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Abstract. While o-minimality covers much of what is now considered tame
geometry, there is growing interest and success in studying well-behaved struc-

tures outside this important yet limited framework. In this survey, we provide

an overview of the current state of research on tameness in expansions of the
real field.

1. Introduction

“A lot of model theory is concerned with discovering and charting
the ‘tame’ regions of mathematics, where wild phenomena like space
filling curves and Gödel incompleteness are absent, or at least under
control. As Hrushovski put it recently:

Model Theory = Geography of Tame Mathematics.”
Lou van den Dries [18]

“What might it mean for a first-order expansion of the field of real
numbers to be tame or well behaved? In recent years, much atten-
tion has been paid by model theorists and real-analytic geometers
to the o-minimal setting[...]. But there are expansions of the real
field that define sets with infinitely many connected components,
yet are tame in some well-defined sense [...]. The analysis of such
structures often requires a mixture of model-theoretic, analytic-
geometric and descriptive set-theoretic techniques. An underlying
idea is that first-order definability, in combination with the field
structure, can be used as a tool for determining how complicated
is a given set of real numbers.”

Chris Miller [55]

At the core of logic and model theory is the observation that within mathe-
matics, some objects (for model theorists, structures and their theories) must be
considered tame, while others are considered wild. Many foundational results in
logic from the first half of the 20th century focused on the existence of wild objects.
For example, Gödel’s proof of the undecidability of the theory of (N,+, ·) showed
that this structure is wild from a logical perspective. These results are negative
in nature, highlighting the limitations of mathematical reasoning. However, in the
second half of the 20th century, the focus shifted. Model theorists discovered a vast
number of mathematical structures that do not exhibit wildness and can be viewed
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as tame for various reasons. General frameworks for handling such tame structures
were developed, and their properties have been studied extensively. The program
of identifying and analyzing tame classes of structures whose model theory can be
understood, came to be known as the geography of tame mathematics, and it has
dominated model theory for the past fifty years.

In this survey, we pursue this program for expansions of the real field. While it is
similar in spirit to Shelah’s classification theory, the goal here is to classify struc-
tures over a fixed universe based on the geometric properties of their definable sets,
rather than classifying theories by their combinatorial properties or the number of
models. While classification theory is motivated by Morley’s theorem, our tameness
program originates from the remarkable success of o-minimality.

We now set the stage. Let R denote the real field (R,+, ·). Consider a collection
X of subsets of various Rn. We are studying the expansion of R by predicates for
each X ∈ X , that is, (R, (X)X∈X ).

First, observe that the set of expansions of R can be partially ordered. We say
that R1 is a reduct of R2, written R1 ≤ R2, if every set definable in R1 is also
definable in R2. In this case, we also say that R2 is an expansion of R1. We
say that R1 and R2 are interdefinable if R1 ≤ R2 and R2 ≤ R1. This partial
order clearly has both a maximum (obtained by taking X to be

⋃
n∈N P(Rn)) and

a minimum (obtained by taking X = ∅).

With this notation in place, our overall research program can be formulated as
follows.

Goal 1.1. Classify expansions of R up to interdefinability.

As Miller put it in [41], our Goal 1.1 is “too vague at best and intractable at worst.”
Instead of classifying expansions up to interdefinability, we aim to categorize them
into classes based on the geometric tameness of their definable sets. We will re-
place interdefinability with a coarser and less precisely defined equivalence relation
that captures this type of tameness. This distinction will become clearer later: our
focus is on the geometric tameness of the definable sets, rather than on the model-
theoretic tameness of the structure and its theory. Therefore, our approach is more
definability-theoretic than model-theoretic.

We begin by reviewing some tameness notions and examples of expansions that
satisfy them. Fix an expansion R of R. When we say a set is definable, we mean
definable in R, possibly with parameters. The core tameness notion that gave
rise to the systematic study of tameness in expansions of R is o-minimality. We
say R is o-minimal if every definable subset of R either has interior or is finite.
O-minimality was isolated by van den Dries [14] in order to prove important re-
sults from semi-algebraic geometry in this generality, and developed by Pillay and
Steinhorn [65] as a tameness notion in the setting of dense linear orders. Examples
of o-minimal expansions of R include R itself, (R, exp), where exp is the graph of
exponentiation, Ran, the real field adjoined with all restricted analytic functions,
and (Ran, exp), the expansion that includes both all restricted analytic functions
and the graph of exponentiation. While these structures are not interdefinable and
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there are model-theoretic differences between them, they are all o-minimal in terms
of geometric tameness. This is the similarity in which we are interested.

