, for every x ∈ b(Nκ), there

is an ordinal β < α such that Ξ0(b(z̄), x, c(G)) holds in Nκ(I
Φ0
β ).
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Let f :M −→ α be the function with

f(x) :=

�

min{β < α | Nκ(I
Φ0
β ) |= Ξ0(b(z̄), x, c(G))}, if x ∈ b(Nκ),

0, otherwise.

Proposition 2.4.1, Proposition 2.4.5 and Lemma 2.4.6 show that f is defin-
able in the structure �M,∈� by a Σ1-formula with parameters and Theo-
rem 1.3.9 gives us an α∗ < α with f”b(Nκ) ⊆ α∗. We can conclude that

tḠα+1(h̄, ḡ) ∈ Ḡα∗ for every t ∈ Nκ. By Theorem 2.3.4, this implies that
�ιh̄(ḡ), ιh̄−1(g)� is the unique pair �ḡ0, ḡ1� in Ḡα × Ḡα such that there is a
β < α with

Mκ(I
Φ
β ) |= Ψ(qftḠα,κ(ḡ), qftḠα,κ(ḡ0), qftḠα,κ(ḡ1), qftḠα+1,κ

(h̄), qftG,κ(1G))

But this means that �ιh(g), ιh−1� is the unique pair �g0, g1� ∈ Gα ×Gα such
that Ψ∗(g, g0, g1, h, c(G), z) holds in �M,∈�. �

We end this chapter with the proof of Theorem 1.3.3. This proof strongly
resembles the argument sketched at the end of Section 2.1. We replace the
application of the Countable Axiom of Choice in that argument by another
application of the Σ1-Recursion Principle 2.4.3 to derive the statement of
the theorem from the axioms of ZF.

Proof of Theorem 1.3.3. Let κ be an infinite cardinal, Gκ be the set
of all centreless groups with domain κ and M be an admissible set with
P(κ) ∈ M and α = M ∩ On. We let Φ∗, Ψ∗, y, z and c denote the objects
produced by an application of Theorem 2.1.4.

Let G be an element of Gκ and �Gβ | β ∈ On� denote the automorphism
tower produced by Theorem 2.1.4 with respect to G. Fix an h ∈ Gα+1
and define Ah to be the set of all pairs �g, β� ∈ Gα × α with the property
that ιh(g), ιh−1(g) ∈ Gγ . By Theorem 2.1.4, Ah is definable in �M,∈� by a
Σ1-formula with parameters.

For all β < α, we define

fβ : Gβ −→ α; g �−→ min{γ < α | �g, γ� ∈ Ah}.

By the above remarks, every function of the form fβ is definable in �M,∈�
by a Σ1-formula with parameters and Theorem 1.3.9 implies that for every
β < α there is a γ < α with the property that �g, γ� ∈ Ah holds for every
g ∈ Gβ . This shows that there is a unique function fh : ω −→ α with
fh(0) = 0 and

fh(n+ 1) = min{γ ∈ (fh(n), α) | (∀g ∈ Gfh(n)) �g, γ� ∈ Ah}.

By the above computations and the Σ1-Recursion Principle 2.4.3, the func-
tion fh is definable in �M,∈� by a Σ1-formula with parameters and Theorem
1.3.9 implies

α∗ = sup
n<ω

fh(n) ∈ α ∩ Lim.

If g ∈ Gα∗ , then there is an n < ω with g ∈ Gfh(n) and ιh(g), ιh−1(g) ∈
Gfh(n+1) ⊆ Gα∗ . This shows that ιh � Gα∗ ∈ Aut(Gα∗) and there is an
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h∗ ∈ Gα∗+1 with ιh∗ � Gα∗ = ιh � Gα∗ . By Theorem 2.2.5, this implies
h = h∗ ∈ Gα∗+1 ⊆ Gα.

The above argument shows that τκ ≤ α+ 1.
Now, assume that τ(G) < α holds for every G in Gκ. If G ∈ Gκ, then

this assumption and Theorem 2.1.4 imply that τ(G) is the minimal ordinal
β < α with

�M,∈� |= (∃X) [Φ(β,X, c(G), y) ∧ Φ(β + 1, X, c(G), y)] .

This shows that the function

c : ran(c) −→ α; c(G) �−→ τ(G)

is definable in �M,∈� by a Σ1-formula with parameters. A final application
of Theorem 1.3.9 yields τκ < α. �





CHAPTER 3

Changing the heights of automorphism towers

One of the reasons why it is so difficult to compute the exact value
of the ordinal τκ for some infinite cardinal κ is that, although the defini-
tion of automorphism towers is purely algebraic, there can be groups whose
automorphism tower heights depend on the model of set theory in which
they are computed. Therefore, you always have to take into account the
set-theoretic background in which the computation of τκ takes place. We
may therefore conclude that the automorphism tower construction contains
a set-theoretic essence.1 This phenomenon is illustrated by a result due to
Joel David Hamkins and Simon Thomas in [HT00] stating that the exis-
tence of centreless groups whose automorphism towers are highly malleable
by forcing is consistent.

In [FLb], Gunter Fuchs and the author extended this result by showing
that any reasonable sequence of ordinals can be realized as the automor-
phism tower heights of a certain group in consecutive forcing extensions or
ground models. For example, it is possible to increase the height of the au-
tomorphism tower by passing to a forcing extension, then increase it further
by passing to a ground model, and then decrease it by passing to a further
forcing extension, and so on. In the first five sections of this chapter, we will
give a detailed presentation of the results of [FLb].

In another direction, it is also possible to construct models of set theory
that contain a group with unbounded potential automorphism tower height
in the sense that for every ordinal we can find a partial order that preserves
cofinalities and forces the automorphism tower of the given group to be taller
than this ordinal. The last section of this chapter contains an argument that
derives this result from Theorem 1.2.1 and simplifies the original proof in
[Lüca].

3.1. Introduction

In [Tho98], Simon Thomas showed that the height of the automorphism
tower of an infinite centreless group is not absolute between models of set
theory by proving the following theorems.

Theorem 3.1.1 ([Tho98, Theorem 2.1]). There is a partial order P sat-
isfying the countable chain condition and a centreless group G with τ(G) = 0
and 1lP � “τ(Ǧ) ≥ 1”.

1This formulation is due to Joel David Hamkins, see [Ham02].

37
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Theorem 3.1.2 ([Tho98, Theorem 2.4]). There is a centreless group H
with τ(H) = 2 and 1lQ � “τ(Ȟ) = 1” for every notion of forcing Q that
adds a new real.

Let M , N be transitive models of ZFC with M ⊆ N and G ∈ M be a
centreless group. By the above, the height of the automorphism tower of G
computed in M , τ(G)M , can be higher or smaller than the height computed
in N , τ(G)N . This leads to the natural question whether the value of τ(G)M

places any constraints on the value of τ(G)N , and vice versa. Obviously,
τ(G)N = 0 implies τ(G)M = 0. The following result by Joel David Hamkins
and Simon Thomas suggests that this is the only provable implication that
holds for all centreless groups in the above situation. In short, the theorem
states that the existence of centreless groups whose automorphism towers
are highly malleable by forcing is consistent with the axioms of set theory.

Theorem 3.1.3 ([HT00, Theorem 1.4]). It is consistent with the axioms
of ZFC that for every infinite cardinal κ and every ordinal α < κ, there exists
a centreless group G with the following properties.

(1) τ(G) = α.
(2) If β is any ordinal such that 0 < β < κ, then there exists a notion

of forcing Pβ, which preserves cofinalities and cardinalities, such

that 1lPβ � “τ(Ǧ) = β̌ ”.

The proof of this theorem splits into an algebraic and a set-theoretic
part. The following definition features the key concept of both parts of the
proof. The terminology is taken from [FH08].

Definition 3.1.4. Let κ be a cardinal, �Γ = �Γα | α < κ� be a sequence
of rigid graphs and E be an equivalence relation on κ. We say that a forcing

notion P is able to realize E on �Γ, if P forces that all Γα are rigid and, that
for all β, γ < κ, Γβ ∼= Γγ ⇔ βEγ.

The following theorem sums up the results of the set-theoretic part of
the proof.

Theorem 3.1.5 ([HT00]). It is consistent that for every infinite reg-

ular cardinal, there exists a sequence �Γ = �Γα | α < κ+� of pairwise non-
isomorphic connected rigid graphs with the following property: Whenever E
is an equivalence relation on κ+, there exists a notion of forcing PE that
satisfies the following statements.

(1) PE preserves cofinalities and adds no new κ-sequences.

(2) PE is able to realize E on �Γ.

The algebraic part of the proof then shows that the conclusions of Theo-
rem 3.1.3 are a consequence of this theorem. Since we are going to adopt the
techniques developed in these proofs, the next section contains an overview
of the construction of the groups in the algebraic part of the proof.
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The consistency result of the former theorem is obtained by a class-sized
forcing over a model of ZFC + GCH. In [FH08], Gunter Fuchs and Joel
David Hamkins showed that the conclusions of this theorem also hold in the
constructible universe L. They deduce these conclusions from combinatorial
principles that hold in L and that we will introduce presently.

Definition 3.1.6. Let κ be an infinite cardinal and let Cofκ denote
the set {α < κ+ | cof(α) = κ}. Then �κ+(Cofκ) is the assertion that there

is a sequence �D = �Dα | α ∈ Cofκ� such that for any A ⊆ κ+ the set
{α ∈ Cofκ | A ∩ α = Dα} is stationary in κ

+.

In L, the hypotheses that κ = κ<κ and �κ+(Cofκ) are known to hold
for every infinite regular cardinal κ. Note that �κ+(Cofκ) implies that κ is
regular, for otherwise Cofκ is empty.

In the first five sections of this chapter, we fix a cardinal κ that

satisfies the following assumption.

Assumption 3.1.7. κ is an infinite regular cardinal such that κ = κ<κ

and �κ+(Cofκ) holds.

Definition 3.1.8. Let E be an equivalence relation on κ. If γ < κ, then
we let [γ]E denote the E-equivalence class of γ. We call E bounded, if there
is some κ̄ < κ such that [γ]E = {γ} for all γ ∈ [κ̄, κ).

Now we are ready to formulate a modified version of the result mentioned
above. This modification follows from the results of [FH08] by coding trees
into connected graphs as in [Tho, Theorem 4.1.8]. If Γ(T ) denotes the
graph coding a tree T , then the following statements hold and are upwards-
absolute.

(1) Aut(T ) is isomorphic to Aut(Γ(T )) for every tree T .
(2) Given trees T0 and T1, T0 is isomorphic to T1 if and only if Γ(T0)

is isomorphic to Γ(T1).

These absolute properties of the coding allow us to directly conclude the
following result from [FH08, Theorem 3.1].

Theorem 3.1.9 ([FH08], under Assumption 3.1.7). There is a sequence
�Γ = �Γα | α < κ� of rigid, pairwise non-isomorphic connected graphs and a

sequence �C = �Cα,β | α < β < κ� of κ+-Souslin trees with the following prop-
erty: Whenever E is a bounded equivalence relation on κ, the full support
product forcing

CE =
�

γ<κ
γ �=min[γ]E

Cmin[γ]E ,γ

has the following properties.

(1) CE preserves cofinalities and adds no new κ-sequences.

(2) CE is able to realize E on �Γ.
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The aim of the first part of this chapter is to show that this theorem
already implies the existence of groups whose automorphism tower is even
more malleable by forcing than those of the groups mentioned in Theorem
3.1.3. It gives rise to groups whose automorphism tower heights can be
changed multiple times to any non-zero height by passing from one model
of set-theory to another, either by always going to a forcing extension, by
always passing to a ground model, or by mixing these possibilities. In fact,
for the given cardinal κ, we will use Assumption 3.1.7 to construct a single
group G = Gκ with τ(G) = 0 and the property that the height of the
automorphism tower of G can be changed in each of these ways, repeatedly.

Let us now formulate precisely the three ways in which the height of the
automorphism tower of G can be changed repeatedly. The first main result
addresses the possibility of passing from models to larger and larger forcing
extensions in each step.

Theorem 3.1.10 ([FLb, Theorem 3.10], under Assumption 3.1.7). For
every function s : κ −→ (κ \ {0}), there is a sequence of partial orders
�Psγ | 0 < γ < κ�, such that the following statements hold for each 0 < α < κ.

(1) Psα preserves cofinalities and adds no new κ-sequences.
(2) 1lPsα+1

� “τ(Ǧ) = š(α̌)”.

(3) If α is a limit ordinal, then 1lPsα � “τ(Ǧ) = 1”.
(4) If β < α, then Psα extends Psβ (in the sense that Psα ∼= Psβ × Q for

some partial order Q).

Moreover, if t : κ −→ (κ \ {0}), and s � γ = t � γ for some 0 < γ < κ, then
Psγ = Ptγ.

The next main theorem addresses the possibility of producing a model
with the property that the height of the automorphism tower of G can be
changed by passing to smaller and smaller ground models.

Theorem 3.1.11 ([FLb, Theorem 4.1], under Assumption 3.1.7). For
every ordinal λ < κ, there is a notion of forcing Qλ with the following
properties.

(1) Qλ preserves cofinalities and adds no new κ-sequences.
(2) 1lQλ � “τ(Ǧ) = 1”.
(3) In every Qλ-generic extension of the ground model the following

holds: For every sequence s : λ −→ (λ \ {0}) there exists a de-
creasing sequence of ground models �M s

α | 0 < α < λ� such that for
all 0 < α < λ the following statements hold.
(a) M s

α+1 |= “τ(G) = s(α)”.
(b) If α is a limit ordinal, then M s

α |= “τ(G) = 1”.
Moreover, if t : λ −→ (λ \ {0}), then s(α) = t(α) implies M s

α+1 =
M s
α+1 for all α < λ and M s

ν =M t
ν for all limit ordinals ν < λ.

Section 3.4 contains the proof of this theorem.
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Next, the possibilities of passing to a ground model or to a forcing ex-
tension can be mixed. In order to make sense of models that are reached
by unboundedly often passing to a forcing extension and unboundedly often
passing to a ground model, we need a suitable notion of limit. We make this
precise and prove in Theorem 3.5.2, vaguely speaking, that all patterns can
be realized, provided that the set of α < κ at which one passes to a forcing
extension contains a club.

In the last section of this chapter, we will construct groups whose auto-
morphism tower is highly malleable by forcing in another way: these groups
have unbounded potential automorphism tower height.

Theorem 3.1.12 ([Lüca, Theorem 1.8]). It is consistent with the axioms
of ZFC that there is a centreless group G of cardinality ℵ1 with the property
that for every ordinal α there is a σ-distributive partial order P that satisfies
the ℵ2-chain condition and 1lP � “τ(Ǧ) ≥ α”.

The proof of this statement presented in Section 3.5 is a simplification of
the proof presented in [Lüca]. Both proofs rely on the statement of Theorem
1.2.1.

3.2. Preliminaries

In general, it is very difficult to compute the automorphism tower of
a given group. We will use a technique developed by Simon Thomas that
makes the construction of groups with a certain automorphism tower height
easier. The Normalizer Tower Technique was developed in [Tho85].

Definition 3.2.1. IfH is a subgroup of the groupG, then the normalizer
tower �NαG (H) | α ∈ On� of H in G is defined inductively as follows.

(1) N0G (H) = H.
(2) Nα+1G (H) = NG (N

α
G (H)) = {g ∈ G | ι��g N

α
G (H) = N

α
G (H)}.

(3) NλG (H) =
�

{NαG (H) | α < λ}, if λ ∈ Lim.

An easy cardinality argument shows that for each group G of cardinality
κ and each subgroup H of G there is an α < κ+ such that NαG (H) =

Nα+1G (H). The normalizer length τnlgG (H) of H in G is the least such α.
The following theorem reduces the problem of manipulating automor-

phism towers to the problem of manipulating normalizer towers in automor-
phism groups of first-order structures. It is implicitly proved in [Tho85]. A
detailed explanation of this result and the absoluteness of the corresponding
construction can be found in [HT00, Section 2].

Theorem 3.2.2 ([Tho85]). Let L be a first-order language, M be an
L-structure and H be a subgroup of Aut(M). Then there exists a centreless
group G such that the statement

τ(G) = τnlgAut(M)(H)

holds and is upwards-absolute between transitive models of ZFC.
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We will now summarize the results that we need in order to construct
structures whose automorphism groups can be changed by forcing. In the
following, we adopt notations from [HT00].

We call a pair (G,Ω) a permutation group, if G is a subgroup of Sym(Ω).
Given a family �(Gi,Ωi) | ∈ I� of permutation groups, the direct product of
the family is defined to be the permutation group

�

i∈I

(Gi,Ωi) =

�

�

i∈I

Gi,
�

i∈I

Ωi

�

,

where the direct product of groups acts on the disjoint union of sets in the
obvious manner. We say that two permutation groups (G,Ω) and (H,Δ)
are isomorphic, if there is a bijection f : Ω → Δ such that the induced
isomorphism

f∗ : Sym(Ω) −→ Sym(Δ); σ �−→ f ◦ σ ◦ f−1

maps G onto H. We write (H0,Ω0)× (H1,Ω1) instead of
�

i<2 (Hi,Ωi) and

τnlg (H,Ω) instead of τnlgSym(Ω)(H).

For each ordinal α, we inductively define permutation groups (Hα,Δα)
and (Fα,Δα) in the following way.

(1) Δ0 = {∅} and H0 = F0 = {idΔ0}.
(2) If α > 0, then we define

(Hα,Δα) = (H0,Δ0)×
�

β<α

(Fβ ,Δβ)

and
Fα = N

α
Sym(Δα)

(Hα) .

Note that the second clause directly implies

(Hα,Δα) ∼= (Hβ ,Δβ)×
�

β≤γ<α

(Fγ ,Δγ)

for all β < α. In order to keep our calculation clear, we also define

(H∗
α,Δ

∗
α) = (Hα,Δα)× (F1,Δ1)× (F1,Δ1)

for α > 1.
An easy induction shows max({ω, |α|}) is an upper bound for the cardi-

nality of Δα and this means that the definitions of (Hα,Δα) and (Fα,Δα)
are absolute between models with the same α-sequences of ordinals, because
the symmetric group of Δβ is the same in those models for all β ≤ α.

These permutation groups are the first ingredient in our construction.
The following theorem summarizes their important properties deduced in
the algebraic part of [HT00].

Theorem 3.2.3 ([HT00]). For each ordinal α, the following statements
hold.

(1) τnlg (Hα,Δα) = α.
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(2) τnlg (Fα,Δα) = 0.
(3) If α > 1, then τnlg (H∗

α,Δ
∗
α) = 1.

Proof. The first statement is [HT00, Lemma 2.10] and the second
statement follows directly from the first, together with the definition of Fα.
The third statement is [HT00, Lemma 2.14] in the case β = 1. �

The sequence �Γ = �Γα | α < κ� of rigid, pairwise non-isomorphic con-
nected graphs and the sequence �Cα | α < κ� of κ+-Souslin trees constructed
in Theorem 3.1.9 are the second ingredient in our construction.

If E and F are equivalence relations on κ, then we define

E � F ⇐⇒ E ⊆ F ∧ (∀α < κ)([α]E �= {α} → min[α]E = min[α]F ).

Note that, as the notation suggests, � is a reflexive, transitive relation.
Moreover, by checking the definition of the forcing CE in Theorem 3.1.9, we
arrive at the following observation.

Observation 3.2.4 (Under Assumption 3.1.7). If E � F are bounded
equivalence relations on κ, then the forcing CF extends CE, in the strong
sense that there is a partial order Q such that CF ∼= CE ×Q. �

The following construction allows us to combine the two ingredients.
If �Γi = (Xi, Ei) | i ∈ I� is a family of graphs, then we define the direct

sum of the family to be the graph

�

i∈I

Γi =

�

�

i∈I

Xi,
�

i∈I

Ei

�

obtained by taking the disjoint unions of the sets of vertices and edges,
respectively.

We call a pair (G,Γ) a graph permutation group, if Γ is a graph and G
is a subgroup of Aut(Γ). As above, if a �(Gi,Γi) | i ∈ I� is a family of graph
permutation groups, then we define the direct product of the family to be
the graph permutation group

�

i∈I

(Gi,Γi) =

�

�

i∈I

Gi,
�

i∈I

Γi

�

,

where the product of groups acts on the direct sum of graphs in the obvious
way. We say that two graph permutation groups are isomorphic, if there
is an isomorphism of the underlying graphs such that the induced isomor-
phism of automorphism groups maps the subgroups correctly. Again, we
write (G0,Γ0) × (G1,Γ1) instead of

�

i<2(Gi,Γi) and τnlg(G,Γ) instead of

τnlgAut(Γ)(G).

If Ω is a set and Γ is a graph, then we define

GΩ(Γ) =
�

x∈Ω

Γ
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to be the graph obtained by replacing each element of Ω by a copy of Γ. We
can embed Sym(Ω) into Aut(GΩ(Γ)) in a natural way and, if Γ is connected
and rigid, then it is not hard to show that this embedding is an isomorphism.

If (G,Ω) is a permutation group, then we get a new graph permuta-
tion group (G(Γ),GΩ(Γ)), where G(Γ) is the image of G under the above
embedding of Sym(Ω) into Aut(GΩ(Γ)).

In the following lemma, we list facts about graph permutation groups
used in the algebraic part of [HT00]. They will play an important role in
our later constructions, because they will enable us to compute normalizer
towers in products of graph permutation groups.

Lemma 3.2.5 ([HT00]). If �Γ = �Γi | i ∈ I� is a sequence of connected
rigid graphs and �(Gi,Ωi) | i ∈ I� is a sequence of permutation groups, then
then following statements hold for all i0 ∈ I.

(1) τnlg
�

Gi0(Γi0),GΩi0 (Γi0)
�

= τnlg(Gi0 ,Ωi0).

(2) If �Γ consists of pairwise non-isomorphic graphs, τnlg (Gi0 ,Ωi0) ≥ 1
and τnlg (Gj ,Ωj) ≤ 1 holds for all j ∈ I \ {i0}, then

τnlg

�

�

i∈I

(Gi(Γi),GΩi(Γi))

�

= τnlg (Gi0 ,Ωi0) .

(3) If �Γ consists of pairwise isomorphic graphs and

(G,Ω) =
�

i∈I

(Gi,Ωi) ,

then

(G(Γi0),GΩ(Γi0))
∼=

�

i∈I

(Gi(Γi),GΩi(Γi)) .

Proof. By the assumption, the canonical embedding of Sym(Ωi) into
Aut(GΩi(Γi)) is an isomorphism and maps G onto G(Γi). This proves the
first statement.

The set of connected components of
�

i∈I (Gi(Γi),GΩi(Γi)) consists of a
copy of Γi for each element of Ωi and each i ∈ I. If all Γi’s are pairwise
non-isomorphic, then each subgraph of the form GΩi(Γi) is invariant under
all automorphisms and therefore each automorphism of the graph is induced
by an element of the group

�

i∈I Aut(GΩi(Γi)) acting on the graph in the
obvious way. By the rigidity of the Γi’s, this means that the automorphism
group of

�

i∈I GΩi(Γi) is isomorphic to
�

i∈I Sym(Ωi) and this isomorphism
sends

�

i∈I Gi(Γi) to
�

i∈I Gi. An easy induction then shows

Nα�
i∈I Sym(Ωi)

�

�

i∈I

Gi

�

∼= NαSym(Ωi0 )
(Gi0)×

�

j∈I\{i0}

N1Sym(Ωj) (Gj)

for all α > 0 and, by the existence of the above isomorphism, this proves
the second statement.
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Each automorphism of
�

i∈I GΩi(Γi) that fixes a connected component
setwise also fixes it pointwise by rigidity. This shows that the natural iso-
morphism between

�

i∈I GΩi(Γi) and
�

j∈I GΩj (Γi0) induced by the isomor-
phisms between Γi0 and the Γi’s is also an isomorphism between the graph
permutation groups (G(Γi0),GΩ(Γi0)) and

�

i∈I (Gi(Γi),GΩi(Γi)). �

We now introduce the group G which is the protagonist of the first five
sections of this chapter. For the remainder of this chapter, fix a sequence

�(Gα,Ωα) | α < κ� of permutation groups such that each (Gα,Ωα) is
of the form (Fᾱ,Δᾱ), for some ᾱ < κ, and such that for every β < κ,
the set of δ < κ such that (Gδ,Ωδ) = (Fβ ,Δβ) is unbounded in κ. So for
example, using the Gödel pairing function, we could let (Gγ ,Ωγ) = (Fα,Δα),
if γ = ≺α, β� < κ. We write Gα(Γ) instead of GΩα(Γ).

Definition 3.2.6. If �Π = �Πα | α < κ� is a sequence of graphs, then we
define

G(�Π) =
�

α<κ

(Gα(Πα),Gα(Πα)) .

As noted above, the definition of G(�Π) is absolute between models with

the same κ-sequences of ordinals that contain �Π.

Under Assumption 3.1.7, we also fix a sequence �Γ = �Γα | α < κ� of

graphs and a sequence �C = �Cα,β | α < β < κ� of trees as in Theorem
3.1.9.

Definition 3.2.7. Let G = Gκ be the centreless group the existence of

which is postulated in Theorem 3.2.2, with respect to G(�Γ).

So by definition, τ(G) = τnlg(G(�Γ)) holds and is upwards-absolute.
Hence we can change the height of the automorphism tower of G by changing

the height of the normalizer tower of G(�Γ) in the corresponding symmetric
group.

Since all Γα are rigid and pairwise non-isomorphic and

τnlg(Gα,Ωα) = τnlg(Fᾱ,Δᾱ) = 0,

we may use Theorem 3.2.3 and the second part of Lemma 3.2.5 to get the
following statement.

Observation 3.2.8 (Under Assumption 3.1.7). τ(G) = τnlg(G(�Γ)) =
0. �

3.3. Consecutive Forcing Extensions

To make the following constructions clearer, we introduce some vocab-
ulary. We would like to remind the reader that we are working under As-
sumption 3.1.7, and that we have fixed the objects mentioned at the end of
the previous section.
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Definition 3.3.1. Let X be a subset of κ with monotone enumeration
�γα | α < otp (X,<)�.

(1) We call X active if otp (X,<) = β + 1 > 2 for some β < κ and
(a) For all α < β, (Gγα ,Ωγα) = (Fα,Δα).
(b) (Gγβ ,Ωγβ ) = (F0,Δ0).

(2) We call X sealed if otp (X,<) = β+3 for some β < κ, X ∩ (γβ+1)
is active and

�

Gγβ+1
,Ωγβ+1

�

=
�

Gγβ+2
,Ωγβ+2

�

= (F1,Δ1) .

(3) If X is a sealed subset of κ with otp (X,<) = β+3 and 1 < β̄ ≤ β,
then {γα | α < β̄} ∪ {γβ} is the active segment of X of order type
β̄ + 1.

(4) We call X trimmed, if otp (X,<) = 2 and

(Gγ0 ,Ωγ0) = (Gγ1 ,Ωγ1) = (F0,Δ0) .

(5) If Y is either an active subset of κ with monotone enumeration
�δα | α < β + 1� or a sealed subset of κ with monotone enumeration
�δα | α < β + 3�, then {δ0, δβ} is the trimmed segment of Y .

So the permutation groups associated to a sealed subset X of κ with
monotone enumeration �γα | α < β + 3� look as follows:

(Gγ0 ,Ωγ0 ) (Gγ1 ,Ωγ1 ), (Gγ2 ,Ωγ2 ) . . . (Gγβ
,Ωγβ

) (Gγβ+1
,Ωγβ+1

) (Gγβ+2
,Ωγβ+2

)

= = = = = =

(F0,Δ0) (F1,Δ1) (F2,Δ2) . . . (F0,Δ0) (F1,Δ1) (F1,Δ1)

Note that a sealed subset of κ must have order type at least 5. By
definition, the following equation holds for the above set X.

�

δ∈X

(Gδ,Ωδ) = (F0,Δ0)×





�

α<β

(Fα,Δα)



× (F1,Δ1)× (F1,Δ1)

=
�

H∗
β ,Δ

∗
β

�

.

(3.1)

If β̄ ≤ β and Y is the active segment of X of order type β̄ + 1, then the
following equation holds.

(3.2)
�

δ∈Y

(Gδ,Ωδ) = (F0,Δ0)×
�

α<β̄

(Fα,Δα) =
�

Hβ̄ ,Δβ̄
�

.

Finally, if Z = {ξ0, ξ1} is a trimmed subset of κ, then the following
equation holds.

(3.3)
�

δ∈Z

(Gδ,Ωδ) = (F0,Δ0)× (F0,Δ0) = (H1,Δ1) .

We extend the above definitions to equivalence relations on κ and show
how we can use them to change the height of the automorphism tower of G.

Definition 3.3.2. Let E be a non-trivial equivalence relation on κ.
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(1) We call E inactive, if every non-trivial equivalence class is either a
sealed or a trimmed subset of κ.

(2) We call E active, if all non-trivial E-equivalence classes are either
active, sealed or trimmed subsets of κ and there is a unique active
E-equivalence class.

Lemma 3.3.3 (Under Assumption 3.1.7). If E is a bounded, inactive
equivalence relation on κ, then 1lCE � “τ(Ǧ) = 1”.

Proof. Work in a CE-generic extension of the ground model. As noted
after Definition 3.2.6,

G(�Γ) =
�

α<κ

(Gα(Γα),Gα(Γα))

still holds. Let S denote the set of all sealed E-equivalence classes, and for
c ∈ S, let �γcα | α < βc + 3� be the monotone enumeration of c. Define T to
be the set of all trimmed E-equivalence classes and let d = {ξd0 , ξ

d
1} for each

d ∈ T . Finally, let N denote the union of all trivial E-equivalence classes.
Using the third part of Lemma 3.2.5 and the equations (3.1) and (3.3), we
can conclude that the following objects are isomorphic.

G(�Γ) ∼=

�

�

α∈N

(Gα(Γα),Gα(Γα))

�

×

�

�

c∈S

�

�

δ∈c

�

Gδ(Γγc0),Gδ(Γγc0)
�

��

×
�

d∈T

�

(Gξd0
(Γξd0

),Gξd0
(Γξd0

))× (Gξd1
(Γξd0

),Gξd1
(Γξd0

))
�

∼=

�

�

α∈N

(Gα(Γα),Gα(Γα))

�

×

�

�

c∈S

(H∗
βc(Γγc0),GΔ∗βc (Γγ

c
0
))

�

×
�

d∈T

(H1(Γξd0
),GΔ1(Γξd0

)).

By assumption, all graphs appearing in this product are rigid and pair-
wise non-isomorphic. The first part of Lemma 3.2.5 and Theorem 3.2.3 now
yield the following statements.

(1) For all α ∈ N , τnlg (Gα(Γα),Gα(Γα)) = τnlg (Gα,Ωα) = 0.
(2) For all c ∈ S, τnlg(H∗

βc(Γγc0),GΔ∗βc (Γγ
c
0
)) = τnlg(H∗

βc ,Δ
∗
βc) = 1.

(3) For all t ∈ T , τnlg(H1(Γξd0
),GΔ1(Γξd0

)) = τnlg(H1,Δ1) = 1.

By definition, there is at least one non-trivial equivalence class and we
can therefore apply the second part of Lemma 3.2.5 to conclude

τ(G) = τnlg(G(�Γ)) = 1.

�

Lemma 3.3.4 (Under Assumption 3.1.7). Let E be a bounded, active
equivalence relation on κ. If e is the unique active E-equivalence class, then
1lCE � “τ(Ǧ) + 1 = otp (ě, <)”.
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Proof. Work in a CE-generic extension of the ground model. By the
definition of active subsets, the monotone enumeration of e is of the form
�γα | α < β + 1� for some 1 < β < κ. Define N , S, T , γcα and ξdi as in
the proof of Lemma 3.3.3. Using the third part of Lemma 3.2.5 and the
equations (3.1)-(3.3), we get the following equalities.

G(�Γ) ∼=

�

�

α∈N

(Gα(Γα),Gα(Γα))

�

×

�

�

c∈S

�

�

δ∈c

(Gδ(Γγd0
),Gδ(Γγd0

))

��

×

�

�

d∈T

�

(Gξd0
(Γξd0

),Gξd0
(Γξd0

))× (Gξd1
(Γξd0

),Gξd1
(Γξd0

))
�

�

×
�

δ∈e

(Gδ(Γγ0),Gδ(Γγ0))

∼=

�

�

α∈N

(Gα(Γα),Gα(Γα))

�

×

�

�

c∈S

(H∗
βc(Γγc0),GΔ∗βc (Γγ

c
0
))

�

×

�

�

d∈T

(H1(Γξd0
),GΔ1(Γξd0

))

�

× (Hβ(Γγ0),GΔβ (Γγ0)).

Again, all graphs in this products are rigid and pairwise non-isomorphic and

τnlg
�

Hβ(Γγ0),GΔβ (Γγ0)
�

= τnlg (Hβ ,Δβ) = β > 1.

By the second part of Lemma 3.2.5 and the computations made in the proof
of Lemma 3.3.3, we can conclude

τ(G) + 1 = τnlg(G(�Γ)) + 1 = β + 1 = otp (e,<).

�

Next, we define a family of functions that allows us the construction of
special bounded equivalence relations in our proofs of the theorems. Re-
member that for each α < κ the set

{β < κ | (Gβ ,Ωβ) = (Fα,Δα)}

is unbounded in κ.

Lemma 3.3.5. For each function s : κ −→ (κ \ {0, 1}), there exists a
function s∗ : κ −→ [κ]<κ with the following properties.

(1) If β < α, then s∗(β) ⊆ min(s∗(α)).
(2) For all α < κ, s∗(α) is a sealed subset of κ with

otp (s∗(α), <) = s(α) + 3.2

2Remember that a sealed subset of κ must have order type at least 5. This is why we
require s(α) > 1 here.
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Proof. Assume s∗ � α is already defined for some α < κ. We define
s∗(α) = {γαδ | δ < s(α) + 3}, where �γαδ | δ < s(α) + 3� is defined as follows:
γα0 is the least ν < κ such that

�

{s∗(β) | β < α} ⊆ ν and (Gν ,Ων) =
(F0,Δ0). If 0 < δ < s(α) and �γαξ | ξ < δ� is already defined, then γαδ is

the least ν < κ such that ν > sup{γαξ | ξ < δ} and (Gν ,Ων) = (Fδ,Δδ).

