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Characterizing large cardinals
through Neeman’s pure side condition forcing
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Abstract. We show that some of the most prominent large cardinal notions can
be characterized through the validity of certain combinatorial principles at ω2 in forcing
extensions by the pure side condition forcing introduced by Neeman. The combinatorial
properties that we make use of are natural principles, and in particular for inaccessible
cardinals, these principles are equivalent to their corresponding large cardinal properties.
Our characterizations make use of the concepts of internal large cardinals introduced in
this paper, and of the classical concept of generic elementary embeddings.

1. Introduction. The interplay between forcing and large cardinals is
a major theme of contemporary set theory. A typical situation is that a
large cardinal κ is collapsed to become an accessible cardinal in a way that
preserves certain combinatorial properties of κ. This approach establishes
a deep connection between large cardinals and combinatorial principles for
small cardinals. This connection is further emphasized by various results
from inner model theory showing that the validity of certain combinatorial
principles causes small cardinals to be large in canonical inner models of set
theory. In many important cases, these results are able to recover the type
of large cardinal used to establish the consistency of the combinatorial prin-
ciple in the first place, and therefore lead to equiconsistency results between
large cardinal axioms and combinatorial principles for small cardinals. As
an example, results of Solovay show that if θ is a Mahlo cardinal above an
uncountable regular cardinal κ and G is a filter on the corresponding Lévy
collapse Col(κ,<θ) that is generic over the ground model V, then Jensen’s
principle �κ fails in V[G]. In the other direction, if κ is an uncountable car-
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dinal such that �κ fails, then seminal results of Jensen [10] show that κ+ is
a Mahlo cardinal in Gödel’s constructible universe L.

In this paper, we want to examine even stronger connections between
large cardinals and combinatorial principles established by forcing. That is,
we want to study forcings that characterize certain large cardinal properties
through the validity of combinatorial principles in their generic extensions,
in the sense that an uncountable regular cardinal enjoys some large cardi-
nal property if and only if a certain combinatorial principle holds for this
cardinal in corresponding generic extensions. In addition, our characteriza-
tions will be strong : they will make use of combinatorial principles that are
equivalent to their corresponding large cardinal properties when conjuncted
with inaccessibility. That is, one might be led to say that the principles we
use to characterize large cardinals in the following are their combinatorial
remainder after robbing them of their inaccessibility in a sufficiently nice
way.

It is easy to see that not all equiconsistency results necessarily lead to
such characterizations. For example, in the case of the equiconsistency result
for Mahlo cardinals described above, we can combine a result of Todorčević
showing that the Proper Forcing Axiom PFA implies that �κ fails for all
uncountable cardinals κ (see [23]) with a result of Larson showing that PFA
is preserved by <ω2-closed forcing (see [15]) to see that if PFA holds and
κ < θ are regular cardinals greater than ω1, then �κ fails in every Col(κ,<θ)-
generic extension.

The following definition makes the above-described approach more pre-
cise. We will be interested in the case when Φ(θ) describes a large cardinal
property of θ, and when forcing with P(θ) turns θ into a successor cardinal.
We use Card to denote the class of all infinite cardinals.

Definition 1.1. Let ~P = 〈P(θ) | θ ∈ Card〉 be a class-sequence of partial
orders, and let Φ(v) and ϕ(v) be parameter-free formulas in the language of
set theory.

(i) We say that ~P characterizes Φ through ϕ if

ZFC ` ∀θ ∈ Card [Φ(θ)↔ 1P(θ)  ϕ(θ̌)].

(ii) If ~P characterizes Φ through ϕ, then we say that this characterization is
strong in case that

ZFC ` ∀θ inaccessible [Φ(θ)↔ ϕ(θ)].

The following observation shows that the most canonical choice of forc-
ing to turn a large cardinal into a successor cardinal, the Lévy collapse
Col(κ,<θ), is not suitable for characterizations of the above form.
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Proposition 1.2. Assume that the existence of an inaccessible cardinal
is consistent with the axioms of ZFC. If n < ω, then no formula in the
language of set theory characterizes the class of inaccessible cardinals through
the sequence 〈Col(ωn, <θ) | θ ∈ Card〉.

Proof. Assume, towards a contradiction, that ϕ(v) is a formula with
this property, and that there is a model V of ZFC that contains an in-
accessible cardinal θ. Let G be Col(ωn, <θ)-generic over V. Then, using
the fact that Col(ωn, <θ) × Col(ωn, <θ) and Col(ωn, <θ) are forcing equiv-
alent, we may find H0, H1 ∈ V[G] with the property that H0 × H1 is
(Col(ωn, <θ) × Col(ωn, <θ))-generic over V and V[G] = V[H0 ×H1]. Since
θ is inaccessible in V, our assumption implies that ϕ(θ) holds in V[G] and,
since the partial order Col(ωn, <θ)

V = Col(ωn, <ωn+1)V[H0] is weakly ho-
mogeneous in V[H0], we know that 1Col(ωn,<θ)  ϕ(θ̌) holds in V[H0]. But,
again by our assumption, this shows that θ = ω

V[H0]
n+1 is inaccessible in V[H0],

a contradiction.

In contrast, the results of this paper will show that the pure side condition
forcing introduced by Neeman [21] allows a characterization of many impor-
tant large cardinal notions through canonical combinatorial principles. Given
an inaccessible cardinal θ, this forcing notion (1) uses finite sequences of ele-
mentary submodels of H(θ) to turn θ into ω2, while preserving many combi-
natorial properties of θ, due to its strong structural properties. For example,
Neeman’s pure side condition forcing is strongly proper for a rich class of
models, and its quotient forcings have the σ-approximation property. In [21],
Neeman already used these properties to prove results that imply that an
inaccessible cardinal is weakly compact if and only if the corresponding pure
side condition forcing turns the cardinal into ω2 and the cardinal ω2 has the
tree property in the corresponding generic extension (see [21, Section 5.1]).

In the first part of this paper, we will make use of the concept of internal
large cardinals that we will introduce in Section 4, in order to strongly char-
acterize the following large cardinal properties with the help of Neeman’s
pure side condition forcing:

• inaccessible and Mahlo cardinals;
• Πm

n -indescribable cardinals for all 0 < m,n < ω;
• subtle, ineffable and λ-ineffable cardinals for certain λ;
• supercompact cardinals.

In its second part, we will use the classical concept of generic elementary em-
beddings to provide strong characterizations for the following large cardinal
properties:

(1) A formal definition of this partial order can be found in Section 2.
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• measurable cardinals;
• γ-supercompact cardinals for γ ≥ κ;
• supercompact cardinals;
• almost huge and super almost huge cardinals.
In the final section, we will discuss possible variations of the results of this
paper and state some open questions motivated by them. In particular, we
will discuss the question whether similar characterizations are possible using
other canonical sequences of collapse forcing notions.

2. Neeman’s pure side condition forcing. Closely following [21, Sec-
tion 2] for most of its parts, this section is devoted to introducing (instances
of) Neeman’s model sequence poset. We will present a series of definitions
and results from [21], which will be needed in the later sections of our paper,
and we will also make some additional observations that will be important
for our later results.

Definition 2.1. Given a transitive set K and S, T ⊆ K, we let PK,S,T
denote the partial order defined by the following clauses:
(i) A condition in PK,S,T is a finite, ∈-increasing (2) sequence 〈Mi | i < n〉

of elements of S ∪ T with the property that for all i, j < n, there is a
k < n with Mk = Mi ∩Mj .

(ii) Given conditions p and q in PK,S,T , we let p ≤PK,S,T q if and only if
ran(p) ⊇ ran(q).
In the setting of this definition, we will refer to elements of S∪T as nodes

in K.
Remark 2.2. Let p = 〈Mi | i < n〉 be a condition in a partial order of

the form PK,S,T . Then for all j < k < n, the node Mj has a smaller rank
than the node Mk. In particular, the ordering of ran(p) imposed by p is
uniquely determined by ran(p). Thus we can identify conditions in PK,S,T
with their range. We will use this identification tacitly throughout.

In most parts of this paper, we will work with a special case of the above
general definition, as provided by the following. We will however make use of
the general definition in the second part of this paper, when we investigate
(in V) forcing notions of the form PK,S,T as defined in inner models.

Definition 2.3. Let θ be an infinite cardinal.
(i) We let Sθ denote the set of all countable elementary submodels of H(θ)

that are elements of H(θ).
(ii) We let Tθ denote the set of all transitive and countably closed elemen-

tary submodels of H(θ) that are elements of H(θ).
(iii) We set Pθ = PH(θ),Sθ,Tθ .

(2) In the sense that Mi−1 ∈Mi for all 0 < i < n.
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The aim of this paper is to show that the sequence 〈Pθ | θ ∈ Card〉
can be used to strongly characterize various classes of large cardinals in the
sense of Definition 1.1. Towards this goal, we first review some of the strong
structural properties of partial orders of the form Pθ that were proven in [21].
The assumptions on the sets K, S and T listed in the following definition
are already sufficient in order to derive several such properties.

Definition 2.4. Let K be a transitive set and let S, T ⊆ K.

(i) We say that K is suitable if ω1 ∈ K and the model (K,∈) satisfies a
sufficient fragment of ZFC, in the sense that K is closed under the op-
erations of pairing, union, intersection, set difference, cartesian product,
and transitive closure, closed under the range and restriction operations
on functions, and such that for each x ∈ K, the closure of x under in-
tersections belongs to K, and there is a ordinal length sequence in K
consisting of the members of x arranged in non-decreasing von Neumann
rank.

(ii) If K is suitable, then the pair (S, T ) is appropriate for K if the following
statements hold:

(a) Elements of S are countable elementary submodels of K, and ele-
ments of T are transitive and countably closed elementary submodels
of K.

(b) If M ∈ S and W ∈M ∩ T , then M ∩W ∈W and M ∩W ∈ S.

If a pair (S, T ) is appropriate for a suitable set K, then we will refer to
elements of S as small nodes in K, and to elements of T as transitive nodes
in K.

If an infinite cardinal θ satisfies certain cardinal-arithmetic assumptions,
then the corresponding partial order Pθ fits into the above framework. Let
us say that a cardinal θ is countably inaccessible if it is regular and δω < θ
for all δ < θ.

Proposition 2.5. Let θ be an infinite cardinal.

(i) If θ > ω1, then H(θ) is suitable.
(ii) If θ is countably inaccessible, then (Sθ, Tθ) is appropriate for H(θ).

Proof. Only (ii) is non-trivial. PickM ∈ Sθ andW ∈M ∩Tθ. SinceW is
countably closed and M is countable, we know that W ∩M ∈W . Moreover,
since there is a well-ordering ofW inM , we may define Skolem functions for
W in M . By this and the fact that M is an elementary submodel of H(θ),
we conclude that M ∩W is an elementary submodel of both W and H(θ).
Since M is countable, we conclude that M ∩W is an element of Sθ.

The following result will frequently be used in our computations.
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Lemma 2.6 ([21, Corollary 2.32]). Let K be a suitable set, let (S, T ) be
appropriate for K, let M ∈ S ∪ T and let p ∈ PK,S,T ∩M . Then there is a
condition q below p in PK,S,T with M ∈ q. Moreover, q can be taken as the
closure of p ∪ {M} under intersections.

Corollary 2.7. If θ is a countably inaccessible cardinal and G is Pθ-
generic over V, then

H(θ)V =
⋃⋃

G =
⋃(
T V
θ ∩

⋃
G
)
.

Proof. Since our assumptions on θ imply that every subset of H(θ)V of
cardinality less than θ in V is a subset of someM ∈ T V

θ , the above equalities
follow directly from Lemma 2.6.

The first structural consequence of the assumptions listed in Defini-
tion 2.4, which will be used throughout this paper, is that of strong proper-
ness, which was introduced by Mitchell [20]. Recall that, given a partial
order P and a set M , a condition p in P is a strong master condition for M
if G ∩M is (P ∩M)-generic over V whenever G is P-generic over V with
p ∈ G. A partial order P is strongly proper for some set M if every condition
in P ∩M can be extended to a strong master condition for M . Note that if
M is sufficiently elementary in some transitive set, then any strong master
condition for M is also a master condition for M , i.e. it forces the generic
object to intersect every dense set D ∈ M of P inside M . The following
result from [21] shows that the above assumptions ensure that partial orders
of the form PK,S,T are strongly proper for a large class of models.

Lemma 2.8 ([21, Claim 4.1]). Let K be a suitable set and let (S, T ) be
appropriate for K.

(i) If p is a condition in PK,S,T and M is a node in p, then p is a strong
master condition for M .

(ii) The partial order PK,S,T is strongly proper for every element of S ∪ T .
(iii) If W is a node in K, then the partial order PK,S,T ∩ W is strongly

proper for every element of (S ∪ T ) ∩W . Moreover, if p is a condition
in PK,S,T ∩W andM is a node in p, then p is a strong master condition
for M with respect to the partial order PK,S,T ∩W .

The corollary below follows directly from the above lemma and the obser-
vation that, given an uncountable regular cardinal θ, a partial order P ⊆ H(θ)
that is strongly proper for every element of Sθ is also proper.

Corollary 2.9. If θ is a countably inaccessible cardinal, then the partial
order Pθ is proper, and therefore forcing with Pθ preserves ω1.

Closely following [21, Sections 3 & 4], we list some standard consequences
of properness and strong properness.
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Lemma 2.10 ([21, Claim 3.3]). Let ϑ be a sufficiently large regular car-
dinal, let M be an elementary submodel of H(ϑ) and let P be a partial order
in M . If G is P-generic over V and G contains a master condition for M ,
then the following statements hold true:
(i) M [G] is an elementary submodel of H(ϑ)[G] with M [G] ∩ V = M .
(ii) If ḟ is a P-name in M with the property that ḟG is a function with

ordinal domain and τ = ḟ ∩M , then τG = ḟG�M .
Recall that, given a non-empty set X, we say that S ⊆ P(X) is a sta-

tionary subset of P(X) if it meets every set of the form Cf = {x ⊆ X |
f [[x]<ω] ⊆ x}, where f : [X]<ω → X is a function sending finite subsets of
X to elements of X.

Lemma 2.11 ([21, Claim 3.5]). Let K be suitable, let P ⊆ K be a partial
order and let R be a set with the property that P is strongly proper for every
element of R. If κ is an uncountable cardinal with the property that for all
α < κ, the set {M ∈ R | α ⊆M, |M | < κ} is a stationary subset of P(K),
then forcing with P does not collapse κ.

The next proposition (see [21, Section 5.1]) shows how the above lemma
can be applied in our context. Since no proof of this statement was provided
in [21], we will lay out the easy argument for the benefit of our readers.

Proposition 2.12. Let θ be a countably inaccessible cardinal.
(i) If α < θ, then {M ∈ Tθ | α ⊆M} is a stationary subset of P(H(θ)).
(ii) Forcing with Pθ preserves θ.

Proof. Fix a function f : [H(θ)]<ω → H(θ) and let ϑ > θ be a sufficiently
large regular cardinal. Using the countable inaccessibility of θ, we construct
a continuous chain 〈Nγ | γ ≤ ω1〉 of elementary submodels of H(ϑ) of cardi-
nality less than θ such that α+ 1∪{f, θ} ⊆ N0, Nγ ∩θ ∈ θ and ωNγ ⊆ Nγ+1

for all γ < ω1. Then Nω1 ∩ H(θ) ∈ Tθ and f [[Nω1 ∩ H(θ)]<ω] ⊆ Nω1 ∩ H(θ).
The second statement now follows from a combination of Proposition 2.5
and Lemmas 2.8(ii) and 2.11.

We will make heavy use of the following property introduced by Hamkins
(see [6]).

Definition 2.13. Given transitive classes M ⊆ N , the pair (M,N)
satisfies the σ-approximation property if A ∈ M whenever A ∈ N is such
that A ⊆ B for some B ∈ M , and A ∩ x ∈ M for every x ∈ Pω1(B)M (3).
Moreover, we say that a partial order P has the σ-approximation property if
(V,V[G]) has the σ-approximation property whenever G is P-generic over V.

(3) In case M and N have the same ordinals and satisfy enough set theory, this
definition is equivalent to the more common definition of the σ-approximation property
where rather than requiring A ⊆ B for some B ∈M , one only requires that A ⊆M .
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The next lemma follows from a slight modification of the proof of [21,
Lemma 3.6]. For completeness, we present a proof.

Lemma 2.14. Let P be a partial order and let ϑ be a sufficiently large
regular cardinal. If there is an unbounded subset U of Pω1(H(ϑ)) consisting
of elementary submodels of H(ϑ) with the property that P is strongly proper
for all elements of U , then P has the σ-approximation property.