Among the many results that transfer from semi-algebraic geometry to the setting
of o-minimal structures are the monotonicity theorem for definable functions and
the cell decomposition theorem. It is not the goal of this paper to discuss o-minimal
structures or theorems about them; rather, we focus on surveying the larger frame-
work of geometric tameness on R. For readers interested in o-minimality, we refer
to the excellent book by van den Dries [17].

It is worth noting that o-minimality implies model-theoretic tameness, a statement
that we will see repeatedly fail for other tameness notions considered here. First,
by the cell decomposition theorem, if a structure is o-minimal, then every elemen-
tarily equivalent structure is also o-minimal. Furthermore, an o-minimal structure
is NIP, dp-minimal, and distal. In the model-theoretic universe, o-minimality plays
a role in the ordered setting similar to that of strong minimality in the stable
setting. Since the combinatorial tameness notions from model theory are only of
secondary importance here, we refer the reader to Simon [69] for precise definitions.

Most of the tameness conditions we want to consider for R are of the following
form:

every definable subset of R has interior or is small.

In the case of o-minimality, small means finite. A subset of R is finite if and only
if it is closed, bounded, and discrete. Thus, the most obvious first step towards
weaker notions of smallness is to drop one of the three conditions, say boundedness.
We will later see that an expansion R defines an infinite discrete subset of R if and
only if it defines an unbounded closed and discrete set.

We say that R is weakly d-minimal if every definable subset of R either has
interior or is a finite union of discrete sets. We say that R is d-minimal if for
every n ∈ N and every definable subset A ⊆ Rn+1 there is N ∈ N such that for all
x ∈ Rn either Ax has interior or is the union of N discrete sets.

In the case of weak d-minimality, being small means being the finite union of dis-
crete sets. If small is defined as being discrete, then R is actually o-minimal.
Indeed, it is an easy exercise to see that if R defines an infinite discrete subset of
R, then it defines a set that is the union of N discrete set, but which is not the
union of N − 1 discrete sets. Thus if every definable subset of R without interior
is discrete, then every subset of R without interior has to be finite. Hence R is
o-minimal in such a situation.

It is still an open question whether weak d-minimality implies d-minimalilty. When
Miller introduced d-minimality in [55], he did not define weak d-minimality. Per-
haps he expected the uniformity condition in the definition of d-minimality to be
neccesary. It would be more consistent with other model-theoretic notation to use
strongly d-minimal instead of d-minimal, and to use d-minimal instead weakly d-
minimal. However, we stick here with Miller’s original definition of d-minimality.
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Let a ∈ R>0, and set aZ := {an : n ∈ Z}. As pointed out in [55], it follows from van
den Dries [15, Theorem III] that (R, aZ) is d-minimal. Indeed, more is true: if R is
an o-minimal expansion of R with field of exponents Q, then (R, aZ) is d-minimal
by [55, Theorem 3.4.2]. So, in particular, the expansion (Ran, a

Z) is d-minimal. Let
ω ∈ R>0, and set a := e2π/ω. Miller and Speisseger observed (see [55, Corollary
after Theorem 3.4.2]) that (Ran, a

Z) defines the logarithmic spiral

Sω := {(et cos(ωt), et sin(ωt) : t ∈ R}.

Since d-minimality is preserved under reducts, we conclude that (R, Sω) is d-
minimal.

The logarithmic spiral Sω is an example of a locally closed trajectory for a linear vec-
tor field. Miller [57] classifies all expansions of R by collections of such trajectories,
showing that Sω is the only trajectory of this kind that, over R, generates a tame
but not o-minimal expansion. For more examples of d-minimal expansions of R, see
Friedman and Miller [34] and Miller and Tyne [60]. A countable cell decomposition
theorem is known for d-minimal structures (see Miller [55] and Thamrongthanyalak
[72, Theorem B]), but otherwise, the consequences of d-minimality have not been
studied as extensively as those of o-minimality. Some examples include a d-minimal
Whitney theorem by Miller and Thamrongthanyalak [59], a d-minimal Michael’s
selection theorem by Thamrongthanyalak [72], and a countable Gromov-Yomdin
parametrization theorem by Jäger [47].