Finally, γα
s(α) is the least ν < κ such that ν > sup{γαδ | δ < s(α)} and

(Gν ,Ων) = (F0,Δ0), γ
α
s(α)+1 is the least ν < κ such that ν > γα

s(α) and

(Gν ,Ων) = (F1,Δ1), and γα
s(α)+2 is the least ν < κ such that ν > γα

s(α)+1

and (Gν ,Ων) = (F1,Δ1). �

From now on, we fix an operator [s �→ s∗] with the above properties. We
may also assume that if s, t : κ −→ (κ \ {0, 1}) are functions with s � γ =
t � γ for some γ < κ, then s∗ � γ = t∗ � γ. For each s : κ −→ (κ \ {0, 1})
and each α < κ, we define a bounded, inactive equivalence relation Esα on κ
by

γEsαδ ⇐⇒ γ = δ ∨ (∃β < α) γ, δ ∈ s∗(β).

It is easy to see that α < β < κ implies Esα � Esβ .

Definition 3.3.6. Let E be a bounded equivalence relation on κ. If E
is active and e is the unique active E-equivalence class, then we define ht(E)
to be the unique ordinal α with otp (e,<) = α+1. If E is inactive, then we
define ht(E) = 1.

As an illustration of the concepts introduced above, note the following
observation which is a direct consequence of Lemmas 3.3.3 and 3.3.4.

Observation 3.3.7 (Under Assumption 3.1.7). If E is a bounded equiv-
alence relation on κ and E is either active or inactive, then

1lCE � “τ(Ǧ) = ht(Ě)”.

�

Next, we want to analyze �-ascending and -descending chains of equiv-
alence relations.

Definition 3.3.8. Let �A = �Aα | α < β� be a sequence of sets. We say

that �A converges, if for every x there is an α < β such that either x ∈ Aγ
for all α ≤ γ < β or x /∈ Aγ for all α ≤ γ < β. If �A converges, then we

define the limit of �A to be the set

lim
α→β

Aα =
�

α<β

�

α≤γ<β

Aγ .

If β = 0 or β = α + 1, then �A automatically converges. Namely,

limγ→0Aγ = ∅, and limγ→α+1Aγ = Aα. Trivially, if �A is increasing (in

the inclusion relation), then �A converges with limit
�

α<β Aα, and if it is

decreasing, then it converges with limit
�

α<β Aα. It is easy to see that if
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�A is a convergent sequence of equivalence relations on a set I, then lim �A is
also an equivalence relation on I.

We will apply the following facts in the proofs of the first two main
results. They follow directly from the above remarks and the transitivity of
the relation �.

Observation 3.3.9. Let �Eα | α < κ� be a sequence of equivalence rela-
tions on κ.

(1) If Eγ � Eβ holds for all γ < β < κ, then �Eβ | β < α� converges
for all α < κ and limβ→ᾱEβ � limβ→αEβ holds for all ᾱ ≤ α < κ.

(2) If Eβ � Eγ holds for all γ < β < κ, then �Eβ | β < α� converges for
all α < κ and limβ→αEβ � limβ→ᾱEβ holds for all ᾱ ≤ α < κ. �

We are now ready to apply our methods and constructions to prove
Theorem 3.1.10.

Proof of Theorem 3.1.10. For a given s : κ −→ (κ \ {0}), let s+1 be
the function with domain κ defined by (s+1)(α) = s(α)+1. We construct a
sequence �Eα | α < κ� of equivalence relations on κ by defining the nontrivial
equivalence classes of each relation. For α < κ, a subset Z ⊆ κ is a nontrivial
equivalence class of Eα if and only if one of the following conditions holds.

• Z = (s+ 1)∗(β), for some β < α,
• s(α) = 1 and Z = (s+ 1)∗(α),
• s(α) > 1 and Z is the active segment of (s + 1)∗(α) of order type
s(α) + 1.

It is easy to check that the following statements hold for all α < κ.

(1) Eα is bounded and either active or inactive. Moreover, we have
ht(Eα) = s(α).

(2) For all β < α, Eβ � Eα. In particular, �Eβ | β < α� converges and
E∗
α = limβ→αEβ is a bounded equivalence relation on κ.

For each α < κ, we define Psα = CE∗α . These partial orders satisfy the
first property of the theorem by the first statement of Theorem 3.1.9. By
the first part of Observation 3.3.9, if β < α < κ, then E∗

β � E∗
α and we can

use Observation 3.2.4 to see that the partial orders satisfy the last property
of the theorem.

Let α < κ. We have E∗
α+1 = Eα, Psα+1 = CEα and therefore

1lPsα+1
� “τ(Ǧ) = ht(Ěα) = š(α̌)”.

If α is a limit ordinal, then it is not hard to show that

E∗
α = lim

β→α
Eβ =

�

β<α

Eβ = Es+1α

and Psα = CEs+1
α
. This means

1lPsα � “τ(G) = ht(Es+1α ) = 1”,

because Es+1α is an inactive bounded equivalence relation on κ.



3.4. CONSECUTIVE GROUND MODELS 51

Finally, if s � γ = t � γ for s, t : κ −→ (κ \ {0}) and γ < κ, then we also
have s∗ � γ = t∗ � γ and it is easy to check that the above construction yields
the same equivalence relations Eδ for all δ < γ. Since E∗

γ = limδ→γ Eδ, the

resulting E∗
γ coincide, and therefore Psγ = Ptγ . �

3.4. Consecutive Ground Models

This section is devoted to the proof of Theorem 3.1.11.
Before proving the theorem, we would like to comment on the first order

expressibility of its statement. It is by now a well-known fact that every
ground model is uniformly definable in a parameter, see [Lav07]. Even this
fact, though, may at first not seem to be first order expressible. But here is a
simple way to state it: There is a first order formula ϕ(x, y) in the language
of set theory3 such that the following is provable in ZFC:

(∀P)(∀z)
�

(P is a partial order and z = P(|P|+))

−→ 1lP � “V̌ = {x | φ(x, z)}”
�

Vice versa, given a set z, it is a simple matter to check whether {x | φ(x, z)}
is a ZFC-model of which the universe is a forcing extension. So point (3) of
the theorem can be expressed by saying that for every sequence s : λ −→
(λ \ {0}), there is a sequence �zα | 0 < α < λ� of sets such that, for all
0 < α < λ, the class M s

α = {x | φ(x, zα)} is a ground model that satisfies
the given statements. Formulating the additional requirement in (3) does
not pose a problem either. So let us turn to the proof of Theorem 3.1.11.

Proof of Theorem 3.1.11. Let t : κ −→ κ denote the function with
constant value λ+ 2, and let t∗ be the function given by Lemma 3.3.5. We
define E to be the bounded, sealed equivalence relation Etλ on κ, i.e.

µEη ⇐⇒ µ = η ∨ (∃α < λ) µ, η ∈ t∗(α).

Set Qλ = CE . By Theorem 3.1.9 and Lemma 3.3.3, Qλ satisfies the first and
the second statement of the theorem.

Let V[G] be a Qλ-generic extension of the ground model V and let s :
λ −→ (λ \ {0}) be a sequence in V[G]. By the above remark, s is already
an element of V and we can make the following definitions in V.

For α < λ, we define an equivalence relation Eα on κ by specifying
that Z ⊆ κ is a nontrivial equivalence class of Eα if and only if one of the
following conditions holds.

• Z = t∗(β) for some α < β < λ.
• s(α) = 1 and Z = t∗(α).
• s(α) > 1 and Z is the active segment of t∗(α) of order type s(α)+1.

Again, it is easy to see that the following statements hold for all α < λ.

3Of course, this existential quantification can be eliminated by writing down the
formula φ explicitly, but the details of its definition are irrelevant for our purposes.
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(1) Eα is bounded and either active or inactive. Moreover, we have
ht(Eα) = s(α).

(2) For all β < α, Eα � Eβ . In particular, �Eβ | β < α� converges and
E∗
α = limβ→αEβ is a bounded equivalence relation on κ.

For each α < λ, we define Psα = CE∗α and M s
α = V[G ∩ Psα]. By the

second part of Observation 3.3.9, if β < α < λ, then E∗
α � E∗

β and we

can use Observation 3.2.4 to see that the sequence �M s
α | α < λ� of ground

models is decreasing.
Let α < λ. We have E∗

α+1 = Eα and Psα+1 = CEα . Observation 3.3.7
yields

1lPsα+1
� “τ(Ǧ) = ht(Ěα) = š(α̌)”.

If α is a limit ordinal, then E∗
α = limβ→αEβ =

�

β<αEβ , because the

sequence �Eβ | β < α� is decreasing. As a result, the nontrivial equivalence
classes of E∗

α are precisely the sets {t
∗(β) | α ≤ β < λ} and this shows that

E∗
α is an inactive bounded equivalence relation on κ. By Observation 3.3.7,

Psα = CE∗α and

1lPsα � “τ(Ǧ) = ht(Ě∗
α) = 1”.

If s(α) = s�(α) for some s, s� : λ −→ (λ \ {0}) and α < λ, then the above
construction produces the same equivalence relation Eα for both functions
and therefore the same model Mα+1 = V[G ∩ CEα ]. Finally, by the above
analysis, the equivalence relation E∗

ν = limβ→ν Eβ is the same for all func-
tions s : λ −→ (λ \ {0}) and every limit ordinal ν < λ. �

3.5. The Mix

In this section, we are producing models of set theory, where a given
sequence of nonzero ordinals can be realized as the height of the automor-
phism tower of G in consecutive models such that the next one is a forcing
extension or a ground model of the previous one, as desired. There are
some limitations on the possible patterns, and to formalize them precisely,
we introduce the notion of a realizable prescription.

Definition 3.5.1. A function s : κ −→ (κ \ {0})× 2 is a prescription on
κ. It is realizable if (s(0))1 = 1 and the set of all α < κ such that (s(α))1 = 0
is not stationary in κ.4

The interpretation is that the first coordinate of s(α) gives the desired
height of the automorphism tower of G in the (α + 1)-th model, and the
second coordinate says whether the (α + 1)-th model should be a forcing
extension or a ground model of the α-th model.

Theorem 3.5.2 ([FLb, Theorem 5.2], under Assumption 3.1.7). For
every realizable prescription s on κ, there is a sequence �Eα | α < κ� of
bounded equivalence relations on κ with the following properties.

4Here, we use the following notation for components of ordered pairs: (�x, y�)0 = x,
(�x, y�)1 = y.
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(1) For every α ≤ κ, the sequence �Eβ | β < α� of equivalence relations
converges with limit E∗

α.
(2) If α < κ, then 1lCE∗

α+1
� “τ(Ǧ) = (š(α̌))0 ”.

(3) If α < κ is a limit ordinal, then 1lCE∗α
� “τ(Ǧ) = 1”.

(4) If α < κ and s(α)1 = 0, then E∗
α+1 � E∗

α.
(5) If α < κ and s(α)1 = 0, then E∗

α � E∗
α+1.

Proof. Let a realizable prescription s be given and C ⊆ κ be a club
of α with (s(α))1 = 1 and 0 ∈ C. Let fC : κ −→ C be the monotone
enumeration of C. Given β < κ, let i(β) be that ordinal less than κ such
that β ∈ [fC(i(β)), fC(i(β) + 1)). Let t be the function with domain κ
defined by setting t(α) = (s(α))0 + 1.

For β < κ, we define an equivalence relation Eβ on κ by specifying its
nontrivial equivalence classes. Namely, X is a nontrivial equivalence class
of Eβ if and only if one of the following statements holds.

• There is an α < β such that (s(α+ 1))1 = 1 and X = t∗(α).
• There is an α < β such that (s(α+1))1 = 0 and X is the trimmed
segment of t∗(α).

• There is an α ∈ (β, fC(i(β) + 1)) such that (s(α))1 = 0 and X =
t∗(α).

• (s(β))0 > 1 and X is the active segment of t∗(β) of order type t(β)
(which is (s(β))0 + 1), or (s(β))0 = 1 and X = t∗(β).

This defines the sequence �Eβ | β < κ� of equivalence relations. Obvi-
ously, each Eβ is bounded. If Eβ is active, then its active equivalence class
is the active segment of t∗(β) of order type (s(β))0 + 1. In particular, we
have

(3.4) 1lCE∗
β+1

� “τ(Ǧ) = (š(β̌))0 ”.

If Eβ is not active, then (s(β))0 = 1, Eβ is inactive and (3.4) also holds in
this case.

We have to show the sequence has the desired properties. To this end,
we verify the following claims.

Claim 1. For every α ≤ κ, the sequence �Eβ | β < α� converges.

Proof of the Claim. Fix a limit ordinal α ≤ κ. Let γ, δ < κ be
given. We have to find ᾱ < α such that either for all β ∈ (ᾱ, α), γEβδ holds,
or for all β ∈ (ᾱ, α), γEβδ fails. This is trivial if γ = δ, and it is also trivial
if there is no µ < α such that γEµδ holds. But if there is such a µ, then this
means that γ, δ ∈ t∗(ξ), for some ξ < fC(i(µ) + 1) – this is easily confirmed
by looking at the definition of Eµ above. If ξ < α, then for all β, β� ∈ (ξ, α)
we have γEβδ if and only id γEβ�γ (again, this is easily checked by referring
to the clauses defining the equivalence relations). Hence we can let ᾱ = ξ.
But if ξ ≥ α, then this means that t∗(ξ) is a nontrivial equivalence class of
Eµ due to the third condition in the definition of Eµ, so ξ ∈ (µ, fC(i(µ)+1).
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But then, for all β ∈ [µ, α), i(β) = i(µ), and again, by the same condition,
t∗(ξ) will be a nontrivial equivalence class of Eβ . So in this case, we can set
ᾱ = µ. �

It is also easy to see that if α is a limit ordinal, then E∗
α is inactive and

therefore 1lCE∗α
� “τ(Ǧ) = 1”.

Claim 2. If α < κ with (s(α))1 = 0, then Eα � E∗
α.

Proof of the Claim. Note that if (s(α))1 = 0, then

α ∈ (fC(i(α)), fC(i(α) + 1),

since α /∈ C. There are two cases to consider here.
The first case is that α is a limit ordinal. In that case, it follows that the

only disagreement between E∗
α and Eα is that the α-th nontrivial equivalence

class of E∗
α is t

∗(α), while the α-th nontrivial equivalence class of Eα is the
active segment of t∗(α) of order type (s(α))0 + 1. So Eα � E∗

α.
The second case is that α = ᾱ + 1 is a successor ordinal. In this case,

E∗
α = Eᾱ and we have to show that Eα � Eᾱ. Since

α ∈ (fC(i(α)), fC(i(α) + 1),

it follows that the α-th nontrivial equivalence class of Eᾱ is t
∗(α), while

the α-th nontrivial equivalence class of Eα is the active segment of t
∗(α)

of order type (s(α))0 + 1 (using the fourth clause in the definition of Eα
and the third clause in the definition of Eᾱ). Moreover, the ᾱ-th nontrivial
equivalence class of Eᾱ is the active segment of t

∗(ᾱ) (by the fourth clause
in the definition of Eᾱ) and the ᾱ-th nontrivial equivalence class of Eα is
the trimmed segment of t∗(ᾱ) (by the second clause in the definition of Eα).
Eα and Eᾱ agree about the other nontrivial equivalence classes, so that it
follows that Eα � Eᾱ, as desired. �

Claim 3. If α < κ with (s(α))1 = 1, then E∗
α � Eα.

Proof of the Claim. As in the proof of Claim 2, we distinguish two
cases.

The first case is that α is a limit ordinal. As before, Eα and E∗
α agree

about the γ-th equivalence classes. The α-th equivalence class of Eα is
the active segment of t∗(α) of order type (s(α))0 + 1, while for γ ∈ t∗(α),
{γ} = [γ]E∗α . Eα and E

∗
α agree about the other nontrivial equivalence classes,

which are of the form t∗(β), for β ∈ (α, fC(i(α) + 1)). So E∗
α � Eα, as

claimed.
In the second case to consider, α = ᾱ+1 is a successor ordinal. So E∗

α =
Eᾱ and we have to show that Eᾱ � Eα. The α-th nontrivial equivalence class
of Eα is the active segment of t

∗(α) of order type (s(α))0+1 (using the fourth
clause in the definition of Eα) and, for γ ∈ t∗(α), we have {γ} = [γ]Eᾱ . The
ᾱ-th nontrivial equivalence class of Eᾱ is the active segment of t

∗(ᾱ) (by the
fourth clause in the definition of Eᾱ), and the ᾱ-th nontrivial equivalence
class of Eα is t

∗(ᾱ) (by the first clause in the definition of Eα). Eα and Eᾱ
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agree about the other nontrivial equivalence classes, so that it follows that
Eα � Eᾱ, as desired. �

This finishes the proof of the theorem. �

3.6. Unbounded potential automorphism tower heights

This section contains the proof of Theorem 3.1.12. This proof is based on
an application of Theorem 1.2.1 and folklore results about splitting forcings
into two-step iterations. We start by stating and proving these standard
results. Given a boolean algebra B, we let B∗ denote the partial order with
domain B \ {0B} ordered by the restriction of ≤B to this set.

Lemma 3.6.1. Let κ be an infinite cardinal, B be a complete boolean
algebra and ẋ ∈ VB∗ with 1lB � “ ẋ ⊆ κ̌”. Then there is a κ-generated
complete subalgebra C of B in V and names Ḋ, ẏ ∈ VC∗ with the following
properties.

(1) We have 1lC � “ Ḋ is a partial order” and there is a dense embed-

ding i : B∗ −→ C∗ ∗ Ḋ such that i(c) = �c, ċ� with c � “ ċ = č” for
all c ∈ C∗.

(2) If G0 ∗ G1 is (C∗ ∗ Ḋ)-generic over V and G is the preimage of
G0 ∗G1 under i, then ẋG = ẏG0 ∈ V[G0].

Proof. Given α < κ, set

Bα = {b ∈ B∗ | b � “ α̌ ∈ ẋ”}

and bα = supB Bα. Let C be the complete subalgebra of B generated by the
set {bα | α < κ} and define

ẏ = {�α̌, bα� ∈ V
C∗ × C∗ | α < κ, bα �= 0B} ∈ V

C∗ .

Let G be B∗-generic over V. If α ∈ ẋG, then there is a b ∈ G with
b � “ α̌ ∈ ẋ” and this shows bα ∈ G and α ∈ ẏG∩C∗ . The other direction
follows directly from the fact that bα ∈ Bα holds for all α < κ.

There is a canonical C∗-name Ḋ with the property that, whenever G0 is
C∗-generic over V, then ḊG0 is the partial order whose domain is the set

{b ∈ B∗ | (∀c ∈ G0) b �B∗ c}

ordered by the restriction of ≤B to this domain.
If b ∈ B∗ and G is B∗-generic over V with b ∈ G, then b ∈ ḊG∩C∗ and

there is a c ∈ G ∩ C∗ with c � “ b̌ ∈ Ḋ”. This shows that the function

i0 : B
∗ −→ C∗; b �→ sup

B

{c ∈ C∗ | c � “ b̌ ∈ Ḋ”}

is well-defined. Pick a function i1 : B∗ −→ VC∗ with 1lC � “ i1(b) ∈ Ḋ”
and i0(b) � “ b̌ = i1(b)” for all b ∈ B∗. Define i : B∗ −→ C∗ ∗ Ḋ by setting
i(b) = �i0(b), i1(b)�.
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Given c, c� ∈ C∗, it is easy to see that c� � “ č ∈ Ḋ” is equivalent to
c� ≤C c. This shows that i0(c) = c holds for all c ∈ C∗. We show that i is a
dense embedding.

Let b0, b1 ∈ B∗ with b0 ≤B b1. Given c ∈ C∗, if c � “ b̌0 ∈ Ḋ”, then c �

“ b̌1 ∈ Ḋ”. This shows that i0(b0) ≤C∗∗Ḋ i0(b1) holds and hence i(b0) ≤C∗∗Ḋ
i(b1). Next, fix a0, a1 ∈ B∗ with a0 ⊥B∗ a1. Assume, toward a contradiction,

that there is a �c, ḋ� ∈ C∗ ∗ Ḋ with �c, ḋ� ≤
C∗∗Ḋ i(a0), i(a1). We can find a

0C <C c∗ ≤C c and a condition d ∈ B∗ with c∗ � “ ḋ = ď”. This means c∗ �

“ ď ≤
Ḋ
ǎ0, ǎ1 ” and therefore 0B <B d ≤B a0, a1, a contradiction. Finally,

fix �c, ḋ� ∈ C∗ ∗ Ḋ. As above, there are 0C <C c∗ ≤C c and d ∈ B∗ with
c∗ � “ ḋ = b̌”. Since c∗ � “ č∗ �B̌∗ ď”, there is a condition d∗ ∈ B∗ with
d∗ ≤B c∗, d. By the above computations, i0(d∗) ≤C i0(c∗) = c∗ ≤C c and

i0(d∗) � “ i1(d∗) ≤Ḋ
ḋ”. This means i(d∗) ≤C∗∗Ḋ �c, ḋ� and i is a dense

embedding.
IfG0∗G1 is (C∗∗Ḋ)-generic over V andG is the preimage ofG0∗G1 under

i, then both G0 and G ∩ C∗ are C∗-generic over V. Since i0 � C∗ = idC∗ ,
it follows that G ∩ C∗ ⊆ G0 and the maximality of generic filters yields
G ∩ C∗ = G0. By the above calculations, ẋ

G = ẏG∩C∗ = ẏG0 ∈ V[G0]. �

If κ is an infinite regular cardinal, B is a boolean algebra and C is a
subalgebra of B, then C is called <κ-complete in B if infB X ∈ C for all
X ∈ [C]<κ.

Proposition 3.6.2. Let κ be an infinite regular cardinal, B be a complete
boolean algebra that satisfies the κ-chain condition and C be a subalgebra of
B. If C is <κ-complete in B, then C is a complete subalgebra of B.

Proof. Assume, toward a contradiction, that C is not a complete sub-
algebra of B and let ν be the least cardinal such that there is a sequence
�cα ∈ C | α < ν� with infB{cα | α < ν} /∈ C. By our assumption, ν ≥ κ
and it is easy to see that ν is a regular cardinal. Given α < ν, we define
bα = infB{cβ | β < α}. Our assumptions imply 0B �= bα ∈ C and bβ ≤B bα
for all α ≤ β < ν. Moreover,

inf
B
{bα | α < ν} = inf

B
{cα | α < ν} /∈ C.

If we define aα = bα − bα+1 for all α < ν, then the set

A = {aα ∈ B | α < ν, aα �= 0B}

is an anti-chain in B and therefore has cardinality less than κ. This means
that there is an α < ν with aβ = 0B for all α ≤ β < ν and an easy induction
shows that this implies bα+1 = bβ for all α < β < ν. We can conclude
infB{bα | α < ν} = bα+1 ∈ C, a contradiction. �

Lemma 3.6.3. Let κ be an infinite cardinal, B be a complete boolean
algebra that satisfies the κ+-chain condition and C be a subset of B of cardi-
nality at most κ. If C is the complete subalgebra of B generated by C, then
C has cardinality at most 2κ.
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Proof. It suffices to construct a complete subalgebra C+ of B that
contains C and has cardinality at most 2κ. We define an ascending sequence
�Cα | α < κ+� of subalgebras of B in the following way.

(1) C0 is the subalgebra of B generated by C.
(2) If α ∈ κ+ ∩ Lim, then Cα =

�

{Cβ | β < α}.
(3) Cα+1 is the subalgebra of B generated by the set

{inf
B
X | X ∈ [Cα]

<κ+
}

for all α < κ+.

An easy induction shows that the subalgebra Cα has cardinality at most
2κ for all α < κ+ and this shows that the subalgebra C+ =

�

{Cα | α < κ+}
also has cardinality at most 2κ. We show that C+ is a complete subalgebra
of B. By Proposition 3.6.2, it suffices to show that C+ is <κ+-complete in
B. If X ∈ [C+]<κ

+
, then there is an α < κ+ with X ⊆ Cα. But this means

infB X ∈ Cα+1 ⊆ C+. �

With the help of the above results, it is easy to show that the statement
of Theorem 3.1.12 is a direct consequence of Theorem 1.2.1.

Proof of Theorem 3.1.12. Assume V = L. Given an ordinal α, The-
orem 1.2.1 shows that there is a σ-distributive complete boolean algebra B
that satisfies the ℵ2-chain condition, a B∗-name Ġ with

1lB∗ � “ Ġ is a centreless group with domain ω1 and τ(Ġ) = α̌”

and a B∗-nice name ẋ for a subset of ω1 with

1lB∗ � “ ẋ = {≺≺β, γ�, δ� | β, γ, δ < ω1, β ·Ġ γ = δ}”.

We let �Bα, Ġα, ẋα� denote the <L-least triple with the above properties.
Next, let Cα, Ḋα, ẏα and iα denote the <L-least objects satisfying the con-
clusion of Lemma 3.6.1 with respect to Bα and ẋα. Since Cα is a ℵ1-generated
complete subalgebra of Bα and Bα satisfies the ℵ2-chain condition, we can
apply Lemma 3.6.3 to see that Cα has cardinality at most 2ℵ1 = ℵ2.

Up to isomorphism, there are only set-many boolean algebras of cardi-
nality ℵ2 and we can find a complete boolean algebra CC such that the class
{α ∈ On | Cα is isomorphic to CC} is cofinal in On.

Given α ∈ C, we let żα denote the <L-least C∗
C-nice name for a subset

of ω1 such that żα corresponds to ẏα with respect to some isomorphism of
CC and Cα. Again, there are only set-many C∗

C-nice names for subsets of
ω1 and we can find such a name ż such that the class D = {α ∈ C | ż = żα}
is cofinal in On.

Let F be C∗
C-generic over the ground model V. In V[F ], define an LGT-

model G with domain ω1 by setting

β ·G γ = δ ⇐⇒ ≺≺β, γ�, δ� ∈ żF

for all β, γ, δ < ω1.
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Given α ∈ D, fix an isomorphism π : CC −→ Cα contained in V such
that żα corresponds to ẏα with respect to π and let F0 denote the filter in
C∗
α induced by F via π. Then F0 is C∗

α-generic over V, V[F ] = V[F0] and

ẏF0
α = żF . Let F1 be ḊF0

α -generic over V[F ] and let F̄ denote the preimage

of F0 ∗ F1 under iα. Then F̄ is B∗α-generic over V, V[F̄ ] = V[F0][F1], Ġ
F̄
α is

a centreless group with domain ω1 and τ(Ġ
F̄
α ) = α in V[F̄ ] and

β ·ĠF̄α
γ = δ ⇐⇒ ≺≺β, γ�, δ� ∈ ẋF̄α

for all β, γ, δ < ω1. Since ẋ
F̄
α = ẏF0

α = żF , we can conclude ĠF̄α = G ∈ V[F ].
In particular, G is a centreless group and

1l
Ḋ
F0
α

� “τ(Ǧ) = α̌”

holds in V[F ]. �



CHAPTER 4

An absoluteness result for countable groups

All groups appearing in the non-absoluteness results of the last chapter
have uncountable cardinality. In this short chapter, we show that this is a
necessary condition for groups whose automorphism towers are highly mal-
leable by forcing by proving an absoluteness result for the first three stages
of the automorphism tower of countable centreless groups. In particular,
it is not possible to have results like Theorem 3.1.2 or Theorem 3.1.3 for
countable centreless groups. The proof of this absoluteness statement uses
results from the theory of Polish groups and heavily relies on the notion of
special pairs and Theorem 2.2.5.

The work presented in this chapter is published in [Lücc].

4.1. Unique Polish group topologies

We introduce techniques from the theory of Polish groups that will be
essential for the proof of the absoluteness result for the automorphism towers
of countable, centreless groups mentioned above. Remember that a topolog-
ical group is a pair �G, τ� consisting of a group G and a topology τ on the
domain of G such that the map

�

�g, h� �→ g · h−1
�

is continuous with respect
to τ . We call a topological space �X, τ� Polish if τ is induced by a complete
metric on X and there is a countable subset of X that is dense in τ . Fi-
nally, we call a topological group �G, τ� a Polish group if the corresponding
topological space is Polish. In this case, we call τ a Polish group topology
on G.

Proposition 4.1.1. Let �G, τ� be a topological group such that the cor-
responding topological space is a Hausdorff space. If t ∈ T 1G, then the set
{g ∈ G | tG(g) = 1G} is closed in τ .

Proof. An easy induction shows that the map

ξt : G
n −→ G; �g �−→ tG (�g)

is continuous with respect to τ for every LG-term t ∈ T nG . Since τ is a
Hausdorff space, we can conclude that the set

{g ∈ G | tG(g) = 1G} = ξ−1t ”{1G}

is closed in τ for every t ∈ T 1G . �

Next, we consider Polish groups whose topology is completely deter-
mined by the algebraic structure of the group.

59
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Definition 4.1.2. Let G be a group. We say that G has a unique Polish
group topology if there is exactly one topology τ on the domain of G such
that �G, τ� is a Polish group.

We state a theorem of George W. Mackey that allows a nice character-
ization of groups with unique Polish group topologies. Remember that a
measurable space �X,S� is a standard Borel space if there is a Polish topol-
ogy τ on X such that S is equal to the σ-algebra B(τ) of all subsets of X
that are Borel with respect to τ .

Theorem 4.1.3 ([Mac57, Theorem 3.3]). Let �X,S0� and �X,S1� be
standard Borel spaces. If there is a countable point-separating family1 of
subsets of X whose members are elements of both S0 and S1, then S0 = S1.

Corollary 4.1.4. The following statements are equivalent for a Polish
group �G, τ�.

(1) τ is the unique Polish group topology on G.
(2) There is a countable point-separating family of subsets of the do-

main of G whose members are Borel with respect to any Polish
group topology on G.

Proof. If τ is the unique Polish group topology on G and B is a count-
able basis of τ , then B satisfies the above properties.

In the other direction, assume that F is a family of subsets with the
above properties and τ̄ is a Polish group topologies on G. If we define B(τ)
and B(τ̄) as above, then Theorem 4.1.3 and our assumptions imply B(τ) =
B(τ̄). Since Borel sets have the Baire Property (see [Kec95, Proposition
8.22]), the identity map on G is a Baire-measurable group homomorphism
with respect to τ and τ̄ . By [BK96, Theorem 1.2.6], it is continuous and
open with respect to τ and τ̄ . This shows τ = τ̄ . �

Proposition 4.1.5. Let �G, τ� be a Polish group. If there is a countable
subset A of the domain of G such that �G,A� is a special pair, then τ is the
unique Polish group topology on G.

Proof. If t ≡ t(v) is a term in T 1A , then we define

T 0t = {g ∈ G | tG(g) = 1G}

and T 1t = G \ T t. Let F denote the family consisting of all subsets of the
domain of G of the form T 0t or T

1
t for some t ∈ T 1A . Then F is countable

and separates points, because �G,A� is a special pair. If τ̄ is a Polish group
topology on G, then all elements of F are contained in B(τ̄) by Proposition
4.1.1. Corollary 4.1.4 implies τ = τ̄ . �

Remark 4.1.6. The converse of the above implication is not true: Bo-
jana Pejić and Paul Gartside showed that the group SO(3,R) has a unique

1We call a family F of subsets of X separating if for any pair �x, y� of distinct elements
in X, there is an F ∈ F with x ∈ F and y /∈ F .
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Polish group topology (see [GP08, Theorem 11]) and there is no countable
subset I of TSO(3,R) such that the family {T it | t ∈ I, i < 2} separates points
(see [GP08, Lemma 12]).

We close this section by introducing a consequence of the existence of
a unique Polish group topology that allows us to deduce the absoluteness
result in the next section. This consequence is called automatic continuity
of automorphisms.

Proposition 4.1.7. Let G be a group with a unique Polish group topol-
ogy. Then every group automorphism of G is continuous with respect to the
unique Polish group topology on G.

Proof. Let τ be the unique Polish group topology on G and assume,
toward a contradiction, that there is an automorphism π of G that is not
continuous with respect to τ . Define τ̄ to be the collection of all subsets of
G of the form π”U , where U is open in τ . It is easy to check that τ̄ is a
Polish group topology that is not equal to τ , a contradiction. �

4.2. The absoluteness result

The aim of this section is to prove the following theorem.

Theorem 4.2.1 ([Lücc, Corollary 4.2]). Let M be a transitive class2

such that �M,∈� is a model of ZFC and G be a centreless group that is an
element of M . If G is countable in �M,∈� and τ(G) > 1 holds in �M,∈�,
then τ(G) > 1.

This result is an easy consequence of the following theorem.

Theorem 4.2.2 ([Lücc, Theorem 4.1]). Let M be a transitive class such
that �M,∈� is a model of ZFC, G be a centreless group that is an element
of M , �GMα | α ∈ On ∩M� be an automorphism tower of G in �M,∈� and
�Gα | α ∈ On� be an automorphism tower of G. If G is countable in M ,
then there is an embedding π : GM2 −→ G2 with π � G = idG.

Proof of the Theorem 4.2.1 from Theorem 4.2.2. Assume that
G is countable in �M,∈� and GM1 �= GM2 . Let π : GM2 −→ G2 be the
embedding given by Theorem 4.2.2. It suffices to show that π−1”G1 ⊆ GM1 .

Let h ∈ GM2 with π(h) ∈ G1. Given g ∈ G, we have ιπ(h)(g) ∈ G and
therefore

π(ιπ(h)(g)) = ιπ(h)(g) = ιπ(h)(π(g)) = π(ιh(g)).

Since π is an embedding, we can conclude that ιh(g) = ιπ(h)(g) holds for all

g ∈ G and hence ιh � G = ιπ(h) � G ∈ Aut(G)∩M . By the definition of GM2 ,

there is an h̄ ∈ GM1 with ιh̄ � G = ιh � G and this shows h−1 · h̄ ∈ CGM2
(G).

An application of Theorem 2.1.1 in �M,∈� yields h = h̄ ∈ GM1 . �

2Note that M can be set-sized or even countable. In addition, we only need to assume
that �M,∈� is a model of a “ suitable ” finite fragment of ZFC which enables us to run all
the arguments of this section that take place inside of M .
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We outline how the results of Section 4.1 can be applied to analyze the
first stages of the automorphism tower of a countable, centreless group. If L
is a first-order language andM is an L-model with domain ω, then Aut(M)
is a subset of Baire space ωω and the corresponding subspace topology in-
duces a Polish group topology on Aut(M) (see [Kec95, Example 9.B 7]).
If B is the family of subsets of Aut(M) of the form

{σ ∈ Aut(M) | π � X = σ � X}

for some π ∈ Aut(M) and a finite subset X of ω, then B forms a countable
basis of this group topology.