Proof. Let ḟ be a nice P-name for a function from an ordinal α to 2 and
let p be a condition in P with the property that p forces all restrictions of ḟ to
countable subsets of α from the ground model to be elements of the ground
model. By our assumption, there is a countable M ∈ U with P, ḟ , p ∈ M ,
and there is a strong master condition q forM below p. Let G be a P-generic
filter over V with q ∈ G. If we set τ = ḟ ∩M , then Lemma 2.10(ii) and
our assumptions on ḟ imply that τG = ḟG�M ∈ V. Furthermore, G ∩M is
(P∩M)-generic over V and τ is a (P∩M)-name with τG∩M = τG ∈ V. Thus,
there exists a condition s in G ∩M such that s ≤P p and s V

P∩M “τ = ǧ”
for some function g : M ∩ α→ 2 in V.

Claim. If β ∈M ∩ α, then s MP “ ḟ(β̌) = g(β)”.

Proof of Claim. If not, then we may find β ∈M∩α and t ∈ P∩M with the
property that t ≤P s and t MP “ ḟ(β̌) 6= g(β)”. Pick a strong master condition
u for M with u ≤P t and let H be P-generic over V with u ∈ H. Then
H ∩M is (P∩M)-generic over V and s ∈ H implies (β, g(i)) ∈ τH∩M ⊆ ḟH .
By elementarity, we also know that t ∈ H implies that ḟH(β) 6= g(β),
a contradiction.

By elementarity, the above Claim shows that for every β < α, there is an
i < 2 with s V

P “ ḟ(β̌) = i”. Hence s is a condition in P below p that forces
ḟ to be an element of the ground model. It is now easy to see that these
computations yield the statement of the lemma.

Corollary 2.15. Let K be a suitable set and let (S, T ) be appropriate
for K. If S is a stationary subset of P(K), then the partial order PK,S,T has
the σ-approximation property. In particular, if θ is a countably inaccessible
cardinal, then the partial order Pθ has the σ-approximation property.

Proof. Let ϑ be a sufficiently large regular cardinal and let U denote the
collection of all countable elementary submodelsM of H(ϑ) withM∩K ∈ S.
Then U is a stationary subset of P(H(ϑ)) and, since it consists of countable
sets, it is unbounded in Pω1(H(ϑ)). PickM ∈ U . Then Lemma 2.8(ii) implies
that PK,S,T is strongly proper for M ∩ K. By our assumptions on K, the
domain of PK,S,T is a subset of K, and hence PK,S,T ∩M = PK,S,T ∩M ∩K.
This shows that PK,S,T is also strongly proper for M . In this situation,
Lemma 2.14 directly implies the first conclusion of the corollary. The second
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follows directly from Proposition 2.5 together with the fact that Sθ is a club
subset of Pω1(H(θ)), and that therefore it is a stationary subset of P(H(θ)).

In the following, we present results showing that for countably inacces-
sible cardinals, the factor forcings of Pθ induced by transitive nodes in H(θ)
also have the σ-approximation property.

Definition 2.16. Let K be a transitive set, let S, T ⊆ K, and let M ∈
S ∪ T . We let Q̇M

K,S,T denote the canonical (PK,S,T ∩M)-nice name for a
suborder of PK,S,T with the property that whenever G is (PK,S,T ∩ M)-
generic over V, then (Q̇M

K,S,T )G consists of all conditions p in PK,S,T with
M ∈ p and p ∩M ∈ G.

Given a partial order P and a condition p, we let P�p denote the suborder
of P consisting of all conditions below p. The first part of the following lemma
is a consequence of [21, Corollary 2.31]. The second part follows from the
first together with Lemma 2.8(i).

Lemma 2.17. Let K be a suitable set, let (S, T ) be appropriate for K,
and let M ∈ S ∪ T . Then the map

DM
K,S,T : PK,S,T �〈M〉 → (PK,S,T ∩M) ∗ Q̇M

K,S,T , p 7→ (p ∩M, p̌),

is a dense embedding. Moreover, if G is PK,S,T -generic over V with M ∈⋃
G, then V[G ∩M ] is a (PK,S,T ∩M)-generic extension of V and V[G] is

a (Q̇M
K,S,T )G∩M -generic extension of V[G ∩M ].

Lemma 2.18 ([21, Claim 4.3 & 4.4]). Let K be a suitable set, let (S, T )
be appropriate for K, let W ∈ T and let G be (PK,S,T ∩W )-generic over V.
Define

Ŝ =
{
M ∈ S

∣∣∣W ∈M, M ∩W ∈
⋃
G
}
.

If S is a stationary subset of P(K) in V, then Ŝ is a stationary subset of
P(K) in V[G], and the partial order (Q̇W

K,S,T )G is strongly proper in V[G]
for every element of Ŝ.

Given an infinite cardinal θ and M ∈ Sθ ∪ Tθ, we write Q̇M
θ instead of

Q̇M
H(θ),Sθ,Tθ and D

M
θ instead of DM

H(θ),Sθ,Tθ . By Lemma 2.14, a small variation
of the proof of Corollary 2.15 yields the following result.

Corollary 2.19. Let K be a suitable set, let the pair (S, T ) be appro-
priate for K, let W ∈ T and let G be (PK,S,T ∩W )-generic over V. If S
is a stationary subset of P(K) in V, then the partial order (Q̇W

K,S,T )G satis-
fies the σ-approximation property in V[G]. In particular, if θ is a countably
inaccessible cardinal, W ∈ Tθ and G is (Pθ ∩W )-generic over V, then the
partial order (Q̇W

θ )G has the σ-approximation property in V[G].
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Our next goal is to show that for inaccessible cardinals θ, partial orders
of the form Pθ satisfy the θ-chain condition. This result is not mentioned
in [21], and we will need it for the characterization of ineffable cardinals in
Section 6. The following result is due to Neeman (see [21, Claim 5.7]) in a
slightly different setting, however with exactly the same proof also working
in our setting.

Lemma 2.20. Let θ be an inaccessible cardinal and let κ < θ be a cardinal
with H(κ) ∈ Tθ. Then the suborder Pθ�〈H(κ)〉 is dense in Pθ.

Proposition 2.21. Let θ be an inaccessible cardinal. If κ < θ is a car-
dinal with H(κ) ∈ Tθ, then Pθ ∩H(κ) is a complete subforcing of Pθ.

Proof. Let A be a maximal antichain of Pθ ∩ H(κ). Let G be a filter
on Pθ that is generic over V. Then Lemma 2.20 implies that 〈H(κ)〉 ∈ G.
Since Lemma 2.8(i) shows that 〈H(κ)〉 is a strong master condition for H(κ),
we know thatG∩H(κ) is (Pθ∩H(κ))-generic over V, and hence it intersects A,
showing that A is a maximal antichain in Pθ, as desired.

Lemma 2.22. If θ is inaccessible, then Pθ satisfies the θ-chain condition.

Proof. Fix a maximal antichain A in Pθ and pick a sufficiently large
regular cardinal ϑ > θ. Using the inaccessibility of θ, we find an elementary
submodelM of H(ϑ) of cardinality less than θ with A,Pθ ∈M and the prop-
erty that M ∩ H(θ) = H(κ) for some strong limit cardinal κ of uncountable
cofinality. Then elementarity implies that A ∩ H(κ) is a maximal antichain
in Pθ ∩ H(κ). Since the properties of κ listed above ensure that H(κ) ∈ Tθ,
we can apply Proposition 2.21 to see that A ∩ H(κ) is a maximal antichain
in Pθ and hence A = A ∩H(κ) ⊆ H(κ) has cardinality less than θ.

We end this section by showing that the above results already yield a
characterization of the class of all countably inaccessible cardinals through
Neeman’s pure side condition forcing in the sense of Definition 1.1. The
implication from (i) to (ii) in the proof of the following theorem is a direct
adaptation of arguments contained in [21, Section 5.1].

Theorem 2.23. The following are equivalent for every infinite cardinal θ:

(i) θ is a countably inaccessible cardinal.
(ii) 1Pθ  “ θ̌ = ω2”.
(iii) 1Pθ  “ θ̌ is a regular cardinal greater than ω1”.

Proof. First, assume that (i) holds. Then Corollary 2.9 and Proposi-
tion 2.12 imply that forcing with Pθ preserves both ω1 and θ. Therefore it
suffices to prove the following claim.

Claim. Forcing with Pθ collapses all cardinals between ω1 and θ.
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Proof of Claim. Let G be Pθ-generic over V and set T = T V
θ ∩

⋃
G. Then

there is a canonical well-ordering of T that is induced by both ∈ and (.
Moreover, Corollary 2.7 shows that

⋃
T = H(θ). Let W0 and W1 be two

successive nodes in the canonical well-ordering of T . Define C to be the set
of all M ∈ SV

θ ∩
⋃
G with W0 ∈ M ∈ W1. Then there is also a canonical

well-ordering of C that is induced by both ∈ and (, and C ⊆ SV
θ implies that

this ordering has length at most ω1. An application of Lemma 2.6 together
with the fact that conditions in G are closed under intersections now shows
that

⋃
C = W1 and hence W1 has cardinality at most ω1 in V[G]. Since we

already know that
⋃
T = H(θ)V, this shows that every ordinal between ω1

and θ is collapsed to ω1 in V[G].

In the other direction, assume that there is an infinite cardinal θ with
the property that (i) fails and (iii) holds. Then we know that θ is a regular
cardinal greater than ω1 and there is a δ < θ with δω ≥ θ. Let δ0 be minimal
with this property.

Claim. Tθ = ∅.
Proof of Claim. Assume, towards a contradiction, that there exists a W

in Tθ. By elementarity, there is an ordinal γ ∈ W with the property that
for all x ∈ W , there is a function f : ω → γ in W with f /∈ x. Let γ0 be
minimal with this property. Then γ0 ≥ δ0, because otherwise the minimality
of δ0 would imply that ωγ0 ∈ H(θ) and elementarity would then allow us
to show that ωγ0 is contained in W , contradicting our assumptions on γ0.
But then δ0 ∈W and the countable closure of W implies that ωδ0 ⊆W . By
our assumption, we can conclude that |W | ≥ δω0 ≥ θ and hence W /∈ H(θ),
a contradiction.

Claim. Given x ∈ H(θ), the set {p ∈ Pθ | x ∈
⋃
p} is dense in Pθ.

Proof of Claim. Fix a condition p in Pθ and let N denote the Skolem
hull of {p, x} in H(θ). Since θ is uncountable and regular, we have N ∈ Sθ.
Moreover, the above Claim shows that p ⊆ Sθ and this implies that M ⊆ N
holds for all M ∈ p. In particular, the set p ∪ {N} is a condition in Pθ
below p.

Now, let G be Pθ-generic over V. Then the above claims show that
⋃
G

⊆ SV
θ and H(θ)V =

⋃⋃
G. The first statement directly implies that

⋃
G is

well-ordered by ( in V[G], and every proper initial segment of this well-order
is a subset of an element of SV

θ . In combination with the second statement,
this shows that θ is a union of ω1-many countable sets in V[G], contradict-
ing (iii).

3. Small embeddings and inaccessible cardinals. In this section,
we show that the sequence 〈Pθ | θ ∈ Card〉 strongly characterizes the class of
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all inaccessible cardinals through the non-existence of certain trees in generic
extensions. In the proof, we will make use of small embedding characteriza-
tions of large cardinals introduced in [9] (4). These characterizations show
that many important large cardinal properties are equivalent to the existence
of certain elementary embeddings from a small transitive model into some
H(ϑ) that send their critical point to the given cardinal. They are motivated
by a classical result of Magidor that characterizes supercompact cardinals in
this way (see [17, Theorem 1]). The following definition specifies the form of
embeddings that we are interested in.

Definition 3.1. Let θ < ϑ be cardinals. A small embedding for θ is a
non-trivial elementary embedding j : M → H(ϑ) with j(crit(j)) = θ and
M ∈ H(ϑ) transitive.

Using this terminology, Magidor’s result now says that a cardinal θ is
supercompact if and only if for every ϑ > θ, there is a small embedding
j : M → H(ϑ) with M = H(κ) for some κ < θ. The results of [9] provide
similar characterizations for many other large cardinal properties that all
rely on certain correctness properties of the corresponding domain model
M of the embedding. For our characterization of inaccessible cardinals, we
will use the following small embedding characterization of these cardinals,
which is a minor variation of their small embedding characterization pre-
sented in [9]. For the sake of completeness, we include the short proof of this
statement.

Lemma 3.2. The following statements are equivalent for every uncount-
able regular cardinal θ:

(i) θ is inaccessible.
(ii) For all sufficiently large cardinals ϑ and all x ∈ H(ϑ), there is a small

embedding j : M → H(ϑ) for θ such that x ∈ ran(j) and crit(j) is a
strong limit cardinal of uncountable cofinality.

Proof. First, note that an uncountable regular cardinal θ is inaccessible
if and only if the strong limit cardinals of uncountable cofinality below θ
form a stationary subset of θ. Now, assume that θ is inaccessible, let ϑ > θ
be a cardinal, and pick x ∈ H(ϑ). Let 〈Xα | α < θ〉 be a continuous and
increasing sequence of elementary substructures of H(ϑ) of cardinality less
than θ with x ∈ X0 and α ⊆ Xα ∩ θ ∈ θ for all α < θ. By the above remark,
there is a strong limit cardinal α < θ of uncountable cofinality such that
α = Xα ∩ θ. Let π : Xα → M denote the corresponding transitive collapse.

(4) While it would not be necessary to make use of such characterizations in this very
argument, and making use of them may even seem somewhat artificial at this point, this
approach allows us to already introduce some of the techniques that will be necessary in
many of our later arguments, when we consider stronger large cardinal notions.



Characterizing large cardinals through forcing 13

Then π−1 : M → H(ϑ) is a small embedding for θ with x ∈ ran(j), and
crit(j) = α is a strong limit cardinal of uncountable cofinality.

In the other direction, assume that (ii) holds, let C be a club in θ and pick
a small embedding j : M → H(ϑ) for θ such that C ∈ ran(j) and crit(j) is
a strong limit cardinal of uncountable cofinality. Then elementarity implies
that crit(j) ∈ C. This shows that the strong limit cardinals of uncountable
cofinality are stationary in θ, and hence that θ is inaccessible.

The following proposition establishes some connections between small
embeddings and Neeman’s pure side condition forcing.

Proposition 3.3. Let θ be an inaccessible cardinal and let j : M → H(ϑ)
be a small embedding for θ with the property that ϑ is regular and crit(j) is
a strong limit cardinal of uncountable cofinality. If G is Pθ-generic over V,
then the following statements hold:

(i) H(crit(j)) ∈ M ∩ Tθ and Pcrit(j) = Pθ ∩ H(crit(j)) ∈ M is a complete
suborder of Pθ with j(Pcrit(j)) = Pθ.

(ii) The set Gj = G ∩ H(crit(j)) is Pcrit(j)-generic over V and V[G] is a
(Q̇H(crit(j))

θ )Gj -generic extension of V[Gj ].
(iii) The pair (H(ϑ)V[Gj ],H(ϑ)V[G]) has the σ-approximation property.
(iv) There is an elementary embedding jG : M [Gj ] → H(ϑ)V[G] with the

property that jG(ẋGj ) = j(ẋ)G for every Pcrit(j)-name ẋ in M .

Proof. Using the inaccessibility of θ and elementarity, we can find a sur-
jection e : crit(j) → H(crit(j))M with the property that j(e)[κ] = H(κ) for
every strong limit cardinal κ ≤ θ. But this implies that

H(crit(j)) = j(e)[crit(j)] = e[crit(j)] = H(crit(j))M .

In addition, our assumptions directly imply that the set H(crit(j)) is a tran-
sitive, countably closed elementary substructure of H(θ), Scrit(j) = Sθ ∩
H(crit(j)), Tcrit(j) = Tθ ∩ H(crit(j)), Pcrit(j) = Pθ ∩ H(crit(j)) = PMcrit(j),
and Proposition 2.21 implies that Pcrit(j) is a complete suborder of Pθ. Since
the partial order Pθ is uniformly definable from the parameter θ, we also
obtain j(Pcrit(j)) = Pθ. This proves (i). Moreover, by Lemma 2.20, this
argument also shows that 〈H(crit(j))〉 ∈ G, and we can therefore apply
Proposition 2.5 and Lemma 2.17 to show that (ii) holds. In addition, we
can combine Corollary 2.19 with the first two statements to derive (iii).
Finally, since j(Pcrit(j)) = Pθ and j[Gj ] = Gj ⊆ G, a standard argument
(see, for example, [3, Proposition 9.1]) shows that there is an embedding
jG : M [Gj ]→ H(ϑ)[G] with jG(ẋGj ) = j(ẋ)G for every Pcrit(j)-name ẋ inM .
But then H(ϑ)V[G] = H(ϑ)[G] shows that (iv) also holds.

The next definition introduces the combinatorial concept that relates to
inaccessible cardinals via Neeman’s pure side condition forcing.
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Definition 3.4. A tree of height ω1 and cardinality ℵ1 is a weak Kurepa
tree if it has at least ℵ2-many cofinal branches.

Theorem 3.5. The following statements are equivalent for every count-
ably inaccessible cardinal θ:

(i) θ is an inaccessibe cardinal.
(ii) 1Pθ  “There are no weak Kurepa trees”.