In contrast to o-minimality, d-minimality only implies geometric tameness, but not
model-theoretic tameness. Let (R, 2Z)# be the expansion of (R, 2Z) by every sub-
set of every cartesian power of 2Z. By Friedman and Miller [33], the expansion
(R, 2Z)# is d-minimal, yet defines an isomorphic copy of (Z,+, ·). Thus, its theory
is undecidable, and it fails Shelah-style combinatorial tameness conditions like NIP
and NTP2.

Of course, we can further expand the class of sets we want to consider as small.
We say that R is noiseless if every definable subset of R either has interior or is
nowhere dense. As a tameness condition, noiselessness is studied in [55], although
the name noiseless was only suggested later by Chris Miller. The rationale behind
the name is that the condition is equivalent to the statement that R does not define
a set X ⊆ R such that X ∩ I is dense and co-dense in an open interval I. More in
line with the aforementioned conditions, Fornasiero [28] used the term i-minimal
(for interior-minimal) instead.

It is not easy to see that there are expansions of R that are noiseless, but not
d-minimal. A good example of a set without interior that is not a finite union of
discrete sets is a Cantor set; that is, a compact, nonempty subset of R that has
neither isolated nor interior points. The classical middle-thirds Cantor set is one
example of such a set. Indeed, Friedman et al. [32] produce a Cantor set K ⊆ [0, 1]
such that every definable subset of R either has interior or is Hausdorff null1. So,
in particular, (R,K) is noiseless. A priori, this could be a stronger condition than
noiselessness. However, we will later see that these two tameness conditions are

1In particular, K itself is Hausdorff null.
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equivalent.

So, what about wildness? Consider (R,Z), the expansion of the real field by a
predicate for the set of integers. By Gödel’s incompleteness results, its theory is
undecidable. But much more is true: the structure (R,Z) defines every Borel sub-
set of Rn (see [49, (37.6)]), and hence also every projective subset of Rn in the
sense of descriptive set theory (see [49, Chapter V]). In particular, all continuous
functions are definable in this expansion. Thus, geometrically wild phenomena like
space-filling curves and nowhere differentiable continuous functions appear in this
structure. Even set-theoretic independence can arise from seemingly innocent ques-
tions, such as whether every set definable in (R,Z) is Lebesgue measurable (Solovay
[70]).

Because of such complications, the nondefinability of Z must be regarded as nec-
essary for an expansion of R to be tame.2 Miller championed a research program
to determine whether this nondefinability is also sufficient to enforce some form of
well-defined tameness in such expansions.

Goal 1.2 (Miller’s program). What kind of geometric tameness in expansions of
R can be deduced from the non-definability of Z?

This is an ambitious program. At first glance, the nondefinability of Z only guar-
antees that there is some Borel set that is not definable. Yet, it is far from obvious
that any geometric pathologies can be ruled out. This research program arguably
began in earnest with Miller’s paper [56], but truly took off after [37].

Theorem 1.3 ([37, Theorem 1.1]). Suppose R that does not define Z. Let D ⊆ R
be closed, discrete and definable. Then R does not define a function f : Dn → R
such that f(Dn) is somewhere dense.

By [38, Theorem A], the assumption that D is closed can be dropped. If D is
closed and discrete, and f(D) is somewhere dense, then the linear orders (D,<)
and (f(D), <) are not order-isomorphic. One way of thinking about Theorem
1.3 is as a limitation on how a definable function can change the order type of a
definable linear order. This restricts our ability to define dense and co-dense sets
from closed definable sets and enforces rudimentary tameness on definable sets in
such structures. We will make this observation explicit as a strong version of the
Baire category theorem in Section 2 and deduce various geometric consequences
from it. These results provide evidence for the viability of the following program:

Goal 1.4 (Tameness program). Study tameness in expansions of R that do not
define Z, and classify these up to some common notion of tameness.

Figure 1 gives a graphical representation of the tameness classes we have discussed
so far.