Let G be a countable group and �Gα | α ∈ On� be an automorphism
tower of G. Let B denote the family of all subsets of G1 of the form

{h ∈ G1 | ιg � X = ιh � X}

for some g ∈ G1 and a finite subset X of G. By the above remarks, B is a
countable basis of a Polish group topology on G1. Moreover, Corollary 2.2.6
and Proposition 4.1.5 imply that this is the unique Polish group topology on
G1 and ιπ � G1 is continuous with respect to this topology for every π ∈ G2
by Proposition 4.1.7.

The following folklore result is the last ingredient in our proof of Theorem
4.2.2. A proof of this statement can be found in [BK96, page 6].

Proposition 4.2.3. Let �G, τ� be a Polish group, H be a subgroup of
G that is dense in τ and ϕ : H −→ G be a group homomorphism that is
continuous with respect to the subspace topology induced by τ on H and τ .
Then there is a unique group homomorphism ϕ∗ : G −→ G that extends ϕ
and is continuous with respect to τ .

Proof of Theorem 4.2.2. Assume that M is a transitive class such
that �M,∈� is a model of ZFC, G is a centreless group with domain ω that
is an element of M , �GMα | α ∈ On ∩M� is an automorphism tower of G
in �M,∈� and �Gα | α ∈ On� is an automorphism tower of G. Since every
automorphism of G in M is an automorphism of G, we may replace G1 by
an isomorphic copy and assume that GM1 is a subgroup of G1. We fix the
following collections of sets.

(1) Let τ denote the unique Polish group topology on G1.
(2) Let τM denote the unique Polish group topology on GM1 in �M,∈�.
(3) Let τ̄ denote the subspace topology induced by τ on GM1 .

Note that τM is contained in τ̄ , because every basic open set in τM is an
element of τ̄ .

Let U = {h ∈ G1 | ιg � X = ιh � X} be a nonempty basic open set in
τ with g ∈ G1 and X is a finite subset of ω. Then both X and ιg � X
are elements of M and there is a tree T on ω × ω of height ω in M such
that every cofinal branch through T is of the form �x, y� ∈ ωω × ωω with
x, y ∈ Aut(G), y = x−1 and ιg � X ⊆ x. It is easy to see that this property
is absolute between transitive ZFC-models. Since U is nonempty, there is a
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cofinal branch through T and, by Mostowski’s Absoluteness Theorem (see
[Jec03, Theorem 25.4]), there is a branch through T that is an element of
M . We can conclude GM1 ∩ U �= ∅. This argument shows that GM1 is dense
in τ .

Fix h ∈ GM2 . Let U be a basic open set in τ defined by g ∈ G1 andX ⊂ ω
as above. The above computations show that we may assume g ∈ GM1 and

U ∩GM1 = {k ∈ GM1 | ιg � X = ιk � X}

is a basic open set in τM . The subset

(ιh � GM1 )
−1”U = (ιh � GM1 )

−1”(GM1 ∩ U)

is an element of τM , because ιh � GM1 is continuous with respect to τM inM .
By the above remarks, the subset is also an element of τ̄ . This shows that
the map ιh � GM1 : GM1 −→ G1 is a group homomorphism that is continuous
with respect to τ̄ and τ . By Proposition 4.2.3, there is a unique group
homomorphism h∗ : G1 −→ G1 that extends ιh � GM1 and is continuous
with respect to τ .

For all h ∈ GM2 , the map (h
−1)∗ ◦ h∗ is the identity on the dense subset

GM1 and is therefore the identity on G1. This shows h
∗ ∈ Aut(G1) with

(h∗)−1 = (h−1)∗. We let π(h) denote the unique element of G2 with h∗ =
ιπ(h) � G1. This means ιπ(h) � GM1 = ιh � GM1 and π is injective. Moreover,

if g ∈ GM1 ⊆ G1, then ιπ(g) � G = ιg � G and this shows g = π(g).

Given h0, h1 ∈ GM2 , our definitions imply that ιπ(h0·h1) is equal to

ιπ(h0)·π(h1) on G
M
1 and therefore on G1. This shows π(h0 ·h1) = π(h0) ·π(h1)

holds for all h0, h1 ∈ GM2 and π is a group homomorphism. �





CHAPTER 5

Examples of special pairs

The notion of special pairs was introduced by Itay Kaplan and Saharon
Shelah in [KS09] to analyze automorphism towers of centreless groups.
Given a special pair �G,A�, this notion allows us to measure the complexity
of the group G by interpreting it as a set of subsets of T 1A . For example, if
A is countable, then we can easily identify subsets of T 1A with elements of
Cantor space ω2 (i.e. reals) and talk about the complexity of G in terms of
descriptive set theory (i.e. as definable sets of reals).

The aim of this chapter is to further investigate this notion and a
strengthening of it. This work will produce various examples of special
pairs that are not of the form �Gα, A� for some ordinal α and a centreless
group G with domain A.

In the first section, we will introduce the notion of strongly special pair
and show that the statement of Theorem 2.2.5 also holds if we replace special
pair by strongly special pair. Section 5.2 shows how strongly special pairs can
be constructed using groups of autohomeomorphisms of certain Hausdorff
spaces. This construction relies on methods and results developed by Robert
R. Kallman in [Kal86]. In the last section, we will use a result of Manfred
Droste, Michèle Giraudet and Rüdiger Göbel from [DGG01] to show that
there are special pairs that are not strongly special.

The results of this chapter are contained in [Lücc].

5.1. Strongly special pairs

This section focuses on the following definition and its connection with
automorphism towers.

Definition 5.1.1. Given a group G and a subset A of the domain of
G, we call the pair �G,A� strongly special if qftG,A(g) ⊆ qftG,A(h) implies
g = h for all g, h ∈ G.

We will show that the statement of Theorem 2.2.5 still holds if we replace
special pair by strongly special pair. We start by generalizing Lemma 2.2.3.

Lemma 5.1.2. If G is a group and A is a subset of the domain of G,
then the following statements are equivalent.

(1) �G,A� is a strongly special pair.
(2) If g ∈ G and ϕ : �A ∪ {g}�G −→ G is a group homomorphism with

ϕ � A = idA, then ϕ(g) = g.

65
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Proof. Assume that �G,A� is a strongly special pair, g ∈ G and

ϕ : �A ∪ {g}�G −→ G

is a group homomorphism with ϕ � A = idA. An easy induction shows that
tG(g) ∈ �A∪ {g}�G and ϕ(t

G(g)) = tG(ϕ(g)) hold for every term t(v) ∈ T 1A .
In particular, qftG,A(g) ⊆ qftG,A(ϕ(g)) and we can conclude g = ϕ(g).

Assume that the second statement holds. Fix elements g0, g1 ∈ G with
qftG,A(g0) ⊆ qftG,A(g1). Pick t0, t1 ∈ T

1
A with t

G
0 (g0) = t

G
1 (g0). Then

t0 ∗ t
−1
1 ∈ qftG,A(g0) ⊆ qftG,A(g1)

and tG0 (g1) = t
G
1 (g1). Given h ∈ �A∪ {g0}�G, there is a term t(v) ∈ T 1A with

tG(g0) = h and, if we define ϕ(h) = tG(g1), then the above computations
show that ϕ(h) does not depend on the choice of t. Moreover, these compu-
tations directly imply that ϕ : �A ∪ {g0}�G −→ G is a group homomorphism
with ϕ(g0) = g1 and ϕ � A = idA. By our assumption, we have g0 = g1. �

This characterization allows us to prove a version of [KS09, Claim 3.8]
for strongly special pairs. Note that the proofs of the two statements are
almost identical.

Lemma 5.1.3. Let �G,A� be a strongly special pair and H be a group
such that G is a normal subgroup of H and CH(G) = {1G}. Then �H,A� is
a strongly special pair.

Proof. Let h ∈ H and ϕ : �A ∪ {h}�H −→ H be a group homomor-

phism with ϕ � A = idA. Pick a ∈ A. Then ah ∈ G, ϕ(ah) = aϕ(h) ∈ G
and, if we define ψ = ϕ � �A ∪ {ah}�G, then ψ : �A ∪ {ah}�G −→ G is
a group homomorphism with ψ � A = idA. By our assumption, we have
ah = ψ(ah) = aϕ(h). This argument shows h · ϕ(h−1) ∈ CH(A).

Now fix g ∈ G and define ξ : �A ∪ {g}�G −→ G by

ξ = ιh·ϕ(h−1) � �A ∪ {g}�G.

By the above computations, we have ξ � A = idA and this means

g = ξ(g) = gh·ϕ(h
−1).

We can conclude h · ϕ(h−1) ∈ CH(G) = {1G} and h = ϕ(h). �

We are now ready to prove the promised version of Theorem 2.2.5 for
strongly special pairs. Again, the proofs of both results are almost identical.

Theorem 5.1.4 ([Lücc, Theorem 2.9]). Let �G,A� be a strongly special
pair with CG(A) = {1G} and �Gα | α ∈ On� be an automorphism tower of
G. If α ∈ On, then �Gα, A� is a strongly special pair.

Proof. We prove the statement of the theorem by induction.
Assume �Gα, A� is a strongly special pair. If h ∈ CGα+1(Gα), then

ιh � Gα = idGα and h = 1G. Since Gα is a normal subgroup of Gα+1, we
can apply Lemma 5.1.3 to see that �Gα+1, A� is also a strongly special pair.
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Let α be a limit ordinal and assume that �Gβ , A� is a strongly special pair
for every β < α. Given g0, g1 ∈ Gα with qftGα,A(g0) ⊆ qftGα,A(g1), there is
an ordinal β < α with g0, g1 ∈ Gβ and it is easy to see that qftGα,A(gi) =
qftGβ ,A(gi). In particular, we have g0 = g1. �

5.2. Groups of autohomeomorphism

In this section, we produce a variety of examples of strongly special
pairs using certain group actions on Hausdorff spaces. Given a group G
that consists of autohomeomorphisms of a Hausdorff space and satisfies a
locally movability condition, we will construct a subset A of the domain of
G such that �G,A� is strongly special pair and the cardinality of A is equal
to the cardinality of a basis of the corresponding Hausdorff space.

Definition 5.2.1. Let G be a group and �X, τ� be a Hausdorff space.
We say that G acts locally mixing on �X, τ� if the following statements hold.

(1) G is a subgroup of the group H(τ) of all autohomeomorphisms of
�X, τ�.

(2) If U is an element of τ that consists of more than one point, then
there is a g ∈ G \ {1G} with g � (X \ U) = idX\U .

This condition also appears in the study of topological spaces that can
be reconstructed from their autohomeomorphism groups (see [Rub89]).

We present some easy examples of autohomeomorphism groups acting
locally mixing on the corresponding topological space. Given a topological
space �X, τ� and a subset A of X, we let Ā denote the closure of A with
respect to τ , δA denote the boundary of A with respect to τ and τA denote
the corresponding subspace topology on A induced by τ .

Proposition 5.2.2. Let �X, τ� be a Hausdorff space. Assume that for
every subset U in τ with at least two points, there is a V ⊆ U in τ such that
V̄ ⊆ U and �V̄ , τV̄ � has a nontrivial autohomeomorphisms π with π � δV =
idδV . Then H(τ) acts locally mixing on �X, τ�.

Proof. Let U be an element of τ with more than one point. Pick V
and π as above and define π∗ = π ∪ idX\V̄ . We show that π

∗ is continuous
with respect to τ in every x ∈ X.

If x ∈ X \ V̄ , then this statement is trivial, because π∗ � (X \ V̄ ) = idX\V̄
and X \ V̄ is open. Given x ∈ δV and W1 open in τ with x = π∗(x) ∈ W1,

there is W̃0 in τV̄ with x ∈ W̃0 and W̃0 ⊆ π−1”(V̄ ∩W1). Pick W0 in τ with

W̃0 = V̄ ∩W0. Then x ∈ W0 ∩W1 and W0 ∩W1 ⊆ π∗−1”W1. Finally, if
x ∈ V and W1 is open in τ with π∗(x) ∈ W1, then π(x) = π∗(x) ∈ V ∩W1

and there is W̃0 in τV̄ with x ∈ W̃0 and W̃0 ⊆ π−1”(V ∩W1). Pick W0 in τ

with W̃0 = V̄ ∩W0. Then x ∈ V ∩W0 and V ∩W0 ⊆ π∗−1”W1. �

Example 5.2.3. Let �X, τ� be an n-dimensional topological manifold.
If U is an element of τ and x ∈ U , then there is a W in τ with x ∈ W
and �W, τW � is homeomorphic to an open Euclidean n-ball. The preimage
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of U ∩W under this homeomorphism is nonempty and therefore contains an
open n-ball. This shows that there is a V in τ such that V̄ ⊆ U ∩W ⊆ U
and there is an homeomorphism of �V̄ , τV̄ � and [−1, 1]n that maps δV onto
the boundary of [−1, 1]n in Rn. There are nontrivial autohomeomorphisms
of [−1, 1]n that map its boundary in Rn onto itself and, by the above calcu-
lations, this shows that H(τ) acts locally mixing on �X, τ�.

Example 5.2.4. Remember that a partial order P = �P,<P� is a tree if
the set prec(p) = {q ∈ P | q <P p} is a well-ordered by <P for every p ∈ P .
Given a tree T = �T,<T�, we call a subset of T a branch through T if it is
linearly ordered by <T and downwards-closed. We let [T] denote the set of
all maximal branches through T . Let τT denote the topology on [T] generated
by basic open sets of the form Ut = {b ∈ [T] | t ∈ b} with t ∈ T .

Let T = �T,<T� be a tree with the property that for every t ∈ T there is
an automorphism π of T with π(t) = t and π(s) �= s for some s ∈ T with
t <T s. We show that H(τT) acts locally mixing on �[T], τT�. By Propo-
sition 5.2.2, it suffices to show that the space �Ut, (τT)Ut� has a nontrivial
autohomeomorphism for every t ∈ T , because

[T] \ Ut =
�

{Us | s and t are incompatible in T}

and this shows that Ut is also closed in τT. If t ∈ T and π ∈ Aut(T)
with π(t) = t and π(s) �= s for some s ∈ T with t <T s, then we define
π∗(b) = π”b for every b ∈ Ut. It is easy to check that π∗ : Ut −→ Ut is
continuous with respect to (τT)Ut and if s ∈ b ∈ Ut, then π∗(b) �= b, because
π(s) <T s or s <T π(s) would contradict the well-foundedness of <T below
the element s.

In particular, if α is an ordinal, X is a set with at least two elements and
<αX is the tree consisting of functions f with dom(f) ∈ α and ran(f) ⊆
X ordered by inclusion, then [<αX] can be identified with the set αX of
all functions from α to X and the group of autohomeomorphisms of the
corresponding topological space acts locally mixing on it.

Example 5.2.5. Let L = �L,<L� be a linear order without end-points
that has a nontrivial automorphism and the property that every nonempty,
open interval (a, b) = {l ∈ L | a <L l <L b} is order-isomorphic to L. If
τL denotes the order-topology on L, then Proposition 5.2.2 directly implies
that Aut(L) acts locally mixing on �L, τL�. In particular, the group of order-
preserving bijections of the rational numbers Q acts locally mixing on Q
equipped with the order topology.

We use methods and computations from Robert R. Kallman’s proof of
[Kal86, Theorem 1.1] to derive the following result.

Theorem 5.2.6 ([Lücc, Theorem 5.6]). Let G be a group, �X, τ� be a
Hausdorff space and B be a basis of τ . If G acts locally mixing on �X, τ�
and �X, τ� does not have exactly two isolated points, then there is a subset
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A of the domain of G of cardinality |B| + ℵ0 such that �G,A� is a strongly
special pair and CG(A) = {1G}.

For the rest of this section, we fix a Hausdorff space �X, τ�, a basis B
of τ and a group G that acts locally mixing on �X, τ�. Given Y ⊆ X,
we define

SubB(Y ) = {U ∈ B | U ⊆ Y, |U | > 1}.

and define Ȳ to be the closure of Y with respect to τ . Finally, we fix a
sequence �gU ∈ G \ {1G} | U ∈ SubB(X)� such that gU � (X \ U) = idX\U
holds for all U ∈ SubB(X).

In the following, we adopt the arguments of [Kal86, Section 2] to our
setting to prove Theorem 5.2.6.

Lemma 5.2.7. Let U be open in τ such that U contains either no points
isolated in τ or more than two points isolated in τ . The following statements
are equivalent for all h ∈ G.

(1) h � Ū = idŪ .
(2) ghU � = gU � holds for all U � ∈ SubB(U).

Proof. Assume h � Ū = idŪ and fix U
� ∈ SubB(U). Then

h ◦ gU � = gU � ◦ h

holds, because we have gU � � (X \ Ū) = idŪ .
Now, assume that ghU � = gU � holds for all U

� ∈ SubB(U). By the con-
tinuity of h, it suffices to show h � U = idU . Let IU denote the set of all
points in U that are isolated in τ . We start by showing h � IU = idIU . If
U contains no isolated points, then this is trivial. We may therefore assume
|IU | > 2.

Assume, toward a contradiction, that there is an a ∈ IU with h(a) �= a.
We can find distinct b0, b1 ∈ IU with a /∈ {b0, b1}. Then {a, bi} ∈ SubB(U)
and g{a,bi} = (a bi). Our first assumption yields (a bi)

h = (a bi) and this
implies h”{a, bi} = {a, bi}. We can conclude b0 = h(a) = b1, a contradiction.
This shows h � IU = idIU .

Assume, toward a contradiction, that there is an x ∈ U with h(x) �= x.
Since x is not isolated in τ and �X, τ� is a Hausdorff space, we can find
V ∈ SubB(U) with V ∩ (h”V ) = ∅. If y ∈ V with gV (y) �= y, then ghV = gV ,
gV (h(y)) = h(y) and therefore

h(y) = (gV ◦ h)(y) = (h ◦ gV )(y) �= h(y),

a contradiction. �

Set A = {gU | U ∈ SubB(X)} and, for all U, V ∈ SubB(X), we define

tU,V (v) ≡ v ∗ ġU ∗ v
−1 ∗ ġV ∗ v ∗ ġ

−1
U ∗ v−1 ∗ ġ−1V ∈ T 1A .

Lemma 5.2.8. Let U and V be open subsets in τ . Assume that both U
and X \ V̄ contain either no points isolated in τ or more than two points
isolated in τ . Then the following statements are equivalent for all h ∈ G.
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(1) tGU �,V �(h) = 1G for all U � ∈ SubB(U) and V � ∈ SubB(X \ V̄ ).

(2) h”Ū ⊆ V̄ .

Proof. The first statement is equivalent to ghU � ◦ gV � = gV � ◦ g
h
U � for all

U � ∈ SubB(U) and V � ∈ SubB(X \ V̄ ). By Lemma 5.2.7, this is equivalent
to ghU � � (X \ V̄ ) = idX\V̄ for all U

� ∈ SubB(U) and we can reformulate this
to

(1)∗ (gU � ◦ h
−1) � (X \ V̄ ) = h−1 � (X \ V̄ ) for all U � ∈ SubB(U).

By our assumptions, the set of all points which are moved by some gU � with
U � ∈ SubB(U) is dense in U with respect to τ . This shows that (1)∗ is
equivalent to U ∩ h−1”(X \ V̄ ) = ∅. This statement holds if and only if
h”U ⊆ V̄ and this is equivalent to the second statement of the lemma. �

Proof of Theorem 5.2.6. We may assume that B is closed under fi-
nite unions. By our assumptions, there are not exactly two points in X
which are isolated in τ . If there is exactly one point x0 ∈ X which is iso-
lated in τ , then it is easy to check that there is a group isomorphic to G
that acts locally mixing on �X \{x0}, τ

∗�, where τ∗ is the subspace topology
induced by τ . We may therefore assume that there are either no points
isolated in τ or more than two.

Pick g0, g1 ∈ G with qftG,A(g0) ⊆ qftG,A(g1) and assume, toward a
contradiction, that g0 �= g1 holds. Then U = {x ∈ X | g0(x) �= g1(x)} is
nonempty and open in τ . Let IU denote the set of all points in U that are
isolated in τ .

First, assume that there is an x ∈ U \ IU . We can find disjoint subsets
V0 and V1 in B such that gi(x) ∈ Vi for i < 2 and X \ V̄0 contains either no
points isolated in τ or more than two. Now we can find U � ∈ B with x ∈ U �,
gi”U

� ⊆ Vi and U
� contains either no points isolated in τ or more than two.

This means g0”Ū
� ⊆ V̄0 and we can apply Lemma 5.2.8 to conclude

tU ��,V � ∈ qftG,A(g0) ⊆ qftG,A(g1)

for all U �� ∈ SubB(U
�) and V � ∈ SubB(X \ V̄0). Another application of

the lemma yields g1”Ū
� ⊆ V̄0 and this means g1(x) ∈ V̄0 ⊆ X \ V1, a

contradiction.
This shows IU = U �= ∅. Pick x ∈ IU . By the above assumptions, we

can find distinct y0, y1 ∈ X isolated in τ with x /∈ {y0, y1}. For all i < 2, we
have {x, yi}, {g0(x), g0(yi)} ∈ B, g{x,yi} = (x yi) and

gg0{x,yi} = (g0(x) g0(yi)) = g{g0(x),g0(yi)}.

The above equalities allow us to conclude

v ∗ ġ{x,yi} ∗ v
−1 ∗ ġ{g0(x),g0(yi)} ∈ qftG,A(g0) ⊆ qftG,A(g1).

In particular, g1”{x, yi} = {g0(x), g0(yi)} and this shows g1(x) = g0(yi),
because g1(x) �= g0(x). We can conclude g0(y0) = g1(x) = g0(y1) and
therefore y0 = y1, a contradiction.
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If h ∈ CG(A), then ghU = gU holds for all U ∈ SubB(X). By our
assumptions and the above remark, we can apply Lemma 5.2.7 to conclude
h = idX = 1G. �

5.3. Special pairs that are not strongly special

In this section, we construct special pairs that are not strongly spe-
cial using simple groups as building blocks. A theorem of Manfred Droste,
Michèle Giraudet and Rüdiger Göbel will allow us to prove the following
result.

Theorem 5.3.1 ([Lücc, Theorem 6.1]). If κ is an uncountable regular
cardinal, then there is a special pair �G,A� such that G has cardinality 2κ,
A has cardinality κ, CG(A) = {1G} and �G,A� is not strongly special.

We start with a simple statement about normal subgroups of automor-
phism groups of centreless groups.

Proposition 5.3.2. Let G be a centreless group and N be a normal
subgroup of Aut(G). Then N �= {idG} if and only if Inn(G) ∩N �= {idG}.

Proof. Assume Inn(G) ∩N = {idG}. Given π ∈ N , we have

ιπ(g)·g−1 = π ◦ ιg ◦ π
−1 ◦ ι−1g ∈ Inn(G) ∩N

and therefore π(g) = g for all g ∈ G. This shows N = {idG}. �

In the proof of Theorem 5.3.1, we start by constructing a special pair
�G,A� with |G| = |A| that is not strongly special. The following proposition
will allow us to replace G by a group of higher cardinality.

Proposition 5.3.3. Let G and H be groups, A be a subset of the domain
of G and A∗ = A× {1H} ∪ {1G} ×H ⊆ G×H.

(1) If �G,A� is a special pair and Z(H) = {1H}, then �G×H,A∗� is a
special pair.

(2) If �G,A� is not a strongly special pair, then �G × H,A∗� is not a
strongly special pair.

Proof. (1) Assume that Z(H) = {1H} holds, �g∗, h∗� ∈ G×H and

ϕ : �A∗ ∪ {�g∗, h∗�}�G×H −→ G×H

is a monomorphism with ϕ � A∗ = idA∗ and ϕ(�g∗, h∗�) �= �g∗, h∗�. Then
�k, 1H� ∈ dom(ϕ) for every k ∈ �A∪ {g∗}�G and ϕ(�g∗, 1H�) �= �g∗, 1H�. Let
pH : G×H −→ H denote the canonical projection and define

ξ : �A ∪ {g∗}�G −→ H; k �−→ (pH ◦ ϕ)(�k, 1H�).

Given k ∈ �A ∪ {g∗}�G and h ∈ H, we have

ξ(k) · h = (pH ◦ ϕ)(�k, 1H�) · (pH ◦ ϕ)(�1G, h�) = (pH ◦ ϕ)(�k, h�)

= (pH ◦ ϕ)(�1G, h�) · (pH ◦ ϕ)(�k, 1H�) = h · ξ(k)
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and this shows ran(ξ) ⊆ Z(H) = {1H}. We get a function

ϕ̄ : �A ∪ {g∗}�G −→ G

with ϕ(�k, 1H�) = �ϕ̄(k), 1H� for all k ∈ �A ∪ {g∗}�G. By our assumptions,
ϕ̄ is a monomorphism, ϕ̄ � A = idA and ϕ̄(g∗) �= g∗. This shows that �G,A�
is not a special pair.

(2) Assume g∗ ∈ G and ϕ̄ : �A ∪ {g}�G −→ G is a homomorphism
with ϕ̄ � A = idA and ϕ̄(g∗) �= g∗. If �k, h� ∈ �A∗ ∪ {�g∗, 1H�}�G×H , then
k ∈ �A ∪ {g∗}�G and we can define

ϕ : �A∗ ∪ {�g∗, 1H�}�G×H −→ G×H; �k, h� �−→ �ϕ̄(k), h�.

Then �G×H,A∗� is not a strongly special pair, because ϕ is a homomorphism
with ϕ � A∗ = idA∗ and ϕ(�g∗, 1H�) �= �g∗, 1H�. �

For the remainder of this section, we fix simple non-abelian groups

H and S and a homomorphism c : Aut(S) −→ Aut(H) with Inn(H) ⊆
ran(c). Define

G = H �cAut(S)

and A = {1H} ×Aut(S).

Lemma 5.3.4. The following statements are equivalent.

(1) There is an isomorphism Ψ : H −→ S with c(π) = Ψ−1 ◦ π ◦Ψ for
all π ∈ Aut(S).

(2) �G,A� is not a special pair.

Proof. Assume (1) holds. Define

φ : G −→ G; �h, π� �−→ �h−1, ιΨ(h) ◦ π�.

Clearly, φ is injective and φ � A = idA. If �h
−1, ιΨ(h) ◦ π� = �h, π� holds

with h ∈ H and π ∈ Aut(S), then ιΨ(h) = idS and this means h = 1H . This
shows φ �= idG. Given �h0, π0�, �h1, π1� ∈ G, we have

φ(�h0, π0� · �h1, π1�) = φ(�h0 · c(π0)(h1), π0 ◦ π1�)

= �c(π0)(h
−1
1 ) · h

−1
0 , ιΨ(h0·c(π0)(h1)) ◦ π0 ◦ π1�

= �h−10 · c(π0)(h
−1
1 )

h0 , ιΨ(h0) ◦ ι(π0◦Ψ)(h1) ◦ π0 ◦ π1�

= �h−10 · (ιh0 ◦ c(π0))(h
−1
1 ), ιΨ(h0) ◦ ι

π0

Ψ(h1)
◦ π0 ◦ π1�

= �h−10 · c(ιΨ(h0) ◦ π0)(h
−1
1 ), ιΨ(h0) ◦ π0 ◦ ιΨ(h1) ◦ π1�

= �h−10 , ιΨ(h0) ◦ π0� · �h
−1
1 , ιΨ(h1) ◦ π1�

= φ(�h0, π0�) · φ(�h1, π1�),

because our assumption implies that c(ιΨ(h)) = ιh holds for all h ∈ H. This
computation shows that φ is a group monomorphism and �G,A� is not a
special pair by Lemma 2.2.3.
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In the other direction, assume that �G,A� is not a special pair. By
Lemma 2.2.3, there is a g∗ = �h∗, π∗� ∈ G and a monomorphism

φ : �A ∪ {g∗}�G −→ G

with φ � A = idA and φ(g∗) �= g∗. This implies h∗ �= 1H , �h∗, idS� ∈ dom(φ)
and φ(�h∗, idS�) �= �h∗, idS�.

Let N = {h ∈ H | �h, idS� ∈ dom(φ)}. If h ∈ N and k ∈ H, then
ιk = c(π) for some π ∈ Aut(S),

�hk, idS� = �c(π)(h), idS� = �1H , π� · �h, idS� · �1H , π
−1�

= �h, idS�
�1H ,π� ∈ dom(φ)

and hk ∈ N . This shows that N is a normal subgroup of H and therefore
N = H, because 1H �= h∗ ∈ N .

Let pAut(S) : G −→ Aut(S) denote the canonical projection map and
define

Ψ̄ : H −→ Aut(S); h �−→ (pAut(S) ◦ φ)(�h, idS�).

Assume, toward a contradiction, that ker(Ψ̄) = H. This assumption
gives us a map ξ : H −→ H with φ(�h, idS�) = �ξ(h), idS� for all h ∈ H. By
our assumptions, ξ is a monomorphism. If h, k ∈ H and π ∈ Aut(S) with
c(π) = ιk, then

φ(�hk, idS�) = φ(�h, idS�
�1H ,π�) = φ(�h, idS�)

�1H ,π� = �ξ(h)k, idS�,

and ξ(h)k = ξ(hk) ∈ ran(ξ). This shows that ran(ξ) is a normal subgroup of
H. Since φ is injective and H is nontrivial, we can conclude that H = ran(ξ)
and ξ is a nontrivial automorphism of H. Pick h ∈ H and π ∈ Aut(S) with
c(π) = ιh. If k ∈ H, then

�kξ(h), π� = �kξ(h), idS� · �1H , π� = φ(�ξ−1(k)h, idS�) · φ(�1H , π�)

= φ(�c(π)(ξ−1(k)), π�)

= φ(�1H , π�) · φ(�ξ
−1(k), idS�) = �1H , π� · �k, idS�

= �c(π)(k), π� = �kh, π�

and therefore h−1 · ξ(h) ∈ Z(H) = {1H}. This shows ξ = idH , a contradic-
tion.

By the above computations, Ψ̄ : H −→ Aut(S) is a monomorphism. If
π ∈ Aut(S) and h, k ∈ H with φ(�h, idS�) = �k, Ψ̄(h)�, then

�c(π)(k), Ψ̄(h)π� = �k, Ψ̄(h)��1H ,π�

= φ(�h, ids�
�1H ,π�) = φ(�c(π)(h), idS�)

(5.1)

and therefore Ψ̄(h)π = Ψ̄(c(π)(h)) ∈ ran(Ψ̄). This shows that ran(Ψ̄) is
a nontrivial normal subgroup of Aut(S). By Proposition 5.3.2, we have
Inn(S) ∩ ran(Ψ̄) �= {idS} and this implies

Inn(S) = Inn(S) ∩ ran(Ψ̄) = ran(Ψ̄),
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because both Inn(S) and ran(Ψ̄) are simple groups. We have shown that
Ψ̄ : H −→ Inn(S) is an isomorphism.

Define Ψ : H −→ S to be the isomorphism ι−1S ◦ Ψ̄. Given π ∈ Aut(S)
and h ∈ H, the equalities in (5.1) show Ψ̄(c(π)(h)) = Ψ̄(h)π and this implies

c(π)(h) = Ψ̄−1(Ψ̄(h)π) = Ψ̄−1
�

ιπΨ(h)

�

= (Ψ−1 ◦ ι−1S )
�

ι(π◦Ψ)(h)
�

= (Ψ−1 ◦ π ◦Ψ)(h).

This equality shows that Ψ is an isomorphism with the desired properties.
�

Corollary 5.3.5. If �G,A� is not a special pair, then c is injective. �

Proposition 5.3.6. �G,A� is not a strongly special pair.

Proof. Define

ϕ : G −→ G; �h, π� �−→ �1H , π�.

Then ϕ is a group homomorphism with ϕ � A = idA and ϕ(�h, idS�) �=
�h, idS� for all h ∈ H\{1H} �= ∅. By Lemma 5.1.2, this implies the statement
of the proposition. �

We finish this chapter by stating the coding result mentioned above and
proving Theorem 5.3.1.

Theorem 5.3.7 ([DGG01, Corollary 4.7]). Let κ be an uncountable reg-
ular cardinal and G be a group of cardinality at most κ. Then there exists a
simple group S of cardinality κ such that G is isomorphic to Aut(S)/Inn(S).

Proof of Theorem 5.3.1. Let κ be a regular uncountable cardinal.
It is well-known that the group Alt(κ) is a simple, non-abelian group of
cardinality κ. By Theorem 5.3.7, there is a simple group S of cardinality
κ such that there is an isomorphism ξ : Aut(S)/Inn(S) −→ Alt(κ). If we
define

c : Aut(S) −→ Aut(Alt(κ)); π �−→ ιξ(πInn(S)),

then c is a non-injective group homomorphism with Inn(Alt(κ)) ⊆ ran(c).
We set Ḡ = Alt(κ) �c Aut(S) and Ā = {idκ} × Aut(S). Since both S and
Aut(S)/Inn(S) have cardinality κ, Aut(S) has the same cardinality and Ḡ
is a group of cardinality κ. Corollary 5.3.5 implies that �Ḡ, Ā� is a special
pair and Proposition 5.3.6 shows that it is not strongly special.

Pick �h, π� ∈ CḠ(Ā). Given σ ∈ Aut(S), we have

�h, π� = �h, π��idκ,σ� = �c(σ)(h), πσ�

and this implies π ∈ Z(Aut(S)) = {idS}. If k ∈ Alt(κ) and σ ∈ Aut(S) with
c(σ) = ιk, then

�h, idS� = �h, idS�
�idκ,σ� = �c(σ)(h), idS� = �hk, idS�

and hence h ∈ Z(Alt(κ)) = {idκ}.
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DefineG = Ḡ×Alt(κ) and A = Ā×{idκ}∪{1Ḡ}×Alt(κ). By Proposition
5.3.3, �G,A� is a special pair that is not strongly special. Moreover, it is
easy to see that both G and A have cardinality κ and

CG(A) = CḠ(Ā)× Z(Alt(κ)) = {�1Ḡ, idκ�}.

Let �Gα | α ∈ On� be an automorphism tower of G. Then G1 has car-
dinality 2κ, because the automorphism group of Alt(κ) is isomorphic to the
group Sym(κ) of all permutations of κ and every automorphism of Alt(κ)
induces a unique automorphism of G. By Theorem 2.2.5, �G1, A� is a special
pair with CG1(A) = {1G}. Finally, �G1, A� is not a strongly special pair,
because otherwise �G,A� would be a strongly special pair. �
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CHAPTER 6

Generalized Baire spaces

In this chapter, we establish basic definitions to talk about definable sub-
sets of generalized Baire spaces and their structural properties. We introduce
two regularity properties that generalize classical notions from descriptive
set theory. Then we investigate their structural implications and prove that,
if κ is a regular uncountable cardinal with κ = κ<κ, then it is consistent
that all simply definable subsets of κκ possess these properties.