Proof. First, assume that θ is inaccessible, let Ṫ be a Pθ-name for a tree
of height ω1 and cardinality ℵ1 and let ẋ be a nice Pθ-name for a subset of ω1

coding Ṫ . Use Lemma 3.2 to find a small embedding j : M → H(ϑ) for θ
such that ẋ ∈ ran(j) and crit(j) is a strong limit cardinal of uncountable
cofinality. Since Lemma 2.22 implies that ẋ ∈ H(θ) and Proposition 3.3 shows
that Pcrit(j) = Pθ∩H(crit(j)), elementarity implies that ẋ is actually a Pcrit(j)-
name contained in M . Let G be Pθ-generic over V and let jG : M [Gj ] →
H(ϑ)V[G] be the embedding given by Proposition 3.3. Since ẋG = ẋGj ∈
M [Gj ] ⊆ H(ϑ)V[Gj ], we know that ṪG is an element of H(ϑ)V[Gj ]. Moreover,
since the pair (H(ϑ)V[Gj ],H(ϑ)V[G]) has the σ-approximation property, and
Corollary 2.9 implies ωV

1 = ω
V[Gj ]
1 = ω

V[G]
1 , we know that every cofinal

branch through ṪG in V[G] is an element of V[Gj ]. Since Pcrit(j) has size
less than θ, we know that θ is still inaccessible in V[Gj ], and therefore that
ṪG has less than θ-many cofinal branches in V[G]. But Theorem 2.23 shows
that θ = ω

V[G]
2 , which allows us to conclude that ṪG is not a weak Kurepa

tree in V[G].
For the reverse implication, assume that θ is countably inaccessible, but

not inaccessible. Let κ < θ be minimal with 2κ ≥ θ. As θ is countably in-
accessible, we know that cof(κ) is uncountable. Let G be Pθ-generic over V.
Corollary 2.9 implies that κ has uncountable cofinality in V[G]. Since The-
orem 2.23 shows that θ = ω

V[G]
2 , we therefore know that κ has cofinality ω1

in V[G]. In V[G], pick a cofinal subset U of κ of order-type ω1, and define T
to be the tree consisting of functions t : α→ 2 in V with α ∈ U , ordered by
inclusion. Then the minimality of λ implies that the levels of T all have size at
most ℵ1 in V[G]. However, since each function from κ to 2 induces a unique
cofinal branch through T and 2κ ≥ θ = ω

V[G]
2 , we know that T has at least ℵ2-

many branches in V[G]. This shows that T is a weak Kurepa tree in V[G].

A combination of the above result with Theorem 2.23 now shows that
the sequence 〈Pθ | θ ∈ Card〉 characterizes the class of inaccessible cardinals
through the statement

• θ is a regular cardinal greater than ω1 with the property that for every
uncountable cardinal κ < θ, every tree of cardinality and height κ has less
than θ-many cofinal branches.
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Since this statement is obviously a consequence of the inaccessibility of θ,
the provided characterization is strong.

4. Internal large cardinals and Mahlo cardinals. In the case of
small embedding characterizations of large cardinal properties that imply
the Mahloness of the given cardinal, the combinatorics obtained by lifting
the witnessing embeddings to a suitable collapse extension can be phrased
as meaningful combinatorial principles that we call internal large cardinals.
These principles describe strong fragments of large cardinal properties that
were characterized by small embeddings, which however can also hold at
small cardinals θ. They postulate the existence of small embeddings j :
M → H(ϑ) for θ together with the existence of transitive models N of
ZFC− with the property that M ∈ N ⊆ H(ϑ), for which (an appropriate
variant of) the correctness property that held between M and V in the
original small embedding characterization now holds between M and N ,
and some correctness property induced by the properties of the tails of the
collapse forcing used holds between N and H(ϑ).

The guiding idea of this setup is that it should resemble the situation af-
ter lifting a given small embedding, with the inner model N resembling the
collapse extension of the original universe in which only the critical point
of the small embedding, rather than the actual large cardinal, has been
collapsed. For many important consistency proofs, the principles defined in
this way turn out to capture the crucial combinatorial properties of small
cardinals established in these arguments. Moreover, in several cases, these
principles turn out to be reformulations of existing combinatorial properties.
For example, if we combine Magidor’s small embedding characterization of
supercompactness given by the results of [17] with collapse forcings whose
tails have the σ-approximation property, then we end up with the following
internal version of supercompactness, that turns out to be equivalent to a
generalized tree property introduced by Weiß in [29] and [30] (see Proposi-
tion 6.14):

Definition 4.1. A cardinal θ is internally AP supercompact if for all
sufficiently large regular cardinals ϑ and all x ∈ H(ϑ), there is a small em-
bedding j : M → H(ϑ) for θ, and a transitive model N of ZFC− such that
x ∈ ran(j) and the following statements hold:

(i) N ⊆ H(ϑ) and the pair (N,H(ϑ)) satisfies the σ-approximation property.
(ii) M = H(κ)N for some N -cardinal κ < θ.

We will later use this principle to characterize supercompactness through
Neeman’s pure side condition forcing (see Corollary 6.15). Moreover, all in-
ternal large cardinal principles studied in this paper will turn out to be con-
sequences of the above principle and, in combination with results of Viale
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and Weiß from [28], this fact implies that PFA causes ω2 to have all internal
large cardinal properties discussed in this paper.

We will make use of the concept of internal large cardinals in many
places throughout this paper. While the general setup is postponed to the
forthcoming [8], we will only introduce and make use of internal large cardi-
nals with respect to the σ-approximation property in this paper (“internally
AP” large cardinals). In the following, we present the definition of internal
Mahloness and show how this concept can be used to characterize Mahlo
cardinals through Neeman’s pure side condition forcing. This is motivated
by the following small embedding characterization of Mahlo cardinals from
[9, Corollary 2.2 & Lemma 3.4]. Its proof is a small modification of the proof
of Lemma 3.2.

Lemma 4.2. The following statements are equivalent for every uncount-
able regular cardinal θ:

(i) θ is a Mahlo cardinal.
(ii) For every sufficiently large cardinal ϑ and all x ∈ H(ϑ), there is a small

embedding j : M → H(ϑ) for θ such that x ∈ ran(j) and crit(j) is an
inaccessible cardinal.

This leads us to the following:

Definition 4.3. A cardinal θ is internally AP Mahlo if for all sufficiently
large regular cardinals ϑ and all x ∈ H(ϑ), there is a small embedding j :
M → H(ϑ) for θ, and a transitive model N of ZFC− such that x ∈ ran(j)
and the following statements hold:

(i) N ⊆ H(ϑ), and the pair (N,H(ϑ)) has the σ-approximation property.
(ii) M ∈ N and Pω1(crit(j))N ⊆M (5).
(iii) crit(j) is a regular cardinal in N (6).

For a tree T of height θ and S ⊆ θ, let T�S denote the tree consisting
of all nodes of T on levels in S, with the ordering inherited from T. The
following notions introduced by Todorčević will allow us to study important
consequences of the above definition.

Definition 4.4. Let θ be an uncountable regular cardinal, let S be a
subset of θ and let T be a tree of height θ.

(5) In the situation of Lemma 4.2(ii), we moreover obtain H(crit(j)) ⊆ M by [9,
Lemma 3.1], and it would also be reasonable to require H(crit(j))N ⊆ M here. However,
in the light of generalized such assumptions for example in Definition 6.9, it seems more
suitable to use our present assumption. In any case, we will not make use of this assumption
in the present section (but we will use our generalized assumptions in later sections).

(6) Since N is supposed to resemble an intermediate collapse forcing extension of some
original universe of set theory, in which crit(j) has been collapsed, we only ask for it to
be regular, rather than inaccessible, in N .
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(i) A map r : T�S → T is regressive if r(t) <T t for every t ∈ T�S that is
not minimal in T.

(ii) The set S is non-stationary with respect to T if there is a regressive
map r : T�S → T with the property that for every t ∈ T there is a
function ct : r−1{t} → θt such that θt is a cardinal smaller than θ and
ct is injective on ≤T-chains.

(iii) The tree T is special if the set θ is non-stationary with respect to the
tree T.

It is easy to see that ZFC− proves special trees do not have cofinal
branches. Moreover, note that the statement “T is special” is upwards-abso-
lute between transitive models of ZFC− in which the height of T remains
regular. A result of Todorčević (see [24, Theorem 14]) shows that, given an
infinite cardinal κ, this definition generalizes the classical notion of a special
κ+-tree, i.e. a tree of height κ+ that is a union of κ-many antichains. In
addition, Todorčević showed that an inaccessible cardinal θ is Mahlo if and
only if there are no special θ-Aronszajn trees (see [26, Theorem 6.1.4]).

Proposition 4.5. Let θ be an internally AP Mahlo cardinal. Then θ is
uncountable and regular, and there are no special θ-Aronszajn trees.

Proof. First, if j : M → H(ϑ) is any small embedding for θ, then elemen-
tarity implies that crit(j) is uncountable and regular in M , and hence θ has
the same properties in H(ϑ). Next, assume that there is a special θ-Aronszajn
tree T with domain θ and let j : M → H(ϑ) be a small embedding for θ
such that the properties listed in Definition 4.3 hold, and such that there
is a tree S of height crit(j) with domain crit(j) in M with j(S) = T. Then
elementarity implies that S is special in M and, by the above remarks, it is
also special in N . Since j�S = idS and T is a θ-Aronszajn tree, we know that
S is a proper initial segment of T and hence H(ϑ) contains a cofinal branch
b through S. But then, together with the above remarks, the regularity of
crit(j) in N implies that b is not an element of N . By our assumptions, this
implies that there is x ∈ Pω1(crit(j))N with b∩x /∈ N . However, since crit(j)
is regular and uncountable in N , there is some node s ∈ b∩S such that b∩x
is contained in the set of all predecessors of s in T and hence b ∩ x is an
element of N , a contradiction.

Corollary 4.6. The following statements are equivalent for every in-
accessible cardinal θ:

(i) θ is a Mahlo cardinal.
(ii) θ is internally AP Mahlo.

Proof. Assume that (i) holds and ϑ is a sufficiently large regular cardinal
in the sense of Lemma 4.2. Given x ∈ H(ϑ), let j : M → H(ϑ) be a small
embedding for ϑ with x ∈ ran(j) and with the properties listed in Lemma 4.2,
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and set N = H(ϑ). Then j and N witness that (ii) holds. In the other
direction, if (ii) holds, then Proposition 4.5 implies that θ is an inaccessible
cardinal with the property that there are no special θ-Aronszajn trees, and
[26, Theorem 6.1.4] then shows that θ is a Mahlo cardinal.

Using the above, we are now ready to prove the following result that
extends Proposition 4.5 and directly yields the desired characterization of
Mahloness.

Theorem 4.7. The following statements are equivalent for every inac-
cessible cardinal θ:

(i) θ is a Mahlo cardinal.
(ii) 1Pθ  “ω2 is internally AP Mahlo”.
(iii) 1Pθ  “There are no special ω2-Aronszajn trees”.

Proof. First, assume that (i) holds, let ϑ be a sufficiently large regular
cardinal in the sense of Lemma 4.2, let G be Pθ-generic over V and pick
x ∈ H(ϑ)V[G]. By Lemma 2.22, we can find a Pθ-name ẋ in H(ϑ)V with
x = ẋG. Pick a small embedding j : M → H(ϑ) with ẋ ∈ ran(j), and with
the properties listed in Lemma 4.2. Next, let jG : M [Gj ]→ H(ϑ)V[G] be the
embedding given by Proposition 3.3, and set N = H(ϑ)V[Gj ]. Then M [Gj ] ∈
N ⊆ H(ϑ)V[G], and the pair (N,H(ϑ)V[G]) has the σ-approximation property.
Moreover, since crit(j) is inaccessible in V and Pcrit(j) = Pθ ∩ H(crit(j)),
Theorem 2.23 implies that crit(j) is regular in N . Finally, a combination of
Lemma 2.22 with Proposition 3.3 shows that Pω1(crit(j))N ⊆ H(crit(j))N

⊆M [Gj ]. In summary, this shows that jG and N witness that θ is internally
AP Mahlo with respect to x in V[G]. In particular, we can conclude that (ii)
holds in this case.

Now, assume that (i) fails. By [26, Theorem 6.1.4], this implies that
there exists a special θ-Aronszajn tree T. Let G be Pθ-generic over V. Then
Theorem 2.23 shows that θ = ω

V[G]
2 and thus, by the above remarks, T is a

special ω2-Aronszajn tree in V[G]. This shows that (iii) fails.

By combining the results of Section 3 with Corollary 4.6 and the above
theorem, we now directly conclude that the sequence 〈Pθ | θ ∈ Card〉 pro-
vides a strong characterization of the class of all Mahlo cardinals.

5. Indescribable cardinals. In this section, we present strong charac-
terizations of indescribable cardinals through Neeman’s pure side condition
forcing. A combination of results from [21] with Theorem 3.5 already provides
such a characterization for Π1

1-indescribable cardinals (i.e. weakly compact
cardinals) with the help of the tree property. In the case where either m or
n is greater than 1, Πm

n -indescribable cardinals seem to be lacking such a
canonical combinatorial essence. This motivates viewing the internal large
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cardinal principles used in the following characterizations as properties that
capture the combinatorial essence of the higher degrees of indescribability.

As we will have to work a lot with higher order objects in this section,
let us indicate the order of free variables by a superscript attached to them,
letting v0 denote a standard first order free variable, letting v1 denote a free
variable that is to be interpreted by an element of the powerset of the domain,
and so on. In the same way, we will also label higher order quantifiers. Recall
that, given 0 < m,n < ω, an uncountable cardinal κ is Πm

n -indescribable if
for every Πm

n -formula Φ(v1) and every A ⊆ Vκ such that Vκ |= Φ(A), there
is a δ < κ with Vδ |= Φ(A ∩Vδ).

In [9], we used results of Hauser [7] to obtain the following small em-
bedding characterization for indescribable cardinals (see [9, Lemmas 3.4 &
4.2]), which will be the basis of an internal concept of indescribability in the
following.

Lemma 5.1. Given 0 < m,n < ω, the following statements are equivalent
for every cardinal θ:

(i) θ is a Πm
n -indescribable cardinal.

(ii) For every sufficiently large cardinal ϑ and all x ∈ H(ϑ), there is a small
embedding j : M → H(ϑ) for θ such that x ∈ ran(j), <crit(j)M ⊆M and

(Vcrit(j) |= ϕ(A))M =⇒ Vcrit(j) |= ϕ(A)

for every Πm
n -formula ϕ(v1) with parameter A ∈M ∩Vcrit(j)+1.

Note that, although the statement of [9, Lemma 4.2] does not mention
the above closure assumption <crit(j)M ⊆ M , the proof presented there
yields domain models M with this property. Moreover, note that crit(j) is
inaccessible in V whenever j is an embedding witnessing (ii).

Definition 5.2. Given 0 < m,n < ω, we say that a cardinal θ is inter-
nally AP Πm

n -indescribable if for all sufficiently large regular cardinals ϑ and
all x ∈ H(ϑ), there is a small embedding j : M → H(ϑ) for θ, and a transitive
model N of ZFC− such that x ∈ ran(j), and the following statements hold:

(i) N ⊆ H(ϑ), and the pair (N,H(ϑ)) satisfies the σ-approximation prop-
erty.

(ii) M ∈ N and Pω1(crit(j))N ⊆M .
(iii) crit(j) is regular in N and

(H(crit(j)) |= Φ(A))M =⇒ (H(crit(j)) |= Φ(A))N

for every Πm
n -formula Φ(v1) with parameter A ∈ P(H(crit(j)))M .

Note that the above definition directly implies that internally AP in-
describable cardinals are internally AP Mahlo. As mentioned earlier, this
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principle may be viewed as a strong substitute for the tree property with
respect to higher levels of indescribability. For the basic case of Π1

1-indescrib-
ability, we easily obtain the following result.

Proposition 5.3. Let θ be an internally AP Π1
1-indescribable cardinal.

Then θ is an uncountable regular cardinal with the tree property.

Proof. By Proposition 4.5, we know that θ is uncountable and regular.
Assume for a contradiction that there exists a θ-Aronszajn tree T with do-
main θ and pick a small embedding j : M → H(ϑ) for θ such that the
properties listed in Definition 5.2 hold for m = n = 1 and j(S) = T holds
for some tree S ∈ M of height crit(j). Then S is a crit(j)-Aronszajn tree
in M and, since this statement can be formulated over H(crit(j))M by a
Π1

1-formula with parameter S ∈ P(H(crit(j)))M , we can conclude that S is
a crit(j)-Aronszajn tree in N . As in the proof of Proposition 4.5, elemen-
tarity implies that S is an initial segment of T, and the σ-approximation
property implies that N contains a cofinal branch through S, a contradic-
tion.