2Already in [14] van den Dries discusses o-minimality and the consequences of the non-
definability of Z:

“Postulating the finite type condition [i.e. o-minimality] is of course a rather

drastic way of avoiding the Gödel phenomena that would appear if N were
definable.”
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Figure 1. Tameness map for expansions of R

It is important to stress again that only o-minimality can be considered a model-
theoretic tameness notion. We already discussed this for d-minimality, but it is
even more poignant for noiselessness. Indeed, the aforementioned noiseless expan-
sion by a Cantor set, constructed in [32], does not define Z, yet it defines a Borel
isomorph of the structure (R, <,+, ·,Z). However, it follows from noiselessness that
such complications must live on nowhere dense sets, and thus have limited impact
on the geometry of all definable sets. For more well-behaved noiseless expansions,
see [40].

The distinction between model-theoretic and geometric tameness should not be
considered problematic. Rather, it highlights the fact that our investigation has a
different goal. This is reminiscent of the distinction between model-theoretic and
computational tameness addressed in the following quote:

“What about decidability of the theory? Just as biological taxon-
omy does not tell us whether a species is tasty, the classification
here does not deal with decidability.”

Saharon Shelah [67]

We focus here on expansions of R, but similar questions arise and yield analogous
answers for expansions of (R, <,+). Some of these are discussed in Section 3. It
is also worth noting that a much older program, predating o-minimality by several
decades, has studied expansions of (N,+). See Bès [4] for an excellent survey. This
program on expansions of Presburger arithmetic is closely connected to the work
presented here.
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The author thanks the participants of this lecture course and the “Selected Topics
in Mathematical Logic” course at the University of Bonn covering the same material
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Notation. Let X ⊆ Rm+n. We denote by X the topological closure of X, by X̊
the interior of X, by bd(X) the boundary X \ X̊ of X, and by fr(X) the frontier
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X \X of X. For x ∈ Rm, we use Xx to denote the set {y ∈ Rn : (x, y) ∈ X}. A
box is a subset of Rn given as a product of n nonempty open intervals.

We always use i, j, k,m, n,N for natural numbers and r, s, t, ε, δ for real numbers.
We let |x| := max{|x1|, . . . , |xn|} be the l∞ norm of x = (x1, . . . , xn) ∈ Rn. For
x ∈ Rn and r ∈ R>0, set

Br(x) := {y ∈ Rn : |x− y| < r}.

For x ∈ Rn and X ⊆ Rn, set

dist(x,X) := inf{|x− y| : y ∈ X}.

2. Miller’s conjecture

The notion of noiselessness suggests that we aim to exclude the definability of
dense and co-dense sets in tame structures. However, this is not the case. Instead,
our goal is to control noise when it arises. In this section, we outline the main
conjecture in this area, proposed by Chris Miller, on how to achieve this objective.
Before stating the conjecture, it is helpful to introduce the concept of an open core.

Definition 2.1 (Miller-Speisseger [58]). Let R be an expansion of (R, <), we define
the open core of R, denoted R◦, as the reduct of R generated by all open sets of
all arities.

Since the complement of a closed set is an open set, every closed subset of Rn de-
finable in R is also definable in R◦. In particular, the topological closure of every
subset of Rn definable in R is definable in R◦. We say that R has an o-minimal
open core (or d-minimal open core, noiseless open core) if R◦ is o-minimal (d-
minimal, noiseless).

We give a few natural examples of structures with o-minimal open cores that are
not o-minimal. Let R be an o-minimal expansion of R, and let S be an elementary
substructure of R whose universe is a proper dense subset of R. The pair (R,S) is
called a dense pair, and is studied by van den Dries [16]. By [16, Theorem 5], every
open set definable in (R,S) is already definable in R. Thus, the open core of (R,S)
is R, and hence o-minimal. Since the universe of S is dense and co-dense in R, the
structure R is not o-minimal itself. The prototypical example of such a pair is the
pair of real closed fields (R,Qrc), where Qrc is the subfield of real algebraic numbers.
The study of this pair predates o-minimality and the tameness program, as Robin-
son [66], answering a question of Tarski, already showed that its theory is decidable.