This analysis allows us to show that the existence of simply definable
well-orderings of subsets of κκ of order-type 2κ does not follow from the
axioms of set theory for such cardinals κ. In combination with the results
of the next chapter, this implies that the existence of such well-orderings is
actually independent from the standard axioms of set theory.

The work presented in this chapter forms a part of [Lücb].

6.1. Introduction

If κ is an infinite cardinal and n is a natural number, then we equip the
space (κκ)n with the usual topological structure induced by basic open sets
of the form

Us0,...,sn−1 = {�x0, . . . , xn−1� ∈ (
κκ)n | s0 ⊆ x0, . . . , sn−1 ⊆ xn−1}

with s0, . . . , sn−1 ∈
<κκ. The resulting topological space is called generalized

Baire space for κ.
It is easy to see that a subset of κκ is closed with respect to this topology

if and only if it is equal to the set [T ] of all cofinal branches through some
tree T on κn of height κ.

Definition 6.1.1. Let κ be an infinite cardinal. A subset A of (κκ)n is
a κ-Borel subset if it is contained in the smallest algebra of sets on (κκ)n

that contains all open subsets and is closed under unions of size κ.

The following definition directly generalizes the notion of a projective
subset of Baire Space to our setting.

Definition 6.1.2. Let κ be an infinite cardinal.

(1) A subset A of (κκ)n is a Σ1
1-subset if there is a tree T on κ

n+1 with
A = p[T ].

(2) A subset A of (κκ)n is a Π1
k-subset if (

κκ)n \A is a Σ1
k-subset.

(3) A subset A of (κκ)n is a Σ1
k+1-subset if there is a Π1

k-subset B of

(κκ)n+1 with A = ∃xB.

79
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(4) A subset A of (κκ)n is a Δ1
k-subset if it is both a Σ1

k-subset and a
Π1
k-subset.

Fix an uncountable regular κ with κ = κ<κ. In Section 6.2 we will
present a folklore result showing that the Σ1

1-subsets are exactly the subsets
of (κκ)n that are definable in the structure �Hκ+ ,∈� by a Σ1-formula with
parameters. This shows that the Σ1

1-subsets form an interesting and rich
class of subsets. Moreover, this result can be used to show that the κ-Borel
subsets of κκ form a proper subclass of the class of Δ1

1-subsets (see [FHK,
Theorem 18]).

We will now specify what we mean by simply definable well-order of a
subset of κκ.

Definition 6.1.3. A Σ1
1-well-ordering of a subset of κκ is a Σ1

1-subset
R of κκ× κκ with the property that �dom(R), R� is a well-ordering, where

dom(R) = {x ∈ κκ | (∃y) [R(x, y) ∨R(y, x)]}.

In the following sections, we will generalize the perfect subset property
and the notion of Σ1

2-absoluteness to generalized Baire spaces. Then we will
prove that certain fragments of these principles are consistent and derive
some structural implications from them. We will use these results to prove
the following statements about the possible non-existence of certain Σ1

1-well-
orderings of subsets of κκ.

Theorem 6.1.4. Let κ be an uncountable regular cardinal with κ = κ<κ

and ν > κ be a cardinal. If G is Add(κ, ν)-generic over V and R is a Σ1
1-

well-ordering of a subset of κκ in V[G], then dom(R) �= (κκ)V[G] and the
order-type of �dom(R), R� has cardinality at most (2κ)V in V[G].

To state the second theorem, we need to introduce a large cardinal prop-
erty.

Definition 6.1.5. A cardinal ν is Σ2-reflecting if it is inaccessible and
the structure �Vν ,∈� is a Σ2-elementary submodel of �V,∈�.

Note that the consistency strength of the existence of a Σ2-reflecting
cardinal is bounded by the consistency strength of the existence of a Mahlo
cardinal.

Theorem 6.1.6. Let κ be an uncountable regular cardinal with κ = κ<κ,
ν > κ be an inaccessible cardinal and γ be a cardinal. Assume that either
γ > ν or ν is a Σ2-reflecting cardinal. If G×H is (Col(κ,<ν)×Add(κ, γ))-
generic over V and R is Σ1

1-well-ordering of a subset of κκ in V[G][H], then
the order-type of �dom(R), R� has cardinality at most κ in V[G][H].

6.2. Σ1
1-subsets of κκ and Hκ+

Given an uncountable regular cardinal κ, it is a well-known that a subset
of κκ is Σ1

1 if and only if it is definable in the structure �Hκ+ ,∈� by a Σ1-
formula with parameters. In this section, we will give a proof of this folklore
result that emphasises the absoluteness properties of this correspondence.
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Before we start, we fix some more notation. Given an ordinal λ closed
under Gödel-Pairing, f ∈ λX for some nonempty set X and α < λ, we define
(f)α to be the unique function g ∈ λX with g(β) = f(≺α, β�) for all β < λ.

By using Gödel-Pairing to code κ-many branches into one branch, it is
easy to prove the following proposition.

Proposition 6.2.1. Let κ be an infinite cardinal.

(1) If �Tα | α < κ� is a sequence of trees on κn+1, then there are trees
TU and TI on κn+1 such that

p[TU ] =
�

α<κ

p[Tα] and p[TI ] =
�

α<κ

p[Tα]

hold in every transitive ZFC-model that contains V.
(2) If T is a tree on κn+2, then there is a tree T∗ on κn+1 such that

p[T∗] = ∃xp[T ] holds in every transitive ZFC-model that contains
V. �

Given a limit ordinal λ closed under Gödel-Pairing and x ∈ λ2, we define
∈x to be the unique binary relation on λ such that

α ∈x β ⇐⇒ x(≺α, β�) = 1

holds for all α, β < λ.

Proposition 6.2.2. Let κ be an uncountable regular cardinal. There is
a tree T on κ× κ such that

(6.1) p[T ] = {x ∈ κ2 | �κ,∈x� is well-founded and extensional }

holds in every transitive ZFC-model that contains V and has the same <κκ
as V.

Proof. Given λ < κ closed under Gödel-Pairing, we define T λ to be
the set of all pairs �s, t� ∈ λ2 × λκ such that �λ,∈s� is well-founded and, if
α, β, γ < λ with α �= β and t(≺α, β�) = γ, then s(≺γ, α�) �= s(≺γ, β�).
We define T to be the tree on κ× κ consisting of all �s, t� with lh(s) = lh(t)
and �s � λ, t � λ� ∈ T λ for all λ ≤ lh(s) closed under Gödel-Pairing. �

Proposition 6.2.3. Let κ be an infinite cardinal, ϕ(v0, . . . , vn−1) be a
formula in the language of set theory and α0, . . . , αn−1 < κ. There is a tree
T on κ× κ such that

(6.2) p[T ] = {x ∈ κ2 | �κ,∈x� |= ϕ(α0, . . . , αn−1)}

holds in every transitive ZFC-model that contains V and has the same <κκ
as V.

Proof. We can assume that ϕ(v0, . . . , vn−1) is in prenex normal form.
We construct the corresponding trees inductively. If ϕ is atomic (or the
negation of an atomic formula), then T is simply the tree of all �s, t� ∈
<κκ×<κκ with lh(s) = lh(t) and either lh(s) ≤ ≺α0, α1� or s(≺α0, α1�) = 1
(or s(≺α0, α1�) = 0 in the case of a negated atomic formula).
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If ϕ(v0, . . . , vn−1) ≡ (∃x) ϕ0(v0, . . . , vn−1, x) and α < κ, then we can use
the induction hypothesis to find a tree Tα on κ× κ such that

p[Tα] = {x ∈ κ2 | �κ,∈x� |= ϕ0(α0, . . . , αn−1, α)}

holds in every transitive ZFC-model that contains V and has the same <κκ
as V. By Proposition 6.2.1, there is a tree T on κ×κ with the property that
p[T ] =

�

α<κ p[Tα] holds upwards-absolutely. This implies that T satisfies
(6.2) in every transitive ZFC-model that contains V and has the same <κκ
as V.

The trees in the universal quantifier case, the disjunction case and the
conjunction case are constructed in the same fashion using Proposition 6.2.1.

�

Note that the sets mentioned in (6.1) and (6.2) are actually κ-Borel
subsets of κκ. In particular, if κ has uncountable cofinality, then the set of
codes for well-founded relations on κ is closed in κκ.

Lemma 6.2.4. Let ϕ(u0, . . . , vn+m−1) be a Σ1-formula, κ be an uncount-
able regular cardinal and xn, . . . , xn+m−1 ∈ Hκ+ . Then there is a tree T on
κn+1 such that

(6.3) p[T ] = {�x0, . . . , xn−1� ∈ (
κκ)n | �Hκ+ ,∈� |= ϕ(x0, . . . , xn+m−1)}

holds in every transitive ZFC-model that contains V and has the same <κκ
as V.

Proof. Fix bijections bj : κ −→ tc({xn+j} ∪ κ) for all j < m. Let
M be a transitive ZFC-model containing V with the same <κκ as V and
x0, . . . , xn−1 ∈ (κκ)M . Now, �HM

κ+ ,∈� is a model of ϕ(x0, . . . , xn+m−1) if

and only if there is a transitive N ∈ HM
κ+ with κ, x0, . . . , xn+m−1 ∈ N and

�N,∈� is a model of this statement.
If ϕ(�v) ≡ (∃x)ϕ0(�v, x) for some Δ0-formula ϕ0, then the above statement

is equivalent to the existence of x ∈ (κ2)M and y, z0, . . . , zm ∈ (κκ)M with
the following properties.

(1) �κ,∈x� is well-founded and extensional and

�κ,∈x� |= ϕ0(0, . . . , n+m).

(2) �κ,∈x� |= “ω ∈ On”.
(3) �κ,∈x� |= “ω + j + 1 = tc({n+ j} ∪ ω)” for all j < m.
(4) �κ,∈x� |= “ i : ω −→ ω ” for all i < n.
(5) For all α, β < κ, we have

�κ,∈x� |= “α∈̇β ∧ β∈̇ω ”

if and only if α = y(γ) and β = y(δ) for some γ < δ < κ.
(6) For all α, β < κ and i < n, we have

�κ,∈x� |= “ i(α) = β ”

if and only if α = y(γ) and β = (y ◦ xi)(γ) for some γ < κ.
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(7) For all α, β < κ and j < m, we have

�κ,∈x� |= “α∈̇β ∧ β∈̇(ω + 1 + j)”

if and only if α = (zj ◦ bj)(γ) and β = (zj ◦ bj)(δ) for some γ, δ < κ
with bj(γ) ∈ bj(δ).

Using Proposition 6.2.2 and 6.2.3, there is a tree T0 on κm+n+3 with the
property that, for allM as above, �x0, . . . , xn−1, y, z0, . . . , zm� ∈ [T ]

M if and
only if y, �z witness that �HM

κ+ ,∈� |= ϕ(x0, . . . , xn+m−1) holds. By Proposi-
tion 6.2.1, this completes the proof of the lemma. �

Let κ be an infinite cardinal with κ = κ<κ. Given n < ω, there is a
Σ1-formula ϕ(u0, . . . , un−1, v0, v1) such that for every tree T on κn+1 the
equality (6.3) holds with m = 2, p0 = κ and p1 = T in every transitive
ZFC-model that contains V. This shows that Σ1

1-subsets of
κκ correspond

to Σ1(Hκ+)-subsets in a way that is upwards-absolute between transitive
ZFC-models with the same <κκ. We will often use this folklore fact to keep
constructions in our proofs simple.

There is a similar correspondence for κ-Borel subsets: a subset A of
κκ is κ-Borel if and only if there is a transitive set M of cardinality κ, a
formula ϕ ≡ ϕ(v0, . . . , vn−1) in the language of set theory expanded by an
unary relation symbol and parameters z0, . . . , zm−1 ∈ M such that κ ∈ M ,
�M,∈� |= ZF− and

x ∈ A ⇐⇒ �M,∈, x� |= ϕ(z0, . . . , zn−1)

holds for all x ∈ κκ.

6.3. The perfect subset property

We generalize the perfect subset property of subsets of Baire Space to
subsets of arbitrary function spaces κκ and establish a connection between
this property and generic absoluteness.

In the remainder of this chapter, we fix a regular uncountable car-

dinal κ that satisfies κ = κ<κ.

Definition 6.3.1. Let λ be a limit ordinal.
We say that a map ι : <λ2 −→ (<λλ)n is a continuous order-embedding if

the following statements hold for all s0, s1 ∈
<λ2 with ι(si) = �ti0, . . . , t

i
n−1�.

(1) If s0 � s1, then t
0
k � t1k for all k < n.

(2) If s0 and s1 are incompatible in
<λ2, then there is a k < n such

that t0k and t
1
k are incompatible in

<λλ.
(3) If lh(s0) ∈ Lim ∩ λ and k < n, then

t0k =
�

{uαk | (∃α < lh(s0)) ι(s0 � α) = �uα0 , . . . , u
α
n−1�}.

Definition 6.3.2. Let λ be a limit ordinal and A be a subset of λλ. We
say that A contains a perfect subset if there is a continuous order-embedding
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ι : <λ2 −→ <λλ such that [Tι] ⊆ A, where Tι is the tree

Tι = {t ∈ <λλ | (∃s ∈ <λ2) t ⊆ ι(s)}.

on λ.

Let C be a class of subsets of κκ. We say that subsets in C have the perfect
subset property if every subset in C of cardinality bigger than κ contains a
perfect subset. We present existing results related to the above definitions
following [FHK, Chapter IV].

• We call a tree T on κ a weak κ-Kurepa tree if ht(T ) = κ, [T ] has
cardinality at least κ+ and there are stationary many α < κ such
that the cardinality of T ∩ ακ is at most the cardinality of α. The
idea of using Kurepa trees to construct closed subsets without the
perfect subset property goes back to [MV93, Section 5].

Let ι : <κ2 −→ <κκ be a continuous order-embedding and T
be a tree on κ of height κ with [Tι] ⊆ [T ]. First, assume that
there is an α < κ such that ι”α2 � <βκ for all β < κ. Let α
be minimal with this property. By the regularity of κ, there is a
β < κ with ι”<α2 ⊆ <βκ. The set C = {s ∈ α2 | lh(ι(s)) ≥ β} has
cardinality κ and ι(s) � β ∈ T for all s ∈ C. We can conclude that
T ∩ βκ has cardinality at least κ in this case. Now, assume that
for every α < κ there is a β < κ with ι”α2 ⊆ T ∩ <βκ. Then the
set {α < κ | ι”α2 ⊆ T ∩ ακ} is closed and unbounded in κ. In both
cases, T is not a weak κ-Kurepa tree.

The existence of weak κ-Kurepa trees therefore provides exam-
ples for the failure of the perfect subset property for closed subsets
of κκ. In particular, if “V = L” holds, then the perfect subset
property for closed sets fails for all uncountable regular cardinals
(see [FHK, Section IV.2]).

• If κ is successor cardinal, then we call a tree T on κ a κ-Kurepa
tree if ht(T ) = κ, [T ] has cardinality at least κ+ and T ∩ ακ has
cardinality less than κ for every α < κ. Given a limit cardinal κ, we
call a tree T on κ a κ-Kurepa tree if ht(T ) = κ, [T ] has cardinality
at least κ+ and the cardinality of T ∩ ακ is at most the cardinality
of α.

If all closed subsets of κκ have the perfect subset property,
then there are no κ-Kurepa trees and κ+ is inaccessible in L by an
argument of Robert Solovay (see [Jec71, Section 4]).

• Let ν > κ be an inaccessible cardinal and G be Col(κ,<ν)-generic
over V. An argument of Philipp Schlicht shows that Σ1

1-subsets
of κκ in V[G] have the perfect subset property. We will provide a
proof of this statement in Section 6.5 (Proposition 6.5.8).

• Large cardinal properties of κ do not imply the perfect subset prop-
erty for closed subsets of κκ. If κ is a supercompact cardinal, then
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there is a partial order that preserves the supercompactness of κ
and adds a weak κ-Kurepa tree (see [FHK, Section IV.2]).

To further investigate the perfect subset property for Σ1
1-subsets of

κκ,
we need a well-known result saying that ZFC proves generic absoluteness for
Σ1
1(
κκ)-formulae (i.e., formulae with parameters which define Σ1

1-subsets of
κκ) under <κ-closed forcings.

Proposition 6.3.3. Let T be a tree on κn of height κ and P be a <κ-
closed partial order. If there is a p ∈ P with p � “ [Ť ] �= ∅”, then [T ] �= ∅.

Proof. Let p � “ �τ0, . . . , τn−1� ∈ [Ť ] ” for some names τ0, . . . , τn−1 ∈
VP. Given α < κ, the set of conditions q ∈ P with

(∃�t0, . . . , tn−1� ∈ T )
�

lh(t0) ≥ α ∧ q � “ ť0 ⊆ τ0 ∧ · · · ∧ ťn−1 ⊆ τn−1 ”
�

is dense below p. Since P is <κ-closed, we can define a ≤P-descending
sequence �pα ∈ P | α < κ� and an ascending sequence

��tα0 , . . . , t
α
n−1� ∈ T | α < κ�

in V such that p0 = p, lh(tα0 ) ≥ α and pα � “ ťαi ⊆ τi ” holds for all α < κ and
i < n. But this construction implies that the tuple �

�

α<κ t
α
0 , . . . ,

�

α<κ t
α
n−1�

is an element of [T ] in V. �

We look at a stronger version of the perfect subset property for Σ1
1-

subsets.

Definition 6.3.4. Let T be a tree on κn+1. An ∃x-perfect embedding
into T is a continuous order-embedding ι : <κ2 −→ (<κκ)n+1 with the
following properties.

(1) ran(ι) ⊆ T .
(2) If s0, s1 ∈

<κ2 are incompatible sequences with ι(si) = �ti0, . . . , t
i
n�,

then there is a k < n such that the sequences t0k and t
1
k are incom-

patible in <κκ.

The idea behind the above definition is that a ∃x-perfect embedding into
T witnesses that the projection p[T ] has a perfect subset.

Proposition 6.3.5. Let T be a tree on κ × κ and ι be a ∃x-perfect
embedding into T . If we define ῑ : <κ2 −→ <κκ to be the continuous order-
embedding such that ῑ(s) = t0 for all s ∈ <κ2 with ι(s) = �t0, t1�, then
ῑ witnesses that p[T ] has a perfect subset in every transitive ZFC-model
containing V. �

The following lemma establishes a connection between the existence of
∃x-perfect embeddings and absoluteness properties of Σ1

1-subsets of
κκ.

Lemma 6.3.6. The following statements are equivalent for every tree T
on κ× κ of height κ.

(1) There is a ∃x-perfect embedding into T .
(2) If P is <κ-closed partial order, then 1lP � “P(κ̌) � V̌→ p[Ť ] � V̌”.
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(3) 1lAdd(κ,1) � “p[Ť ] � V̌”.

(4) There is a <κ-closed partial order P with 1lP � “p[Ť ] � V̌”.

Proof. Assume (i) holds, ι is a ∃x-perfect embedding into T and P is
a <κ-closed partial order that adds a new subset of κ. If we define

S = {�t0 � α, t1 � α� ∈ T | �t0, t1� ∈ ran(ι), α ≤ lh(t0)},

then S is a subtree of T of height κ.
Let G be P-generic over V, x0 ∈ (κ2)V[G] \V and define

y =
�

{t0 | (∃α < κ) ι(x0 � α) = �t0, t1�},

Clearly, y ∈ p[S]V[G] ⊆ p[T ]V[G]. Assume, toward a contradiction, that
y ∈ V holds. Then the tree Sy = {t ∈ <κκ | �y � lh(t), t� ∈ S} is an element

of V and [Sy]
V[G] �= ∅. By Proposition 6.3.3, there is a z ∈ [Sy]

V and
this means �y, z� ∈ [S]V. But this means that there is an x1 ∈ (

κ2)V with
y =

�

{t0 | (∃α < κ) ι(x1 � α) = �t0, t1�}. Given α < κ with x0(α) �= x1(α)
and ι(xi � (α+ 1)) = �ti0, t

i
1�, we have t

0
0 and t

1
0 incompatible and t

0
0, t

1
0 ⊆ y,

a contradiction.
Now, assume (iv) holds. Fix τ0, τ1 ∈ V

P with

1lP � “τ0 /∈ V ∧ �τ0, τ1� ∈ [Ť ] ”.

We inductively construct order-embeddings i : <κ2 −→ P and ι : <κ2 −→ T
with the following properties.

(1) ι is continuous.
(2) If s ∈ <κ2 and ι(s) = �t0, t1�, then i(s) � “ ť0 ⊆ τ0 ∧ ť1 ⊆ τ1 ”.
(3) If s0, s1 ∈ <κ2 are incompatible, then ι(s0), ι(s1) ∈ T are incom-

patible.

Assume that i � <α2 and ι � <α2 are already constructed for some α < κ. If
α ∈ Lim and s ∈ α2, then there is a condition i(s) ∈ P with p ≤P i(s � ᾱ)
for all ᾱ < α. Define �t0, t1� ∈

<κκ× <κκ by setting

ti =
�

{t̄i | (∃ᾱ < α) ι(s � α) = �t̄0, t̄1�}.

By construction, i(s) � “ ťi ⊆ τi ” and this means �t0, t1� ∈ T . Moreover,
given incompatible s0, s1 ∈ α2, there is an ᾱ < α such that s0 � ᾱ and s1 � ᾱ
are incompatible and our assumptions imply that ι(s0) and ι(s1) are also
incompatible.

If α = ᾱ + 1 and s ∈ ᾱ2, then there are conditions q0, q1 ≤P i(s) and
β, γ0, γ1 < κ with β ≥ lh(ι(s)), qi � “τ0(β̌) = γ̌i ” and γ0 �= γ1, because
we have i(s) � “τ0 /∈ V”. Given i < 2, we can find i(s��i�) ∈ P and
ι(s��i�) = �ti0, t

i
1� ∈ T with i(s��i�) ≤ qi, lh(t

i
0) = β + 1 and i(s��i�) �

“ ťi0 ⊆ τ0 ∧ ťi1 ⊆ τ1 ”. It is easy to check that this partial embedding also
satisfies the above properties. �
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In the following, we investigate the correlation between the existence of a
perfect subset ofΔ1

1-subsets of the form p[T0] and the existence of ∃x-perfect
embeddings into T0. We need another notion of absoluteness.

Definition 6.3.7. Let Γ be a class of partial orders. We say that a
subset A of κκ is weakly Γ-persistently Δ1

1 if there are trees T0 and T1 on
κ × κ such that p[T0] = A, p[T1] =

κκ \ A and 1lP � “p[Ť1] =
κ̌κ̌ \ p[Ť0] ”

holds for all partial orders P in Γ.

Proposition 6.3.8. Let P be a <κ-closed partial order that adds a new
subset of κ, A be a subset of κκ and T0, T1 be trees on κ×κ witnessing that
A is weakly P-persistently Δ1

1. Then A has a perfect subset if and only if
1lP � “ Ǎ = p[Ť0]”.

Proof. Pick p ∈ P with p � “ Ǎ �= p[Ť0] ”. Assume, towards a con-
tradiction, that there is a q ≤P p with q � “p[Ť0] ⊆ V̌ ”. Let G be P-
generic over V with q ∈ G and pick y ∈ p[T0]

V[G] \ A ⊆ V. Define

Ty = {t ∈ <κκ | �y � lh(t), t� ∈ T0} ∈ V. Then [Ty]V[G] �= ∅ and this means
[Ty]

V �= ∅ by Proposition 6.3.3. But this implies y ∈ p[T0]
V = A, a contra-

diction. Therefore p � “p[Ť0] � V̌ ” and A has a perfect subset by Lemma
6.3.6.

In the other direction, let ι : <κ2 −→ <κκ witnesses that A has a perfect
subset and assume, toward a contradiction, that 1lP � “ Ǎ = p[Ť0] ” holds.

Let G be P-generic over V. By construction, [Tι]V[G] � V, p[T0]
V[G] = A ⊆

V and p[T1]
V[G] = (κκ)V[G] \ p[T0]

V[G] = (κκ)V[G] \ A. If we define T =

{�t0, t1� ∈ T1 | t0 ∈ Tι} ∈ V, then [T ]V[G] �= ∅ and therefore [T ]V �= ∅. But
this shows that ∅ �= [Tι]

V∩p[T1]
V ⊆ p[T0]

V∩p[T1]
V = ∅, a contradiction. �

6.4. Σ1
2-absoluteness

In this section, we generalize the notion of Σ1
2-absoluteness to our un-

countable context and investigate its structural implications.

Definition 6.4.1. Let Γ be a class of partial orders. We say that generic
absoluteness for Σ1

2(
κκ)-formulae under forcings in Γ holds if the implication

p �“(∃x0, . . . , xn ∈
κ̌κ̌)(∀y1, . . . , ym ∈ κ̌κ̌)�x0, . . . , xn, y0, . . . , ym� /∈ [Ť ] ”

−→ (∃x0, . . . , xn ∈
κκ)(∀y0, . . . , ym ∈ κκ)�x0, . . . , xn, y0, . . . , ym� /∈ [T ]

holds true for every partial order P in Γ, every condition p ∈ P and every
tree T on κm+n+2.

In Section 6.5, we will show that the consistency of generic absoluteness
for Σ1

2(
κκ)-formulae under forcing with <κ-closed partial orders can be es-

tablished from a relatively mild large cardinal assumption (Lemma 6.5.6).
We will also show that such generic absoluteness for Cohen forcing Add(κ, 1)
holds in every Add(κ, κ+)-generic extension of the ground model (Corollary
6.5.3).
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The referee of [Lücb] pointed out that it is possible to establish the
consistency of Σ1

2-absoluteness under certain classes of <κ-closed partial
orders without the use of large cardinals. Let Γ be a class of <κ-closed
partial orders such that elements of Γ satisfy the κ+-chain condition and Γ
is closed under forcing iterations with <κ-support in the ground model and
every generic extension by a forcing in Γ. If “2κ = κ+ ” holds in the ground

model, then there is a forcing iteration ���P<α | α ≤ κ+�, �Ṗα | α < κ+�� of

partial orders in Γ with <κ-support and a sequence �ṫα ∈ V
�P<α | α < κ+�

of names such that the following statements hold whenever α < κ+ with

α = ≺≺β, γ�, δ�, G is �P<α-generic over V and Ḡ is the corresponding filter
in �P<β .

(1) ṫḠβ is an enumeration of all subtrees of
<κκ in V[Ḡ] of length κ+.

(2) If ṫḠβ (γ) = T and (∃Q ∈ Γ) 1lQ � “p[Ť ] �= κ̌κ̌” holds in V[G], then

1l
ṖGα

� “p[Ť ] �= κ̌κ̌” holds in V[G].

If G is �P<κ+-generic over V, then generic absoluteness for Σ1
2(
κκ)-formulae

under forcings in Γ holds in V[G].

Proposition 6.4.2. Let Γ be a class of <κ-closed partial order that
contains the trivial partial order and assume that generic absoluteness for
Σ1
2(
κκ)-formulae under forcings in Γ holds. Then every Δ1

1-subset of κκ is
weakly Γ-persistently Δ1

1.

Proof. Let T0 and T1 witness that p[T0] is a Δ1
1-subset of

κκ. By
Proposition 6.2.1, there is a tree T such that “p[T ] = p[T0]∪ p[T1] ” holds in
V and every generic extension of V by a forcing in Γ.

Assume, toward a contradiction, that 1lP � “ κ̌κ̌ = p[Ť0] ∪ p[Ť1] ” holds
for some P ∈ Γ. Then there is a p ∈ P with

p � “(∃x ∈ κ̌κ̌)(∀y ∈ κ̌κ̌) �x, y� /∈ [Ť ] ”.

By Σ1
2-absoluteness, there is an x ∈

κκ with x /∈ p[T ] = κκ, a contradiction.
In the same way, we can use Proposition 6.3.3 to see that

1lP � “p[Ť0] ∩ p[Ť1] = ∅”

holds for every partial order P in Γ. �

Proposition 6.4.3. If generic absoluteness for Σ1
2(
κκ)-formulae under

Add(κ, 1) holds and T is a tree on κ × κ of height κ, then p[T ] contains a
perfect subset if and only if 1lAdd(κ,1) � “p[Ť ] � V̌”.

Proof. Let ι : <κ2 −→ <κκ witness that p[T ] has a perfect subset
and assume, toward a contradiction, that there is a p ∈ Add(κ, 1) with
p � “p[Ť ] ⊆ V̌ ”. By the results of Section 6.2, there is a tree T∗ on κ × κ
such that p[T∗] = p[T ] ∪ (κκ \ [Tι]) holds in V and every Add(κ, 1)-generic
extension of V. Since p � “ [Ťι] � V̌ ”, we get

p � “(∃x ∈ κ̌κ̌)(∀y ∈ κ̌κ̌) �x, y� /∈ [Ť∗] ”
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and absoluteness gives us an x ∈ κκ with x /∈ p[T∗] =
κκ, a contradiction. �

We apply the above results to prove statements about the length of
definable well-orders on subsets of κκ in the presence of Σ1

2-absoluteness.
Clearly, every Σ1

1-well-ordering of a subset of
κκ has order type less than

(2κ)+ and for every γ < κ+ there is such a well-ordering with order type γ.
Moreover, the results of Chapter 7 will show that it is consistent to have a
Σ1
1-well-ordering of a subset of

κκ of order-type greater than 2κ.

Proposition 6.4.4. Let Γ be a class of <κ-closed partial orders and
assume that generic absoluteness for Σ1

2(
κκ)-formulae under forcings in Γ

holds. If T is a tree on κ3 of such that p[T ] is a Σ1
1-well-ordering of a subset

of κκ and P ∈ Γ, then

1lP � “p[Ť ] is a Σ1
1-well-ordering of a subset of κ̌κ̌ ”.

Proof. We prove that p[T ] is a linear and well-founded relation in every
generic extension by a forcing in Γ; the other properties of a well-ordering
can be deduced in the same manner.

By the results of Section 6.2, there is a tree Tw in κ× κ such that

p[Tw] = {x ∈ κκ | (∀n < ω) �(x)n+1, (x)n� ∈ p[T ]}

holds in V and every generic extension of V by a forcing in Γ. By our
assumptions, p[Tw] = ∅ and Proposition 6.3.3 shows that 1lP � “p[Ťw] = ∅”
holds for all P in Γ. This shows that p[T ]V[G] is a well-founded relation in
every P-generic extension V[G] of V with P ∈ Γ.

As above, there is a tree Tl on κ
7 such that p[Tl] is equal to the set

{�x, x0, x1, y, y0, y1� ∈ (
κκ)6 | �x, y� ∈ p[T ] ∨ �y, x� ∈ p[T ]]

∨ [�x, x0, x1� /∈ [T ] ∧ �x0, x, x1� /∈ [T ]] ∨ [�y, y0, y1� /∈ [T ] ∧ �y0, y, y1� /∈ [T ]]}

in V and every generic extension of V by a forcing in Γ. Assume, toward
a contradiction, that there is a P in Γ and a P-generic extension V[G] of V
such that p[T ]V[G] is not a linear order on its domain. Then there is a p ∈ P
with

p � “(∃x, x0, x1, y, y0, y1 ∈
κ̌κ̌)(∀z ∈ κ̌κ̌) �x, x0, x1, y, y0, y1, z� /∈ [Tl] ”

and, by Σ1
2-absoluteness, p[T ] is not linear on its domain in V, a contradic-

tion. �

The proof of the following lemma uses an idea of Philipp Schlicht to
show that Σ1

2-absoluteness implies that Σ1
1-well-orders have small domains.

Lemma 6.4.5. Assume that generic absoluteness for Σ1
2(
κκ)-formulae

under Add(κ, 1) holds. If T is a tree on κ3 such that p[T ] is a Σ1
1-well-

ordering of a subset of κκ, then dom(p[T ]) contains no perfect subset.
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Proof. There is a tree T∗ on κ× κ such that p[T∗] = dom(p[T ]) holds
in V and every Add(κ, 1)-generic extension of V. Assume, toward a con-
tradiction, that p[T∗] contains a perfect subset and let G be Add(κ, 1)-
generic over V. We will construct sequences �Gn ∈ V[G] | n < ω� and
�xn ∈ (

κκ)V[G] | n < ω� such that the following statements hold true for
all n < ω.

(1) There is a Ḡ ∈ V[G] such that (Gn× Ḡ) is (Add(κ, 1)×Add(κ, 1))-
generic over V[G0, . . . , Gn−1] and V[G] = V[G0, . . . , Gn−1][Gn][Ḡ].

(2) We have xn ∈ V[G0, . . . , Gn], �xn+1, xn� ∈ p[T ]V[G0,...,Gn+1] and

(6.4) �V[G0, . . . , Gn],∈� |=
�

1lAdd(κ,1) � (∃x)
�

x /∈ V̌ ∧ �x, x̌n� ∈ p[Ť ]
��

.

There are H0, H1 ∈ V[G] such that H0 ×H1 is (Add(κ, 1)×Add(κ, 1))-
generic over V with V[G] = V[H0][H1]. By our assumptions and Proposition

6.4.3, there are y0, y1 ∈ V[G] with yi ∈ p[T∗]
V[Hi] \V. Since V[H0]∩V[H1] =

V, we have y0 �= y1 and there is an i∗ < 2 with �y1−i∗ , yi∗� ∈ p[T ]V[G].
Define x0 = yi∗ and G0 = Hi∗ . The homogeneity of Add(κ, 1) in V[G0] and
y1−i∗ ∈ V[G] \V[G0] imply (6.4).

Now assume G0, . . . , Gn and x0, . . . , xn with the above properties are
already constructed. Hence there are H0, H1 ∈ V[G] such that (H0×H1) is
(Add(κ, 1)×Add(κ, 1))-generic over V[G0, . . . , Gn] and

V[G] = V[G0, . . . , Gn][H0][H1].

By (6.4), there are y0, y1 ∈ V[G] with yi ∈ V[G0, . . . , Gn, Hi]\V[G0, . . . , Gn]
and �yi, xn� ∈ p[T ]V[G0,...,Gn,Hi]. Again, there is an i∗ < 2 with �y1−i∗ , yi∗� ∈
p[T ]V[G] and we can define Gn+1 = Hi∗ and xn+1 = yi∗ . As above, (6.4)
holds true.