Before we may commence with the main results of this section, we need to
make a few technical observations. Namely, we will want to identify countable
subsets of Vκ+k with certain elements of Vκ+k, and also view forcing state-
ments about Πm

n -formulas themselves as Πm
n -formulas. The basic problem

about this is that the forming of (standard) ordered pairs is rank-increasing.
For example, names for elements of Vκ+k are usually not elements of Vκ+k

when k > 0, even if κ is regular and the forcing satisfies the κ-chain condi-
tion. However, there are well-known alternative definitions of ordered pairs
(see, for example, [1]) that possess all the nice properties of the usual or-
dered pairs that we will need, and which, in addition, are not rank-increasing.
While it would be tedious to do so, it is completely straightforward to verify
that one can base all set theory (like the definition of finite tuples) and forc-
ing theory (starting with the definition of forcing names) on these modified
ordered pairs, and preserve all of their standard properties, while addition-
ally obtaining our desired properties. We will assume that we work with
the modified ordered pairs for the remainder of this section. The following
lemma shows how this approach allows us to formulate Πm

n -statements in
the forcing language in a Πm

n -way.

Lemma 5.4. Work in ZFC−. Let m ∈ ω, and let κ be a cardinal such
that Pm(H(κ)) exists. Assume that P ⊆ H(κ) is a partial order such that
forcing with P preserves κ and such that for every P-name τ for an element
of H(κ), there is a P-name σ in H(κ) with 1P  “σ = τ ”.

(i) If τ is a P-name for an element of Pm+1(H(κ)), then there is a P-name
σ in Pm+1(H(κ)) with the property that 1P  “σ = τ ”.
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(ii) If σ0, . . . , σk is a finite sequence of P-names in Pm+1(H(κ)), and Φ is
a Πm+1

n -formula for some n ∈ ω, then the statement p  Φ(σ0, . . . , σk)
is equivalent to a Πm+1

n -formula.

We are now ready to prove the main results of this section. The following
result will show that our characterization of indescribability through internal
AP indescribability presented below is strong.

Lemma 5.5. Given 0 < m,n < ω, the following statements are equivalent
for every inaccessible cardinal θ:

(i) θ is a Πm
n -indescribable cardinal.

(ii) θ is an internally AP Πm
n -indescribable cardinal.

Proof. First, assume that (i) holds, let ϑ be sufficiently large in the sense
of Lemma 5.1(ii), fix x ∈ H(ϑ) and pick a small embedding j : M → H(ϑ)
such that x ∈ ran(j), and satisfying the properties listed in Lemma 5.1.
By the above remarks, crit(j) is an inaccessible cardinal and consequently
H(crit(j)) = Vcrit(j). Therefore, if we set N = H(ϑ), then j and N witness
that θ is internally AP Πm

n -indescribable with respect to x.
In the other direction, assume that the inaccessible cardinal θ is internally

AP Πm
n -indescribable. Fix A ⊆ Vθ = H(θ) and a Πm

n -formula Φ(v1) with
Vθ |= Φ(A). Let j : M → H(ϑ) and let N witness that θ is internally AP Πm

n -
indescribable with respect to {A,Vθ+ω}. Since θ is inaccessible, elementarity
implies that crit(j) is a strong limit cardinal in V.

Claim. Vcrit(j) ⊆M and Vcrit(j)+ω ⊆ N .

Proof of Claim. The proof of Proposition 3.3 contains an argument that
proves the first statement. Next, assume that the second statement fails.
Then there are k < ω and x ⊆ Vcrit(j)+k with Vcrit(j)+k ⊆ N and x /∈ N .
By the above remarks, we can identify countable subsets of Vcrit(j)+k with
elements of Vcrit(j)+k in a canonical way. This shows that Pω1(x) ⊆ N , and
hence the σ-approximation property implies that x ∈ N , a contradiction.

Since our assumptions imply that crit(j) is regular in N , the above Claim
directly shows that crit(j) is an inaccessible cardinal in V. Moreover, by the
above Claim and our assumptions, we have A∩Vcrit(j) ∈M and j(A∩Vcrit(j))

= A. In addition, the above choices ensure that (Vκ |= Φ(A))H(ϑ) holds and
hence elementarity implies that (Vcrit(j) |= Φ(A∩Vcrit(j)))

M . By clause (iii) of
Definition 5.2, we therefore know that (Vcrit(j) |= Φ(A∩Vcrit(j)))

N , and since
the above claim shows that Πm

n -formulas over Vcrit(j) are absolute between
N and V, this allows us to conclude that Vcrit(j) |= Φ(A ∩Vcrit(j)).

We may now show that indescribability can be characterized by internal
AP indescribability via Neeman’s pure side condition forcing. Note that the
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equivalence of (i) and (iii) in the case m = n = 1 already follows from the
results of [21, Section 5.1].

Theorem 5.6. Given 0 < m,n < ω, the following statements are equiv-
alent for every inaccessible cardinal θ:

(i) θ is a Πm
n -indescribable cardinal.

(ii) 1Pθ  “ω2 is internally AP Πm
n -indescribable”.

Moreover, if m = n = 1, then the above statements are also equivalent to

(iii) 1Pθ  “ω2 has the tree property”.

Proof. Assume first that (i) holds. Pick a regular cardinal ϑ > θ that
is sufficiently large in the sense of Lemma 5.1, let G be Pθ-generic over V,
and pick x ∈ H(ϑ)V[G]. By Lemma 2.22, there is a Pθ-name ẋ ∈ H(ϑ)V

with x = ẋG. Pick a small embedding j : M → H(ϑ) witnessing that θ is
Πm
n -indescribable with respect to ẋ as in Lemma 5.1, and let jG : M [Gj ]→

H(ϑ)V[G] be the embedding given by Proposition 3.3. Define N = H(ϑ)V[Gj ]

and pick a Πm
n -formula Φ(v1) and A ∈ P(H(crit(j)))M [Gj ] with the prop-

erty that (H(crit(j)) |= Φ(A))M [Gj ]. Our assumption (<crit(j)M)V ⊆ M im-
plies that crit(j) is an inaccessible cardinal in V, Theorem 2.23 shows that
crit(j) = ω

V[Gj ]
2 , and therefore Lemma 2.22 shows that

Pω1(crit(j))N ⊆ H(crit(j))V[Gj ] ⊆M [Gj ].

By Lemma 5.4, there is a Pcrit(j)-name τ ∈ P(H(crit(j)))M for an element
of P(H(crit(j))), and a condition r ∈ Gj such that A = τGj , and such that

r MPcrit(j)
“H(crit(j)) |= Φ(τ)”.

Again by Lemma 5.4, the above forcing statement is equivalent to a Πm
n -

statement over H(crit(j)) and this statement holds true in M . By our as-
sumptions, this statement holds in V, and therefore

r V
Pcrit(j)

“H(crit(j)) |= Φ(τ)”.

This yields (H(crit(j)) |= Φ(A))N . Hence jG and N witness that ω2 is inter-
nally AP Πm

n -indescribable with respect to x in V[G].
Now, assume that (ii) holds. Fix a subset A of H(θ), and assume that

Φ(v1) is a Πm
n -formula with Vθ |= Φ(A). Let C denote the club of strong

limit cardinals below θ and fix a bijection b : θ → H(θ) with b[κ] = H(κ) for
all κ ∈ C.

Let G be Pθ-generic over V, and work in V[G]. By our assumption,
we can find a small embedding j : M → H(ϑ) and a transitive ZFC−-
model N witnessing the internal AP Πm

n -indescribability of θ with respect
to {A, b, C,Vκ+ω}. By elementarity, crit(j) ∈ C, H(crit(j))V ∈ M ⊆ N ,
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j(H(crit(j))V) = H(θ)V, Ā = A ∩ H(crit(j))V ∈ M and A = j(Ā). More-
over, since crit(j) is regular in N , the σ-approximation property between
N and H(ϑ) implies that cof(crit(j)) > ω. Another application of the σ-
approximation property yields P(crit(j))V ⊆ N , and therefore crit(j) is a
regular cardinal in V.

Claim. Given k < ω, we have Pk(H(crit(j)))V ⊆ N , and there is a
Πk

0-formula Φk(v
1, wk) such that Pk(H(crit(j)))V is equal to the set{

B ∈ Pk(H(crit(j)))N |
(
H(crit(j)) |= Φk(H(crit(j))V, B)

)N}
and Pk(H(θ))V is equal to the set

{B ∈ Pk(H(θ)) | H(θ) |= Φk(H(θ)V, B)}.

Proof of Claim. Using induction, we will simultaneously define the for-
mulas Φk(v

1, wk), show that they satisfy the above statements, and also
verify that Pk(H(crit(j)))V ⊆ N . Set Φ0(v1, w0) ≡ w0 ∈ v1. Then Φ0 is
clearly as desired, and we already argued above that H(crit(j))V ⊆ N .

Now, assume that we have arrived at stage k + 1 of our induction. As-
sume, for a contradiction, that there is a subset B of Pk+1(H(crit(j)))V

with B /∈ N . Since the pair (N,V[G]) has the σ-approximation property,
we can find b ∈ Pω1(Pk(H(crit(j)))V)N with B ∩ b /∈ N . Then Corol-
lary 2.9 shows that the partial order Pθ is proper in V, and therefore we
can find c ∈ Pω1(Pk(H(crit(j))))V with b ⊆ c. By identifying elements
of Pω1(Pk(H(crit(j))))V with elements of Pk(H(crit(j))), we conclude that
B ∩ c ∈ N and hence B ∩ b ∈ N , a contradiction.

This shows that Pk+1(H(crit(j)))V ⊆ N . Moreover, since Corollary 2.15
implies that the pair (V,V[G]) also satisfies the σ-approximation property, it
follows that Pk+1(H(crit(j)))V exactly consists of all B ∈ Pk+1(H(crit(j)))N

such that for all D ∈ Pk(H(crit(j)))V that code a countable subset d of
Pk(H(crit(j)))V, there is an element of Pk(H(crit(j)))V coding the subset
B ∩ d. Furthermore, it also follows from the σ-approximation property for
(V,V[G]) that Pk+1(H(θ))V exactly consists of all B ∈ Pk+1(H(θ)) such
that for all D ∈ Pk(H(θ)) that code a countable subset d of Pk(H(θ))V,
there is an element of Pk(H(θ))V coding B ∩ d. Now, let Φk+1(v1, wk+1)
denote the canonical Σk+1

0 -formula stating that for every D ∈ Pk(v1) such
that Φk(v

1, D) holds and D codes a countable subset d of Pk(v1), there is
E ∈ Pk(v1) such that Φk(v

1, E) holds and E codes d∩wk+1. Then the above
remarks show that the two equalities stated in the Claim also hold at stage
k + 1.

Let Φ∗(u
1, v1) denote the relativization of the formula Φ(v1) using the

formulas Φk(v
1, wk), i.e. we obtain Φ∗ from Φ by replacing each subformula of

the form ∃kx ψ by ∃kx [ψ∧Φk(u
1, x)]. Then Φ∗ is again a Πm

n -formula and, by
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the above claim and our assumptions, we know that H(θ) |= Φ∗(H(θ)V, A).
Therefore we can use elementarity to conclude that(

H(crit(j)) |= Φ∗(H(crit(j))V, Ā)
)M

and, since j and N witness the internal AP Πm
n -indescribability of θ, we

know that (
H(crit(j)) |= Φ∗(H(crit(j))V, Ā)

)N
.

But then the above claim shows that (H(crit(j)) |= Φ(Ā))V. These compu-
tations show that θ is Πm

n -indescribable in V.
Finally, assume that m = n = 1. Then the above computations and

Proposition 5.3 directly show that (i) implies (iii). In the other direction, if
(i) fails, then there is a θ-Aronszajn tree T , and a combination of Corollary
2.15 with Theorem 2.23 shows that 1Pθ  “Ť is an ω2-Aronszajn tree”.

6. Subtle, ineffable and λ-ineffable cardinals. In this section, we
will present characterizations of subtle, of ineffable, and of λ-ineffable cardi-
nals for a proper class of cardinals λ. Since the latter form a hierarchy that
leads up to supercompactness (see [18]), these results will also yield a char-
acterization of supercompactness. The forward directions of the two main
theorems of this section (Theorems 6.7 and 6.13) are based on the proofs of
[9, Theorems 7.4 & 7.5]. These results are closely connected with work of
Weiß [29], [30] (see [9, Section 7]). Most definitions and results in this section
deal with the following concept.

Definition 6.1. Given a set A, a sequence 〈da | a ∈ A〉 is an A-list if
da ⊆ a for all a ∈ A.

Following [11], we can now define an uncountable regular cardinal θ to
be subtle if for every θ-list 〈dα | α < θ〉 and every club C in θ, there are
α, β ∈ C with α < β and dα = dβ ∩ α. The results of [9] yield the following
small embedding characterization of subtlety (see [9, Lemmas 5.2, 5.4 & 3.4]).

Lemma 6.2. The following statements are equivalent for every cardinal θ:

(i) θ is subtle.
(ii) For all sufficiently large cardinals ϑ, all x ∈ H(ϑ), every θ-list ~d =
〈dα | α < θ〉, and every club C in θ, there is a small embedding j :

M → H(ϑ) for θ, such that crit(j) is inaccessible, C, ~d, x ∈ ran(j) and
dα = dcrit(j) ∩ α for some α ∈ C ∩ crit(j).

The above characterization motivates the following principle of internal
subtlety:

Definition 6.3. A cardinal θ is internally AP subtle if for all sufficiently
large regular cardinals ϑ, all x ∈ H(ϑ), every club C in θ, and every θ-list
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~d = 〈dα | α < θ〉, there is a small embedding j : M → H(ϑ) for θ and a
transitive model N of ZFC− such that ~d, x, C ∈ ran(j) and:

(i) N ⊆ H(ϑ) and the pair (N,H(ϑ)) satisfies the σ-approximation prop-
erty.

(ii) M ∈ N and Pω1(crit(j))N ⊆M .
(iii) If dcrit(j) ∈ N , then there is α ∈ C ∩ crit(j) with dα = dcrit(j) ∩ α.

The consequences of internal subtlety can now be analyzed with the help
of the following principle introduced by Weiß [29].

Definition 6.4. Let θ be an uncountable regular cardinal.

(i) A θ-list 〈dα | α < θ〉 is slender if there is a club C in θ such that for
every γ ∈ C and every α < γ, there is a β < γ with dγ ∩ α = dβ ∩ α.

(ii) SSP(θ) is the statement that for every slender θ-list 〈dα | α < θ〉 and
every club C in θ, there are α, β ∈ C with α < β and dα = dβ ∩ α.

Lemma 6.5. If θ is an internally AP subtle cardinal, then SSP(θ) holds.

Proof. Fix a slender θ-list ~d = 〈dα | α < θ〉, a club C0 in θ and a club
C ⊆ C0 witnessing the slenderness of ~d. Let ϑ be a sufficiently large regular
cardinal such that there is a small embedding j : M → H(ϑ) and a transitive
ZFC−-model N witnessing the internal AP subtlety of θ with respect to ~d
and C. Then elementarity implies that crit(j) ∈ C ⊆ C0. Assume for a
contradiction that dcrit(j) /∈ N . Then the σ-approximation property yields
an x ∈ Pω1(crit(j))N with dcrit(j)∩x /∈ N . Hence x ∈M and, since crit(j) is
a regular cardinal inM , there is an α < crit(j) with x ⊆ α. In this situation,
the slenderness of ~d yields a β < crit(j) with dcrit(j) ∩ α = dβ ∩ α. But
then

dcrit(j) ∩ x = dcrit(j) ∩ x ∩ α = dβ ∩ x ∩ α.

Since ~d ∈ ran(j), we have dβ ∈ M ⊆ N and hence dcrit(j) ∩ x ∈ N , a con-
tradiction. These computations show that dcrit(j) ∈ N and therefore our
assumptions yield an α < crit(j) with α ∈ C ⊆ C0 and dα = dcrit(j) ∩ α.

Corollary 6.6. The following statements are equivalent for every in-
accessible cardinal θ:

(i) θ is a subtle cardinal.
(ii) θ is an internally AP subtle cardinal.

Proof. The forward direction is a direct consequence of Lemma 6.2. In the
other direction, the results of [29, Section 1.2] show that the inaccessibility of
θ implies that every θ-list is slender and we can apply Lemma 6.5 to conclude
that (i) is a consequence of (ii).
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The following result provides a characterization of the class of all subtle
cardinals using Neeman’s pure side condition forcing. The above corollary
already shows that this characterization of subtlety is strong.

Theorem 6.7. The following statements are equivalent for every inac-
cessible cardinal θ:

(i) θ is a subtle cardinal.
(ii) 1Pθ  “ω2 is internally AP subtle”.
(iii) 1Pθ  SSP(ω2).

Proof. First, assume that (iii) holds. Let ~d = 〈dα | α < θ〉 be a θ-list, and
let C be a club subset of θ. Since θ is inaccessible, we know that ~d is slender.
Let G be Pθ-generic over V. Since slenderness of θ-lists is clearly upwards-
absolute to models that preserve the regularity of θ, our assumption implies
that there are α, β ∈ C with α < β and dα = dβ ∩ α. These computations
show that (i) holds.