For a related example, let Γ be a dense multiplicative subgroup of R× of finite rank.
The structure (R,Γ) is studied by van den Dries and Günaydın [19], and the results
in that paper are used in Berenstein, Ealy, and Günaydın [3, Theorem 58] to show
that its open core is o-minimal. Other examples include expansions by dense inde-
pendent sets studied by Dolich, Miller, and Steinhorn [12], finite rank subgroups of
the unit circle studied by Belegradek and Zilber [2], and rational points of elliptic
curves studied by Günaydın and Hieronymi [35].

All the examples mentioned above work by the Mordell-Lang principle, which states
that the structure induced on the predicate by the larger structures is simple. In



8 PHILIPP HIERONYMI

the second example, this follows from the Mordell-Lang conjecture, whose useful-
ness in model theory was first observed by Pillay [63]. A precise framework for
this observation has been developed by Block, Gorman, et al. [5]. For an in-depth
study of the geometry of definable sets in these examples, see Eleftheriou et al. [22].

There are also natural examples of structures whose open core is d-minimal, but
not o-minimal. Günaydın [36] studies the structure (R, 2Z3Z, 2Z), providing a com-
plete axiomatization of its theory. Boxall and Hieronymi [8, p. 116] use this work
to show that the open core of this structure is (R, 2Z), and hence d-minimal. Cur-
rently, there is no documented example of an expansion that is not noiseless, yet
whose open core is noiseless and not d-minimal.

While the open core plays a crucial role in studying geometric tameness, model-
theoretic tameness of the open core R◦ does not imply model-theoretic tameness
of R. Indeed, although all the above examples with o-minimal open core are NIP,
we can generate arbitrarily complicated structures with o-minimal open cores.

Theorem 2.2 (H.-Nell-Walsberg [42]). Let R be an o-minimal expansion of R.
Then there is an expansion S of R that interprets (R,Z), yet S◦ = R.

Thus having o-minimal open core is not a model-theoretic tameness condition. Now
that we have introduced the notion of an open core and given examples of structures
with tame open core, we are ready to state Miller’s conjecture.

Conjecture 2.3 (Miller’s conjecture). Let R be an expansion of R that does not
define Z. Then R has noiseless open core.

Loosely speaking, this conjecture states that:

If you throw away all the noise in a minimally tame3 expansion of R, then the
expansion generated by the remaining sets4 does not contain any noise5.

There is another way of looking at it. Miller’s conjecture implies that for every
set definable in an expansion of R that does not define Z, its topological closure is
definable in a noiseless expansion. Accordingly, every set X ⊆ Rn such that (R, X)
does not define Z, is dense in a set definable in a noiseless expansion. Thus, “from
far away”, such a set X looks like a set in a noiseless expansion.

If R is an expansion of R by open and closed sets, then it is easy to see that the
open core R◦ is just R. This stays true for expansions by boolean combinations
of such sets. Indeed, by Dougherty and Miller [13, Corollary 1], definable boolean
combinations of open sets are boolean combinations of definable open sets. Let us
call boolean combinations of open sets constructible. Thus, if R is an expansion
by constructible sets, then R◦ = R. Therefore,

Studying open cores is the same as studying expansions by constructible sets.

We obtain immediately the following equivalent restatement of Miller’s conjecture.

Conjecture 2.4 (Restated Miller’s conjecture). Let R be an expansion of R by
constructible sets that does not define Z. Then R is noiseless.

3That is, you take the open (or closed) definable sets in an expansion of R that doesn’t define
Z.

4That is the open core.
5That is, it doesn’t define any dense and codense set.
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Nondefinability of Z is necessary: observe that (R,Z) defines Q, and hence is not
noiseless. The truth of Miller’s conjecture would give us an excellent understanding
of the expansions by constructible sets, enabling us to arguably achieve the goal of
classifying such structures up to common geometric tameness. Figure 2 visualizes
this.

There is already non-trivial evidence for the truth of Miller’s conjecture and there
exist potential strategies for a proof. The first result in this direction is the following
slightly restated version of a theorem of Miller and Speissegger.

Theorem 2.5 ([58, p. 194, Corollary (2)]). Let R be an expansion of R such
that every closed definable subset of R either has interior or is finite. Then R◦ is
o-minimal.