Our construction shows �xn+1, xn� ∈ p[T ]V[G] for all n < ω. But p[T ]V[G]

is a Σ1
1-well-ordering of a subset of

κκ in V[G] by Proposition 6.4.4, a con-
tradiction. �

Corollary 6.4.6. If generic absoluteness for Σ1
2(
κκ)-formulae under

Add(κ, 1) holds, then there is no well-ordering of κκ whose graph is a Σ1
1-

subset of κκ× κκ. �

6.5. Two models with a nice structure theory for Σ1
1-subsets

We show that certain fragments of Σ1
2-absoluteness hold in two well-

known classes of ZFC-models and derive some consequences about the pos-
sible length of Σ1

1-well-orders of subsets of
κκ in these models. We start

with a standard result about Cohen-generic extensions of a ground model.

Lemma 6.5.1. Let ν > κ be a cardinal and X be a subset of ν of cardi-
nality κ+. If G is Add(κ, ν)-generic over V and Ḡ = G ∩ Add(κ,X), then
there is an elementary embedding

j : L(P(κ)V[Ḡ]) −→ L(P(κ)V[G])

with j � On = idOn and j � P(κ)V[Ḡ] = idP(κ)V[Ḡ] .



6.5. TWO MODELS WITH A NICE STRUCTURE THEORY FOR Σ
1
1-SUBSETS 91

Proof. We define P = P(κ)V [G] and P̄ = P(κ)V[Ḡ]. By the construc-
tion of L(P̄ ), there is a surjection

s : [On]<ω × P̄ −→ L(P̄ )

definable in L(P̄ ) by a formula ϕ ≡ ϕ(u, v0, v1, w) and the parameter P̄ .
Define

j(a) = b ⇐⇒ (∃x ∈ P̄ )(∃A ∈ [On]<ω)

[�L(P̄ ),∈� |= ϕ(a, x,A, P̄ ) ∧ �L(P ),∈� |= ϕ(b, x, A, P )].

In order to show that j is a well-defined function and an elementary embed-
ding with the above properties, it suffices to show that for all x0, . . . , xn−1 ∈
P̄ , A ∈ [On]<ω and every L∈-formula ψ ≡ ψ(u0, . . . , un−1, v0, . . . , vm−1, w)

�L(P̄ ),∈� |= ψ(�x,A, P̄ ) ⇐⇒ �L(P ),∈� |= ψ(�x,A, P ).

holds. There exist Ḡ0, Ḡ1 ∈ V[Ḡ] such that Ḡ0 is Add(κ, 1)-generic over
V and Ḡ1 is Add(κ, κ

+)-generic over V[Ḡ0] with �x ∈ V[Ḡ0] and V[Ḡ] =
V[Ḡ0][Ḡ1]. Moreover, there is G1 ∈ V[G] that is Add(κ, ν)-generic over
V[Ḡ0] with V[G] = V[Ḡ0][G1].

Let F be Col(ω, 2κ)V[G]-generic over V[G]. We show that there is a H ∈
V[G][F ] that is Add(κ, κ+)V-generic over V[Ḡ0] and satisfies P(κ)

V[G] =

P(κ)V[Ḡ0][H].

Work in V[G][F ]. Let �xn | n < ω� enumerate P(κ)V[G] and �αn | n < ω�

be strictly increasing and cofinal in κ+
V
. Define P = Add(κ, 1)V[Ḡ0], Pn =

�

i<n P, Q = Add(κ, κ+)V[Ḡ0] and Qn = Add(κ, αn)
V[Ḡ0]. Using the factor-

property of Cohen-Forcing, it is easy to define a sequence �Hn | n < ω� of
filters in P that satisfy the following properties for all n < ω.

(1) Hn ∈ V[G].
(2) Hn is P-generic over V[Ḡ0][H0, . . . , Hn−1] and xn is an element of

V[Ḡ0][H0, . . . , Hn].
(3) There is a G� ∈ V[G] that Add(κ, ν)-generic over V[Ḡ0][H0, . . . , Hn]

and satisfies V[G] = V[Ḡ0][H0, . . . , Hn][G
�].

For all n < ω, we let en : Pn −→ Pn+1 denote the natural inclusion. In
V[Ḡ0], there are isomorphisms in : Pn −→ Qn with in = in+1 ◦ en for all
n < ω. For all n < ω, H0 × · · · ×Hn−1 is Pn-generic over V[Ḡ0] and we can
define

H =
�

n<ω

in”(H0 × · · · ×Hn−1) ∈ P(Q)
V[G][F ].

We have

• Qn ⊆ Qn+1 ⊆
�

n<ω Qn = Q,
• e−1n ”(H0 × · · · ×Hn) = H0 × · · · ×Hn−1 and
• in”H0 × · · · ×Hn−1 = H ∩Qn is a filter in Qn for all n < ω.

This allows us to conclude that H is a filter in Q. We show that H is also Q-
generic over V[Ḡ0]. If A ∈ V[Ḡ0] is a maximal antichain in Q, then A ⊆ Qn

for some n < ω, because the Q satisfies the κ+-chain condition in V[Ḡ0]. By
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the above remarks, H∩Qn = in”(H0×· · ·×Hn−1) is Qn-generic over V[Ḡ0].
Therefore, we get A∩H �= ∅. Since Q satisfies the κ+-chain condition, it is

easy to see that P(κ)V[G] = P(κ)V[Ḡ0][H] holds.
The weak homogeneity of Add(κ, κ+) in V[Ḡ0] yields the following equiv-

alences.

�L(P̄ ),∈� |= ψ(�x,A, P̄ )

⇐⇒ �V[Ḡ0][Ḡ1],∈� |= (∃p)
�

p = P(κ) ∧ ψ(�x,A, p)L(p)
�

⇐⇒ �V[Ḡ0],∈� |=
�

1lAdd(κ,κ+) � (∃p)
�

p = P(κ̌) ∧ ψ(�̌x, Ǎ, p)L(p)
��

⇐⇒ �V[Ḡ0][H],∈� |= (∃p)
�

p = P(κ) ∧ ψ(�x,A, p)L(p)
�

⇐⇒ �L(P ),∈� |= ψ(�x,A, P ).

�

This result has two useful corollaries in our context.

Corollary 6.5.2. Let ν > κ be a cardinal and G be Add(κ, ν)-generic

over V. Then the axiom of choice fails in �L(P(κ)V[G]),∈�. In particular,
the graph of a well-order of κκ is not a Σ1

n-subset of κκ× κκ in V[G].

Proof. This follows directly from Lemma 6.5.1 and [Kan03, Proposi-
tion 5.1(b)]. �

Corollary 6.5.3. Let λ and ν be cardinals with ν > κ. If G is
Add(κ, ν)-generic over V, then generic absoluteness for Σ1

2(
κκ)-formulae

under Add(κ, λ) holds in V[G].

Proof. Let T ∈ V[G] be a tree on κm+n+1 and assume

1lAdd(κ,λ) � “(∃x0, . . . , xn ∈
κ̌κ̌)(∀y1, . . . , ym ∈ κ̌κ̌)

�x0, . . . , xn, y0, . . . , ym� /∈ [Ť ] ”

holds in V[G]. We may assume that T ∈ V[Ḡ] with Ḡ = G ∩Add(κ, κ+).
Let γ = max{λ+, ν+} and F be Add(κ, γ)-generic over V with G =

F ∩ Add(κ, ν). There are H0, H1 ∈ V[F ] such that H0 is Add(κ, λ)-generic
over V[G], H1 is Add(κ, γ)-generic over V[G][H0] and V[F ] = V[G][H0][H1].
By the above assumption, the statement

(∃x0, . . . , xn ∈
κκ)(∀y1, . . . , ym ∈ κκ)�x0, . . . , xn, y0, . . . , ym� /∈ [T ]

holds in V[G][H0]. An application of Proposition 6.3.3 shows that this state-

ment also holds in V[F ] = V[G][H0][H1] and hence in L(P(κ)
V[F ]). By

Lemma 6.5.1, it holds in L(P(κ)V[Ḡ]) and in V[Ḡ]. Since V[G] is either
equal to V[G] or an Add(κ, ν)-generic extension of V[Ḡ], we can use Propo-
sition 6.3.3 again to conclude that the statement holds in V[G]. �

Proposition 6.5.4. Let ν > κ be a cardinal. If G is Add(κ, ν)-generic
over V and A is a Σ1

1-subset of κκ of cardinality bigger than (2κ)V in V[G],
then A has a perfect subset in V[G].
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Proof. Fix a tree T on κ × κ with A = p[T ]V[G]. There are G0, G1 ∈
V[G] such that G0 is Add(κ, κ

+)-generic over V, T ∈ V[G0], G1 is Add(κ, ν)-
generic over V[G0] and V[G] = V[G0][G1]. Since (2

κ)V[G0] = (2κ)V, we get

p[T ]V[G0] � p[T ]V[G] and there is a ∃x-perfect embedding into T in V[G0]
by Lemma 6.3.6. Proposition 6.3.5 implies that p[T ] has a perfect subset in
V[G]. �

The combination of Lemma 6.4.5, Corollary 6.5.3 and Proposition 6.5.4
directly imply the statement of Theorem 6.1.4. The absoluteness properties
of the coding forcing developed in Chapter 7 will show that it is consistent
to have Σ1

1-well-orderings of subsets of
κκ of order-type (2κ)V in Add(κ, ν)-

generic extensions of the ground model V. Therefore, the statement of
Theorem 6.1.4 is optimal with respect to this assumption.

Another way to produce models of set theory with a nice structure the-
ory for Σ1

1-subsets of
κκ is to use large cardinals and the Levy-Collapse and

mimic classical constructions. We will repeatedly use the following folkloris-
tic fact.

Lemma 6.5.5. Let ν be a cardinal with ν = ν<κ and P be a <κ-closed
partial order.

(1) If P has cardinality at most ν, then Col(κ, ν) and P×Col(κ, ν) are
forcing equivalent.

(2) If P has cardinality less than ν and λ<κ < ν holds for all λ < ν,
then Col(κ,<ν) and P× Col(κ,<ν) are forcing equivalent.

Proof. See [Fuc08, Corollary 2.3] and [Fuc08, Corollary 2.4]. �

Generic absoluteness for Σ1
3(
ωω)-formulae is equiconsistent with the ex-

istence of a Σ2-reflecting cardinal (see [BF01] and [FMW92]). The con-
sistency of generic absoluteness for Σ1

2(
κκ)-formulae under forcing with <κ-

closed partial orders follows from a direct generalization of the proof of this
result.

Lemma 6.5.6. Let ν > κ be a Σ2-reflecting cardinal and γ be a cardinal.
If G×H is (Col(κ,<ν)×Add(κ, γ))-generic over V, then generic absolute-
ness for Σ1

2(
κκ)-formulae under <κ-closed forcings holds in V[G][H].

Proof. In V[G][H], let T be a tree on κm+n+1 and Q be a <κ-closed
partial order such that

p � “(∃x0, . . . , xn ∈
κ̌κ̌)(∀y1, . . . , ym ∈ κ̌κ̌)�x0, . . . , xn, y0, . . . , ym� /∈ [Ť ] ”

holds for some p ∈ Q.
We can find F ∈ V[G][H], ν̄ < ν and i < 2 such that F is (Col(κ, ν̄) ×

Add(κ, i))-generic over V, T ∈ V[F ] and V[G][H] is a (Col(κ, ν)×Add(κ, γ̄))-
generic extension of V[F ] for some γ̄ ∈ {0, γ}. Then ν is a Σ2-reflecting

cardinal in V[F ]. Let Q̇ ∈ V[F ] be a (Col(κ, ν) × Add(κ, γ̄))-name for Q
such that 1lCol(κ,ν)×Add(κ,γ̄) � “ Q̇ is a <κ-closed partial order”.
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By Lemma 6.5.5, there is a cardinal λ > ν̄ such that the partial order

((Col(κ, ν)×Add(κ, γ̄)) ∗ Q̇)× Col(κ,<λ)

is forcing equivalent to Col(κ,<λ) in V[F ]. Proposition 6.3.3 and the weak
homogeneity of Col(κ,<λ) imply that

(∃λ > ν̄)(∃P)
�

λ is a cardinal, P = Col(κ,<λ) and

1lP � “(∃x0, . . . , xn ∈
κ̌κ̌)(∀y1, . . . , ym ∈ κ̌κ̌)

�x0, . . . , xn, y0, . . . , ym� /∈ [Ť ] ”
�

(6.5)

holds in V[F ]. We can apply Σ2-elementarity to see that (6.5) holds in Vν [F ]
and hence there is a cardinal λ∗ < ν that witnesses that (6.5) holds in V[F ].
There is F∗ ∈ V[G][H] such that F∗ is Col(κ,<λ∗)-generic over V[F ] and
V[G][H] is a generic extension of V[F ][F∗] by a <κ-closed partial order. A
final application of Proposition 6.3.3 shows that

(∃x0, . . . , xn ∈
κκ)(∀y0, . . . , ym ∈ κκ) �x0, . . . , xny0, . . . , ym� /∈ [T ]

holds in V[G][H]. �

Another generalization of the proof of the absoluteness result mentioned
above shows that the consistency strength of Σ1

2-absoluteness under <κ-
closed partial orders is exactly a Σ2-reflecting cardinal.

Lemma 6.5.7. Assume that generic absoluteness for Σ1
2(
κκ)-formulae

under <κ-closed forcings holds. Then κ+ is a Σ2-reflecting cardinal in L.

Proof. Let ν = κ+. First, assume, toward a contradiction, that there
is an α < κ+ such that ν = (α+)L. By the results of Section 6.2, there is a
tree T on κ× κ such that p[T ] is equal to the set of all x ∈ κ2 with

�Hκ+ ,∈� |= “ �κ,∈x� is a well-order of order-type β and there is a

surjection f : α −→ β that is an element of L”

in V and every generic extension of V by a <κ-closed forcing.
Let G be Col(κ, ν)-generic over V and x ∈ (κ2)V[G] such that �κ,∈x� is

a well-order of order-type ν. Then x /∈ p[T ]V[G] and there is an x0 ∈ (κκ)V

with x0 /∈ p[T ]V, a contradiction. Hence ν is inaccessible in L.
Let ϕ(v0, v1, v2) be a Δ0-formula, z ∈ Lν and µ > ν such that

�L,∈� |= (∀y) ϕ(x0, y, z)

holds for some x0 ∈ Lµ. Assume, toward a contradiction, that

�Lν ,∈� |= (∀x)(∃y) ¬ϕ(x, y, z).

This implies
�Hν ,∈� |= (∀x ∈ L)(∃y ∈ L) ¬ϕ(x, y, z)

and this is a Π2-statement with parameters in Hν . LetG be Col(κ, µ)-generic
over V. By Σ1

2-absoluteness and the results of Section 6.2, we have

�H(κ+)V[G] ,∈� |= (∃y ∈ L) ¬ϕ(x0, y, z)
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and we can conclude that ¬ϕ(x0, y0, z) holds for some y0 ∈ L, a contradic-
tion. �

Next, we present an argument due to Philipp Schlicht showing that it
is consistent that the class of all Σ1

1-subsets of
κκ has the perfect subset

property.

Proposition 6.5.8. Let ν > κ be an inaccessible cardinal and γ be a
cardinal. If G × H is (Col(κ,<ν) × Add(κ, γ))-generic over V and A is a
Σ1
1-subset of κκ of cardinality greater than κ in V[G][H], then A contains a

perfect subset in V[G][H].

Proof. Let A = p[T ]. As above, there is a ν̄ < ν, i < 2 and F ∈
V[G][H] such that F is Col(κ,<ν̄) × Add(κ, i)-generic over V, T ∈ V[F ]
and V[G][H] is a generic extension of V[F ] by a <κ-closed forcing. The set

p[T ]V[F ] has cardinality κ in V[G][H] and this means p[T ]V[F ] � p[T ]V[G][H].
By Lemma 6.3.6, there is a ∃x-perfect embedding into T in V[F ] and the set
p[T ]V[G][H] contains a perfect subset in V[G][H] by Proposition 6.3.5. �

As above, we can combine Lemma 6.4.5, Proposition 6.5.4, Lemma 6.5.6
and Proposition 6.5.8 to derive the statement of Theorem 6.1.6.





CHAPTER 7

Σ1
1-definability at uncountable regular cardinals

In this chapter, we present and prove the main result of [Lücb]: if κ is
an uncountable regular cardinal with κ = κ<κ and A is an arbitrary subset of
κκ, then there is <κ-closed partial order P of cardinality 2κ that satisfies the
κ+-chain condition and forces A to be a Δ1

1-subset of κκ in every P-generic
extension of the ground model V. The proof of this theorem builds upon
modifications of the well-known forcing that adds a κ-Kurepa trees and the
almost disjoint coding forcing developed by Robert Solovay.

One of the key features of this coding forcing is its absoluteness with
respect to further forcings: if we first force with the above coding forcing
and then with another σ-closed forcing that preserves the regularity of κ,
then the coded subset will still be a Σ1

1-subset in the final forcing exten-
sion. Moreover, there is a class of <κ-closed forcings that also preserves the
Δ1
1-definition produced by our coding forcing. This absoluteness has many

interesting implications, e.g. it allows us to show that generic absoluteness
for Σ1

3(
κκ)-formulae always fails. The first section of this chapter contains

the statements of our coding theorems and a detailed outline of their appli-
cations. The following sections contain the proofs of these results.

7.1. Introduction

The initial motivation behind the work of [Lücb] was to find generaliza-
tions of the following coding result due to Leo Harrington to uncountable
regular cardinals κ.

Theorem 7.1.1 ([Har77, Theorem 1.7]). Assume ω1 = ωL1 . For every
subset A of ωω, there is a partial order P with the following properties.

(1) P satisfies the countable chain condition.
(2) If G is P-generic over V, then A is a Π1

2-subset of ωω in V[G].

We give a brief overview of related existing results. If κ is an uncountable
regular cardinal and “V = L[x] ” holds in the ground model for some x ⊆ κ,
then we can apply Solovay’s almost disjoint coding forcing (see [JS70]) to
make an arbitrary subset of κκ Σ1

1-definable in a forcing extension of L[x] and
in any further forcing extension in which κ remains a cardinal. This follows
from the absoluteness properties of this coding and the fact that (κκ)L[x] is
a Σ1

1-subset of
κκ in all such extensions. Section 7.3 of this chapter contains

a detailed outline of the properties of this forcing.

97
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Now, assume that the GCH holds at κ. If A is an arbitrary subset
of κκ, then results of Sy-David Friedman show that there is a <κ-closed
partial order that satisfies the κ+-chain condition and adds a Σ1

1-definition
of A. Moreover, this coding is absolute with respect to all further forcing
extensions that preserve the regularity of κ and κ+. This coding technique
is called Canonical Function coding. A detailed discussion of this technique
can be found in [Fri10], [AF] and [FHa].

We will present a coding result which only requires the assumption that
the set of bounded subsets of κ has cardinality κ in the ground model. In
particular, the hypothesis “2κ = κ+ ” is not needed. Before we state this
result, we need to introduce some vocabulary.

Definition 7.1.2. Let κ be an infinite regular cardinal and Γ be a
class of partial orders that contains the trivial partial order. We say that a
subset A of κκ is Γ-persistently Σ1

1 if there is a tree T on κ × κ such that
1lP � “ Ǎ = p[Ť ] ” holds for every P in Γ.

We are now ready to state our first main result. See [Cum10, Definition
5.14] for the definition of α-strategically closed partial orders. As usual, we
write σ-strategically closed instead of (ω + 1)-strategically closed.

Theorem 7.1.3 ([Lücb, Theorem 1.5]). Let κ be a regular uncountable
cardinal with κ = κ<κ. For every subset A of κκ, there is a partial order P
that satisfies the following statements.

(1) P is <κ-closed, satisfies the κ+-chain condition and has cardinality
at most 2κ.

(2) If G is P-generic over V, then A is Γ-persistently Σ1
1 in V[G], where

Γ is the class of all σ-strategically closed partial orders in V[G] that
preserve the regularity of κ.

By combining the above absoluteness properties with uncountable ver-
sions of results from the proof of Theorem 7.1.1 in [Har77], we are able to
prove our second main result.

Theorem 7.1.4 ([Lücb, Theorem 1.6]). Let κ be a regular uncountable
cardinal with κ = κ<κ. For every subset A of κκ, there is a partial order P
that satisfies the following statements.

(1) P is <κ-closed, satisfies the κ+-chain condition and has cardinality
at most 2κ.

(2) If G is P-generic over V, then A is a Δ1
1-subset of κκ in V[G].

This coding will also have certain absoluteness properties.

Definition 7.1.5. Let κ be an infinite regular cardinal and Γ be a class
of partial orders that contains the trivial partial order. We say that a subset
A of κκ is Γ-persistently Δ1

1 if there are trees T0 and T1 on κ×κ such that T0
witnesses that A is Γ-persistently Σ1

1 and 1lP � “p[Ť1] =
κ̌κ̌ \ p[Ť0] ” holds

for all P in Γ.
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The proof of Theorem 7.1.4 will show that there is a nontrivial class
Γ of <κ-closed partial orders that satisfy the κ+-chain condition such that
the set coded in Theorem 7.1.4 is actually Γ-persistently Δ1

1 in the generic
extension. Both the forcing Add(κ, 1) that adds a Cohen-subset of κ and
the almost disjoint coding forcings at κ are contained in this class Γ and this
allows us to analyze certain structural properties of A in V[G].

Note that Proposition 6.3.8 implies that, given a class Γ is of <κ-closed
partial orders that contains both the trivial partial order and a partial order
that adds a new subset of κ and a Γ-persistently Δ1

1-subset A of κκ, A
contains no perfect subset if and only if it is Γ-persistently Δ1

1.
In the following, we present some applications of the above results and

the methods used in their proofs.
The Anticoding Theorem, proven by Itay Neeman and Jindřich Zapletal

(see [NZ98]), says that in the presence of large cardinals proper forcings do
not code any set of ordinals from the ground model into L(R) of the forcing
extension unless that set is already an element of L(R) of the ground model.
Given an uncountable regular cardinal κ with κ = κ<κ, an easy application
of the above results shows that it is possible to code new sets of ordinals into
L(P(κ)) by forcing with a κ-proper partial order (see [HR01, Definition 3.4]
for a definition of this class of partial orders).

Corollary 7.1.6. If κ is a regular uncountable cardinal with κ = κ<κ

and X is an arbitrary set, then there is a partial order P with the following
properties.

(1) P is <κ-closed and satisfies the κ+-chain condition.
(2) If G is P-generic over V, then 1lQ � “ X̌ ∈ L(P(κ̌))” holds in V[G]

for every σ-strategically closed partial order Q in V[G] that preserve
the regularity of κ.

Next, we consider definable well-orders of κκ. In [FHa], Sy-David Fried-
man and Peter Holy construct a class-sized partial order preserving ZFC and
large cardinals that forces GCH and adds a well-order of κκ whose graph
is a Δ1

1-subset of
κκ × κκ for every uncountable regular cardinal κ. In an-

other direction, David Asperó and Sy-David Friedman showed in [AF09]
that there is a class-sized partial order with the above preservation prop-
erties that forces GCH and adds a well-order κκ that is definable in the
structure �Hκ+ ,∈� by a formula without parameters for every uncountable
regular cardinal κ. A detailed discussion of the above results and the related
problem of obtaining lightface well-orders of low quantifier complexity can
be found in the first part of [Fri10].

We apply Theorem 7.1.3 to add a definable well-order of κκ with a forcing
that preserves both cofinalities and the value of 2κ.

Theorem 7.1.7 ([Lücb, Theorem 1.9]). If κ is a regular uncountable
cardinal with κ = κ<κ, then there is a partial order P with the following
properties.
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(1) P is <κ-closed, satisfies the κ+-chain condition and has cardinality
2κ.

(2) If G is P-generic over V, then there is a well-ordering of (κκ)V[G]

whose graph is a Δ1
2-subset of κκ× κκ in V[G].

Our next application deals with a quasi-ordering of trees that arises
naturally in infinitary model theory (see [HV90] and [Vää95]). Remember
that a structure �T,�T� is a tree if �T is a well-founded strict ordering on
T and the set precT(t) = {u ∈ T | t ≤T u} is well-ordered by �T for each
t ∈ T. As usual, we will just write T instead of �T,�T�. As above, a branch
through a tree T is a linearly ordered subset of T. Given an infinite cardinal
κ, we let Tκ denote the class of all trees T of cardinality at most κ such that
every branch through T has length less than κ.

Let T0 and T1 be elements of Tκ. We say that T0 is order-preserving
embeddable into T1(abbreviated by T0 ≤ T1) if there is a function f : T0 −→
T1 such that

t0 �T0 t1 −→ f(t0)�T1 f(t1)

holds for all t0, t1 ∈ T0. Note that f need not be injective.
There is a natural correspondence between elements of Tω and countable

ordinals and the above ordering of trees is equal to the ordering of the ordi-
nals under this correspondence. We may therefore think of elements of Tκ as
analogs of ordinals. We can combine Theorem 7.1.3 with the Boundedness
Lemma for κκ to get an easy and short proof of the following statement that
was proved in [MV93, Proof of Theorem 15] in the case “κ = ω1 ”.

Theorem 7.1.8 ([Lücb, Theorem 1.10]). If κ is a regular uncountable
cardinal with κ = κ<κ, then there is a partial order P with the following
properties.

(1) P is <κ-closed, satisfies the κ+-chain condition and has cardinality
at most 2κ.

(2) If G is P-generic over V, then there is a TG ∈ T
V[G]
κ such that

T ≤ TG holds for every tree T ∈ T Vκ .

Next, we consider stronger notions of projective absoluteness. Given an
uncountable regular cardinal κ with κ = κ<κ, the constructions carried out
in the proof of Theorem 7.1.7 show that we can define a Σ1

3-subset of
κκ

that is empty in every Add(κ, κ+)-generic extension of the ground model
and nonempty in a generic extension of the ground model by a certain <κ-
closed forcing that satisfies the κ+-chain condition. This shows that generic
absoluteness for Σ1

3(
κκ)-formulae under forcings with the above properties

is inconsistent with the axioms of ZFC for such cardinals κ.

Theorem 7.1.9 ([Lücb, Theorem 1.11]). Let κ be an uncountable regu-
lar cardinal with κ = κ<κ and a ⊆ κ such that <κκ ∈ L[a]. Then there is a
tree T on κ3 contained in L[a] and a partial order P such that the following
statements hold.
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(1) P is <κ-closed and satisfies the κ+-chain condition.
(2) 1lP � “ (∃x ∈ κ̌κ̌)(∀y ∈ κ̌κ̌) �x, y� ∈ p[Ť ]”.
(3) 1lAdd(κ,κ+) � “ (∀x ∈ κ̌κ̌)(∃y ∈ κ̌κ̌) �x, y� /∈ p[Ť ]”.

Again, the above result was known in the case where the GCH holds
at κ. The Canonical Function coding mentioned above can be applied to
construct such trees and extensions under this assumption.

7.2. Generic tree coding

This section contains the proof of Theorem 7.1.3. Our coding forcing
will be a modification of the standard forcing that adds a Kurepa tree (see
[Jec71, §3]). The main idea behind this modification is that it is possible
to code information about the elements of a subset A of κκ into the cofinal
branches of the generic tree.

For the remainder of this chapter, we fix an uncountable regular

cardinal κ that satisfies κ = κ<κ and an enumeration �sα | α < κ� of
<κκ with lh(sα) ≤ α for all α < κ and {α < κ | s = sα} unbounded in κ for
all s ∈ <κκ.

Definition 7.2.1. We call a pair �A, s� a κ-coding basis if the following
statements hold.

(1) A is a nonempty subset of κκ and s : κ −→ <κκ.
(2) ran(s) contains {x � α | x ∈ A, α < κ} and all constant functions

in <κκ.
(3) For all α < κ, lh(s(α)) ≤ α and {β < κ | s(α) = s(β)} is unbounded

in κ.

If s : κ −→ <κκ is the function defined by s(β) = sβ for all β < κ and
A is an arbitrary nonempty subset of A, then �A, s� is a κ-coding basis. In
view of applications of this coding forcing in Chapter 8, we work without
the assumption that s is surjective. In addition to the above objects, we
also fix a κ-coding basis �A, s� for the remainder of this section.

Definition 7.2.2. We define Ps(A) to be the partial order consisting of
conditions p = �Tp, fp, hp� with the following properties.

(1) Tp is a subtree of
<κ2 that satisfies the following statements.

(a) Tp has cardinality less than κ.
(b) If t ∈ Tp with lh(t) + 1 < ht(Tp), then t has two immediate

successors in Tp.

(2) fp : A
part
−−→ [Tp] is a partial function such that dom(fp) is a

nonempty set of cardinality less than κ.

(3) hp : A
part
−−→ κ is a partial function with the following properties.

(a) dom(hp) = dom(fp).
(b) For all x ∈ dom(hp) and α, β < ht(Tp) with α = ≺hp(x), β�,

we have

s(β) ⊆ x ⇐⇒ fp(x)(α) = 1.
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We define p ≤Ps(A) q to hold if the following statements are satisfied.

(a) Tp is an end-extension of Tq.
(b) For all x ∈ dom(fq), x ∈ dom(fp) and fq(x) is an initial segment

of fp(x).
(c) hq = hp � dom(hq).

Lemma 7.2.3. Ps(A) is <κ-closed, satisfies the κ+-chain condition and
has cardinality at most 2κ.

Proof. If λ ∈ Lim ∩ κ and �pµ | µ < λ� is a strictly ≤Ps(A)-descending
sequence in Ps(A), then we define T =

�

µ<λ Tpµ , h =
�

µ<λ hµ and

f(x) =
�

{fpµ(x) | µ < λ, x ∈ dom(fpµ)}

for all x ∈ dom(h). It is easy to see that p = �T, f, h� ∈ Ps(A) and p ≤Ps(A)

pµ holds for all µ < λ.
Next, assume that �pµ | µ < κ+� enumerates an antichain in Ps(A).

By our assumptions, we can assume Tpµ = Tpρ for all µ, ρ < κ+. A Δ-
system argument allows us to assume the existence of an r ⊆ A with r =
dom(fpµ) ∩ dom(fpρ), fpµ � r = fpρ � r and hpµ � r = hpρ � r for all
µ < ρ < κ+. But this shows that �Tp0 , fp0 ∪ fp1 , hp0 ∪ hp1� is a common
extension of p0 and p1, a contradiction.

Finally, the assumption κ = κ<κ implies that there are only κ-many
subtrees of <κ2 of height less than κ and 2κ-many partial functions with the
above properties. �

The next lemma will allow us to show that various subsets of Ps(A) are
dense.

Lemma 7.2.4. Let p be a condition in Ps(A) and �cx ∈
κ2 | x ∈ dom(fp)�

be a sequence of functions. There exists a ≤Ps(A)-descending sequence

�pµ ∈ Ps(A) | ht(Tp) ≤ µ < κ�

such that p = pht(Tp) and the following statements hold for all ordinals in
the interval [ht(Tp), κ).

(1) dom(fpµ) = dom(fp) and ht(Tpµ) = µ.
(2) If x ∈ dom(fp) and µ �= ≺hp(x), β� for all β < κ, then

fpµ+1(x)(µ) = cx(µ).

(3) If µ ∈ Lim, then ran(fpµ) = Tpµ+1 ∩
µ2.

Proof. We construct the sequences inductively. If µ ∈ Lim, then we
define Tpµ =

�

{Tpµ̄ | ht(Tp) ≤ µ̄ < µ}. Given x ∈ dom(fp), we define

fpµ(x) =
�

{fpµ̄(x) | ht(Tp) ≤ µ̄ < µ}.

If µ = µ̄ + 1 with µ̄ /∈ Lim, then Tpµ̄ has a maximal level and there
is only one suitable tree Tpµ of height µ end-extending it. In particular,
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fpµ̄(x) ∈ Tpµ for all x ∈ dom(fp). For all x ∈ dom(fp), we define fpµ(x) to
be the unique element t of µ2 with fpµ̄(x) ⊆ t and

t(µ̄) =







1, if µ̄ = ≺hp(x), β� and s(β) ⊆ x,
0, if µ̄ = ≺hp(x), β� and s(β) � x,
cx(µ̄), otherwise.

Finally, if µ = µ̄+1 with µ̄ ∈ Lim, then we set Tpµ = Tpµ̄ ∪ ran(fpµ̄) and
define fpµ as in the first successor case. �

Corollary 7.2.5. The following sets are dense subsets of Ps(A).

(1) Cµ = {p ∈ Ps(A) | ht(Tp) > µ} for all µ < κ.
(2) Dx = {p ∈ Ps(A) | x ∈ dom(fp)} for all x ∈ A.
(3) Ex,y = {p ∈ Ps(A) | x, y ∈ dom(fp), fp(x) �= fp(y)} for all x, y ∈ A.
(4) Fz = {p ∈ Ps(A) | ht(Tp) = µ+ 1, z � µ /∈ Tp} for all z ∈ κ2.

Proof. (i) This statement follows directly from Lemma 7.2.4.
(ii) Given p ∈ Ps(A) with x /∈ dom(fp) and b ∈ [Tp] �= ∅, we define

q = �Tp, fp ∪ {�x, b�}, hp ∪ {�x, ht(Tp)�}�.

Then q ∈ Dx and q ≤Ps(A) p.
(iii) Given p ∈ Ps(A), we can apply the above result to find q ≤Ps(A) p

with x, y ∈ dom(fq). There is ht(Tq) ≤ µ < κ with

≺hq(x), β0� �= µ �= ≺hq(y), β1�

for all β0, β1 < κ and we can use Lemma 7.2.4 to find q∗ ≤Ps(A) q with
ht(Tq∗) = µ+ 1 and fq∗(x)(µ) �= fq∗(y)(µ).

(iv) Fix p ∈ Ps(A) and ht(Tp) ≤ µ < κ with µ �= ≺hp(x), β� for all
x ∈ dom(fp) and β < κ. Using Lemma 7.2.4, we can find q ≤Ps(A) p
with ht(Tq) = µ + 1, dom(fq) = dom(fp) and fq(x)(µ) = 1 − z(µ) for all
x ∈ dom(fp).

In particular, z � (µ + 1) /∈ ran(fq). Another application of the above
lemma gives us conditions s ≤Ps(A) r ≤Ps(A) q with

ht(Ts) = ht(Tr) + 1 = ht(Tq) + ω + 1,

dom(fs) = dom(fp) and Ts ∩
ht(Tr)2 = ran(fr). Since z � ht(Tr) �= fr(x) for

all x ∈ dom(fp), we have z � ht(Tr) /∈ Ts. �

Corollary 7.2.6. Let G be Ps(A)-generic over V. The following state-
ments hold true in V[G].