Now, assume that (i) holds. Let ḋ be a Pθ-name for a θ-list, let Ċ be
a Pθ-name for a club in θ, and let ẋ be any Pθ-name. By Lemma 2.22, we
can find a club C in θ consisting only of limit ordinals that are closed under
the Gödel pairing function ≺·, ·�, with 1Pθ  “Č ⊆ Ċ ”. For every α < θ,
let ḋα be a nice Pθ-name for the αth element of ḋ. Let ϑ > 2θ be a regu-
lar cardinal that is sufficiently large with respect to Lemma 6.2, and which
satisfies ḋ, ẋ ∈ H(ϑ). Define A to be the set of all inaccessible cardinals κ
less than θ for which there exists a small embedding j : M → H(ϑ) for θ
with critical point κ and ḋ, ẋ, C, Ċ ∈ ran(j). Finally, let G be Pθ-generic
over V.

Assume first that there is κ < θ and a small embedding j : M → H(ϑ) for
θ in V such that j witnesses that κ is an element of A, and ḋGκ /∈ V[Gj ], with
Gj = G∩H(κ) defined as in Proposition 3.3. Let jG : M [Gj ]→ H(ϑ)V[G] be
the lifting of j provided by Proposition 3.3, and set N = H(ϑ)V[Gj ]. Then
ḋG, ẋG, ĊG ∈ ran(jG), the pair (N,H(ϑ)V[G]) satisfies the σ-approximation
property, Theorem 2.23 implies that κ = ωN2 , and another application of
Lemma 2.22 yields Pω1(κ)N ⊆ H(κ)N ⊆ M [Gj ]. Since ḋGκ /∈ N , we can
conclude that jG and N witness that θ is internally AP subtle in V[G] with
respect to ḋG, ẋG and ĊG.

Otherwise, assume that whenever j : M → H(ϑ) is a small embedding for
θ in V that witnesses that some κ < θ is an element of A, then ḋGκ ∈ V[Gj ].
Fix a condition p ∈ G that forces this statement, pick some q ≤Pθ p, and
work in V. Let B denote the set of all κ ∈ A such that q is a condition in Pκ.
Since Pθ satisfies the θ-chain condition, we can find a function g : B → θ
and sequences 〈qκ | κ ∈ B〉, 〈ṙκ | κ ∈ B〉 and ~e = 〈ėκ | κ ∈ B〉 such that the
following statements hold for all κ ∈ B:
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(a) g(κ) > κ is inaccessible and ḋκ is a Pg(κ)-name.
(b) qκ is a condition in Pκ below q.
(c) ṙκ is a Pκ-name for a condition in Q̇H(κ)

θ that is an element of H(g(κ)).
(d) ėκ is a Pκ-name for a subset of κ with 〈qκ, ṙκ〉 Pκ∗Q̇H(κ)

θ

“ ḋκ = ėκ”.

Given κ ∈ B, let Eκ denote the set of all triples 〈s, β, i〉 ∈ Pκ×κ×2 ⊆ H(κ)
with

s Pκ “β̌ ∈ ėκ ↔ i = 1”.

Fix a bijection b : θ → H(θ) with b[κ] = H(κ) for every inaccessible cardinal
κ ≤ θ, and define ~d = 〈dα | α < θ〉 to be the unique θ-list with

dα = {≺0, 0�} ∪ {≺b−1(qα), 1�} ∪ {≺b−1(e), 2� | e ∈ Eα} ⊆ α

for all α ∈ B, and with dα = ∅ for all α ∈ θ \ B. Next, let j : M → H(ϑ)
be a small embedding for θ which witnesses the subtlety of θ with respect
to C, ~d and {b, ḋ, g, q, Ċ}, and let κ denote the critical point of j. Then
there is an α ∈ C ∩ κ with dα = dκ ∩ α. In this situation, the embedding j
witnesses that κ is an element of A and, by elementarity, q ∈ ran(j) implies
that q ∈ H(κ) and κ ∈ B. But then ≺0, 0� ∈ dκ ∩ α, and therefore α ∈ B.
By Proposition 3.3, this shows that Pκ is a complete suborder of Pθ, and
Pα is a complete suborder of Pκ, and H(α) ∈ Tκ ⊆ Tθ. Moreover, the above
coherence implies that qα = qκ ∈ Pα and Eα ⊆ Eκ. By elementarity, we have
g(α) < κ, and therefore the above remarks show that ṙα is also a Pα-name
for a condition in Q̇H(α)

κ . Hence, there is a condition u in Pκ satisfying

DH(α)
κ (u) ≤Pα∗Q̇H(α)

κ
(qα, ṙα).

Then u ≤Pκ u∩H(α) ≤Pκ qα = qκ, and we may find a condition v in Pθ with

D
H(κ)
θ (v) ≤Pκ∗Q̇H(κ)

θ

(u, ṙκ).

Let H be Pθ-generic over V with v ∈ H. Then q ∈ H, u ∈ Hj = H∩H(κ)

and the above choices ensure that ḋHκ = ė
Hj
κ and ḋHα = ė

H∩H(α)
α .

Claim. ḋHα = ḋHκ ∩ α.

Proof of Claim. Pick β ∈ ḋHα . By the above computations, we have β ∈
ė
H∩H(α)
α , and hence there is an s ∈ H ∩H(α) ⊆ Hj with 〈s, β, 1〉 ∈ Eα ⊆ Eκ.
But then β ∈ ė

Hj
κ = ḋHκ . In the other direction, pick β ∈ α \ ḋHα . Then

β ∈ α \ ėH∩H(α)
α , and there is an s ∈ H ∩ H(α) with 〈s, β, 0〉 ∈ Eα ⊆ Eκ.

Thus β /∈ ėHjκ = ėHκ .

Let jH : M [Hj ] → H(ϑ)V[H] be the small embedding for θ provided by
an application of Proposition 3.3, and set N = H(ϑ)V[Hj ]. As in the first
case, we know that ḋH , ẋH , ĊH ∈ ran(jH), the pair (N,H(ϑ)V[H]) satisfies
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the σ-approximation property, κ = ωN2 and Pω1(κ)N ⊆ H(κ)N ⊆ M [Hj ].
By the above Claim, this shows that jH and N witness that θ is internally
AP subtle in V[H] with respect to ḋH , ẋH and ĊH . In particular, there is a
condition in H below q that forces this statement.

This density argument shows that, in V[G], we can find a small em-
bedding j : M → H(ϑ) for θ that witnesses the internal AP subtlety of θ
with respect to ḋG, ẋG, ĊG. In particular, these computations show that (ii)
holds.

Next, we turn our attention towards the hierarchy of ineffable cardinals.
Recall that, given a regular uncountable cardinal θ and a cardinal λ ≥ θ,
the cardinal θ is λ-ineffable if for every Pθ(λ)-list ~d = 〈da | a ∈ Pθ(λ)〉,
there exists a subset D of λ such that the set {a ∈ Pθ(λ) | da = D ∩ a}
is stationary in Pθ(λ). This large cardinal property has the following small
embedding characterization (see [9, Lemmas 5.5, 5.9 & 3.4]).

Lemma 6.8. The following statements are equivalent for all cardinals
θ ≤ λ satisfying λ = λ<θ:

(i) θ is λ-ineffable.
(ii) For all sufficiently large cardinals ϑ, every Pθ(λ)-list ~d = 〈da | a∈Pθ(λ)〉

and all x ∈ H(ϑ), there is a small embedding j : M → H(ϑ) for θ and
δ ∈M∩θ such that crit(j) is inaccessible, Pcrit(j)(δ) ⊆M , ~d, x ∈ ran(j),
j(δ) = λ and j−1[dj[δ]] ∈M .

Note that the assumption λ = λ<θ is only needed to ensure that Pcrit(j)(δ)
is a subset of the domain of the given small embedding. Other degrees of
ineffability can also be characterized by small embeddings by removing this
assumption from the above equivalence.

The above characterization again gives rise to an internal large cardinal
principle:

Definition 6.9. Given cardinals θ ≤ λ, the cardinal θ is internally AP λ-
ineffable if for all sufficiently large regular cardinals ϑ, all x ∈ H(ϑ), and every
Pθ(λ)-list ~d = 〈da | a ∈ Pθ(λ)〉, there is a small embedding j : M → H(ϑ)
for θ, an ordinal δ ∈ M ∩ θ and a transitive model N of ZFC− such that
j(δ) = λ, and ~d, x ∈ ran(j), and the following statements hold:

(i) N ⊆ H(ϑ) and the pair (N,H(ϑ)) satisfies the σ-approximation prop-
erty.

(ii) M ∈ N and Pω1(δ)N ⊆M .
(iii) If j−1[dj[δ]] ∈ N , then j−1[dj[δ]] ∈M .

Analogous to the above study of internal subtlety, the consequences of
this principle can be studied through combinatorial concepts introduced by
Weiß in [29] and [30].
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Definition 6.10. Let θ be an uncountable regular cardinal and let λ ≥ θ
be a cardinal.

(i) A Pθ(λ)-list 〈da | a ∈ Pθ(λ)〉 is slender if for every sufficiently large
cardinal ϑ, there is a club C in Pθ(H(ϑ)) with b ∩ dX∩λ ∈ X for all
X ∈ C and all b ∈ X ∩ Pω1(λ).

(ii) ISP(θ, λ) denotes the statement that for every slender Pθ(λ)-list 〈da |
a ∈ Pθ(λ)〉, there exists a subset D of λ such that the set {a ∈ Pθ(λ) |
da = D ∩ a} is stationary in Pθ(λ).

Lemma 6.11. If θ is an internally AP λ-ineffable cardinal, then ISP(θ, λ)
holds.

Proof. Fix a slender Pθ(λ)-list ~d = 〈da | a ∈ Pθ(λ)〉. Then we can find
a sufficiently large cardinal ϑ such that there is a function f : Pω(H(ϑ)) →
Pθ(H(ϑ)) with the property that Clf is a club in Pθ(H(ϑ)) witnessing the
slenderness of ~d. Let ϑ′ be a sufficiently large regular cardinal such that there
is a small embedding j : M → H(ϑ′) with f ∈ ran(j), δ ∈M and a transitive
ZFC−-model N witnessing the internal AP λ-ineffability of θ with respect
to ~d. Pick ε ∈M with j(ε) = ϑ. Then X = j[H(ε)M ] ∈ Clf .

Assume for a contradiction that j−1[dj[δ]] /∈N . The σ-approximation pro-
perty yields an element x of Pω1(δ)N with x ∩ j−1[dj[δ]] /∈ N . Then our
assumptions imply that x is an element of Pω1(δ)M . But then j(x) ∈ X ∩
Pω1(λ) and the slenderness of ~d implies that j(x)∩dj[δ] ∈ X. We can conclude
that

x ∩ j−1[dj[δ]] = j−1[j(x) ∩ dj[δ]] = j−1(j(x) ∩ dj[δ]) ∈M ⊆ N,

a contradiction. These computations show that j−1[dj[δ]] ∈ N and our as-
sumptions imply that this set is also an element ofM . DefineD=j(j−1[dj[δ]])
and S = {a ∈ Pθ(λ) | da = D ∩ a}. Assume, towards a contradiction, that S
is not stationary in Pθ(λ). By elementarity, there is a function f0 : Pω(δ)→
Pcrit(j)(δ) in M such that Clj(f0) ∩ S = ∅. But then j[δ] ∈ Clj(f0) ∩ S,
a contradiction.

Corollary 6.12. The following statements are equivalent for every in-
accessible cardinal θ and every cardinal λ ≥ θ satisfying λ = λ<θ:

(i) θ is a λ-ineffable cardinal.
(ii) θ is an internally AP λ-ineffable cardinal.

Proof. Lemma 6.8 directly shows that (i) implies (ii). In the other di-
rection, the results of [18] and [30, Section 2] show that an inaccessible car-
dinal θ is λ-ineffable if and only if ISP(θ, λ) holds. Therefore, Lemma 6.11
shows that (ii) implies (i).
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The next theorem yields a characterization of the set of all λ-ineffable
cardinals θ with λ = λ<θ. In particular, it shows that Neeman’s pure side con-
dition forcing can be used to characterize the class of all ineffable cardinals.
The above corollary already shows that these characterizations are strong.

Theorem 6.13. The following statements are equivalent for every inac-
cessible cardinal θ and every cardinal λ with λ = λ<θ:

(i) θ is a λ-ineffable cardinal.
(ii) 1Pθ  “ω2 is interally AP λ̌-ineffable”.
(iii) 1Pθ  ISP(ω2, λ̌).

Proof. First, assume that (iii) holds. Since Corollary 2.15 shows that
Pθ satisfies the σ-approximation property, and Lemma 2.22 implies that Pθ
satisfies the θ-chain condition, we can combine our assumptions with [28,
Theorem 6.3] and [30, Proposition 2.2] to conclude that θ is λ-ineffable.

Now, assume that (i) holds. Let ḋ be a Pθ-name for a Pθ(λ)-list, and let
ẋ be an arbitrary Pθ-name. For every a ∈ Pθ(λ), let ḋa be a nice Pθ-name
for the component of ḋ that is indexed by ǎ. Fix a bijection b : θ → H(θ)
such that b[κ] = H(κ) holds for every inaccessible cardinal κ ≤ θ. Pick a
regular cardinal ϑ > 2λ that is sufficiently large with respect to Lemma 6.8,
and which satisfies ḋ, ẋ ∈ H(ϑ). Define A to be the set of all a ∈ Pθ(λ) for
which there exists a small embedding j : M → H(ϑ) for θ and δ ∈ M ∩ θ
with j(δ) = λ, a = j[δ], κa = crit(j) = a ∩ θ inaccessible, Pκa(δ) ⊆ M and
b, ḋ, ẋ ∈ ran(j). Let G be Pθ-generic over V.

Assume first that there exists a ∈ Pθ(λ)V, a small embedding j : M →
H(ϑ)V for θ in V, and δ ∈ M ∩ θ such that j and δ witness that a is an
element of A, and such that ḋGa /∈ V[Gj ]. Let jG : M [Gj ] → H(ϑ)V[G] be
the lifting of j provided by Proposition 3.3, and set N = H(ϑ)V[Gj ]. Then
ḋG, ẋG ∈ ran(jG), Corollary 2.19 shows that the pair (N,H(ϑ)V[G]) satisfies
the σ-approximation property and, by Lemma 2.22, Pκa(δ)V ⊆ M implies
that Pκa(δ)N ⊆ M [Gj ]. Since ḋGa /∈ N , we can conclude that jG, δ and N
witness the internal AP λ-ineffability of θ with respect to ḋG and ẋG in V[G].

Otherwise, assume that whenever j : M → H(ϑ)V is a small embedding
for θ in V that witnesses that some a ∈ Pθ(λ)V is an element of A, then
ḋGa ∈ V[Gj ]. Pick a condition p in G which forces this statement. Work in V,
fix a condition q below p in Pθ, and define B to be the set of all a ∈ A such
that q ∈ Pκa . By our assumption and by Lemma 2.22, we can find sequences
〈qa | a ∈ B〉, 〈ṙa | a ∈ B〉 and 〈ėa | a ∈ B〉 such that the following statements
hold for all a ∈ B:

(a) qa is a condition in Pκa below q.
(b) ṙa is a Pκa-name for a condition in Q̇H(κa)

θ .
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(c) ėa is a Pκa-nice name for a subset of a which has the property that
〈qa, ṙa〉 Pκa∗Q̇

H(κa)
θ

“ ḋa = ėa”.

Given a ∈ B, we have b−1[Pκa ] ⊆ b−1[H(κa)] = κa ⊆ a, and elementarity
implies that the set a is closed under ≺·, ·�. This shows that there is a unique
Pθ(λ)-list ~d = 〈da | a ∈ Pθ(λ)〉 with

da = {≺b−1(s), β� | 〈β̌, s〉 ∈ ėa} ⊆ a
for all a ∈ B, and with da = ∅ for all a ∈ Pθ(λ) \B.

Fix a small embedding j : M → H(ϑ) for θ and δ ∈ M ∩ θ that witness
the λ-ineffability of θ with respect to ~d and {b, ḋ, q, ẋ}, as in Lemma 6.8.
Then j and δ witness that j[δ] ∈ B. Pick u in Pθ with

D
H(κj[δ])

θ (u) ≤
Pκj[δ]∗Q̇

H(κj[δ])

θ

〈qj[δ], ṙj[δ]〉,

and let H be Pθ-generic over V with u ∈ H. Since qj[δ] ∈ Hj , we have ḋHj[δ]
= ė

Hj
j[δ]. Note that this implies that for all γ < δ, we have γ ∈ j−1[ḋHj[δ]] if and

only if there is an s ∈Hj with ≺b−1(s), j(γ)� ∈ dj[δ]. Observe that b�κj[δ]
∈M , j(b�κj[δ]) = b and j�Hj = idHj . Hence, j−1[ḋHj[δ]] is equal to the set of
all γ < δ with the property that there is an s ∈ Hj with ≺(b�κj[δ])

−1(s), γ�
∈ j−1[dj[δ]]. Since the above choices ensure that j−1[dj[δ]] ∈ M , we can
conclude that j−1[ḋHj[δ]] is an element of M [Hj ]. Let jH : M [Hj ]→ H(ϑ)V[H]

denote the lifting of j provided by Proposition 3.3, and set N = H(ϑ)V[Hj ].
As above, we have ḋH , ẋH ∈ ran(jH), the pair (N,H(ϑ)V[H]) satisfies the σ-
approximation property, and Pκj[δ](δ)N ⊆ M [Hj ]. Since j−1[ḋHj[δ]] ∈ M [Hj ],
we can conclude that jH and δ witness that θ is internally AP λ-ineffable
with respect to ḋH and ẋH in V[H].