This result establishes that an assumption on definable closed sets can sometimes
be extended to every set definable in the open core. Of course, every closed subset
of R either has interior or is nowhere dense. Hence a natural strategy to approach
Miller’s conjecture is to follow the argument of Miller and Speissegger and extend
this to all sets definable in the open core of an expansion that does not define Z.
A first step in this direction has actually been achieved, as we explain now.

Definition 2.6 ([58]). We say E ⊆ Rn isDΣ if there is a definable setX ⊆ R>0×Rn

such that

(1) E =
⋃

r>0 Xr,
(2) Xr is compact for every r ∈ R>0,
(3) Xr ⊆ Xs for r ≤ s.

It is easy to see that we can replace compact by closed in (2) without changing the
definition. Thus, we can think of DΣ sets as a definable analogue of Fσ sets from
descriptive set theory. Indeed, it is not hard to show that each DΣ set is Fσ. By
[58, Corollary p.202] a set E ⊆ Rm is DΣ if and only if E is the image of some
closed definable set F ⊆ Rm+n under the coordinate projection onto the first m
coordinates. It follows immediately that all DΣ sets of R are definable in R◦.

Theorem 2.7 (Strong Baire Category Theorem (SBCT)). Let R be an expansion
of R that does define Z. Then each DΣ set either has interior or is nowhere dense.

The classical Baire category theorem states that every Fσ subset of Rn either has
interior or is a countable union of nowhere dense sets. A countable union of nowhere
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Figure 2. Tameness map for expansions of R by constructible
sets assuming Miller’s conjecture
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dense sets is called meagre, and can be somewhere dense. Meagre sets are treated
by descriptive set theorists as small or negligible. However, their topological closure
is in general not negligible in any sense of the word, and hence the classical notion
of meagre is arguably not useful from a geometrical point of view. In contrast the
topological closure of a nowhere dense is still nowhere dense.

This form of the SBCT was first proved by Fornasiero in the unpublished paper
[28, Theorem 1.10]. More general statements for restrained definable complete
fields have been published in Fornasiero and Hieronymi [29] and for type A expan-
sions of the real ordered additive group in Fornasiero, Hieronymi and Walsberg [31].

It is natural to think of the open core as a definable analogue of the Borel or the
projective hierarchy. In this metaphor, the DΣ sets correspond to the Fσ sets,
and constitute the first step in this hierarchy beyond closed sets. In this sense the
SBCT is the first step in the outlined strategy to prove Miller’s conjecture. However,
while this trivially extends to complements of DΣ sets, we are currently unable to
complete this approach. Part of the problem is that under the assumptions of
Theorem 2.5 all set definable in the open core are DΣ. In general, this is known to
be false.

3. An interlude: expansions of (R, <,+)

In this section, we take a slight detour and discuss the tameness program in
the more general setting of expansions of the ordered real additive group. In this
generality, definability of Z does not necessarily imply wildness. For example, the
structure (R, <,+,Z) obviously defines Z, yet it is locally o-minimal (see, for
example, Friedman and Miller [33]). That is, every definable subset of R either has
interior or is closed and discrete. Similarly, (R, <,+, sin) defines πZ, but is locally
o-minimal (see Toffalori and Vorzoris [73, Theorem 2.7]).

In the setting of local o-minimality, small means closed and discrete. In particu-
lar, every locally o-minimal expansion of (R, <,+) is d-minimal and, hence, should
be considered tame. It is an easy exercise to see that an expansion of R or OR
is locally o-minimal if and only if R is o-minimal. Hence, local o-minimality—at
least when working over the real numbers—is only relevant in its own right when
multiplication is not definable. For more on local o-minimality, we refer the reader
to [73] and Kawakami et al. [48].

Fix an expansion R of (R, <,+). Definable throughout means definable in R, pos-
sibly with parameters. Since the definability of Z is no longer our prototype of
wildness, we instead consider a consequence of the definability of Z over R. We
say that R is type C if it defines every compact set. In this situation, R also
defines every bounded Borel set and even every bounded projective set, and hence
must be considered wild for the same reasons we outlined for (R,Z). However, it is
not necessarily true that all projective sets are definable: by Pillay, Scowcroft, and
Steinhorn [64, Theorem 2.1], the expansion of (R, <,+) by all compact sets does
not even define multiplication on all of R.
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We now want to analyze the case when R is not type C. Here, we distinguish
whether a dense ω-order is definable or not.