(1) TG =
�

p∈G Tp is subtree of <κ2 of height κ with [TG] ∩V = ∅.
(2) If we define FG(x) =

�

{fp(x) | p ∈ G, x ∈ dom(fp)} for all x ∈ A,
then FG : A −→ [TG] is an injection.

(3) Let HG =
�

p∈G hg. Then HG : A −→ κ and

(7.1) s(β) ⊆ x ⇐⇒ FG(x)(≺HG(x), β�) = 1

for all x ∈ A and β < κ. �
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We now show how the branches of TG correspond to elements of A in an
absolute and bijective way.

Lemma 7.2.7. Let Q̇ be a Ps(A)-name such that

1lPs(A) � “ Q̇ is a σ-strategically closed partial order and

forcing with Q̇ preserves the regularity of κ̌”.
(7.2)

If G0 ∗G1 is (Ps(A) ∗ Q̇)-generic over V, then FG0 : A −→ [TG0 ]
V[G0][G1] is

surjective.

Proof. Fix names Ḟ , Ṫ ∈ VPs(A)∗Q̇ such that ḞH0∗H1 = FH0 and

ṪH0∗H1 = TH0 holds wheneverH0∗H1 is (Ps(A)∗Q̇)-generic over V. Assume,

toward a contradiction, that there is a name τ ∈ VPs(A)∗Q̇ and a condition
�p, q̇� in Ps(A) ∗ Q̇ with

�p, q̇� � “τ ∈ [Ṫ ] ∧ τ /∈ V̌ ∧ τ /∈ ran(Ḟ )”.

For each r ≤
Ps(A)∗Q̇

�p, q̇�, we define a partial function tr : κ
part
−−→ 2 in

V by setting

tr =
�

{s ∈ <κ2 | r � “ š ⊆ τ ”}.

We have tr ∈
<κ2 for all r ≤

Ps(A)∗Q̇
�p, q̇�, because r � “τ /∈ V̌ ”. Moreover,

since �p, q̇� � “(∀α < κ̌) τ � α ∈ V̌ ”, the set

{r ≤
Ps(A)∗Q̇

�p, q̇� | α ⊆ dom(tr)}

is dense below �p, q̇� for all α < κ.
Let �p�, q̇�� ≤

Ps(A)∗Q̇
�p, q̇� and d = dom(fp�). Since

�p, q̇� � “The cardinality of ď is less than cof(κ̌) and (∀x ∈ ď) τ �= Ḟ (x)”,

there is an r ≤
Ps(A)∗Q̇

�p�, q̇�� and an α < κ such that

r � “(∀x ∈ ď)(∃β < α̌) τ(β) �= Ḟ (x)(β)”.

Then there is a condition r∗ = �p��, q̇��� ≤
Ps(A)∗Q̇

r such that α ⊆ dom(tr∗)

and ht(Tp��) ≥ α. This implies that for all x ∈ dom(fp�) there is a β ∈
dom(tr∗) such that fp��(x)(β) �= tr∗(β).

Let σ̇ be a Ps(A)-name with

1lPs(A) � “ σ̇ is a winning strategy for Player Even in Gω+1(Q̇)”.

Given �p0, q̇1� ≤Ps(A)∗Q̇
�p, q̇�, the above remarks allow us to construct

a strictly ≤
Ps(A)∗Q̇

-descending sequence ��pn, q̇2n+1� | n < ω� of conditions

in Ps(A) ∗ Q̇ and a sequence �q̇2n ∈ V
Ps(A) | n < ω� of names such that the

following statements hold for all n < ω.

(1) q̇0 = 1̇lQ̇, 1lPs(A) � “ q̇2n ∈ Q̇”, pn � “ q̇2n+1 ≤Q̇
q̇2n ” and

pn � “ q̇2n+2 = σ̇(q̇0, . . . , q̇2n+1)”.

(2) ht(Tpn) ⊆ dom(t�pn+1,q̇2n+3�) and dom(t�pn,q̇2n+1�) � ht(Tpn+1).
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(3) If x ∈ dom(fpn), then there is an α ∈ dom(t�pn+1,q̇2n+3�) with

fpn+1(x)(α) �= t�pn+1,q̇2n+3�(α).

By the proof of Lemma 7.2.3, the sequence �pn | n < ω� has a greatest
lower bound pω in Ps(A). Note that Tpω =

�

n<ω Tpn and dom(fpω) =
�

n<ω dom(fpn) hold. If Ṙ ∈ VPs(A) is the canonical name for the sequence
�q̇n | n < ω�, then

pω � “ Ṙ is a run of Gω(Q̇) in which Even played according to σ̇ ”.

Hence we can find a name q̇ω ∈ VPs(A) with 1lPs(A) � “ q̇ω ∈ Q̇” and
pω � “ q̇ω ≤Q̇

q̇n ” for all n < ω. This implies �pω, q̇ω� ≤Ps(A)∗Q̇
�pn, q̇2n+1�

for all n < ω. We define t = t�pω ,q̇ω� � ht(Tpω) ∈ [Tpω ]. Since we have

�pω, q̇ω� � “ ť ⊆ τ ∧ τ ∈ [Ṫ ] ”, we can conclude �pω, q̇ω� � “ ť ∈ Ṫ ”.
By our construction, we have ht(Tpω) ∈ Lim and t /∈ ran(fpω). We

can apply Lemma 7.2.4 to find a condition p∗ ≤Ps(A) pω with ht(Tp∗) =

ht(Tpω) + 1 and t /∈ Tp∗ . This obviously implies �p∗, q̇ω� � “ ť /∈ Ṫ ”, a
contradiction. �

Corollary 7.2.8. Let Q̇ be a Ps(A)-name such that (7.2) holds. If

G0 ∗ G1 is (Ps(A) ∗ Q̇)-generic over V, then the following statements are

equivalent for all y ∈ (κκ)V[G0][G1].

(1) y ∈ A.

(2) There is z ∈ [TG0 ]
V[G0][G1] and γ < κ such that

(7.3) s(β) ⊆ y ⇐⇒ z(≺γ, β�) = 1

holds for all β < κ

Proof. If y ∈ A, then the equivalence (7.3) holds with z = FG0(y) and
γ = HG0(y) by Corollary 7.2.6.

In the other direction, let z ∈ [TG0 ]
V[G0][G1] and γ < κ witness that (7.3)

holds for y ∈ (κκ)V[G0][G1]. By Lemma 7.2.7, we have z = FG0(x) ∈ V[G0]
for some x ∈ A. Pick p ∈ G0 with x ∈ dom(fp).

Assume, toward a contradiction, that γ �= hp(x) = HG0(x). By Lemma
7.2.4, this implies that the set

Ds = {q ≤Ps(A) p | ht(Tq) = µ+ 1, µ = ≺γ, β�, fq(x)(µ) = 0, s(β) = s}

is dense below p for all s ∈ ran(s) and there is a q ∈ G0 ∩ Dy�1 with
q ≤Ps(A) p. Then there is a β < κ with ht(Tq) = ≺γ, β�+1, z(≺γ, β�) = 0
and s(β) = y � 1 ⊆ y, contradicting (7.3). This shows γ = HG0(x) and we
can conclude that

s(β) ⊆ y ⇐⇒ z(≺γ, β�) = 1

⇐⇒ FG0(x)(≺HG0(x), β�) = 1 ⇐⇒ s(β) ⊆ x

holds for all β < κ. Since every initial segment of x is of the form s(β) for
some β < κ, we can conclude y = x ∈ A. �
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We are now ready to prove our first main result.

Proof of Theorem 7.1.3. Let G0 be Ps(A)-generic over V. In V[G0],
define T to be the set consisting of pairs �t, u� such that t ∈ <κκ, u ∈ <κκ
and there is an ordinal γ < κ and a v ∈ TG0 with lh(z) = lh(u) = lh(v),
u(α) = ≺γ, v(α)� for all α < lh(s) and

s(β) ⊆ t ⇐⇒ v(≺γ, β�) = 1

for all β < lh(s) with ≺γ, β� < lh(s). It is easy to check that T is a tree.
Let Q be a σ-strategically closed partial order in V[G0] and G1 be Q-

generic over V[G0]. There is a name Q̇ ∈ VPs(A) such that Q = Q̇G0 and
(7.2) holds in V.

If �x, y� ∈ [T ]V[G0][G1], then there is z ∈ [TG0 ]
V[G0][G1] and γ < κ with

y(β) = ≺γ, z(β)� and

s(β) ⊆ x ⇐⇒ z(≺γ, β�) = 1

for all β < κ. By Corollary 7.2.8, this implies x ∈ A.
Conversely, if x ∈ A and y ∈ (κκ)V[G0] with

y(α) = ≺HG0(x), FG0(x)(α)�,

then �x, y� ∈ [T ]V[G0][G1] by our assumptions on s and Corollary 7.2.8. �

We close this section by showing that Theorem 7.1.3 directly implies
the statement of Corollary 7.1.6. Given functions x, y ∈ κκ, we let ≺x, y�
denote the unique function z ∈ κκ with x = (z)0, y = (z)1 and (z)α = idκ
for all 1 < α < κ.

Proof of Corollary 7.1.6. Let ν be the cardinality of tc({X}) and

let ė ∈ VAdd(κ,ν
+) be a name for an injection of tc({X}) into κκ \ {idκ}.

Let Ȧ, ṡ ∈ VAdd(κ,ν
+) be names with the property that, whenever G is

Add(κ, ν+)-generic over V, then �ȦG, ṡG� is a κ-coding basis in V[G] and

ȦG = {≺ėG(b), ėG(c)� | b, c ∈ tc({X}), b ∈ c} ∪ {≺idκ, ė
G(b)� | b ∈ X}.

Pick a name Ṗ ∈ VAdd(κ,ν
+) with 1lAdd(κ,ν+) � “ Ṗ = Pṡ(Ȧ)”. The partial

order Add(κ, ν+) ∗ Ṗ is <κ-closed and satisfies the κ+-chain condition.
Let G0 ∗ G1 be (Add(κ, ν

+) ∗ Ṗ)-generic over V, Q be a σ-strategically
closed partial order in V[G0][G1] that preserve the regularity of κ and H be

Q-generic over V[G0][G1]. By Theorem 7.1.3, ȦG0 is a Σ1
1-subset of

κκ in
V[G0][G1][H]. This shows that both ran(ė

G0) and the relation

E = {�ėG0(b), ėG1(c)� | b, c ∈ tc({X}), b ∈ c}

are elements of L(P(κ)) in V[G0][G1][H]. Since this model can compute the
transitive collapse of the well-founded and extensional relation �ran(ḃG0), E�
and this function is equal to the inverse of ėG0 , we can conclude that tc({X})
is an element of L(P(κ)) in V[G0][G1][H]. Finally, we have

X = {b ∈ tc({X}) | ≺idκ, ė
G0(b)� ∈ ȦG0}
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and we can conclude that X is also an element of L(P(κ)) in V[G0][G1][H].
�

7.3. Almost disjoint coding

In [Har77, Section 1], Leo Harrington uses the method of almost disjoint
coding forcing invented by Robert Solovay (see [JS70]) to prove Theorem
7.1.1. Working towards a proof of Theorem 7.1.4, we generalize this ap-
proach to uncountable cardinalities. Note that all results of this section are
also true if κ is countable.

Definition 7.3.1. Given A ⊆ κκ, we define Q(A) to be the partial
order consisting of conditions p = �tp, ap� with tp ∈

<κ2 and ap ∈ [A]
<κ.

The ordering p ≤Q(A) q is defined by the following clauses.

(1) tq ⊆ tp and aq ⊆ ap.
(2) (∀x ∈ aq)(∀α ∈ dom(tp) \ dom(tq)) [sα ⊆ x −→ tp(α) = 0].

It is easy to check that this is in fact a partial order. In addition, it is
easy to see that two conditions p and q are compatible if and only if tp and
tq are compatible as elements of

<κ2 and �tp ∪ tq, ap ∪ aq� ≤Q(A) p, q.

Lemma 7.3.2. Q(A) is <κ-closed, satisfies the κ+-chain condition and
has cardinality at most 2κ.

Proof. If µ < κ, �pα | α < µ� is a ≤Q(A)-descending sequence, t =
�

α<µ tpα and a =
�

α<µ apα , then �t, a� ∈ Q(A) and �t, a� ≤Q(A) pα for all

α < µ. It is easy to see that any two conditions in Q(A) with the same
first coordinate are compatible and this shows that any antichain in Q(A)
has cardinality at most κ<κ = κ. The cardinality statement follows directly
from our assumptions on κ. �

Proposition 7.3.3. The following sets are dense subsets of Q(A).

(1) Cµ = {p ∈ Q(A) | µ ∈ dom(tp)} for all µ < κ.
(2) Dx = {p ∈ Q(A) | x ∈ ap} for all x ∈ A.
(3) Eα,y = {p ∈ Q(A) | (∃β ∈ dom(tp) \ α) [tp(β) = 1 ∧ sβ ⊆ y]} for

all α < κ and y ∈ κκ \A.

Proof. (i) Given α < κ and p ∈ Q(A) with α /∈ dom(tp), we define

t(β) =

�

tp(β), if β ∈ dom(tp),
0, if β ∈ (α+ 1) \ dom(sp).

Obviously, �t, ap� ≤Q(A) p and �t, ap� ∈ Cα.
(ii) For all p ∈ Q(A), p∗ = �tp, ap ∪ {x}� ≤Q(A) p and p

∗ ∈ Dx.
(iii) Given p ∈ Q(A), there is an α < β ∈ κ \dom(sp) with x � β �= y � β

for all x ∈ ap. We can find β ≤ γ < κ with sγ = y � β and define
t : γ + 1 −→ 2 by

t(δ) =







tp(δ), if δ ∈ dom(sp),
0, if δ ∈ γ \ dom(tp).
1, if δ = γ.
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Then �t, ap� ≤Q(A) p and �t, ap� ∈ Eα,y. �

The following theorem summarizes the properties of Q(A).

Theorem 7.3.4. Let G be Q(A)-generic over V and define

tG =
�

{tp | p ∈ G}.

Then tG ∈
κ2 and

(7.4) x ∈ A⇐⇒ (∃β < κ)(∀β ≤ α < κ) [sα ⊆ x→ tG(α) = 0]

for all x ∈ (κκ)V. Moreover,

G = {p ∈ Q(A) | tp ⊆ tG ∧ (∀α ∈ κ)[α /∈ dom(tp)

∨ (∀x ∈ ap) [sα ⊆ x→ tG(α) = 0]]}.
(7.5)

Proof. By Proposition 7.3.3, tG is a function with domain κ and for
every x ∈ A there is a p ∈ G with x ∈ ap.

Assume, toward a contradiction, that tG(α) = 1 and sα ⊆ x holds for
some α ∈ κ \ dom(tp). There is a q ∈ G with q ≤Q(A) p and α ∈ dom(tq).
But this means 0 = tq(α) = tG(α), a contradiction. Given <∈ κκ \ A and
β < κ, there is p ∈ G∩Eβ,y and this shows that there is an β < α < κ with
tG(α) = 1 and sα ⊆ y.

Given p ∈ G, the above argument shows that p is also an element of the
right set. Next, assume p ∈ Q(A) is a member of the set on the right. There
is a q ∈ G with ap ⊆ aq and tp ⊆ tq. If α ∈ dom(tq) \ dom(tp) and x ∈ ap
with sα ⊆ x, then tq(α) = tG(α) = 0. This shows q ≤Q(A) p and p ∈ G. �

We close this section by introducing two forcing-theoretical properties
and investigating their relevance to Q(A).

Definition 7.3.5. We call a partial order P a q-lattice (“quasi-lower-
semi-lattice”) if the P-minimum p0∧P p1 exists for all compatible conditions
p0, p1 ∈ P. Let Q be a suborder of P and a q-lattice itself. We call Q a
sublattice of P if q0 ∧P q1 = q0 ∧Q q1 holds for all q0, q1 ∈ Q, which are
compatible in Q.

The partial order Add(κ, 1) is clearly a q-lattice and the remark following
the definition of Q(A) directly implies that Q(A) is also a q-lattice with

p ∧Q(A) q = �tp ∪ tq, ap ∪ aq�

for all compatible p, q ∈ Q(A). Moreover, if B ⊆ A, then Q(B) is a sublattice
of Q(A), every antichain in Q(B) is an antichain in Q(A) and every Q(B)-
nice name is a Q(A)-nice name.

Definition 7.3.6. Let P be a partial order and Q̇ be a P-name. We call
Q̇ a P-innocuous forcing if there is a q-lattice Q0 with

1lP � “ Q̇ is a sublattice of Q̌0 ”.

We give a simple example of P-innocuous forcings that will be important
later.
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Proposition 7.3.7. If P is a <κ-closed forcing and Q̇ ∈ VP with

1lP � (∃B)
�

B ⊆ Ǎ ∧ Q̇ = Q(B)
�

,

then Q̇ is a P-innocuous forcing.

Proof. Set Q0 = Q(A). We show 1lP � “ Q̇ is a sublattice of Q̌0 ”. Let

G be P-generic over V. We have Q0 = Q(A)V[G], because P is <κ-closed.
An application of the above remarks in V[G] shows that Q̇G is a sublattice
of Q0 in V[G]. �

7.4. Innocent forcings

In this section, we complete the proof of Theorem 7.1.4. As mentioned in
the Introduction, the Δ1

1-coding we construct will have certain absoluteness
properties. We are now ready to introduce the corresponding class of partial
orders.

Definition 7.4.1. Let M be an inner model, ν be a cardinal, P be
a partial order contained in M and G be P-generic over M . We define
ΓM (P, G, ν) to be the class of all <ν-closed partial orders Q that satisfy the

ν+-chain condition and have the property that there is a P-name Q̇ in M
with Q = Q̇G and

�M,∈� |= “ Q̇ is a P-innocuous forcing”.

If P is a partial order and G is P-generic over V, then results of Richard
Laver (see [Lav07, Theorem 3]) show that V is a class in V[G]. In particular,
ΓV(P, G, ν) is a class in V[G] for every cardinal ν.

In the following, we continue to modify coding results from [Har77] to
our context to prove the following absoluteness version of Theorem 7.1.4.

Theorem 7.4.2 ([Lücb, Theorem 5.2]). Let κ be a regular uncountable
cardinal with κ = κ<κ. For every subset A of κκ, there is a partial order P
with the following properties.

(1) P is <κ-closed, satisfies the κ+-chain condition and has cardinality
at most 2κ.

(2) If G is P-generic over V, then A is a ΓV(P, G, κ)-persistently Δ1
1

in V[G].

Following [Har77], we start by introducing another notion of forcing.

Definition 7.4.3. Given A ⊆ κκ, we define Q+(A) =
�

γ<κ+ Q(A) to
be the κ+-product forcing of Q(A) with <κ-support.

Lemma 7.4.4. Q+(A) is a <κ-closed q-lattice that satisfies the κ+-chain
condition and has cardinality at most 2κ.

Proof. Since Q+(A) is the product with <κ-support and Q(A) is <κ-
closed, it follows directly that Q+(A) is also <κ-closed.
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Given two compatible conditions �q0 =
�

q0γ
�

γ<κ+ and �q1 =
�

q1γ
�

γ<κ+ ,

it is easy to check that q0γ and q1γ are compatible for all γ < κ+ and
�

q0γ ∧Q(A) q
1
γ

�

γ<κ+ is the Q+(A)-minimum of �q0 and �q1.

Assume, toward a contradiction, that ��qδ | δ < κ+� enumerates an anti-
chain in Q+(A) with �qδ =

�

qδγ
�

γ<κ+ for each δ < κ+. By the Δ-System

Lemma, we may assume that there is an r ⊆ κ+ of cardinality less than
κ such that supp(�qδ) ∩ supp(�qδ̄) = r holds for all δ < δ̄ < κ+. The set
{�tqδγ ∈

<κκ | γ ∈ r� | δ < κ+} is a subset of r(<κκ) and this set has cardi-

nality κ by our assumptions. Hence there are δ < δ̄ < κ+ with tqδγ = tqδ̄γ
for all γ ∈ r. But this shows that �qδ and �qδ̄ are compatible in Q+(A), a
contradiction.

By our assumptions, the set S = {supp(�q) | �q ∈ Q+(A)} has cardinality
κ+ and for each s ∈ S there are at most 2κ-many conditions �q ∈ Q+(A)
with supp(�q) = s. �

Let G =
�

γ<κ+ Gα be Q+(A)-generic over V and x ∈ (κκ)V[G]. Since

Q+(A) satisfies the κ+-chain condition in V, there is an δ < κ+ with x ∈
V[�Gβ | γ < δ�]. Now, Theorem 7.3.4 shows that
(7.6)

x ∈ A ⇐⇒ (∀γ < κ+)(∃β < κ)(∀β ≤ α < κ) [sα ⊆ x −→ tGγ (α) = 0]

holds in V[G]. This shows that aΣ1
1-definition of the set {tGγ ∈

κκ | γ < κ+}
would yield a Π1

1-definition of A in V[G]. In order to make the set of all
tGγ ’s Σ1

1-definable, we need to show that the equivalence (7.6) also holds in
certain forcing extensions of V[G]. We introduce a class of forcings with this
property.

Definition 7.4.5. Let P be a q-lattice. We call Q̇ ∈ VP a P-innocent
forcing if 1lP � “ Q̇ is a partial order” and there is a dense subset D ⊆ P∗ Q̇
such that

p0 ∧P p1 � “ q̇0 and q̇1 are compatible in Q̇”

holds for all compatible �p0, q̇0�, �p1, q̇1� ∈ D.

Lemma 7.4.6. Let Ṗ be an Q+(A)-innocent forcing with

1lQ+(A) � “ Ṗ is <κ̌-closed and satisfies the κ̌+-chain condition”.

If G0 ∗G1 is (Q+(A) ∗ Ṗ)-generic over V with G0 =
�

γ<κ+ Ḡγ, then

x ∈ A ⇐⇒ (∀γ < κ+)(∃β < κ)(∀β ≤ α < κ) [sα ⊆ x −→ tḠγ (α) = 0]

holds in V[G0][G1] for all x ∈ (κκ)V[G0][G1].

Proof. Let D be a dense subset of Q+(A) ∗ Ṗ witnessing that Ṗ is a
Q+(A)-innocent forcing. Let η̇0 be a Q+(A)-name with with the property
that, whenever G is Q+(A)-generic over V and G =

�

γ<κ∗ Ḡγ , then

η̇G0 : κ
+ −→ (κ2)V[G]; γ �−→ tḠγ
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Let η̇ denote the canonical (Q+(A) ∗ Ṗ)-name corresponding to η̇0.

Assume, toward a contradiction, that there is a name ẋ ∈ VQ+(A)∗Ṗ and
a condition r0 ∈ Q+(A) ∗ Ṗ such that

r0 � “ ẋ ∈ (κ̌κ̌ \ Ǎ) ∧ (∀γ < κ̌+)(∃β < κ̌)(∀β ≤ α < κ̌)

[šα ⊆ ẋ −→ η̇(γ)(α) = 0]”

holds. Given α < κ, we pick a maximal antichain Aα in the set

{r ∈ D | r � “ šα̌ ⊆ ẋ”}

and define A =
�

{Aα | α < κ}. Our assumptions imply that Q+(A) ∗ Ṗ
satisfies the κ+-chain condition and therefore A has cardinality κ. This
shows that there is a γ∗ < κ+ with the property that, whenever ��q, ṗ� ∈ A
and �q = (qγ)γ<κ+ , then qγ∗ = 1lQ(A).

We can find an r1 ∈ D and β∗ < κ with r1 ≤Q+(A)∗Ṗ r0 and

r1 � “(∀β̌∗ ≤ α < κ̌) [šα ⊆ ẋ −→ η(γ̌∗)(α) = 0]”.

Let r1 = ��q1, ṗ1�, �q1 =
�

q1γ
�

γ<κ+ and q
1
γ∗ = �t1, a1�.

Now, let G0∗G1 be (Q+(A)∗ Ṗ)-generic over V with r1 ∈ G0∗G1 and set
x = ẋG0∗G1 . Since this partial order is <κ-closed and every initial segment
of x is an element of V, we can find an α∗ < κ with β∗ < α∗, dom(t1) < α∗,
sα∗ ⊆ x and sα∗ � y for all y ∈ a1.

Our construction ensures that there is an r2 ∈ Aα∗ ∩G. Let r2 = ��q2, ṗ2�
and �q2 =

�

q2γ
�

γ<κ+ . The conditions r1 and r2 are compatible and elements

of D. Hence, we can find an r = ��q, ṗ� ≤
Q+(A)∗Ṗ r1, r2 with �q = (qγ)γ<κ and

qγ = q1γ ∧Q(A) q
2
γ for all γ < κ+. In particular, qγ∗ = q1γ∗ = �t1, a1�.

We define t∗ ∈
<κκ by setting

t∗(δ) =







t1(δ), if δ ∈ dom(t1),
0, if δ ∈ α∗ \ dom(t1),
1, if δ = α∗.

By the choice of α∗, we have �t∗, a1� ≤Q(A) �t1, a1� = qγ∗ . If we define

q∗γ =

�

qγ , if γ �= γ∗,
�t∗, a1�, if γ = γ∗,

then r∗ = �
�

q∗γ
�

γ<κ+ , ṗ� ≤ r. Let H be (Q+(A) ∗ Ṗ)-generic over V with

H = H0 ∗H1, H0 =
�

γ<κ+ H̄γ and r∗ ∈ H. The above construction yields

r1 ∈ H, sα∗ ⊆ ẋH and tH̄γ∗ (α∗) = 1, a contradiction. �

Let P be a partial order, Q̇ ∈ VP with 1lP � “ Q̇ is a partial order ” and
G be P-generic over V. Using P, Q̇ and G as parameters, we can recursively
define a class function

tG : V
P∗Q̇ −→ V[G]Q̇

G
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in V[G] that satisfies

tG(σ) = {�tG(τ), q̇
G� | �τ, �p, q̇�� ∈ σ, p ∈ G}

for all σ ∈ VP∗Q̇. If H is Q̇G-generic over V[G], then an easy induction shows

that σG∗H = tG(σ)
H holds for all σ ∈ VP∗Q̇. Given σ ∈ VP∗Q̇, we let T(σ)

denote the class of all τ ∈ VP such that τG = tG(σ) whenever G is P-generic
over V.

Next, suppose Ṙ ∈ VP∗Q̇ with 1l
P∗Q̇ � “ Ṙ is a partial order ” and Ṡ ∈

VP. We write Ṡ = Q̇ ∗P Ṙ if there is a σ ∈ T(Ṙ) with 1lP � “ Ṡ = Q̇ ∗ σ ”.
By the above remarks, there is a map

ι : (P ∗ Q̇) ∗ Ṙ −→ P ∗ Ṡ

such that for every ��p, q̇�, ṙ� ∈ (P ∗ Q̇) ∗ Ṙ there is an ṡ ∈ VP and ρ ∈ T(ṙ)
with ι(�p, q̇�, ṙ) = �p, ṡ� and 1lP � “ ṡ = �q̇, ρ�”.

Lemma 7.4.7. The map ι is a dense embedding. �

Lemma 7.4.8. Let P be a q-lattice, Q̇ ∈ VP be a P-innocuous forcing and

Ṙ ∈ VP∗Q̇ be a (P ∗ Q̇)-innocuous forcing. If Ṡ ∈ VP satisfies Ṡ = Q̇ ∗P Ṙ,

then Ṡ is a P-innocent forcing.

Proof. Let Q0 witness that Q̇ is a P-innocuous forcing and R0 witness
that Ṙ is a (P ∗ Q̇)-innocuous forcing. We define D0 to be the set

{��p, q̇�, ṙ� ∈ (P ∗ Q̇) ∗ Ṙ | (∃q ∈ Q0)(∃r ∈ R0)

[p � “ q̇ = q̌ ” ∧ �p, q̇� � “ ṙ = ř ”]}.

Pick ��p0, q̇0�, ṙ� ∈ (P∗Q̇)∗ Ṙ. There is a �p1, q̇� ≤P∗Q̇ �p0, q̇0� and r ∈ R0
with �p1, q̇� � “ ṙ = ř ”. In addition, there is a p ≤P p1 and a q ∈ Q0 with
p � “ q̇ = q̌ ”. This means ��p, q̇�, ṙ� ∈ D0 and ��p, q̇�, ṙ� ≤(P∗Q̇)∗Ṙ ��p0, q̇0�, ṙ�.

Let ��p0, q̇0�, ṙ0�, ��p1, q̇1�, ṙ1�, ��p2, q̇2�, ṙ2� ∈ (P ∗ Q̇) ∗ Ṙ with

��p0, q̇0�, ṙ0� ≤(P∗Q̇)∗Ṙ ��p1, q̇1�, ṙ1�, ��p2, q̇2�, ṙ2�

and ��p1, q̇1�, ṙ1�, ��p2, q̇2�, ṙ2� ∈ D0. Fix conditions q1, q2 ∈ Q0 and r1, r2 ∈
R0 with pi � “ q̇i = q̌i ” and �pi, q̇i� � “ ṙi = ři ”. Clearly, p1 ∧P p2 exists and
there is a p ∈ P and q ∈ Q0 such that p ≤P p0 and p � “ q̌ = q̇0 ≤Q̇

q̌1, q̌2 ”.

But this shows that q ≤Q0 q1, q2 and q1∧Q0 q2 exists. If we pick q̇ ∈ V
P with

1lP � “ q̇ ∈ Q̇” and (p1 ∧P p2) � “ q̇ = q̌1 ∧Q̌0
q̌2 ”, then

�p1 ∧P p2, q̇� ≤P∗Q̇ �p1, q̇1�, �p2, q̇2�.

In the same way, we can show that r1∧R0 r2 exists and there is an ṙ ∈ V
R

with 1l
P∗Q̇ � “ ṙ ∈ Ṙ” and �p1 ∧P p2, q̇� � “ ṙ = ř1 ∧Ř0

ř2 ”. This means

��p1 ∧P p2, q̇�, ṙ� ≤(P∗Q̇)∗Ṙ ��p1, q̇1�, ṙ1�, ��p2, q̇2�, ṙ2�.

Define D ⊆ P∗ Ṡ to be the image of D0 under ι. By the above Lemma, D
is a dense subset of D ⊆ P ∗ Ṡ. Given two compatible conditions d0, d1 ∈ D
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with di = ι(�pi, q̇i�, ṙi) = �pi, ṡi�, we have shown that there are q̇ ∈ VP and

ṙ ∈ VP∗Q̇ with

��p1 ∧P p2, q̇�, ṙ� ≤(P∗Q̇)∗Ṙ ��p1, q̇1�, ṙ1�, ��p2, q̇2�, ṙ2�.

This gives us an ṡ ∈ VP with

�p1 ∧P p2, ṡ� = ι(�p1 ∧P p2, q̇�, ṙ) ≤P∗Ṡ d0, d1.

�

The techniques developed above allow us to prove the absoluteness ver-
sion of our second main result.

Proof of Theorem 7.4.2. For the remainder of the proof, we fix a
subset B of κκ of cardinality κ+ such that

(x)α = (y)β ⇐⇒ [x = y ∧ α = β]

holds for all x, y ∈ B and α, β < κ. In addition, we fix an injective enumer-
ation �bγ | γ < κ+� of B.

By Theorem 7.1.3, there is a <κ-closed forcing P0 of cardinality at most
2κ satisfying the κ+-chain condition with the property that, whenever G0 is
P0-generic over V and Q ∈ V[G0] is a <κ-closed partial order, then both A
and B are Σ1

1-subsets of (
κκ)V[G0][G1] in every Q-generic extension V[G0][G1]

of V[G0].

If G0 is P0-generic over V, then Q(A)V = Q(A)V[G0] and Q+(A)V =

Q+(A)V[G0]. This shows that P0×Q+(A) is a <κ-closed forcing that satisfies

the κ+-chain condition in V. In addition, there are names Ċ, Ṙ ∈ VP0×Q+(A)

with the property that, whenever G0 × G1 is (P0 × Q+(A))-generic over V
with G1 =

�

γ<κ+ Ḡγ , then

ĊG0×G1 = {(bγ)≺ᾱ,α� ∈
κκ | α, ᾱ < κ, γ < κ+, ᾱ = tḠγ (α)}

and ṘG0×G1 = Q(ĊG0×G1) in V[G0][G1]. Notice ĊG0×G1 ⊆ (κκ)V and

ṘG0×G1 is a sublattice of Q(κκ)V in V[G0][G1]. We define

P = (P0 ×Q+(A)) ∗ Ṙ.

This partial order is <κ-closed and satisfies the κ+-chain condition.
In V, we define

D0 = {�p, �q, r� ∈ P0 ×Q+(A)×Q(κκ) | �p, �q � � “ ř ∈ Ṙ”}.

For each �d = �p, �q, r� ∈ D0, there is an s�d ∈ (P0 × Q+(A)) ∗ Ṙ with s�d =
��p, �q�, ṙ� and �p, �q� � “ ṙ = ř ”. Clearly, there is a subset D of P that is
closed under descending ≤P-sequences of length less than κ, has cardinality

at most 2κ and contains the dense subset {s�d |
�d ∈ D0}. The partial order

�D,≤P� (D ×D)� satisfies the κ+-chain condition and is forcing-equivalent
to P. We continue to work with P.
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Let G = (G0 × G1) ∗ G2 be P-generic over V. There are trees T0, TB ∈

V[G0] on κ × κ such that A = p[T0]
V[G0][Ḡ] and B = p[TB]

V[G0][Ḡ] hold in
every generic extension V[G0][Ḡ] of V[G0] by a <κ-closed forcing.

The results of Section 6.2 show that there is a tree TS ∈ V[G] on κ× κ
such that p[TS ] is the set of all x ∈

κκ with

(∃y ∈ p[TB])(∀α, ᾱ < κ)
�

x(α) = ᾱ

←→ (∃β < κ)(∀β ≤ β̄ < κ)[sβ̄ ⊆ (y)≺ᾱ,α� −→ tG2(β̄) = 0]
�(7.7)

in every transitive ZFC-model that contains V[G] and has the same <κκ as
V[G].

Fix a γ < κ+. The definition of Ċ and the equivalence (7.4) imply that

the function bγ ∈ B = p[TB]
V[G] witnesses that tḠγ ∈ p[TS ]

V[G] holds.