Via a standard density argument, the above computations allow us to
conclude that θ is internally AP λ-ineffable in V[G]. In particular, these
arguments show that (i) implies (ii).

In the remainder of this section, we will use the above results to strongly
characterize supercompactness through the validity of internal supercom-
pactness in generic extension. This characterization is based on the following
equivalence provided by the results of [28].

Proposition 6.14. An uncountable regular cardinal θ is internally AP
supercompact if and only if ISP(θ, λ) holds for all cardinals λ ≥ θ.

Proof. First, assume that ISP(θ, λ) holds for all cardinals λ ≥ θ. Fix
some regular cardinal ϑ > θ, x ∈ H(ϑ) and a cardinal ϑ′ > |H(ϑ)|. By
[28, Proposition 3.2], the fact that ISP(θ, |H(ϑ′)|) holds implies that there
is a stationary subset of Pθ(H(ϑ′)) consisting of elementary submodels X
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of H(ϑ′) of cardinality less than θ with X ∩ θ ∈ θ and the property that
if N denotes the transitive collapse of X, then the pair (N,H(ϑ′)) satisfies
the σ-approximation property. Pick such a submodel X with θ, ϑ, x ∈ X.
Let π : X → N denote the corresponding collapsing map and set κ =
π(ϑ) < θ. Define M = H(κ)N and j = π−1�M : M → H(ϑ). Then j is a
small embedding for θ with x ∈ ran(j) and N is a transitive model of ZFC−

with N ⊆ H(ϑ), κ < θ is a cardinal in N , and M = H(κ)N . Since the
above constructions ensure that the pair (N,H(ϑ)) has the σ-approximation
property, we can conclude that θ is internally AP supercompact with respect
to x.

In the other direction, assume that θ is internally AP supercompact. Fix
a set x, a cardinal λ ≥ θ and a Pθ(λ)-list ~d = 〈da | a ∈ Pθ(λ)〉. Pick a small
embedding j : M → H(ϑ) for θ and a model N that witnesses that θ is inter-
nally AP supercompact with respect to 〈~d, x〉. Then there are N -cardinals
δ < κ with M = H(κ)N and j(δ) = λ. If j−1[dj[δ]] ∈ N , then j−1[dj[δ]] ∈
P(δ)N ⊆ H(κ)N = M . This shows that j, δ and N witness that θ is inter-
nally AP λ-ineffable with respect to ~d and x. In this situation, Lemma 6.11
allows us to conclude that ISP(θ, λ) holds for all cardinals λ ≥ θ.

In combination with [28, Theorem 4.8], the above proposition shows that
PFA implies that ω2 is internally AP supercompact and hence possesses all
internal large cardinal properties discussed in this paper.

The proof of the following corollary combines the above observations to
provide a characterization of supercompactness that is based on its internal
version.

Corollary 6.15. The following statements are equivalent for every in-
accessible cardinal θ:

(i) θ is a supercompact cardinal.
(ii) 1Pθ  “ω2 is internally AP supercompact”.
(iii) 1Pθ  “ISP(ω2, λ) holds for all cardinals λ ≥ ω2”.

Proof. Since the results of [18] show that a cardinal θ is supercompact if
and only if it is λ-ineffable for all λ ≥ θ, the equivalence between (i) and (iii)
follows directly from Theorem 6.13, the fact that there is a proper class of
cardinals λ satisfying λ = λ<θ and the fact that ISP(θ, λ1) implies ISP(θ, λ0)
for all cardinals θ ≤ λ0 ≤ λ1. The equivalence between (ii) and (iii) is given
by Proposition 6.14.

As mentioned in the proof of Corollary 6.12, an inaccessible cardinal θ is
supercompact if and only if ISP(θ, λ) holds for all cardinals λ ≥ θ. In com-
bination with Proposition 6.14, this directly shows that the characterization
of supercompactness provided by the above corollary is strong.
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7. γ-supercompact cardinals. In this section and the next, we show
that it is possible to use Neeman’s pure side condition forcing to characterize
levels of supercompactness, almost huge, and super almost huge cardinals.
Since either no small embedding characterizations for these properties are
known, or the existing small embedding characterizations are not suitable
for our purposes, our characterizations instead make use of the classical con-
cept of generic elementary embeddings. In the following, we will provide an
alternative characterization of supercompactness. Afterwards, we will use
ideas from these proofs to characterize even stronger large cardinal proper-
ties. The following lemma lies at the heart of these results. Its proof heavily
relies on the concepts and results presented in [28, Section 6]. Recall that,
given transitive classes M ⊆ N and a cardinal θ ∈M in N , the pair (M,N)
satisfies the θ-cover property if for every A ∈ N with A ⊆M and |A|N < θ,
there exists B ∈M with A ⊆ B and |B|M < θ.

Lemma 7.1. Let V[G] be a generic extension of the ground model V,
let V[G,H] be a generic extension of V[G] and let j : V[G] → M be an
elementary embedding definable in V[G,H] with critical point θ. Assume
that the following statements hold:

(i) θ is an inaccessible cardinal in V.
(ii) The pair (V,V[G]) satisfies the σ-approximation property and the θ-co-

ver property.
(iii) The pair (V[G],V[G,H]) satisfies the σ-approximation property.

In this situation, if θ ≤ γ < j(θ) is an ordinal satisfying j[γ] ∈ M , then
j[γ] ∈ j(Pθ(γ)V), and the set

U = {A ∈ P(Pθ(γ))V | j[γ] ∈ j(A)}

is an element of V.

Proof. The above assumptions imply that ωV
1 = ω

V[G]
1 = ω

V[G,H]
1 , and

hence θ is an uncountable regular cardinal greater than ω1 in V[G].

Claim. U ∈ V[G].

Proof of Claim. Assume, towards a contradiction, that the set U is not an
element of V[G]. Then there is u ∈ Pω1(P(Pθ(γ))V)V[G] with U ∩ u /∈ V[G].
Define

d : Pθ(γ)V[G] → P(u)V[G], x 7→ {A ∈ u | x ∈ A}.

By our assumptions, there is c ∈ Pθ(P(Pθ(γ)))V with u ⊆ c. In the following,
let a : Pθ(γ)V[G] → P(c)V denote the unique function with a(x) = {A ∈ c |
x ∈ A} for all x ∈ dom(a) ∩ V and a(x) = ∅ for all x ∈ dom(a) \ V. Since
d(x) = ∅ for all x ∈ Pθ(γ)V[G] \ V, we then have d(x) = a(x) ∩ u for all
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x ∈ Pθ(γ)V[G] and

ran(d) = {a(x) ∩ u | x ∈ Pθ(γ)V[G]} ⊆ {u ∩ y | y ∈ P(c)V}.
Since θ is inaccessible in V, this implies that ran(d) has cardinality less than
θ in V[G] and there is a bijection b : µ→ ran(d) in V[G] for some µ < θ. In
this situation, we have j[γ] ∈ j(Pθ(γ)V[G]), and elementarity yields an α < µ
with j(b)(α) = j(d)(j[γ]). But then

j[(b(α))] = j(b)(α) = j(d)(j[γ]) = {j(A) | A ∈ u, j[γ] ∈ j(A)} = j[(U ∩ u)],

and this implies that U ∩ u = b(α) ∈ V[G], a contradiction.

Claim. j[γ] ∈ j(Pθ(γ)V).

Proof of Claim. Assume, towards a contradiction, that the set j[γ] is
not an element of j(Pθ(γ)V). By our assumptions on V and V[G], there is
a function a : Pθ(γ)V[G] → Pω1(γ)V in V[G] with a(x) = ∅ for all x ∈
dom(a) ∩V and a(x) ∩ x /∈ V for all x ∈ dom(a) \V. Define

d : Pθ(γ)V[G] → Pω1(γ)V[G], x 7→ a(x) ∩ x,
and set D = {α < γ | j(α) ∈ j(d)(j[γ])}. Then our assumption and elemen-
tarity imply that D 6= ∅.

Subclaim. D ∈ V[G].

Proof of Subclaim. Assume, towards a contradiction, that D is not an
element of V[G]. Then there is u ∈ Pω1(γ)V[G] with D ∩ u /∈ V[G]. Define

R = {d(x) ∩ u | u ⊆ x ∈ Pθ(γ)V[G]},
and fix c ∈ Pθ(γ)V with u ⊆ c. Then

R = {a(x) ∩ c ∩ u | u ⊆ x ∈ Pθ(γ)V[G]} ⊆ {u ∩ y | y ∈ Pω1(c)V},
and, since θ is inaccessible in V, there is a bijection b : µ→ R in V[G] with
µ < θ.

We now have j(d)(j[γ]) ∩ j(u) ∈ j(R), because j(u) = j[u] ⊆ j[γ] ∈
j(Pθ(γ)V[G]). Hence there is an α < µ with

j[(b(α))] = j(b)(α) = j(d)(j[γ]) ∩ j(u) = j[(D ∩ u)],

and this implies that D ∩ u = b(α) ∈ V[G], a contradiction.

Define U = {x ∈ Pθ(γ)V[G] | d(x) = D ∩ x} ∈ V[G].

Subclaim. In V[G], the set U is unbounded in Pθ(γ).

Proof of Subclaim. We have j(d)(j[γ]) = j[D] = j(D) ∩ j[γ], and this
shows that j[γ] ∈ j(U). Now, if x is an element of Pθ(γ)V[G], then j(x) =
j[x] ⊆ j[γ] ∈ j(U), and hence elementarity yields a y ∈ U with x ⊆ y.

Now, work in V[G] and use our assumptions together with the last Claim
to construct a sequence 〈xα | α ≤ ω1〉 of elements of U and a sequence
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〈yα | α ≤ ω1〉 of elements of Pθ(γ)V such that d(x0) 6= ∅ and⋃
{yᾱ | ᾱ < α} ⊆ xα ⊆ yα

for all α ≤ ω1. Then we have

d(xᾱ) = D ∩ xᾱ ⊆ D ∩ xα = d(xα)

for all ᾱ ≤ α ≤ ω1. Since d(xω1) is a countable set, this implies that there is
an α∗ < ω1 with d(xα∗) = d(xα) for all α∗ ≤ α ≤ ω1. Then

d(xα∗) = d(xα∗+1) ∩ xα∗ ⊆ a(xα∗+1) ∩ yα∗
⊆ a(xα∗+1) ∩ xα∗+1 = d(xα∗+1) = d(xα∗)

and therefore ∅ 6= d(xα∗) = a(xα∗+1) ∩ yα∗ ∈ V, a contradiction.

Assume, towards a contradiction, that U is not an element of V. Since
U ∈ V[G], this implies that there is a u ∈ Pω1(P(Pθ(γ)))V with U ∩ u /∈ V.
Define

d : Pθ(γ)V → P(u)V, x 7→ {A ∈ u | x ∈ A}.
Since θ is inaccessible in V, we can find a bijection b : µ→ ran(d) in V with
µ < θ. By the above claim, we have j[γ] ∈ j(Pθ(γ)V) and hence there is an
α < µ with j(d)(j[γ]) = j(b)(α). But then

j[(b(α))] = j(b)(α) = j(d)(j[γ]) = {j(A) | A ∈ u, j[γ] ∈ j(A)} = j[(U ∩ u)],

and this implies that U ∩ u = b(α) ∈ V, a contradiction.

We now study typical situations in which the assumptions of Lemma 7.1
are satisfied.

Definition 7.2. Given an uncountable regular cardinal θ and an or-
dinal γ ≥ θ, we say that a partial order P witnesses that θ is generically
γ-supercompact if there is a P-name U̇ such that U̇G is a fine, V-normal,
V-<θ-complete ultrafilter on P(Pθ(γ))V in V[G], with the property that
the corresponding ultrapower Ult(V, U̇G) is well-founded whenever G is P-
generic over V.

Proposition 7.3. Let P be a partial order witnessing that an uncount-
able regular cardinal θ is generically γ-supercompact, and let U̇ be the cor-
responding P-name. If G is P-generic over V, and j : V → Ult(V, U̇G) is
the corresponding ultrapower embedding defined in V[G], then j has critical
point θ, j(θ) > γ, and j[γ] ∈ Ult(V, U̇G).

Proof. The V-<θ-completeness of U̇G yields j�θ = idθ. The fineness and
V-normality of U̇G imply that j[γ] = [idPθ(γ)V ]U̇G ∈ Ult(V, U̇G), and more-
over

γ = [a 7→ otp(a)]U̇G < [a 7→ θ]U̇G = j(θ).

In particular, this shows that j has critical point θ.
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The following results yield strong characterizations of measurable and of
supercompact cardinals through Neeman’s pure side condition forcing.

Lemma 7.4. The following statements are equivalent for every inaccessi-
ble cardinal θ and every ordinal γ ≥ θ:
(i) θ is a γ-supercompact cardinal.
(ii) There is a partial order with the σ-approximation property witnessing

that θ is generically γ-supercompact.

Proof. If (i) holds, then the trivial partial order clearly witnesses that θ
is generically γ-supercompact. In order to verify the reverse direction, let P
be a partial order with the σ-approximation property that witnesses θ to be
generically γ-supercompact, let H be P-generic over V, and let j : V→M
be the elementary embedding definable in V[H] that is provided by an ap-
plication of Proposition 7.3. In this situation, an application of Lemma 7.1
with V = V[G] shows that the set U = {A ∈ P(Pθ(γ))V | j[γ] ∈ j(A)} is
an element of V and it is easy to see that U is a fine, <θ-complete, normal
ultrafilter on P(Pθ(γ)) in V. So U witnesses that θ is γ-supercompact in V.

The following result shows how γ-supercompactness can be characterized
through Neeman’s pure side condition forcing. Note that in particular this
theorem yields a strong characterization of measurability and yet another
strong characterization of supercompactness.

Theorem 7.5. The following statements are equivalent for every inac-
cessible cardinal θ and every ordinal γ ≥ θ:
(i) θ is a γ-supercompact cardinal.
(ii) 1Pθ  “There is a partial order with the σ-approximation property that

witnesses ω2 to be generically γ̌-supercompact”.

Proof. First, assume that (i) holds, and let j : V→M be an elementary
embedding witnessing the γ-supercompactness of θ. Set K = H(j(θ))M ,
S = SMj(θ) and T = T Mj(θ). Then PK,S,T = PMj(θ) = j(Pθ).

Claim. The set K is suitable and the pair (S, T ) is appropriate for K.

Proof of Claim. Since ωM1 = ω1 < θ < j(θ), elementarity directly yields
the above statements.

Note that the closure properties of M imply that H(θ) ∈ M , Pθ = PMθ
and H(θ) ∈ T . Moreover, Lemma 2.20 and elementarity together imply that
PK,S,T �〈H(θ)〉 is dense in PK,S,T . Define Q̇ = Q̇H(θ)

K,S,T . Then Lemma 2.22 and

the closure properties of M imply that Q̇ = (Q̇H(θ)
j(θ) )M . Let G be Pθ-generic

over V.

Claim. The partial order Q̇G has the σ-approximation property in V[G].
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Proof of Claim. By Corollary 2.19, it suffices to show that S is a sta-
tionary subset of P(K) in V. Work in V and fix a function f : [K]<ω → K.
Then the closure properties of M imply that M contains a sequence 〈Xn |
n < ω〉 of countable elementary substructures of K with the property that
f [[Xn]<ω] ⊆ Xn+1 for all n < ω. But then

⋃
{Xn | n < ω} ∈ Cf ∩ S 6= ∅.

If H is Q̇G-generic over V[G] and F is the filter on PK,S,T induced by
the embedding DH(θ)

K,S,T and the filter G ∗ H, then j�Pθ = idPθ implies that
j[G] ⊆ F and hence there is an embedding jG,H : V[G]→M [F ] that extends
j and is definable in V[G,H]. Let U̇ denote the canonical Q̇G-name in V[G]
with the property that whenever H is Q̇G-generic over V[G], then

U̇H = {A ∈ P(Pθ(γ))V[G] | j[γ] ∈ jG,H(A)}

and therefore standard arguments show that the set U̇H is a fine, V[G]-
normal, V[G]-<θ-complete ultrafilter on P(Pθ(γ))V[G] with the property that
Ult(V[G], U̇H) is well-founded. This allows us to conclude that (ii) holds.