Definition 3.1. Let X ⊆ Rn. We say that (X,≺) is an ω-order if

(1) (X,≺) is a linear order,
(2) X and ≺ are definable,
(3) (X,≺) has order type ω.

We say such an ω-order is dense if X is a dense subset of an open subinterval of
R. An ω-orderable set X is a definable set such that there is a definable order ≺
on X with order type ω.

One can think of an ω-order as a definably countable set, although one should be
careful with this analogy, as “definably countable” could be defined in many other
ways. The canonical example of an ω-orderable set is the following.

Example 3.2. Let D ⊆ R>0 be closed in R, infinite and discrete. Then the
restriction of the usual order < to D is a definable order on D with order type ω.

Lemma 3.3. Let D ⊆ Rℓ be an ω-orderable set, and let f : D → Rm be a definable
function. Then

(1) Dn is ω-orderable.
(2) f(D) is either finite or ω-orderable.

Proof. Let ≺ be a definable order on D with order type ω. Let ≺lex be the lexico-
graphic order on Dn obtained from ≺, and let max≺ : Dn → D map (x1, . . . , xn)
to the ≺-maximum of {x1, . . . , xn}. Both ≺lex and max≺ are definable. For
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Dn, we write x ≺n y if either

• max≺ x ≺ max≺ y, or
• max≺ x = max≺ y and x ≺lex y.

Observe that ≺n is a definable linear order, and (Dn,≺n) has order type ω, since
for every x ∈ Dn there are only finitely many y ∈ Dn with y ≺n x. Thus, (1) holds.

For (2), suppose that f(D) is infinite. For x, y ∈ f(D), we write x ≺f y if there
is d ∈ D such that f(d) = x and f(e) ̸= y for all e ⪯ d. It is easy to check that
(f(D),≺f ) is an ω-order. □

Combining Example 3.2 and Lemma 3.3 we obtain the following corollary.

Corollary 3.4. Let D ⊆ R be definable, closed and discrete and let f : Dn → R be
a definable function such that f(Dn) is somewhere dense. Then R defines a dense
ω-order.

Example 3.5. We give several natural examples of dense ω-orders that arise via
Corollary 3.4.

(1) Let a, b ∈ R>1 be such that loga(b) /∈ Q. Then aN ∪ bN is closed and
discrete. Consider the map f : (aN ∪ bN)2 → R sending (x, y) to x/y.
Since loga(b) /∈ Q, the image of f is somewhere dense. Thus, the structure
(R, <,+, ·, aN, bN) defines a dense ω-order.

(2) The image of N under the sine function is dense in [−1, 1]. Hence, the
structure (R, <,+, sin,N) defines a dense ω-order.
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(3) Let α be an irrational number, and let f : αN → [0, 1) be

αn 7→ αn− ⌊αn⌋.

The image of f is dense by Kronecker’s Approximation Theorem (see [1,
Theorem 7.8]). It is easy to see that (R, <,+,N, αN) defines f , and hence
a dense ω-order.

We say that R is type A if it does not define a dense ω-order, and type B if it
define a dense ω-order, but is not type C. The expansions mentioned in Example
3.5(1)&(2) are type C by [37, Theorem 1.3] and Hieronymi and Tychonievich [43,
Thorem D]. However, for quadratic α, the expansion (R, <,+,Z, αZ) is type B by
[39, Theorem A]. Before discussing type A and B in more detail, we show that the
classification of expansions of (R, <,+) into type A, type B and type C expansions
is indeed a trichotomy.

Proposition 3.6. Suppose that R is type C. Then R defines a dense ω-order, and
hence is not type A.

Proof. Set

E :=

{
1

n
: n ∈ N>0

}
,

and note that (E,>) has order type ω. Let f : E → Q ∩ [0, 1] be a bijection. Let
G ⊆ R2 be the graph of f and let C be its topological closure in R2. Then C is
compact, as G is bounded, and hence definable. It is easy to see that

G = C ∩ {(x, y) ∈ R2 : x > 0}.