By the results of Section 6.2, there is a tree T1 ∈ V[G] on κ × κ such
that p[T1] is equal to the set

(7.8) {x ∈ κκ | (∃y ∈ p[TS ])(∀β < κ)(∃β ≤ α < κ) [sα ⊆ x ∧ y(α) = 1]}

in every transitive ZFC-model that contains V[G] and has the same <κκ as
V[G].

Let S be an element of the class ΓV(P, G, κ). We work in V[G0]. Since
ṘG0×G1 is a sublattice of Q(κκ)V[G0], we can find a Q+(A)-innocuous forcing

Ṙ0 ∈ V[G0]
Q+(A) with ṘG1

0 = ṘG0×G1 . By our assumptions, there is a

(Q+(A) ∗ Ṙ0)-innocuous forcing Ṡ ∈ V[G0]Q
+(A)∗Ṙ0 with S = ṠG1∗G2 . Pick

Ṫ ∈ V[G0]
Q+(A) with Ṫ = Ṙ0 ∗Q+(A) Ṡ. This means

1lQ+(A) � “ Ṫ is <κ̌-closed and satisfies the κ̌+-chain condition”

and Ṫ is a Q+(A)-innocent forcing by Lemma 7.4.8.

Let H be S-generic over V[G]. Then A = p[T0]
V[G][H], B = p[TB]

V[G][H]

and {tḠγ | γ < κ+} ⊆ p[TS ]
V[G][H].

Suppose x ∈ p[TS ]
V[G][H]. Then x satisfies (7.7) in V[G][H] and there is

a γ < κ+ with

x(α) = ᾱ ⇐⇒ (∃β̄ < κ)(∀β̄ ≤ δ < κ) [sδ ⊆ (bγ)≺ᾱ,α� → tG2(δ) = 0]

⇐⇒ (bγ)≺ᾱ,α� ∈ ĊG0×G1

for all α, ᾱ < κ. We can conclude x = tḠγ and p[TS ]
V[G][H] = {tḠγ | γ < κ+}.

We can find a H̄ ∈ V[G][H] that is ṪG1-generic over V[G0][G1] with
V[G][H] = V[G0][G1][H̄]. The above remarks and Lemma 7.4.6 show that

x ∈ (κκ)V[G][H] is an element of A if and only if

(∀γ < κ+)(∃β < κ)(∀β ≤ α < κ) [sα ⊆ x −→ tḠγ (α) = 0].

By the above computations, x ∈ (κκ)V[G][H] is not an element of A if and
only if

(∃y ∈ p[TS ])(∀β < κ)(∃β ≤ α < κ) [sα ⊆ x ∧ y(α) = 1]
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holds in V[G][H]. Since the equality (7.8) still holds in V[G][H], we can
conclude

p[T1]
V[G][H] = (κκ)V[G][H] \A.

�

7.5. Definable well-orders of κκ

This section is devoted to the proof of the following result that directly
implies the statement of Theorem 7.1.7. Moreover, we will combine this
theorem with the results of Chapter 6 to prove Theorem 7.1.9.

Theorem 7.5.1. Let � be a well-ordering of κκ, �A, s� be a κ-coding
basis with

A = {≺x, y� | x, y ∈ κκ with either x = y or x� y}

and G be Ps(A)-generic over V.

(1) There is a well-ordering of (κκ)V[G] whose graph is a Δ1
2-subset of

κκ in V[G].

(2) The set (κκ)V[G] is Γκ-persistently Σ1
1 in V[G], where Γκ is the class

of all <κ-closed partial orders in V[G].

The idea behind the proof of this statement is to use � in the Ps(A)-

generic extension to define a well-ordering �∗ of HV
κ+ in H

V[G]
κ+ and well-order

(κκ)V[G] by identifying functions in κκ with the �∗-least nice name in HV
κ+

representing this function. We introduce some vocabulary needed in the
following arguments.

Definition 7.5.2. Let Γ be a class of partial orders that contains the
trivial partial order. We say that a set X is Γ-persistently Σ1(Hκ+) if there
is a Σ1-formula ϕ ≡ ϕ(u, v0, . . . , vn−1) and parameters y0, . . . , yn−1 ∈ Hκ+

such that

X = {x ∈ H
V[G]
κ+ | �H

V[G]
κ+ ,∈� |= ϕ(x, y0, . . . , yn−1)}

holds whenever Q is a partial order in Γ and G is Q-generic over V.

Proposition 7.5.3. Let A be a subset of κκ and G be Ps(A)-generic
over V. If Γκ denotes the class of all <κ-closed partial orders in V[G], then
the sets A, Ps(A)V, G, Ps(A)V \G and the relation

IPs(A)V = {�p, q� ∈ Ps(A)
V × Ps(A)

V | p and q are incompatible in Ps(A)
V}

are Γκ-persistently Σ1(H
V[G]
κ+ ) in V[G].

Proof. We work in V[G]. Theorem 7.1.3 directly implies that A is

Γκ-persistently Σ1(H
V[G]
κ+ ). If V[G][H] is a generic extension of V[G] by a

forcing in Γκ, then �A, s� is a κ-coding basis in V[G][H],

Ps(A)
V = Ps(A) = Ps(A)

V[G][H] ⊆ Hκ+
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Ps(A) is Γκ-persistently Σ1(H
V[G]
κ+ ) by the absoluteness of the Σ1

1-definition
of A.

A pair �p, q� of conditions in Ps(A) is an incompatible in Ps(A) if and
only if one of the following statements holds true.

(1) Tp is not an end-extension of Tq or Tq is not an end-extension of
Tp.

(2) Tp is an end-extension of Tq and there is an x ∈ dom(fp)∩dom(fq)
with either fq(x) � fp(x) or hp(x) �= hq(x).

(3) Same as (2), but with the roles of p and q exchanged.
(4) Tp is an end-extension of Tq and there is an x ∈ dom(fq) \ dom(fp)

such that for all z ∈ [Tp] with fq(x) ⊆ z there is β < κ with
≺hq(x), β� < ht(Tp) and either s(β) ⊆ x and z(≺hq(x), β�) = 0
or s(β) � x and z(≺hq(x), β�) = 1.

(5) Same as (4), but with the roles of p and q exchanged.

Since all of those statements are absolute between V[G] and generic exten-
sions of V[G] by forcings in Γκ, we can conclude that IPs(A)V is Γκ-persistent

Σ1(Hκ+).
Given y ∈ A and γ < κ, the proof of Corollary 7.2.8 shows that HG(x) =

γ holds if and only if there is a z ∈ [TG] such that (7.3) holds for all β < κ.

By Lemma 7.2.7, [TG] = [TG]
V[G][H] holds whenever V[G][H] is a generic

extension of V[G] by a forcing in Γκ. This shows that the graph of HG is
Γκ-persistently Σ1(Hκ+). In combination with (7.1), this implies that the
graph of FG is Γκ-persistently Σ1(Hκ+).

The filter G consists of all conditions p in Ps(A) such that TG is an
end extension of Tp and, if x ∈ dom(fp), then fp(x) = FG(x) � ht(Tp) and
hp(x) = HG(x). In combination with the above computations, this allows
us to conclude that G is Γκ-persistently Σ1(Hκ+).

Finally, a condition p in Ps(A) is not an element of G if there is a q in
G that is incompatible with p. Using the above computations, Ps(A)V \ G
is Γκ-persistently Σ1(Hκ+). �

Proof of Theorem 7.5.1. (i) Work in V[G] and let Γκ denote the
class of all <κ-closed partial orders in V[G]. We have

x ∈ V ⇐⇒ �Hκ+ ,∈� |= (∃z ∈ A)(∀α < κ) x(α) = z(≺0, α�)

for all z ∈ κκ. This shows that (κκ)V is Γκ-persistently Σ1
1(Hκ+).

Define ψ ≡ ψ(u, v, w) to be the Σ1-formula

(∃f : w −→ tc({u} ∪ w) bijection)(∀α, β < w)
�

(v(≺0,≺α, β��) = 1

←→ f(α) ∈ f(β)) ∧ (v(≺1, α�) = 1↔ f(α) ∈ u)
�

.
(7.9)

Let V[G][H] be a generic extension of V[G] by a forcing in Γκ. Given a

function x ∈ (κ2)V[G][H], we let ex denote the relation on κ defined by

α ex β ⇐⇒ x(≺0,≺α, β��) = 1.
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If �κ, ex� is well-founded and extensional, then we let tx denote image of the
corresponding collapsing map cx and ax = {cx(α) | x(≺1, α�) = 1}.

Given a ∈ H
V[G][H]
κ+ , there is an x ∈ (κ2)V[G][H] such that ψ(a, x, κ) holds

in H
V[G][H]
κ+ . Moreover, if ψ(a, x, κ) holds in H

V[G][H]
κ+ , then �κ, ex� is well-

founded and extensional, a = ax, tc({a} ∪ κ) = tx and cx is the unique

bijection witnessing that ψ(a, x, κ) holds. In particular, if a, b ∈ H
V[G][H]
κ+

and x ∈ (κ2)V[G][H] such that both ψ(a, x, κ) and ψ(b, x, κ) hold in H
V[G][H]
κ+ ,

then a = b. Finally, these computations show that a is an element of HV
κ+ if

and only if ψ(a, x, κ) holds in H
V[G][H]
κ+ for some x ∈ (κ2)V. We can conclude

that HV
κ+ is Γκ-persistently Σ1(Hκ+).

Let N denote the set of all functions n : κ× κ −→ Ps(A) in V with the
property that the set Anα = {n(α, β) ∈ Ps(A) | β < κ} is an anti-chain in
Ps(A) for all α < κ. By Proposition 7.5.3 and the above computations, N
is Γκ-persistently Σ1(Hκ+).

By the results of Section 6.2, there is a tree T on κ3 with the property
that, whenever V[G][H] is a generic extension of V[G] by a forcing in Γκ,

then p[T ]V[G][H] is equal to the set of all �x, y� ∈ (κκ)V[G][H] × (κ2)V such
that

ψ(n, y, κ) ∧ (∀α, β < κ)
�

(x(α) = β → (∃γ < κ) n(≺α, β�, γ) ∈ G)

∧ (x(α) �= β → (∀γ < κ) n(≺α, β�, γ) /∈ G)
�

.

(7.10)

holds in �H
V[G][H]
κ+ ,∈� for some n ∈ N . For every x ∈ κκ there is a y ∈ (κ2)V

with �x, y� ∈ p[T ], because there is an n ∈ N such that

τGn = {≺α, β� | α, β < κ, x(α) = β},

where τn is the Ps(A)-nice name
�

α<κ{α̌}×A
n
α. Moreover, if �x0, y�, �x1, y� ∈

p[T ], then x0 = x1.
Now, define x0 �∗ x1 by

(∃z0, z1 ∈ (
κ2)V) [�x0, z0�, �x1, z1� ∈ p[T ] ∧ z0 � z1 ∧ (∀z̄0, z̄1 ∈ (

κ2)V)

[(z̄0 � z0 ∧ z̄1 � z1)→ (�x0, z̄0� /∈ p[T ] ∨ �x1, z̄1� /∈ p[T ])]].

for all x0, x1 ∈
κκ. By the above constructions and the results of Section

6.2, the graph of this relation is a Σ1
2-subset of

κκ× κκ. It is easy to check
that this relation is linear, strict and total. In particular, its graph is a Δ1

2-
subset of κκ × κκ. Assume, toward a contradiction, that there is a strictly
�∗-descending sequence of elements in κκ of length ω. The definition gives
us a strictly �-descending sequence of elements in (κ2)V of the same length.
Since Ps(A) is σ-closed, this sequence is an element of V, a contradiction.

(ii) By Proposition 6.2.1, there is a tree T∗ on κ× κ such that

p[T∗]
V[G][H] = ∃x(p[T ]V[G][H])
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holds whenever V[G][H] is a generic extension of V[G] by a forcing in Γκ.

Let V[G][H] be such an extension and x be an element of p[T∗]
V[G][H]. There

is a y ∈ (κκ)V[G][H] with �x, y� ∈ p[T ]V[G][H]. By the construction of T , y is
an element of (κ2)V and there is an n ∈ N witnessing that (7.10) holds in

H
V[G][H]
κ+ . In V, we can construct the Ps(A)-nice name τn and, since τGn ∈

V[G], we can conclude x ∈ V[G]. This shows that p[T∗]
V[G][H] ⊆ (κκ)V[G]

and the above computations already show

(κκ)V[G] = ∃x(p[T ]V[G]) = p[T∗]
V[G] ⊆ p[T∗]

V[G][H].

�

In combination with the results of Chapter 6, the above result allows
us to show that generic absoluteness for Σ1

3(
κκ)-formulae under <κ-closed

forcings that satisfy the κ+-chain condition always fails.

Proof of Theorem 7.1.9. We fix an a ∈ P(κ) with <κκ ∈ L[a] and
bijections

f : κ −→ {�t0, t1� ∈
<κκ× <κκ | lh(t0) = lh(t1)}

and g : κ −→ <κ2 contained in L[a]. Given x ∈ κκ, we define ιx = f ◦x◦g−1

and Tx = {f(α) | x(α) = 1}. By the results of Section 6.2, there is a tree
T ∈ L[a] on κ3 such that

p[T ] = {�x, y� ∈ κκ× κκ | “Tx is a tree on κ× κ” ∧ y ∈ p[Tx]

∧ “ ιy is not a ∃x-perfect embedding into Tx ”}

holds in every transitive ZFC-model that contains L[a] and has the same
<κκ as L[a]. This implies that in any ZFC-model with the above properties

(7.11) (∃x ∈ κκ)(∀y ∈ κκ) �x, y� ∈ p[T ]

is equivalent to the existence of a tree T∗ on κ × κ such that “p[T∗] =
κκ”

holds and there is no ∃x-perfect embedding into T∗.
We show that

1lAdd(κ,κ+) � “(∀x ∈ κ̌κ̌)(∃y ∈ κ̌κ̌) �x, y� /∈ p[Ť ] ”

holds in V. Assume, toward a contradiction, that G is Add(κ, κ+)-generic
over V and T∗ ∈ V[G] witnesses that (7.11) holds in V[G]. Since T∗ = Tx
for some x ∈ (κ2)V[G], there is an α < κ+ with T∗ ∈ V[G ∩ Add(κ, α)] and
V[G] is an Add(κ, κ)+-generic extension of V[G ∩Add(κ, α)] with

(κκ)V[G∩Add(κ,α)] � (κκ)V[G] = p[T∗]
V[G].

This means

�V[G ∩Add(κ, α)],∈� |=
�

(∃p ∈ Add(κ, κ+)) p � “p[Ť∗] � V̌ ”
�

and there is a ∃x-perfect embedding into T∗ in V[G∩Add(κ, α)] by Lemma
6.3.6. But this map is also a ∃x-perfect embedding into T∗ in V[G], a con-
tradiction.
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In the other direction, define A ⊆ κκ as in Theorem 7.5.1 and let G be
P(A)-generic over V. By the second part of the Theorem, there is a tree T∗
on κ×κ in V[G] such that p[T∗]

V[G][H] = (κκ)V[G] holds whenever V[G][H] is
a generic extension of V[G] by a <κ-closed forcing in V[G]. This obviously
implies that “p[T∗] =

κκ” holds in V[G] and we can apply Lemma 6.3.6
to show that there are no ∃x-perfect embeddings into T∗ in V[G]. We can
conclude that 1lP(A) � “(∃x ∈ κ̌κ̌)(∀y ∈ κ̌κ̌) �x, y� ∈ p[Ť ] ” holds in V. �

7.6. Embeddings of trees

In this short section, we present an easy proof of Theorem 7.1.8 with the
help of our first main result. Let T Oκ denote the class of all x ∈

κκ such
that Tx = �κ,∈x� is a tree that is an element of Tκ.

Let T̄ be the set of all pairs �s, t� in <κκ×<κκ such that lh(s) = lh(t) =
γ+1 for some γ < κ and either �λ,∈s�λ� is not a tree for some λ ≤ γ closed
under Gödel-Pairing or t is injective and

(∀α < β ≤ γ) [≺t(α), t(β)� ≤ γ → s(≺t(α), t(β)�) = 1] .

We define T to be the tree {�s � α, t � β� | �s, t� ∈ T̄ , α ≤ lh(s)} on κ×κ. It
is easy to check that T Oκ =

κκ\p[T ] holds in V and every generic extension
of V by a <κ-closed forcing.

Given y ∈ κκ, we define T (y) to be the tree {t ∈ <κκ | �y � lh(t), t� ∈ T}
on κ. If y ∈ T Oκ and α < κ, then �{α} ∪ precTy(α),∈y� is a well-order

of successor length and we let ty(α) ∈
<κκ denote the corresponding uncol-

lapsing map. Our construction yields ty(α) ∈ T (y) and the map [α �→ ty(α)]
shows that Ty is order-preserving embeddable into �T (y),��.

The following result was proved in [MV93] in the case “κ = ω1 ”, but
the proof given there directly generalizes to higher cardinalities. It is the
uncountable version of the classical Boundedness Lemma.

Lemma 7.6.1 (Boundedness Lemma for κκ, [MV93, Corollary 13]). If
A is a Σ1

1-subset of κκ with A ⊆ T Oκ, then there is a tree T in Tκ such that
Ty ≤ T holds for every y ∈ A.

Proof. Let S be a tree on κ×κ with A = p[S] and T be the tree on κ×κ
defined above. Define S∗ to be the tree on κ3 consisting of triples �s, t, u�
with �s, t� ∈ T and �s, u� ∈ S. Assume towards a contradiction, that there is
a �x, y, z� ∈ [S∗]. Then x ∈ p[S]∩p[T ] = A∩(κκ\T Oκ) = ∅, a contradiction.
If y ∈ A with �y, z� ∈ [S] and t ∈ T (y), then �y � lh(t), t, z � lh(t)� ∈ S∗ and
the map [t �→ �y � lh(t), t, z � lh(t)�] shows that �T (y),�� is order-preserving
embeddable into T = �S∗,�∗�, where �∗ is the natural order on S∗. By the
above remarks, this shows that Ty ≤ T holds for every y ∈ A. �

Proof of Theorem 7.1.8. Let P be the forcing produced an appli-
cation of Theorem 7.1.3 that codes the subset T Oκ of κκ and G be P-
generic over V. By the above remarks and Proposition 6.3.3, we have

T OVκ ⊆ T O
V[G]
κ and T OVκ is a Σ1

1-subset of
κκ in V[G]. Lemma 7.6.1
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shows that there is a TG ∈ T
V[G]
κ with Tx ≤ TG for all x ∈ T OVκ . For every

T ∈ T Vκ there is an x ∈ T OVκ with T isomorphic to Tx and this completes
the proof of the theorem. �

7.7. Open problems

We close this chapter with some questions motivated by the work of
[Lücb].

It is natural to ask whether Theorem 7.1.4 is optimal with respect to
the complexity of the coded subset in the generic extension of the ground
model.

Question 7.7.1. Is there a partial order P with the following properties?

(1) P preserves cofinalities and cardinalities.
(2) If G is P-generic over V, then (κκ)V is a κ-Borel subset of κκ

without a perfect subset in V[G].

A positive answer to this question would imply that every subset of κκ
is κ-Borel in a cofinality-preserving generic extension of the ground model,
because such a forcing could be combined with almost disjoint coding. In
the other direction, an answer to the following question might provide a
negative answer to Question 7.7.1.

Question 7.7.2. Does ZFC (plus large cardinal axioms) prove nontrivial
statements about the possible lengths of well-orders of subsets of κκ whose
graph is a κ-Borel subset of κκ× κκ ?

A positive answer to Question 7.7.1 would also show that the absolute-
ness statement of Theorem 7.4.2 holds for other classes of partial orders.

Question 7.7.3. Does the statement of Theorem 7.4.2 hold if we replace
ΓV(P, G, κ) by the class of all <κ-closed partial orders?

If we restrict the canonical well-order of L to κκ, then we get a well-order
whose graph is a Δ1

1-subset of
κκ× κκ. Results of Sy-David Friedman and

Peter Holy in [FHa] show that there is a partial order that forces “2κ = κ+

” and the existence of a Δ1
1-well-order of

κκ. We may therefore ask whether
the existence of a Δ1

1-well-order of
κκ is compatible with a failure of the

GCH at κ.

Question 7.7.4. Does the existence of a well-order of κκ whose graph
is a Δ1

1-subset of κκ× κκ imply that 2κ = κ+ holds?

There are many open questions concerning the perfect subset property
and weakenings of it. We present two interesting examples.

Question 7.7.5. Is it consistent that all Π1
1-subsets of κκ have the per-

fect subset property?

Question 7.7.6. Is it consistent that every subset of κκ in L(P(κ))
either has cardinality less than 2κ or contains a perfect subset?



CHAPTER 8

Σ1
1-definability at supercompact cardinals

Given an inaccessible cardinal κ and a subset A of the corresponding
generalized Baire space κκ, the results of the last chapter show that there
is a forcing that adds a Σ1

1-definition of A and preserves the inaccessibility
of κ and the value of 2κ. If we consider stronger large cardinal properties
and ask whether the coding forcing constructed in the proof of Theorem
7.1.3 preserves these properties, then it is possible to construct scenarios in
which this forcing destroys large cardinal properties like measurability. It is
therefore natural to ask whether it is possible to have a coding forcing that
preserves large cardinal properties of κ.

This chapter contains joint work with Sy-David Friedman that provides
a positive answer to this question in the case of supercompact cardinals us-
ing class forcing. This forcing will be a class-sized iteration of a variation of
the coding forcing Ps(A) developed in Chapter 7. By carefully defining the
support of this iteration and using structural properties of the partial order
Ps(A), we will be able to lift certain supercompact embeddings to our forc-
ing extension of the ground model (see [Cum10, Section 9] for more details
on the idea of extending elementary embeddings to generic extensions). We
then use this result to construct a class-sized partial order that preserves the
inaccessibility of inaccessible cardinals and the supercompactness of super-
compact cardinals and forces the existence of well-orders of Hκ+ definable
in the structure �Hκ+ ,∈� for every inaccessible cardinal κ.

The results of this chapter are contained in [FLa].

8.1. Introduction

Remember that an uncountable cardinal κ is called γ-supercompact with
γ ≥ κ if there is an elementary embedding j : V −→ M with crit(j) = κ,
γ < j(κ) and γM ⊆M . The existence of such an embedding is equivalent to
the existence of a normal ultrafilter on the set Pκ(γ) of all subsets of γ of car-
dinality less than κ (see [Kan03, Theorem 22.7]). Given such an ultrafilter
U , we letMU denote the transitive collapse of the corresponding ultrapower
UltU (V) and jU : V −→ MU denote the corresponding elementary embed-
ding. Finally, we call a cardinal κ supercompact if κ is γ-supercompact for
all γ ≥ κ.

Let κ be a supercompact cardinal and A be an arbitrary subset of κκ.
We want to construct an outer model W of the ground model V such that κ
is still supercompact in W, (2κ)V = (2κ)W and A is definable in the structure

121
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�HW
κ+ ,∈�. By extending coding methods developed in Chapter 7, this aim is

achieved in the following theorem.

Theorem 8.1.1 ([FLa, Theorem 1.1]). There is a ZFC-preserving class
forcing P definable without parameters that satisfies the following statements.

(1) Let κ be a cardinal with the property that there is no singular limit
of inaccessible cardinals ν with ν+ < κ ≤ 2ν . Then forcing with
P does not collapse κ and, if κ is regular, then P preserves the
regularity of κ.

(2) P preserves the inaccessibility of inaccessible cardinals and the su-
percompactness of supercompact cardinals.

(3) If α is an inaccessible cardinal and G is P generic over V, then

(2α)V = (2α)V[G].
(4) If κ is an inaccessible cardinal and A is a subset of κκ, then there

is a condition p in P with the property that A is a Σ1
1-subset of κκ

in V[G] whenever G is P-generic over V with p ∈ G.

In addition, if the class of inaccessible cardinals is bounded in On, then
P is forcing equivalent to a set-sized forcing.

In particular, if the Singular Cardinal Hypothesis holds in the ground
model, then forcing with P preserves cofinalities and cardinalities.

The proof of this result will actually show that certain degrees of super-
compactness are preserved after forcing with P. Let κ be γ-supercompact
such that γ is a cardinal with γ = γ<κ, 2γ = γ+ and 2ν ≤ γ, where ν is the
supremum of all inaccessible cardinals smaller or equal to γ. Then κ will
still be γ-supercompact after forcing with P. Given a supercompact cardinal
κ, we will use a classical result due to Robert Solovay to show that there is
a proper class of cardinals γ that satisfy the above properties with respect
to κ.

We want to use the above coding result to produce ZFC-models with
definable well-orders of Hκ+ for every supercompact cardinal κ. We give a
brief overview of related existing results. A detailed discussion of this topic
can be found in the first part of [Fri10]. In [FHa], Sy-David Friedman and
Peter Holy constructed a class forcing that adds such definable well-orders
of low quantifier complexity and preserves various large cardinals.

Theorem 8.1.2 ([Fri10, Theorem 9]). There is a class forcing which
forces GCH, preserves all supercompact cardinals (as well as a proper class
of n-huge cardinals for each n < ω) and adds a well-order of Hκ+ that is
definable in �Hκ+ ,∈� by a Σ1-formula with parameters for every uncountable
regular cardinal κ.

If the GCH holds in the ground model, then results due to David Asperó
and Sy-David Friedman show that it possible to produce lightface definable
well-orders of Hκ+ for every uncountable regular cardinal κ.

Theorem 8.1.3 ([AF09, Theorem 1.1] and [AF, Theorem 1.1]). As-
sume GCH. There is a formula ϕ(x, y) without parameters and a definable
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class-sized partial order P preserving ZFC, GCH and cofinalities that satisfy
the following statements.

(1) P forces that there is a well-order ≤ of the universe such that

{�a, b� ∈ H2κ+ | �Hκ+ ,∈� |= ϕ(a, b)}

is the restriction ≤� Hκ+ and is a well-order of Hκ+ whenever κ is
a regular uncountable cardinal.

(2) For all regular cardinals κ ≤ λ, if κ is a λ-supercompact cardinal
in V, then κ remains λ-supercompact after forcing with P.

The second result of this chapter shows that it is possible to add definable
well-orders of Hκ+ for every inaccessible cardinal κ without assuming GCH
with a class forcing that preserves supercompact cardinals and failures of
the GCH at inaccessible cardinals.

Theorem 8.1.4 ([FLa, Theorem 1.4]). There is a ZFC-preserving class
forcing P definable without parameters that satisfies the following statements.

(1) Let κ be a cardinal with the property that there is no singular limit
of inaccessible cardinals ν with ν+ < κ ≤ 2ν . Then forcing with
P does not collapse κ and, if κ is regular, then P preserves the
regularity of κ.

(2) P preserves the inaccessibility of inaccessible cardinals and the su-
percompactness of supercompact cardinals.

(3) If α is an inaccessible cardinal and G is P generic over V, then

(2α)V = (2α)V[G] and there is a well-order of H
V[G]
κ+ that is definable

in the structure �H
V[G]
κ+ ,∈� by a formula with parameters.

In fact, the partial order P constructed in the proof of this result satisfies
the statements listed in Theorem 8.1.1.

8.2. Coding well-orders of Hκ+

Given an uncountable regular cardinal κ with κ = κ<κ, we show in this
section how the results of Chapter 7 can be applied to force the existence of
a definable well-order of Hκ+ with a partial order that is uniformly definable
in parameter κ.

Definition 8.2.1. Let κ be an infinite cardinal and �A, s� be a κ-coding
basis. We say that �A, s� codes a well-order of κκ if there is a well-order �

of κκ such that

A = {≺x, y� | x, y ∈ κκ with either x = y or x� y}.

The following result is a direct consequence of Theorem 7.5.1.

Corollary 8.2.2. Let κ be an uncountable regular cardinal that satisfies
κ = κ<κ. If �A, s� is a κ-coding basis that codes a well-order of κκ and G

is Ps(A)-generic over V, then there is a well-order of H
V[G]
κ+ that is definable

in �H
V[G]
κ+ ,∈� by a formula with parameters.
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Proof. We work in V[G]. By Theorem 7.5.1, there is a well-ordering
�∗ of κκ that is definable in �Hκ+ ,∈� by a formula with parameters.

Define R to be the set of all pairs �a, x� in Hκ+ × κ2 such that there is
a bijection b : κ −→ tc({a} ∪ κ) with the following properties.

(1) For all α, β < κ, x(≺0,≺α, β��) = 1 if and only if b(α) ∈ b(β).
(2) For all α < κ, x(≺1, α�) = 1 if and only if b(α) ∈ a.

This relation is definable in �Hκ+ ,∈�. If �a0, x�, �a1, x� ∈ R, then it is easy
to see that a0 = a1 holds.

Define r : Hκ+ −→ κ2 to be the function that sends a ∈ Hκ+ to the
�∗-least x ∈ κ2 with R(a, x). This function is definable in �Hκ+ ,∈� and
injective. It therefore yields a well-order of Hκ+ that is definable in the
structure �Hκ+ ,∈� by a formula with parameters. �

Next, we introduce partial orders Cα that randomly well-order αα if α
is a regular uncountable cardinal with α = α<α. This coding is random in
the sense that the generic filter chooses the well-order of αα that is coded
using a partial order of the form Ps(A).

Definition 8.2.3. If α is not a regular uncountable cardinal with α =
α<α, then we define Cα to be the trivial partial order. Otherwise, we define
the domain of Cα to consist of conditions �A, s, p� such that either A = s =
p = ∅ or �A, s� is an α-coding basis that codes a well-ordering of αα and
p ∈ Ps(A). We set �A, s, p� ≤Cα �B, t, q� if either B = ∅ or A = B �= ∅, s = t
and p ≤Ps(A) q.

Proposition 8.2.4. Let α be a regular uncountable cardinal with α =
α<α.

(1) Cα is <α-closed.
(2) A filter G is Cα-generic over V if and only if there is an α-coding

basis �A, s� coding a well-order of αα in V and a filter H in Ps(A)
that is generic over V and satisfies

(8.1) G = {�∅, ∅, ∅�} ∪ {�A, s, p� ∈ Cα | p ∈ H}.

In particular, V[G] = V[H] holds in the above situation, forcing
with Cα preserves cofinalities, cardinalities and 2α and every set of
ordinals of cardinality at most α in a Cα-generic extension of the
ground model V is covered by a set that is an element of V and has
cardinality α in V.

(3) If G is Cα-generic over V, then there is a well-order of H
V[G]
α+ that

is definable in �H
V[G]
α+ ,∈� by a formula with parameters. �

Note that Cα is uniformly definable in parameter α.
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8.3. Iterated coding forcing

In this section, we use the coding forcing developed above in an iterated
forcing construction. Our account of iterated forcing follows [Bau83] and
[Cum10] and we will repeatedly use results proved there.

By the results of the last section, there is a unique forcing iteration

���C<α | α ∈ On�, �Ċα | α ∈ On��

with Easton support (see [Cum10, Definition 7.5]) satisfying the following
properties.

(1) If β < α and α is inaccessible, then �C<β , Ċβ ∈ Vα.
(2) If α is not an inaccessible cardinal, then 1l�C<α � “ Ċα is trivial”.

(3) If α is an inaccessible cardinal, then 1l�C<α � “ Ċα = Cα̌ ”.

For all ν ≤ µ, we let Ċ[ν,µ) denote the canonical �C<ν-name with

1l�C<ν � “ Ċ[ν,β) is a partial order with domain {�p � [ν̌, µ̌) | �p ∈ �̌C<µ}”

such that there is a dense embedding e[ν,µ) : �C<µ −→ �C<ν ∗ Ċ[ν,µ) with

e[ν,µ)(�p) = ��p � ν, q̇� and 1l�C<ν � “ q̇ = �̌p � [ν̌, µ̌)” (see [Bau83, Section 5]).

Proposition 8.3.1. Let α < µ and µ be a regular cardinal. Assume that

there are no inaccessible cardinals in (α, µ) and �C<α+1 has the property that

every set of ordinals of cardinality less than µ in a �C<α+1-generic extension
of the ground model is covered by a set of cardinality less than µ in the
ground model. Then

1l�C<α+1
� “ Ċ[α+1,ν) is <µ̌-closed”

for all ν > α.

Proof. For all α < β < µ, we have 1l�C<β � “ Ċβ is trivial” by the

definition of �C<ν and our assumptions on µ. This shows that

1l�C<β � “ Ċβ is <µ̌-closed”

holds for all β > α. Moreover, �C<β is an inverse limit for every limit ordinal
β > α with cof(β) < µ. We can apply [Cum10, Proposition 7.12] to deduce
the statement of the claim. �

Proposition 8.3.2. If α is an inaccessible cardinal, then �C<α preserves
the inaccessibility of α.

Proof. Let G be �C<α-generic over V. Fix β < α and let Gβ+1 denote

the corresponding filter in �C<β+1. If µ = (|�C<β |+ + |β|)+ < α, then there

are no inaccessible cardinals in (β, µ) and Ċ
V[Gβ+1]

[β+1,α) is <β
+-closed by Propo-

sition 8.3.1. This shows (βα)V[G] ⊆ V[Gβ+1]. Since �C<β+1 ∈ Vα and α is
inaccessible in V[Gβ+1], the statement of the claim follows directly. �
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Proposition 8.3.3. �C<ν preserves the inaccessibility of all inaccessible
cardinals.

Proof. By Proposition 8.3.2 and our assumptions, �C<ν preserves the
cofinality, cardinality and inaccessibility of all inaccessible cardinals greater
or equal to ν.

Let α < ν be an inaccessible cardinal. By Proposition 8.3.2, �C<α pre-
serves the inaccessibility of α and 1l�C<α � “ Ċα is not trivial”. Proposi-

tion 8.2.4 shows that �C<α+1 preserves the inaccessibility of α. If µ =

(|�C<α+1|+ + α)+, then there are no inaccessible cardinals in (α, µ) and

1l�C<α+1
� “ Ċ[α+1,ν) is <µ̌-closed”.

In particular, �C<ν preserves the inaccessibility of α. �

Lemma 8.3.4. Let α < ν and α be an inaccessible cardinal. If G is
�C<ν-generic over V, Ḡ is the corresponding filter in �C<α and Gα is the

corresponding filter in ĊḠα , then the following statements hold.

(1) (2α)V[G] = (2α)V.

(2) ĊḠα = CV[Ḡ]α is not the trivial partial order.
(3) If �A, s� is an α-coding basis coding a well-order of αα in V[Ḡ] with

�A, s, 1lPs(A)� ∈ Gα, then A is a Σ1
1-subset of αα in V[G] and there

is a well-order of H
V[G]
α+ that is definable in �H

V[G]
α+ ,∈� by a formula

with parameters.