Now, assume that (ii) holds and let G be Pθ-generic over V. In V[G],
there is a partial order Q with the σ-approximation property that witnesses
that θ is generically γ-supercompact. Let H be Q-generic over V[G]. Then
Proposition 7.3 yields an elementary embedding j : V[G] → M definable
in V[G,H] with critical point θ, j(θ) > γ, and j[γ] ∈ M . In this situation,
Corollary 2.19 and Lemma 2.22 show that the assumptions of Lemma 7.1
are satisfied, and therefore j[γ] ∈ j(Pθ(γ)V) and

U = {A ∈ P(Pθ(γ))V | j[γ] ∈ j(A)} ∈ V.

Since it is easy to see that U is a fine, <θ-complete, normal ultrafilter on
P(Pθ(γ)) in V, it follows that θ is γ-supercompact in V, as desired.

8. Almost huge and super almost huge cardinals. In this section,
we want to show that we can use Neeman’s pure side condition forcing for
the characterization of some of the strongest large cardinals, that is, we want
to provide strong characterizations of almost huge and of super almost huge
cardinals through Neeman’s pure side condition forcing, the proofs of which
strongly rely on the proofs from Section 7. Recall that a cardinal θ is almost
huge if there is an elementary embedding j : V → M with crit(j) = θ and
<j(θ)M ⊆ M . If such an embedding j exists, then we say that θ is almost
huge with target j(θ). Our characterization of almost hugeness will rely on
a generic large cardinal concept for almost hugeness. The following lemma
provides us with an adaption of Lemma 7.1 to the setting of almost huge
cardinals.

Lemma 8.1. Let V[G] be a generic extension of the ground model V,
let V[G,H] be a generic extension of V[G], let θ be an uncountable regular
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cardinal in V[G] and let λ > θ be an uncountable regular cardinal in V[G,H].
Assume that the following statements hold:

(i) θ and λ are inaccessible cardinals in V.
(ii) The pair (V,V[G]) satisfies the σ-approximation property and the θ-

cover property.
(iii) The pair (V[G],V[G,H]) satisfies the σ-approximation property.
(iv) There is an elementary embedding j : V[G] → M definable in V[G,H]

with the property that crit(j) = θ, j(θ) = λ and j[γ] ∈M for all γ < λ.

Then θ is almost huge with target λ in V.

Proof. Given θ ≤ γ < λ, define

Uγ = {A ∈ P(Pθ(γ))V | j[γ] ∈ j(A)} ∈ V[G,H].

Then Uγ = {{a ∩ γ | a ∈ A} | A ∈ Uδ} for all θ ≤ γ ≤ δ < λ. Moreover,
we can apply Lemma 7.1 to conclude that for every θ ≤ γ < λ, we have
j[γ] ∈ j(Pθ(γ)V), and Uγ is an element of V. Define

U = {Uγ | θ ≤ γ < λ} ∈ V[G,H].

Claim. U ∈ V.

Proof of Claim. First, assume, towards a contradiction, that U /∈ V[G].
Then our assumptions imply that there is u ∈ V[G] that is countable in V[G]
with the property that U ∩ u /∈ V[G]. Since λ is regular and uncountable in
V[G,H], we can find θ ≤ δ < λ with

U ∩ u = {Uγ | γ < δ} ∩ u =
{
{{a ∩ γ | a ∈ A} | A ∈ Uδ} | γ < δ

}
∩ u.

But then Uδ ∈ V ⊆ V[G] implies that U ∩ u ∈ V[G], a contradiction.
Since we already know that U ⊆ V, we can use the same argument to

show that the set U is an element of V.

Claim. If θ ≤ γ < λ and f ∈ (Pθ(γ)θ)V with

{a ∈ Pθ(γ) | otp(a) ≤ f(a)} ∈ Uγ ,

then there is γ ≤ δ < λ with {a ∈ Pθ(δ) | f(a ∩ γ) = otp(a)} ∈ Uδ.

Proof of Claim. Since j[γ] ∈ j(Pθ(γ)V) = dom(j(f)), there is a δ < λ =
j(θ) with δ = j(f)(j[γ]). Then γ = otp(j[γ]) ≤ δ < λ and

j(f)(j(γ) ∩ j[δ]) = j(f)(j[γ]) = δ = otp(j[δ]).

This shows that {a ∈ Pθ(δ) | f(a ∩ γ) = otp(a)} ∈ Uδ.

For every θ ≤ γ < λ, j[γ] ∈ j(Pθ(γ)V) implies that Uγ is a fine, normal,
θ-complete filter on P(Pθ(γ)) in V. Let Mγ = Ult(V,Uγ) denote the corre-
sponding ultrapower and let jγ : V → Mγ denote the induced ultrapower
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embedding. Given θ ≤ γ ≤ δ < λ, we have Uγ = {{a ∩ γ | a ∈ A} | A ∈ Uδ},
and the map

kγ,δ : Mγ →Mδ, [f ]Uγ 7→ [a 7→ f(a ∩ γ)]Uδ ,

is an elementary embedding with jδ = kγ,δ ◦ jγ .
Now, work in V, and fix θ ≤ γ < λ and θ ≤ ξ < jγ(θ). Then ξ = [f ]Uγ

for some function f : Pθ(γ)→ θ, and therefore

{a ∈ Pθ(γ) | otp(a) ≤ f(a)} ∈ Uγ .
In this situation, the last Claim yields an ordinal γ ≤ δ < λ with the property
that {a ∈ Pθ(δ) | f(a ∩ γ) = otp(a)} ∈ Uδ, and this implies that

kγ,δ(ξ) = kγ,δ([f ]Uγ ) = [a 7→ f(a ∩ γ)]Uδ = [a 7→ otp(a)]Uδ = δ.

Since λ is inaccessible in V, the above computation allow us to apply [12,
Theorem 24.11] to conclude that θ is almost huge with target λ in V.

Analogous to the previous section, we will now discuss the typical situa-
tion in which the assumptions of the previous lemma are satisfied.

Definition 8.2. Given an uncountable regular cardinal θ and an inac-
cessible cardinal λ > θ, we say that a partial order P witnesses that θ is
generically almost huge with target λ if the following statements hold:

(i) Forcing with P preserves the regularity of λ.
(ii) There is a sequence 〈U̇γ | θ ≤ γ < λ〉 of P-names such that the following

statements hold in V[G] whenever G is P-generic over V:

(a) If θ ≤ γ < λ, then U̇G is a fine, V-normal, V-<θ-complete filter
on P(Pθ(γ))V with the property that the corresponding ultrapower
Ult(V, U̇G) is well-founded.

(b) If θ ≤ γ ≤ δ < λ, then U̇Gγ = {{a ∩ γ | a ∈ A} | A ∈ U̇Gδ }.
(c) If θ ≤ γ < λ and f ∈ (Pθ(γ)θ)V, then there is γ ≤ δ < λ with

{a ∈ Pθ(δ)V | f(a ∩ γ) ≤ otp(a)} ∈ U̇Gδ .
The name of the property defined above is justified by the following

proposition and by [5, Lemma 3] stating that, in the setting of that propo-
sition, j[γ] ∈M implies P(γ)V ∈M for all γ < θ.

Proposition 8.3. Given an uncountable regular cardinal θ and an in-
accessible cardinal λ > θ, if a partial order P witnesses that θ is generically
almost huge with target λ and G is P-generic over V, then there is an ele-
mentary embedding j : V → M definable in V[G] with crit(j) = θ, j(θ) = λ
and j[γ] ∈M for all γ < λ.

Proof. Let 〈U̇γ | θ ≤ γ < λ〉 be the corresponding sequence of P-names
and let G be P-generic over V. Given θ ≤ γ < λ, let Mγ = Ult(V, U̇Gγ )
denote the corresponding generic ultrapower and let jγ : V → Mγ denote
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the corresponding elementary embedding. Then Proposition 7.3 shows that
jγ has critical point θ and jγ [γ] ∈ Mγ for all θ ≤ γ < λ. Moreover, for all
θ ≤ γ ≤ δ < λ, the function

kγ,δ : Mγ →Mδ, [f ]Uγ 7→ [a 7→ f(a ∩ γ)]Uδ,

is an elementary embedding with jδ = kγ,δ ◦ jγ . In addition, it is easy to see
that kγ,ε = kδ,ε ◦ kγ,δ for all θ ≤ γ ≤ δ ≤ ε < λ. Since λ has uncountable
cofinality in V[G], the corresponding limit〈

M, 〈kγ : Mγ →M | θ ≤ γ < λ〉
〉

of the resulting directed system〈
〈Mγ | θ ≤ γ < λ〉, 〈kγ,δ : Mγ →Mδ | θ ≤ γ ≤ δ < λ〉

〉
is well-founded, and we can identify M with its transitive collapse. If j :
V → M is the unique map with j = kγ ◦ jγ for all θ ≤ γ < λ, then
the above remarks directly imply that j is an elementary embedding with
critical point θ.

Now, fix θ ≤ γ < λ. If α < γ, then jγ(α) ∈ jγ [γ], and j(α) ∈ kγ(jγ [γ]).
In the other direction, pick β ∈ kγ(jγ [γ]). Then we can find γ ≤ δ < λ
and β0 ∈ kγ,δ(jγ [γ]) = [a 7→ a ∩ γ]U̇Gδ

with β = kδ(β0). In this situation, V-
normality implies that there is an α < γ with β0 = jδ(α) and hence β = j(α).
In combination, these arguments show that j[γ] = kγ(jγ [γ]) ∈ M for all
γ < λ. But this also implies that γ = otp(j[γ]) = kγ(otp(jγ [γ])) = kγ(γ) for
all θ ≤ γ < λ.

Finally, fix β < j(θ). Then there is a θ ≤ γ < λ and a function f ∈
(Pθ(γ)θ)V such that β = kγ([f ]Uγ ). By Definition 8.2, we can find an ordinal
γ ≤ δ < λ with {a ∈ Pθ(δ)V | f(a ∩ γ) ≤ otp(a)} ∈ U̇Gδ . This implies that
kγ,δ([f ]U̇Gγ

) ≤ δ and hence β ≤ kδ(δ) = δ. This shows that j(θ) ≤ λ. Since
we obviously also have j(θ) ≥ λ, we can conclude that j(θ) = λ.

The next result shows that the characterization of almost hugeness pre-
sented below is strong.

Lemma 8.4. The following statements are equivalent for all inaccessible
cardinals θ < λ:

(i) θ is almost huge with target λ.
(ii) There is a partial order with the σ-approximation property witnessing

that θ is generically almost huge with target λ.

Proof. If θ is almost huge with target λ, then the trivial partial order
witnesses that θ is generically almost huge with target λ by [12, Theorem
24.11]. In order to verify the reverse direction, let P be a partial order with
the σ-approximation property that witnesses that θ is generically almost
huge with target λ, let H be P-generic over V and let j : V → M be the
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elementary embedding definable in V[H] that is provided by an application
of Proposition 8.3. Then an application of Lemma 8.1 with V = V[G] shows
that θ is almost huge with target λ in V.

The following theorem contains our characterization of almost hugeness
through Neeman’s pure side condition forcing.

Theorem 8.5. The following statements are equivalent for every inac-
cessible cardinal θ:

(i) θ is an almost huge cardinal.
(ii) 1Pθ  “There is an inaccessible cardinal λ and a partial order P with the

σ-approximation property that witnesses that ω2 is generically almost
huge with target λ”.

Proof. First, assume that (i) holds, and let the almost hugeness of θ be
witnessed by the embedding j : V → M . Then λ = j(κ) is an inaccessible
cardinal, H(λ) ⊆ M , Pθ = PMθ , j(Pθ) = Pλ and H(θ) ∈ Tλ. Set Q̇ = Q̇H(θ)

λ
and let G be Pθ-generic over V. Then λ is inaccessible in V[G] and Corollary
2.19 implies that Q̇G has the σ-approximation property in V[G]. Now, if H
is Q̇G-generic over V[G] and F is the filter on Pλ induced by the embedding
D

H(θ)
λ and the filter G ∗H, then j[G] = G ⊆ F and there is an embedding

jG,H : V[G] → M [F ] that extends j and is definable in V[G,H]. Given
θ ≤ γ < λ, let U̇γ be the canonical Q̇G-name in V[G] such that

U̇Hγ = {A ∈ P(Pθ(γ))V[G] | j[γ] ∈ jG,H(A)}

whenever H is Q̇G-generic over V[G]. Then forcing with Q̇G over V[G] pre-
serves the regularity of λ and, as in the proof of Lemma 8.1, we can also show
that the sequence 〈U̇γ | θ ≤ γ < λ〉 of Q̇G-names satisfies the statements
listed in item (ii) of Definition 8.2 in V[G]. In particular, Q̇G witnesses θ to
be generically almost huge with target λ in V[G].

In the other direction, assume that (ii) holds and let G be Pθ-generic
over V. In V[G], there is an inaccessible cardinal λ > θ and a partial order
Q with the σ-approximation property that witnesses that θ is generically
almost huge with target λ. Let H be Q-generic over V[G]. An application
of Proposition 8.3 yields an elementary embedding j : V[G] → M definable
in V[G,H] with crit(j) = θ, j(θ) = λ and j[γ] ∈ M for all γ < λ. Since
Corollary 2.19 and Lemma 2.22 show that the assumptions of Lemma 8.1
are satisfied, it follows by Lemma 8.1 that θ is almost huge with target λ
in V.

The arguments contained in the above proofs also allow us to prove
the analogous results for super almost huge cardinals (see, for example,
[2] and [27]), i.e. cardinals θ with the property that for every γ > θ, there is
an inaccessible cardinal λ > γ such that θ is almost huge with target λ.
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Corollary 8.6. The following statements are equivalent for every in-
accessible cardinal θ:

(i) θ is a super almost huge cardinal.
(ii) For every γ > θ, there is an inaccessible cardinal λ > γ and a partial or-

der P with the σ-approximation property witnessing that θ is generically
almost huge with target λ.

(iii) 1Pθ  “For every ordinal γ, there is an inaccessible cardinal λ > γ and
a partial order P with the σ-approximation property witnessing that ω2

is generically almost huge with target λ”.

9. Concluding remarks and open questions. The characterizations
provided in the first half of this paper only rely on a short list of structural
properties of Neeman’s pure side condition forcing: the uniform definability
of Pθ as a subset of H(θ) and the consequences of Corollaries 2.9 and 2.19 and
Lemma 2.22. Using the presentation of results of Mitchell in [30, Section 5],
one can directly see that the partial order constructed in Mitchell’s [19] classi-
cal proof of the consistency of the tree property at ω2 is an example of a forc-
ing that satisfies all of the relevant properties. Therefore, it is also possible
to use partial orders of this form to characterize inaccessibility, Mahloness,
Πm
n -indescribability, subtlety, λ-ineffability and supercompactness.
The fact that quotients of forcing notions of the form Pθ satisfy the

σ-approximation property is central for almost all large cardinal character-
izations presented in this paper. Note that this property implies that these
quotients add new real numbers, and that this causes the Continuum Hy-
pothesis to fail in the final forcing extension. In addition, if we want to
use some sequence of collapse forcing notions in order to characterize inac-
cessibility as in Theorem 3.5, then these collapses have to force failures of
the GCH below the relevant cardinals. This shows that, in order to obtain
large cardinal characterizations based on forcing notions whose quotients do
not add new reals, one has to work with different combinatorial principles.
Since Proposition 1.2 shows that the canonical collapse forcing with this
quotient behaviour, the Lévy collapse Col(κ,<θ), is not suitable for the type
of large cardinal characterization as in Definition 1.1, it is then natural to
consider the two-step iteration Add(ω, 1) ∗ Col(κ,<θ) that first adds a Co-
hen real and then collapses some cardinal θ to become the successor of a
regular uncountable cardinal κ. Using results of [6], showing that forcings
of this form satisfy the σ-approximation property and the cover property,
it is possible to modify the characterizations obtained in the early sections
of the present paper in order to characterize inaccessibility, Mahloness and
weak compactness with the help of the sequence 〈Cθ | θ ∈ Card〉, if we let
Cθ = Add(ω, 1) ∗Col(ω1, <θ). In these modifications, we replace statements
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about the non-existence of certain trees by statements claiming that these
trees contain Cantor subtrees, i.e. that there is an embedding ι : ≤ω2→ T of
the full binary tree ≤ω2 of height ω + 1 into the given tree T that satisfies
lhT(ι(s)) = supn<ω lhT(ι(s�n)) and lhT(ι(s�n)) = lhT(ι(t�n)) for all s, t ∈ ω2
and n < ω.

Using results from [22] and ideas contained in the proof of [16, Theo-
rem 7.2], it is then possible to obtain the following characterizations:

• An infinite cardinal θ is inaccessible if and only if Cθ forces θ to become ω2

and every tree of height ω1 with ℵ2-many cofinal branches to contain a
Cantor subtree.
• An inaccessible cardinal θ is a Mahlo cardinal if and only if Cθ forces all

special ω2-Aronszajn trees to contain a Cantor subtree.
• An inaccessible cardinal θ is weakly compact if and only if Cθ forces all
ω2-Aronszajn trees to contain a Cantor subtree.

In addition, it is also possible to use [6, Theorem 10] and arguments from
the proof of Lemma 7.1 to prove analogues of the results of the previous two
sections for the sequence 〈Cθ | θ ∈ Card〉:

• An inaccessible cardinal θ is λ-supercompact for some cardinal λ ≥ θ if
and only if in every Cθ-generic extension, there is a σ-closed partial order
witnessing that ω2 is generically λ-supercompact.
• An inaccessible cardinal θ is almost huge with target λ > θ if and only if

in every Cθ-generic extension, there is a σ-closed partial order witnessing
that ω2 is generically almost huge with target λ.

It follows directly that the large cardinal characterizations obtained in this
way are all strong. The details of these results will be presented in the forth-
coming [8]. Note that the above arguments provide no analogues for the
results of Section 5 (except for the case of weakly compact cardinals) or of
Section 6. We do not know which combinatorial principles could replace the
ones used in these sections in order to allow characterizations of the cor-
responding large cardinal properties through the sequence 〈Cθ | θ ∈ Card〉.
These observations motivate the following question:

Question 9.1. Does the sequence 〈Cθ | θ ∈ Card〉 characterize Πm
n -

indescribability, subtlety or λ-ineffability?

Proposition 1.2 shows that the Lévy collapse is not suitable for large
cardinal characterizations in the sense of Definition 1.1, by showing that it
cannot characterize inaccessibility in this way. However, we do not know
whether it could be used to characterize stronger large cardinal properties
if we restrict the desired provable equivalences to inaccessible cardinals. In
particular, we cannot answer the following sample question:
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Question 9.2. Is there a parameter-free formula ϕ(v) in the language
of set theory with the property that

ZFC ` ∀θ inaccessible [θ is weakly compact↔ 1Col(ω1,<θ)  ϕ(θ̌)] ?

In the remainder of this section, we present some arguments suggest-
ing that if it is possible to characterize stronger large cardinal properties of
inaccessible cardinals using forcings of the form Col(ω1, <θ), then the com-
binatorial principles to be used in these equivalences are not as canonical
as the ones that appear in the above characterization through Neeman’s
pure side condition forcing. The proof of the following result is based upon
a classical construction of Kunen [14].

Theorem 9.3. If θ is a weakly compact cardinal, then the following state-
ments hold in a regularity preserving forcing extension V[G] of the ground
model V:

(i) θ is an inaccessible cardinal that is not weakly compact.
(ii) 1Col(ω1,<θ)  “Every θ-Aronszajn tree contains a Cantor subtree”.

Proof. By classical results of Silver, we may assume that

1Add(θ,1)  “ θ̌ is weakly compact”.

Given D ⊆ θ, let πD denote the unique automorphism of the tree <θ2 with
the property that

πD(t)(α) = t(α) ⇐⇒ α /∈ D
for all t ∈ <θ2 and α ∈ dom(t). Moreover, given s, t ∈ <θ2, we set

∆(s, t) = {α ∈ dom(s) ∩ dom(t) | s(α) 6= t(α)}.
Note that π∆(s,t)(s) = t for all s, t ∈ <θ2 with dom(s) = dom(t).

Define P to be the partial order whose conditions are either ∅, or normal,
σ-closed subtrees S of <θ2 of cardinality less than θ and height αS+1 < θ (7),
with the additional property that for all s, t ∈ S with dom(s) = dom(t), the
map π∆(s,t)�S is an automorphism of S. Let P be ordered by reverse end-
extension. If G is P-generic over V, then

⋃⋃
G is a subtree of <θ2. Let Ṡ be

the canonical P-name for the forcing notion corresponding to the tree
⋃⋃

G,
and let

D = {〈S, š〉 ∈ P ∗ Ṡ | S ∈ P, s ∈ S(αS)}.
Then it is easy to see that D is dense in P ∗ Ṡ.

Claim. Let λ < θ, and let 〈Sγ | γ < λ〉 be a descending sequence in P.
Define α = supγ<λ αSγ , S =

⋃
{Sγ | γ < λ} and

[S] = {t ∈ α2 | ∀γ < λ t�αSγ ∈ Sγ}.

(7) In this situation, normality means that if s ∈ S with dom(s) ∈ αS , then s_〈i〉 ∈ S
for all i < 2, and there is a t ∈ S(αS) with s ⊆ t.
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(a) If cof(λ) = ω, then [S] 6= ∅ and S ∪ [S] is the unique condition T in P
with αT = α and T ≤P Sγ for all γ < λ.

(b) If cof(λ) > ω and [S] 6= ∅, then S ∪ [S] is a condition in P below Sγ for
all γ < λ.

(c) If cof(λ) > ω, G is the subgroup of the group of all automorphisms of <θ2
that is generated by the set {π∆(s,t) | s, t ∈ S,dom(s) = dom(t)}, u ∈ [S]
and B = {π(u) | π ∈ G}, then S ∪B is a condition in P below Sγ for all
γ < λ.

In particular, the dense suborder D of P ∗ Ṡ is <θ-closed, P ∗ Ṡ is forcing
equivalent to Add(θ, 1), and forcing with P preserves the inaccessibility of θ.

By the above Claim, there is a winning strategy Σ for player Even in
the game Gθ(P) of length θ associated to the partial order P (see [3, Defini-
tion 5.14]), with the property that whenever 〈Sγ | γ < θ〉 is a run of Gθ(P)
in which player Even played according to Σ, then the following statements
hold:

(1) There is a sequence 〈tγ | γ < θ〉 of elements of <θ2 with the property
that 〈〈S2·γ , ťγ〉 | γ < θ〉 is a strictly descending sequence of conditions
in D.

(2) The set {αS2·γ | γ < θ} is a club in θ.
(3) If λ ∈ Lim ∩ θ and S =

⋃
{Sγ | γ < λ}, then Sλ = S ∪ [S].

In particular, Σ witnesses that P is θ-strategically closed.

Claim. 1P  “Ṡ is a σ-closed θ̌-Suslin tree”.

Proof of Claim. It is immediate that Ṡ is forced to be a tree of height θ
whose levels all have cardinality less than θ, and that the tree Ṡ is forced to
be σ-closed. It remains to show that its antichains have size less than θ.

Therefore, let S∗ be a condition in P, let Ȧ ∈ V be a P-name for a
maximal antichain in Ṡ, and let Ċ ∈ V be the induced P-name for the club
of all ordinals less than θ with the property that the intersection of Ȧ with
the corresponding initial segment of Ṡ is a maximal antichain in this initial
segment. Then there is a run 〈Sγ | γ < θ〉 of Gθ(P) in which player Even
played according to Σ, S1 ≤P S∗, and there exist sequences 〈βγ | γ < θ〉 and
〈Aγ | γ < θ〉 with the properties that αS2·γ+1 > βγ and

S2·γ+1 P “β̌γ = min(Ċ \ α̌S2·γ ) ∧ Ǎγ = Ȧ ∩ <β̌γ2”

for all γ < θ. Since C = {αS2·γ | γ < θ} is a club in θ, we can find an
inaccessible cardinal η < θ with η = αSη and |Sγ | < η for all γ < η. Set
A =

⋃
{Aγ | γ < η} and S =

⋃
{Sγ | γ < η}. Then we have

Sη  “ η̌ ∈ Ċ ∧ Ǎ = Ȧ ∩ <η̌2 ∧ Š = Ṡ ∩ <η̌2”.
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Hence S is a normal tree of cardinality and height η, and A is a maximal
antichain in S. Fix an enumeration 〈πγ | γ < η〉 of the subgroup of the
group of all automorphisms of <θ2 generated by all automorphisms of the
form π∆(s,t) with s, t ∈ S and dom(s) = dom(t). Since S ∩ γ2 = [S ∩ <γ2]
for all γ ∈ C ∩ η, we can now inductively construct a continuous increasing
sequence 〈sγ | γ < η〉 of elements of S with the property that for every
γ < η, we have dom(sγ) ∈ C, and there is a tγ ∈ A with π−1

γ (tγ) ⊆ sγ+1.
Set s =

⋃
{sγ | γ < η} ∈ [S], B = {πγ(s) | γ < η} and T = S ∪ [B]. By the

above Claim, T is a condition in P below S∗. By the construction of s, for
every u ∈ B, there is a t ∈ A with t ⊆ u. Hence T P “Ȧ = Ǎ”.

Let G be P-generic over V, set S = ṠG, and let H be S-generic over V[G].
Then the above computations ensure that θ is weakly compact in V[G,H].
Set C = Col(ω1, <θ)

V[G,H], and let K be C-generic over V[G,H]. Since the
partial order S is <θ-distributive in V[G], we have C = Col(ω1, <θ)

V[G], and
V[G,H,K] is a (C×S)-generic extension of V[G]. Moreover, C is a σ-closed,
θ-Knaster partial order in V[G], and therefore S remains a σ-closed θ-Suslin
tree in V[G,K]. But this shows that the partial order C×S is σ-distributive
in V[G].

Let T be a θ-Aronszajn tree in V[G,K]. First, assume that T has a cofinal
branch in V[G,H,K]. Then, in V[G,K], there is a σ-closed forcing that adds
a cofinal branch through T, and therefore standard arguments show that T
contains a Cantor subtree in V[G,H,K]. In the other case, assume that T
is a θ-Aronszajn tree in V[G,H,K]. Since θ is weakly compact in V[G,H],
results from [22] show that T contains a Cantor subtree in V[G,H,K]. Let
ι : ≤ω2→ T be an embedding in V[G,H,K] witnessing this. Since the above
remarks show that (ωV[G,K])V[G,H,K] ⊆ V[G,K], the map ι�(<ω2) is an
element of V[G,K]. Pick α < θ with ι[ω2] ⊆ T(α). Given x ∈ (ω2)V[G,K],
we then know that there is an element t of T(α) with ι(x�n) ≤T t for all
n < ω. This allows us to conclude that, in V[G,K], there is an embedding
from ≤ω2 into T that extends ι�(<ω2) and witnesses that T contains a Cantor
subtree.

Note that, in combination with [13, Theorem 3.9], the above proof shows
that the existence of a weakly compact cardinal is equiconsistent with the
existence of a non-weakly compact inaccessible cardinal θ with the prop-
erty that every θ-Aronszajn tree contains a Cantor subtree. In contrast, the
proof of the following result shows that the corresponding statement for spe-
cial Aronszajn trees has much larger consistency strength. In particular, it
shows that the inconsistency of certain large cardinal properties strengthen-
ing measurability would imply that the Mahloness of inaccessible cardinals
can be characterized by partial orders of the form Col(ω1, <θ) in a canonical
way.
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Theorem 9.4. Let θ be an inaccessible cardinal with the property that
one of the following statements holds:

(i) Every special θ-Aronszajn tree contains a Cantor subtree.
(ii) 1Col(ω1,<θ)  “Every special ω2-Arosnzajn tree contains a Cantor subtree”.

If θ is not a Mahlo cardinal, then there is an inner model that contains a
stationary limit of measurable cardinals of uncountable Mitchell order.

Proof. Fix a closed and unbounded subsetD of θ that consists of singular
strong limit cardinals and assume that the above conclusion fails. Then the
proof of [4, Theorem 1] shows that Jensen’s �-principle holds up to θ, i.e.
there is a sequence 〈Bα | α ∈ Lim∩θ singular〉 such that for all singular limit
ordinals α < θ, the setBα is a closed and unbounded subset of α of order-type
less than α, and if β ∈ Lim(Bα), then cof(β) < β and Bβ = Bα ∩ β. Then
we may pick a sequence ~C = 〈Cα | α ∈ Lim ∩ θ〉 satisfying the following
statements for all α ∈ Lim ∩ θ:
• If α ∈ Lim(D) and Bα ∩D is unbounded in α, then Cα = Bα ∩D.
• If α ∈ Lim(D) and max(Bα∩D) < α (8), then Cα is an unbounded subset

of α of order-type ω with min(Cα) > max(Bα ∩D).
• If max(D ∩ α) < α, then Cα = (max(D ∩ α), α).

It is easy to check that ~C is a �(θ)-sequence (see [26, Definition 7.1.1]).

Claim. ~C is a special �(θ)-sequence (see [26, Definition 7.2.11]).

Proof of Claim. Given α ≤ β < θ, let ρ ~C0 (α, β) : β → <ωθ denote the full
code of the walk from β to α through ~C, as defined in [26, Section 7.1]. Let
T = T(ρ

~C
0 ) be the tree of all functions of the form ρ

~C
0 ( · , β)�α with α ≤ β < θ.

Then the results of [26, Section 7.1] show that T is a θ-Aronszajn tree. Fix
a bijection b : θ → <ωθ with b[κ] = <ωκ for every cardinal κ ≤ θ. Now,
fix α ≤ β < θ with α ∈ D, and let 〈γ0, . . . , γn〉 denote the walk from β to
α through ~C. If Cγn−1 ∩ α is unbounded in α, then the above definitions
ensure that γn−1 ∈ Lim, cof(γn−1) < γn−1, α ∈ Lim(Bγn−1), and therefore
otp(Cγn−1 ∩ α) ≤ otp(Bγn−1 ∩ α) = otp(Bα) < α. This shows that we always
have otp(Cγn−1 ∩ α) < α, and hence there is an ε < α with b(ε) = ρ

~C
0 (α, β).

Define r(ρ ~C0 ( · , β)�α) = ρ
~C
0 ( · , β)�ε. Then the proof of [26, Theorem 6.1.4]

shows that the resulting regressive function r : T�D → T witnesses that
the set D is non-stationary with respect to T. Since D is a club in θ, this
implies that the tree T is special and, by the results of [25], this conclusion
is equivalent to the statement of the Claim.

(8) Note that if α ∈ Lim(D) ∩ θ with cof(α) > ω, then α ∈ D is singular, both Bα
and D ∩ α are closed unbounded subsets of α, and hence Bα ∩D is unbounded in α. In
particular, if α ∈ Lim(D) with max(Bα ∩D) < α, then cof(α) = ω.
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The above Claim now allows us to use [13, Theorem 3.14] to conclude that
there is a special θ-Aronszajn tree T without Cantor subtrees and therefore
(i) fails. Since the partial order Col(ω1, <θ) is σ-closed, we may argue as in
the last part of the proof of Theorem 9.3 to show that (ii) implies (i) and
therefore the above assumption also implies a failure of (ii).

The next proposition shows that examples of inaccessible non-Mahlo car-
dinals satisfying Theorem 9.4(i) can be obtained using supercompactness.

Proposition 9.5. Let κ < θ be uncountable regular cardinals. If κ is
θ-supercompact, then the following statements hold:

(i) Every θ-Aronszajn tree contains a Cantor subtree.
(ii) 1Col(ω1,<κ)  “Every θ̌-Aronszajn tree contains a Cantor subtree”.

Proof. Fix an elementary embedding j : V→M with the property that
crit(j) = κ, j(κ) > θ and θM ⊆ M . Set ν = sup(j[θ]) < j(θ). Let G
be Col(ω1, <κ)-generic over V, let H be Col(ω1, [κ, j(κ)))-generic over V[G]
and let j∗ : V[G]→M [G,H] denote the canonical lifting of j.

Fix a θ-Aronszajn tree T in V[G]. By standard arguments, we may, with-
out loss of generality, assume that every node in T has at most two direct
successors, and that all elements of the limit levels of T are uniqueley de-
termined by their sets of predecessors. Pick a node t ∈ j∗(T)(ν), and define
b = {s ∈ T | j∗(s) ≤j(T) t} ∈ V[G,H]. Then b is a branch through T, and
the above assumptions on T imply that b does not have a maximal element.
Set λ = otp(b,≤T) ≤ θ.

Claim. b /∈ V[G].

Proof of Claim. Assume, towards a contradiction, that b ∈ V[G]. Since T
is a θ-Aronszajn tree, we know that λ ∈ Lim∩ θ. This implies that t extends
every element of the branch j∗(b) through the tree j∗(T), and therefore j∗(b)
is equal to the set of all predecessors of some node in the level j∗(T)(j(λ)).
By elementarity, there is a node u in T(λ) with the property that b consists
of all predecessors of u in T. But then the above assumptions on T imply
that j∗(u) ≤j(T) t, and hence that u ∈ b, a contradiction.

Since b 6∈ V[G] and Col(ω1, [κ, j(κ))) is σ-closed in V[G], we thus know
that cof(λ)V[G] > ω. This shows that, in V[G], there is a σ-closed notion
of forcing that adds a new branch of uncountable cofinality through T. In
this situation, standard arguments show that T contains a Cantor subtree in
V[G]. These computations show that (ii) holds and, by applying the argu-
ments used in the last part of the proof of Theorem 9.3, we know that this
also yields (i).

The above arguments leave open the possibility that Theorem 9.4(ii)
provably fails for inaccessible non-Mahlo cardinals, and therefore motivate
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the following question, asking whether the Mahloness of inaccessible car-
dinals can be characterized by the existence of Cantor subtrees of special
Aronszajn trees in collapse extensions.

Question 9.6. Is the existence of an inaccessible non-Mahlo cardinal θ
with

1Col(ω1,<θ)  “Every special ω2-Aronszajn tree contains a Cantor subtree”

consistent with the axioms of ZFC?
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