Proof. It follows directly from the definition of the forcing iteration

that the partial order �C<α has cardinality α. This implies (2α)V[Ḡ] =
(2α)V and we can apply Lemma 7.2.3 and Proposition 8.2.4 to conclude

(2α)V[Ḡ][Gα] = (2α)V. By Proposition 8.3.2, α is an inaccessible cardinal in
V[Ḡ] and there is an α-coding basis �A, s� in V[Ḡ] such that �A, s, 1lPs(A)� ∈

Gα. The proof of Theorem 7.1.3 shows that A is a Σ1
1-subset of

αα in

V[Ḡ][Gα] and, by Corollary 8.2.2, there is a well-order of H
V[Ḡ][Gα]
α+ that

is definable in the structure �H
V[Ḡ][Gα]
α+ ,∈� by a formula with parameters.

As above, it is easy to show that ĊḠ∗Gα[α+1,ν) adds no new α-sequences of or-

dinals. We can conclude (2α)V[G] = (2α)V, (αα)V[G] = (αα)V[Ḡ∗Gα] and

H
V[G]
α+ = H

V[Ḡ][Gα]
α+ . �

Proposition 8.3.5. Let κ be an infinite cardinal with the property that
κ /∈ (ν+, 2ν ] holds whenever ν is a singular limit of inaccessible cardinals.

Given µ > κ, �C<µ preserves the cardinality of κ and, if κ is regular, then
�C<µ preserves the regularity of κ.

Proof. By Proposition 8.3.3, we may assume that κ is not inaccessible.
Let

ν = sup{α < κ | α is an inaccessible cardinal}.
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If ν = 0 or ν is inaccessible, then ν < κ, �C<ν+1 satisfies the κ-chain
condition and

1l�C<ν+1
� “ Ċ[ν+1,µ) is <κ̌+-closed”

holds by Proposition 8.3.1.
If ν is singular and κ = ν, then κ is a limit of inaccessible cardinals and

�C<µ preserves the cardinality of κ by Proposition 8.3.3.
Let ν be singular and κ = ν+. Assume, toward a contradiction, that

κ has cardinality less or equal to ν in some �C<µ-generic extension V[G]
of the ground model. Then there is an inaccessible cardinal α such with

cof(κ)V[G] < α < ν. If Ḡ is the filter in �C<α+1 induced by G, then

cof(κ)V[Ḡ] < κ, because ĊḠ[α+1,µ) is <α-closed by Proposition 8.3.1. But
�C<α+1 satisfies the κ-chain condition, a contradiction. This shows that �C<µ
preserves the cardinality and cofinality of ν+.

If ν is singular and κ > 2ν , then �C<ν+1 satisfies the κ-chain condition
and 1l�C<ν+1

� “ Ċ[ν+1,µ) is <κ̌+-closed” holds by Proposition 8.3.1. �

8.4. Preserving supercompactness

This section is devoted to the proof of the following theorem.

Theorem 8.4.1. Let γ be a cardinal with 2γ = γ+ and 2ν ≤ γ, where

ν = sup{α ≤ γ | α is an inaccessible cardinal}.

If κ is γ-supercompact with γ = γ<κ, then

1l�C<λ � “ κ̌ is γ̌-supercompact”

holds for all λ > ν.

The following structural property of the coding forcing Ps(A) will be
essential in our proof of supercompactness preservation.

Lemma 8.4.2. Let κ be an uncountable regular cardinal with κ = κ<κ

and �A, s� be a κ-coding basis. Assume P ⊆ Ps(A) satisfies the following
properties.

(1) η = lub{ht(Tp) | p ∈ P} ∈ Lim ∩ κ.
(2) D =

�

{dom(fp) | p ∈ P} has cardinality less than κ.
(3) If p0, p1 ∈ P , then there is q ∈ P with q ≤Ps(A) p0, p1.

Then there is a unique condition pP ∈ Ps(A) with ht(TpP ) = η, dom(fpP ) =
D and pP ≤Ps(A) p for all p ∈ P .

Proof. Set T =
�

{Tp | p ∈ P}. Then T is a tree of height η and an
end-extension of Tp for all p ∈ P . If we define

F : D −→ [T ]; x �−→
�

{fp(x) | p ∈ P, x ∈ dom(fp)} ∈ [T ],

then this is a well-defined function. Moreover, for all x ∈ D there is a unique
H(x) < κ with hp(x) = H(x) for all p ∈ P with x ∈ dom(fp) and we can
define H : D −→ κ in this way.
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If x ∈ D and α, β < η with α = ≺H(x), β�, then there is p ∈ P with
x ∈ dom(fp) and α, β < ht(Tp). We can conclude

s(β) ⊆ x ⇐⇒ fp(x)(α) = 1 ⇐⇒ F (x)(α) = 1.

This shows that pP = �T, F,H� is a condition in P with pP ≤ p for all p ∈ P .
Let q ∈ Ps(A) be a condition with ht(Tq) = η, dom(fq) = D and q ≤PS(A)

p for all p ∈ P . Since η ∈ Lim, for every t ∈ Tq there is a p ∈ P with
lh(t) < ht(Tp) and therefore t ∈ Tp. This shows Tq =

�

{Tp | p ∈ P} = T . In
the same way, we can show fq(x) =

�

{fp(x) | p ∈ P, x ∈ dom(fp)} = F (x)
and hq(x) = H(x) for all x ∈ D. This means q = pP . �

Proof of Theorem 8.4.1. By our assumptions, cof(γ) ≥ κ and ν ∈
[κ, γ) is a strong limit cardinal.

Let U be a normal ultrafilter on Pκ(γ). We will prove a number of claims

that will allow us to show that κ is γ-supercompact in every �C<ν+1-generic
extension of the ground model. Given α ≤ β ∈ On, we define �Q<α = �CMU

<α ,

Q̇α = ĊMU

β and Q̇[α,β) = ĊMU

[α,β).

Since ν is either an inaccessible cardinal or a limit of inaccessible car-
dinals, we have �C<α ∈ Vν ⊆ MU for all α < ν and this shows �C<ν ∈ MU ,

because γMU ⊆MU holds. The definition of �C<α is absolute between V and
MU for every α ≤ ν. Hence elementarity implies �C<ν = �Q<ν . In particular,

if Ḡ is �C<ν-generic over V, then Ḡ is �Q<ν-generic over MU .

Claim 1. If Ḡ is �C<ν-generic over V, then (γMU [Ḡ])
V[Ḡ] ⊆MU [Ḡ].

Proof of the claim. Let x ∈ V[Ḡ] with x ⊆ γ. We can find a �C<ν-
nice name τ =

�

α<γ{α̌}×Aα with x = τ Ḡ. By the above remarks, we have
�C<ν ⊆ νVν and every Aα has cardinality at most 2

ν ≤ γ. This shows that
every Aα is an element of MU and we also get �Aα | α < γ� ∈ MU . Hence

τ ∈MU and x = τ Ḡ ∈MU [Ḡ]. We can conclude (
γ2)V[Ḡ] ⊆MU [Ḡ].

Let X ∈ V[Ḡ] with X ⊆ On and |X|V[Ḡ] ≤ γ. Since �C<ν satisfies the
γ-chain condition in V, there is an X0 ∈ V with X ⊆ X0 and |X0|

V ≤ γ.
By our assumptions, X0 ∈ MU and |X0|

MU ≤ γ. Let �ηα | α < γ� be an
enumeration of X0 in MU and x = {α < γ | ηα ∈ X} ∈ V[Ḡ]. By the above
argument, x ∈MU [Ḡ] and this shows X ∈MU [Ḡ].

The argument shows (γOn)V[Ḡ] ⊆MU [Ḡ] and this implies the statement
of the claim, becauseMU [Ḡ] is a transitive ZFC-model with On ⊆MU [Ḡ] ⊆
V[Ḡ]. �

Claim 2. If Ḡ is �C<ν-generic over V, then ĊḠν = Q̇Ḡ
ν .

Proof of the claim. If ν is not an inaccessible cardinal in V, then ν
is not inaccessible in MU and both partial orders are trivial.

Now, assume that ν is inaccessible in V and MU . By Lemma 8.3.4,

(2ν)V[Ḡ] = (2ν)V ≤ γ and Claim 1 implies P(νν)V[Ḡ] = P(νν)MU [Ḡ]. This

allows us to conclude ĊḠν = CV[Ḡ]ν = CMU [Ḡ]
ν = Q̇Ḡ

ν . �
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In particular, if G is �C<ν+1-generic over V, then G is �Q<ν+1-generic over
MU .

Claim 3. If G is �C<ν+1-generic over V, then (γMU [G])
V[G] ⊆MU [G].

Proof of the claim. Let Ḡ be the filter in �C<ν corresponding to G
and Gν be the filter in ĊḠν corresponding to G. By Proposition 8.2.4 and
the above claims, there is a partial order P in MU [Ḡ] and H ∈MU [G] such
that P satisfies the ν+-chain condition in V[Ḡ], H is P-generic over V[Ḡ]
and H induces Gν as in (8.1). Every anti-chain in P in V[Ḡ] has cardinality
at most γ in V[Ḡ] and (γMU [Ḡ])

V[Ḡ] ⊆ MU [Ḡ], we can repeat the proof of
Claim 1 and deduce the statement of the claim. �

The proofs of the above claims show that every set of ordinals of car-

dinality at most γ in a �C<ν+1-generic extension of V is covered by a set of
cardinality γ in V. By our assumptions, this implies that every set of ordi-

nals of cardinality at most γ in a �Q<ν+1-generic extension of MU is covered

by a set of cardinality γ in MU . In particular, forcing with �Q<ν+1 preserves
(γ+)MU = (γ+)V.

Claim 4. If G is �C<ν+1-generic over V, then Q̇G
[ν+1,µ) is <γ+-closed

in MU [G] for all µ > ν and the power set of Q̇G
[ν+1,jU (ν))

in MU [G] has

cardinality at most γ+ in V[G].

Proof of the claim. InMU , the interval (ν, γ
+) contains no inacces-

sible cardinals, because γMU ⊆ MU holds and no ordinal in this interval is
inaccessible in V. By the above remark and an application of Proposition
8.3.1 in MU , we can conclude that Q̇G

[ν+1,µ) is <γ
+-closed in MU [G] for all

µ > ν.
By the definition of the partial order Ċ[α,β) and elementarity, the cardi-

nality of Q̇G
[ν+1,jU (ν))

inMU [G] is less or equal to the cardinality of �Q<jU (ν) in

MU . The above computations and elementarity show that the cardinality of
�Q<jU (ν) inMU is at most jU (2

ν) and this ordinal is smaller or equal to jU (γ).
If α < jU (γ), then α is represented in MU by a function f : Pκ(γ) −→ γ
contained in V. By our assumptions, Pκ(γ) has cardinality γ in V and
there are at most 2γ-many such functions in V. Since 2γ = γ+ holds in V
and (γ+)V[G] = (γ+)V, this shows that jU (γ) has cardinality at most γ

+ in
V[G]. �

Since �C<ν ∈MU has cardinality at most γ in V, we have jU � �C<ν ∈MU

and there is a sequence

�Ġα ∈ (V
�Q<ν )MU | jU (κ) ≤ α < jU (ν)�

of names in MU with the property that Ġ
Ḡ
α = {jU (�p) � α | �p ∈ Ḡ} for all

α ∈ [jU (κ), jU (ν)) whenever Ḡ is �Q<ν-generic over MU .
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Claim 5. Let α ∈ [jU (κ), jU (ν)) be an inaccessible cardinal in MU , H be
�Q<α-generic over MU and Ḡ be the filter in �Q<ν induced by H. If ĠḠα ⊆ H
and jU (�p)(α)

H �= 1l
C
MU [H]
α

for some �p ∈ Ḡ, then the following statements

hold.

(1) There is a unique α-coding basis �Aα, sα� coding a well-order of αα
in MU [H] such that for all �p ∈ Ḡ with jU (�p)(α)

H �= 1l
C
MU [H]
α

there

is a q ∈ Psα(Aα)
MU [H] with jU (�p)(α)

H = �Aα, sα, q�.
(2) The set

Pα = {q ∈ Psα(Aα)
MU [H] | (∃�p ∈ Ḡ) jU (�p)(α)

H = �Aα, sα, q�}

satisfies the statements (i)-(iii) of Lemma 8.4.2 in MU [H].

Proof of the claim. If �p ∈ Ḡ and β < ν, then 1l�C<β � “�p(β) ∈ Ċβ ”.

By elementarity, we have 1l�Q<α � “ jU (�p)(α) ∈ Q̇α ” and, by Proposition

8.3.2, this implies

Qα = {jU (�p)(α)
H | �p ∈ Ḡ} ⊆ Q̇H

α = CMU [H]
α .

Given �p0, �p1 ∈ Ḡ, there is a �p ∈ Ḡ with �p ≤�C<ν �p0, �p1 and hence

�p � β � “�p(β) ≤
Ṗβ

�p0(β), �p1(β)”

for all β < ν. Since jU (�p) � α ∈ ĠḠα ⊆ H, this argument shows that the
elements of Qα are pairwise compatible.

Pick �p∗ ∈ Ḡ with jU (�p∗)(α)
H �= 1l

C
MU [H]
α

and define �Aα, sα� ∈MU [H] to

be the unique α-coding basis coding a well-order of αα with jU (�p∗)(α)
H =

�Aα, sα, q� for some condition q ∈ Psα(Aα)
MU [H]. By the above computa-

tions, every element of Qα is either of the form 1l
C
MU [H]
α

or �Aα, sα, q� for

some q ∈ Psα(Aα)
MU [H].

Since Ḡ has cardinality at most γ in MU [H], γ < jU (κ) ≤ α and α
is regular in MU [H], we know that η = lub{ht(Tq) | q ∈ Pα} < α and
�

{dom(fq) | q ∈ Pα} has cardinality less than α in MU [H].

We show that η ∈ Lim ∩ α. Let �p ∈ Ḡ and p ∈ Psα(Aα)
MU [H] with

�Aα, sα, p� = jU (�p)(α)
H �= 1l

C
MU [H]
α

. Let D be the set consisting of all

conditions �q ∈ �C<ν with �q ≤�C<ν �p and

�q � β � “(∀A, s, p)
��

Ċβ = Cβ̌ ∧ �p(β) = �A, s, p� �= 1lCβ̌
�

−→ (∃p̄)[�q(β) = �A, s, p̄� ∧ ht(Tp) < ht(Tp̄)]
�

”

for all β < ν. An easy inductive construction using Lemma 7.2.4 shows that
D is dense below �p in V. If �q ∈ D ∩ Ḡ with jU (�q)(α)

H = �Aα, sα, q�, then
ht(Tq) > ht(Tp) holds in MU [H] by elementarity. This shows that η is a
limit ordinal.

Finally, the conditions in Pα are pairwise compatible, because the con-
ditions in Qα are pairwise compatible and the first part of the claim shows
that every condition in Pα belongs to a condition in Qα. �
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In MU , we define a sequence �q∗ = �q̇α ∈ (V
�Q<α)MU | α < jU (ν)� such

that the following statements hold in MU for all α < jU (ν).

(1) If α < jU (κ) or α is not an inaccessible cardinal, then

1l�Q<α � “ q̇α = 1̇lQ̇α ”.

(2) If α is an inaccessible cardinal in [jU (κ), jU (ν)), then q̇α is a canon-

ical �Q<α-name τ such that the following statements hold whenever

H is �Q<α-generic over MU and Ḡ is the filter in �Q<ν induced by
H.
(a) If ĠḠα ⊆ H and jU (�p)(α)

H �= 1l
Q̇Hα

for some �p ∈ Ḡ, then τH =

�Aα, sα, pPα�, where Aα, sα and Pα are defined as in Claim 5
and pPα is defined as in Lemma 8.4.2.

(b) Otherwise, τH = 1l
Q̇Hα
.

Claim 6. �q∗ ∈ �Q<jU (ν).

Proof of the claim. Let α ∈ [jU (κ), jU (ν)) be a regular cardinal in

MU . For all �p ∈ �C<ν there is an ᾱ�p < α with jU (�p)(β) = 1̇l
Q̇β

for all

ᾱ�p ≤ β < α. Since jU”�C<ν is an element of MU and has cardinality less

than α in MU , we can find an ᾱ ∈ (jU (κ), α) with jU (�p)(β) = 1̇l
Q̇β

for

all �p ∈ �C<ν and ᾱ ≤ β < α. If β ∈ (ᾱ, α) is an inaccessible cardinal,

H is �Q<α-generic over MU and Ḡ is the filter in �Q<ν induced by H, then
jU (�p)(β)

H = 1l
Q̇H
β
for all �p ∈ Ḡ and q̇Hβ = pPβ = 1lQ̇H

β
by the uniqueness of

pPβ . By the definition of q̇β , this shows q̇β = 1̇lQ̇β . Therefore �q∗ is a sequence

with Easton support. �

Claim 7. If H is �Q<jU (ν)-generic over MU with �q∗ ∈ H and Ḡ is the

corresponding filter in �Q<ν , then jU”Ḡ ⊆ H.

Proof of the claim. Let α ∈ [ν, jU (ν)) and F be �Q<α-generic over

MU with �q∗ � α ∈ F . Assume that F induces Ḡ in �Q<ν and

(8.2) �q∗ � [ν, α) ≤
Q̇Ḡ

[ν,α)
jU (�p) � [ν, α)

holds for all �p ∈ Ḡ. Pick �p ∈ Ḡ. There is a κ̄ < κ such that �p(β) = 1̇l
Q̇β
for

all β ∈ [κ̄, κ) and

jU (�p)(β) =

�

�p(β), if β < κ̄,

1̇l
Q̇β
, if κ̄ ≤ β < ν.

by the definition of �C<ν . In particular, �p ≤�Q<ν jU (�p) � ν. By our assump-

tion, there is a �p∗ ∈ Ḡ with �p∗ ≤�Q<ν �p and

�p∗ ∗ (�q∗ � [ν, α)) ≤�Q<ν∗Q̇[ν,α)
i[ν,α)(jU (�p) � α).

This implies jU (�p) � α ∈ F and hence ĠḠα ⊆ F .
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Next, we show that (8.2) holds inMU [G] for all �p ∈ Ḡ and α ∈ [ν, jU (ν)]
by induction. The case “α = ν ” is trivial and the case “α ∈ Lim” follows
directly from the induction hypothesis.

Assume α = ᾱ+1 with ᾱ ≥ ν. We may assume that ᾱ is an inaccessible
cardinal in MU . It suffices to show that

�q∗(ᾱ)
F ≤

Q̇Fᾱ
jU (�p)(ᾱ)

F

holds in MU [F ] whenever �p ∈ Ḡ and F is �Q<ᾱ-generic over MU such that

�q∗ � ᾱ ∈ F and F induces Ḡ in �Q<ν . We may assume that there is a
�p ∈ Ḡ with jU (�p)(ᾱ)

F �= 1l
Q̇Fᾱ
. By the induction hypothesis and the above

computations, we directly get ĠḠᾱ ⊆ F . The definition of �q∗(ᾱ) and Claim
5 imply

�q∗(ᾱ)
F = �Aα, sα, pPᾱ� ≤Q̇Fᾱ

jU (�p)(ᾱ)
F

for all �p ∈ Ḡ.
This induction shows that (8.2) holds if α = jU (ν) and �p ∈ G. This

allows us to repeat the above computation and conclude jU”G ⊆ H. �

Claim 8. 1l�C<ν+1
� “ κ̌ is γ̌-supercompact”.

Proof of the claim. Let G be �C<ν+1-generic over V, Ḡ be the cor-

responding filter in �C<ν and Gν be the corresponding filter in ĊḠν . Claim 4
combined with Claim 3 shows that there is a H̄ ∈ V[G] such that �q∗ ∈ H̄,

H̄ is �Q<jU (ν)-generic over MU and H̄ induces G in �Q<ν+1. By Claim 7, we

have jU”Ḡ ⊆ H̄ and we can apply [Cum10, Proposition 9.1] to define an
elementary embedding j : V[Ḡ] −→ MU [H̄] extending jU in V[G] that by

setting j(τ Ḡ) = jU (τ)
H̄ for all τ ∈ V

�C<ν .

We show that there is a H∗ ∈ V[G] such that H∗ is Q̇H̄
jU (ν)

-generic over

MU and j”Gν ⊆ H∗. We may assume that ν is an inaccessible cardinal.

This implies (2ν)V[Ḡ] = (2ν)V ≤ γ. By Proposition 8.2.4, there is a ν-coding
basis �A, s� ∈ V[Ḡ] coding a well-order of νν and a filter Fν ∈ V[G] such

that Fν is Ps(A)V[Ḡ]-generic over V[Ḡ] and Fν induces Gν as in (8.1).
By Claim 3, we have (γOn)V[G] ⊆ MU [G] ⊆ MU [H̄] ⊆ V[G] and this

implies that (γMU [H̄])
V[G] ⊆ MU [H̄] holds. In particular, both Ps(A)V[Ḡ]

and j � Ps(A)V[Ḡ] are elements of MU [H̄], because Ps(A)V[Ḡ] has cardinality
at most γ in V[Ḡ]. If j(�A, s�) = �Ā, s̄� and P = j”Fν , then �Ā, s̄� is a jU (ν)-

coding basis that codes a well-order of jU (ν)jU (ν) inMU [H̄], P ⊆ Ps̄(Ā)MU [H̄]

and P ∈ MU [H̄], because Fν is an element of MU [H̄]. As in the proof of
Claim 5, the set P satisfies the statements (i)-(iii) of Lemma 8.4.2 inMU [H̄]

and we can find a condition pP ∈ Ps̄(Ā)MU [H̄] as in the statement of the
Lemma.

InMU [H̄], Ps̄(Ā)MU [H̄] is <γ+-closed and has cardinality at most jU (γ).
By the proof of Claim 4, jU (γ) has cardinality at most γ

+ in V[G] and

there is a F∗ ∈ V[G] such that pP ∈ F∗ and F∗ is Ps̄(Ā)MU [H̄]-generic
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over MU [H̄]. If H∗ ∈ V[G] is the filter in CMU [H̄]
jU (ν)

corresponding to F∗,

then H∗ is Q̇H̄
jU (ν)

-generic over MU [H̄] and our construction ensures j”Gν ⊆

H∗. Another application of [Cum10, Proposition 9.1] to define an ele-
mentary embedding j∗ : V[G] −→ MU [H̄][H∗] in V[G] that extends j.

Since (γOn)V[G] ⊆ MU [H̄][H∗] ⊆ V[G], this argument shows that κ is γ-
supercompact in V[G]. �

Claim 9. If λ > ν, then 1l�C<λ � “ κ̌ is γ̌-supercompact”.

Proof of the claim. Let H be �C<λ-generic over V and G be the

corresponding filter in �C<ν+1. There are no inaccessible cardinals in (ν, γ+)
and the above computations show that �C<ν+1 has the property that every
set of ordinals of cardinality at most γ in a �C<ν+1-generic extension of the
ground model is covered by a set of cardinality γ in V. By Proposition 8.3.1,
ĊG[ν+1,λ) is <γ

+-closed in V[G].

By Claim 8, there is a normal filter U∗ on Pκ(γ) in V[G] and U
∗ is also a

normal filter on Pκ(γ) in V[H], because V[H] is a ĊG[ν+1,λ)-generic extension

of V[G] and <γ+-closed forcing preserve normal filters on Pκ(γ). �

This completes the proof of the theorem. �

The following result due to Robert Solovay shows that, given a super-
compact cardinal κ, there is a proper class of cardinals γ satisfying the
assumptions of Theorem 8.4.1 with respect to κ. Remember that an un-
countable cardinal is strongly compact if for any set S, every κ-complete
filter on S can be extended to a κ-complete ultrafilter on S. Every super-
compact cardinal is strongly compact (see [Kan03, Corollary 22.18]).

Theorem 8.4.3 ([Sol74, Theorem 1]). If κ is a strongly compact cardi-
nal and γ is a singular strong limit cardinal greater than κ, then 2γ = γ+.

Let κ be a cardinal and γ0 ≥ κ. There is a singular strong limit cardinal
γ > γ0 such that cof(γ) ≥ κ and there are no inaccessible cardinals in (γ0, γ].
If κ is supercompact, then 2γ = γ+ by Theorem 8.4.3 and γ satisfies the
assumptions of Theorem 8.4.1. This proves the following statement.

Corollary 8.4.4. If κ is supercompact and γ ∈ On, then there is a
ν ∈ On with

1l�C<λ � “ κ̌ is γ̌-supercompact”

for all λ > ν. �

8.5. Proofs of the main results

Given α ≤ β ∈ On, let �α,β : �C<α −→ �C<β denote the canonical embed-
ding of partial orders. Let D be the class of all �p such that there is a β ∈ On
with �p ∈ �C<β and �p �= �α,β(�q) for all α < β and �q ∈ �C<α. Define P to be
the class forcing with domain D ordered by �p ≤P �q if there are α, β, γ ∈ On
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with α, β ≤ γ, �p ∈ �C<α, �q ∈ �C<β and �α,γ(�p) ≤�C<γ �β,γ(�q). This means that
P is a direct limit of the directed system

���C<α | α ∈ On�, ��α,β | α ≤ β ∈ On��.

Since �C<α is uniformly definable in parameter α, P is definable without
parameters.

Proof of Theorem 8.1.4. First, assume that the inaccessible cardi-
nals are bounded in On and define

ν = sup{α ∈ On | α is an inaccessible cardinal}.

We have 1l�C<ν+1
� “ Ċ[ν+1,λ) is trivial” for all λ > ν and this shows that P

is forcing equivalent to �C<ν+1. Since ν is definable without parameters and
each �Cα is definable in parameter α, the partial order �C<ν+1 is definable
without parameters. Proposition 8.3.3, Lemma 8.3.4 and Corollary 8.4.4

show that �C<ν+1 satisfies the statements listed in Theorem 8.1.4 under this
assumption.

Now, assume that there are unboundedly many inaccessible cardinals in
On. Let G be P-generic over V.

For each β ∈ On, we define

Gβ = {�α,β(�p) | α ≤ β, �p ∈ G ∩ �C<α}.

Then Gβ is �C<β-generic over V, V[G] is the union of all V[Gβ ] and Gα is

the filter induced by Gβ in �C<α whenever α ≤ β ∈ On.

Claim 1. If α is an inaccessible cardinal in V and x ∈ V[G] is a subset
of α, then x ∈ V[Gα+1].

Proof of the claim. There is a β > α with x ∈ V[Gβ ]. Since �C<α+1
satisfies the α+-chain condition in V, we can apply Proposition 8.3.1 to show
that Ċ[α+1,β) is <α

+-closed in V[Gα+1] and this implies x ∈ V[Gα+1]. �

Claim 2. Let x be an element of V[G]. There is an inaccessible cardinal
α such that y ∈ V[Gα+1] for all y ∈ V[G] with y ⊆ x. In particular, V[G]
satisfies the Power Set Axiom.

Proof of the claim. By our assumption, we can find an inaccessible
cardinal α in V such that x ∈ V[Gα+1] and |x|

V[Gα+1] ≤ α. Let i : x −→ α
be an injection in V[Gα+1]. If y ∈ V[G] is a subset of x, then there is
β > α with y ∈ V[Gβ ]. By Claim 1, we have f”y ∈ V[Gα+1] and therefore

y ∈ V[Gα+1]. This argument shows that P(x)
V[Gα+1] is the power set of x

in V[G]. �

Claim 3. V[G] is a model of ZFC.
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Proof of the claim. Let �p be a condition in P, A be an element of V
and �Da | a ∈ A� be a V-definable sequence of dense subclasses of P. Then
there is an α ∈ On with �p ∈ �C<α. Given a ∈ A, define

da = {�q � α | (∃β ≥ α) �q ∈ Da ∩ �C<β} ∈ V.

Then �da | a ∈ A� ∈ V and each da is predense in P. This shows that P is
pretame with respect to V (see [Fri00, page 33]). By [Fri00, Lemma 2.19],
this implies that V[G] is a model of ZFC−. �

Claim 4. Let κ be a cardinal in V with the property that there is no
singular limit of inaccessible cardinals ν with ν+ < κ ≤ 2ν in V. Then κ is
a cardinal in V[G] and, if κ is regular in V, then κ is regular in V[G].

Proof of the claim. By Proposition 8.3.5, κ is a cardinal in V[Gµ]
for every µ ∈ On and, if κ is regular in V, then κ is regular in every V[Gµ].
In combination with the above remarks, this directly implies the statement
of the claim. �

Claim 5. If κ is a supercompact cardinal in V, then κ is supercompact
in V[G].

Proof of the claim. Given γ ∈ On, Corollary 8.4.4 shows that there
is a ν ∈ On such that κ is γ-supercompact in V[Gβ ] for all β > ν. By Claim 2,

there is an inaccessible cardinal α such that P(Pκ(γ))V[G] = P(Pκ(γ))V[Gα]

and therefore P(Pκ(γ))
V[Gα] = P(Pκ(γ))

V[Gβ ] for all β > ν. We can con-
clude that κ is γ-supercompact in V[G]. �

Claim 6. If α is an inaccessible cardinal in V, then α is an inaccessible
cardinal in V[G] and (2α)V[G] = (2α)V.

Proof of the claim. By Proposition 8.3.3, α is an inaccessible car-
dinal in V[Gα+1] and Lemma 8.3.4 shows that (2

α)V[Gα+1] = (2α)V holds.
The statement of the claim follows directly from Claim 1. �

Claim 7. Let α be an inaccessible cardinal in V. There is a well-order
of H

V[G]
α+ that is definable in �H

V[G]
α+ ,∈� by a formula with parameters.

Proof of the claim. By Claim 2, there is a ν > α with H
V[G]
α+ =

H
V[Gν ]
α+ . The statements of the Claim follows directly from Lemma 8.3.4. �

This completes the proof of the theorem. �

Proof of Theorem 8.1.1. Let α be an inaccessible cardinal and A be
a subset of αα. There is a �C<α-name ṗ with the property that, whenever G is
�C<α-generic over V, then there is a α-coding basis �Ā, s̄� coding a well-order
of αα in V[G] that satisfies the following statements in V[G].

(1) ṗG = �Ā, s̄, 1lPs̄(Ā)V[G]� ∈ ĊGα .
(2) There is a well-order � of αα witnessing that �Ā, s̄� codes a well-

order of αα such that A is an initial segment of this order and the
order-type of this initial segment is equal to the cardinality of A.
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Pick �p ∈ �C<α+1 with �p(α) = ṗ. Then p is a condition in P.
Let G be P-generic over V with p ∈ G. For each β ∈ On, define Gβ as

in the proof of Theorem 8.1.4 and let

ṗGα = �Ā, s̄, 1lPs̄(Ā)V[Gα]� ∈ V[Gα].

By Claim 2 in the above proof, there is a ν > α with H
V[G]
α+ = H

V[Gν ]
α+ .

Lemma 8.3.4 implies that Ā is a Σ1
1-subset of

αα in V[Gν ] and therefore also

in V[G]. Let � denote the well-order of (αα)V[Gα] produced by the above

construction. Then � is definable in �H
V[G]
α+ ,∈� and A is either equal to

the domain of � or to the set of all �-predecessors of an element of this

domain. This shows that A is definable in �H
V[G]
α+ ,∈� by a Σ1-formula with

parameters. By the results of Section 6.2, A is a Σ1
1-subset of

αα. �

8.6. Open problems

We close this chapter with some open problems related to the above
results.

If the Singular Cardinal Hypothesis holds, then forcing with the class-
sized partial order constructed in Theorem 8.1.4 does not collapse cardinals.
It is not obvious if the converse of this implication also holds.

Question 8.6.1. Is it consistent that the partial order constructed in the
proof of Theorem 8.1.4 collapses cardinals?

Given a κ-coding basis �A, s�, an easy argument shows that forcing with
Ps(A) adds a Cohen-subset of κ. Therefore, a positive answer to the above
question would follow from the existence of certain scales (see [Jec03, Def-
inition 24.6]). The proof of [Hon10, Observation 4.3] contains the idea
behind this approach.

As mentioned in the abstract, Theorem 8.1.4 can be viewed as a boldface
version of Theorem 8.1.3 in the absence of the GCH. We may therefore ask
whether a lightface version of Theorem 8.1.4 is possible.

Question 8.6.2. Let κ be a regular uncountable cardinal κ with κ = κ<κ

and 2κ > κ+. Is there a cardinal preserving partial order P with the property
that, whenever V[G] is a P-generic extension of the ground model, then there

is a well-order of H
V[G]
κ+ that is definable in �H

V[G]
κ+ ,∈� by a formula without

parameters?

In [FHb], Sy-David Friedman and Radek Honzik use a κ++-strong car-
dinal to produce a model with a measurable κ with 2κ = κ++ and the
property that there is a well-order of Hκ+ that is definable in �Hκ+ ,∈� by a
formula without parameters. It is natural to ask whether this statement is
optimal.

Question 8.6.3. Is it consistent that there is a measurable cardinal κ
such that 2κ > κ++ and there is a well-order of Hκ+ that is definable in
�Hκ+ ,∈� by a formula without parameters?
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The result mentioned above is used in [FHb] to establish the consistency
of a definable failure of the Singular Cardinal Hypothesis, i.e. if the existence
of a κ++-strong cardinal is consistent, then it is consistent that ℵω is a strong
limit cardinal, 2ℵω = ℵω+2 and there is a well-order of Hℵω+1 that is definable

in �H
V[G]
ℵω+1

,∈� by a formula without parameters.

Starting from a supercompact cardinal, we can apply the Laver prepa-
ration (see [Lav78]) and Theorem 8.1.4 to produce a positive answer to
the boldface version of Question 8.6.3. We may therefore ask whether the
existence of stronger definable failure of the Singular Cardinal Hypothesis is
consistent.

Question 8.6.4. Is it consistent that there is a singular strong limit
cardinal ν such that 2ν > ν++ and there is a well-order of Hν+ that is
definable in �Hν+ ,∈� by a formula with parameters?

Finally, we ask whether the existence of a definable well-order of Hℵω+1

can be forced without applying some variation of Prikry-Forcing.

Question 8.6.5. Is there a partial order P with cardinality less than
the least inaccessible cardinal and the property that, whenever V[G] is a P-

generic extension of the ground model, then there is a well-order of H
V[G]
ℵω+1

that is definable in �H
V[G]
ℵω+1

,∈� by a formula with parameters?
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[Lücb] Philipp Lücke. Σ
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