Thus, G itself is definable, and hence f is a definable function. Since Q ∩ [0, 1] is
the image of f , we also know that Q ∩ [0, 1] is definable. Since E is ω-orderable,
the set Q ∩ [0, 1] is ω-orderable by Lemma 3.3. □

Observe that all noiseless, and hence all o-minimal and all d-minimal expansions,
are type A. This suggests that we should treat type A as the ultimate generalization
of o-minimality. Non-definability of a dense ω-order is introduced as a tameness
notion in [31], and systematically studied as type A in Hieronymi and Walsberg [45].
In these two papers, several foundational results from o-minimality are generalized
to type A. In particular, it is shown that there is a good theory of dimension,
definable selection (at least for DΣ sets), and generic smoothness:

Theorem 3.7 (H.-Walsberg [45, Theorem B]). Suppose R is type A. Let k ∈ N>0,
and let f : U ⊆ Rm → Rn be definable such that f is continuous and U is open.
Then there is an open definable set V ⊆ U dense in U such that the restriction of
f to V is Ck.

We are going to prove this theorem in the next section, although only for expansions
of R. In its stated generality, Theorem 3.7 allows us to turn our trichotomy into a
proper and non-trivial tetrachotomy for expansions of (R, <,+) (see Figure 3), in
which we divide expansions not only by whether they are tame or not, but also by
whether they define certain fields.

Definition 3.8. We say R is field-type if there is a field (I,⊕,⊙), where I ⊆ R
is an interval and ⊕ and ⊙ are definable (as subsets of R3) such that (I,<,⊕,⊙)
and (R, <,+, ·) are isomorphic.
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It is a classical problem in model theory, dating back to Zilber’s trichotomy con-
jecture [75], to analyze whether model-theoretically tame structures (in our case,
type A expansions) that exhibit well-defined non-linear behavior actually define
fields. In the case of o-minimal structures, Peterzil and Starchenko [61] indeed
show that non-linearity yields a definable field. This result can be generalized to
type A structures thanks to the following theorem.

Theorem 3.9 (Marker-Peterzil-Pillay [53]). If R defines a C2 non-affine function
I → R, where I ⊆ R is an open interval, then R is field-type.

While the proof in [53] assumes that R is o-minimal, it can easily be adjusted to
hold in the general case (see the proof of [45, Theorem F]). Combining Theorem
3.7 and Theorem 3.9, we obtain the following strong linearity result for type A
structures that are not field-type.

Theorem 3.10 ([45, Theorem A]). Suppose that R is type A and not field-type.
Let f : U ⊆ Rm → Rn be definable such that f is continuous and U is open. Then
there is an open definable set V ⊆ U dense in U such that for every connected
component C of V the restriction of f to C is affine.

In the type A case, this establishes that structures with non-linear behavior are
field-type. Outside the type A case, being field-type distinguishes between type
B and type C structures. Indeed, it follows from the proof of Theorem 1.3 that
expansions of field-type cannot be type B.

Theorem 3.11 (See [45, Fact 1.3]). Suppose that R is field-type. Then R is type
C if and only if R defines a dense ω-order.

Even when moving from expansions of the real ordered additive groups to expan-
sions of the ordered R-vector space of real numbers, type B disappears.

Theorem 3.12 ([30, Theorem 3.9]). Suppose that R expands (R, <,+, (x → rx)r∈R).
Then R is type C if and only if R defines a dense ω-order.

Although we already mentioned an example of a type B structure earlier, we now
consider another instructive example in more detail. Let k ∈ N>0, and let Tk be the

dense ω-order

field-
type
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Figure 3. Tetrachotomy for expansions of (R, <,+)
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expansion of (R, <,+) by the ternary predicate Vk defined as follows: (a, b, i) ∈ Vk

if and only if

• b ∈ kZ and i ∈ {0, 1, . . . , k − 1} and
• i is the digit corresponding to b in a k-ary expansion of a.

Boigelot, Rassart and Wolper [7] were the first to study this structure, although
their motivation came from computer science and not from tame geometry. By [7,
Theorem 6] the theory of Tk is decidable. This result itself is a corollary of Büchi’s
theorem [9] on the decidability of the monadic second-order theory of one successor.
It follows that Tk can not be type C. Thus to show that Tk is type B, we just need
to argue that Tk defines a dense ω-orderable set.

Let W ⊆ (0, 1) be the set of a ∈ (0, 1) such that a has a finite k-ary representation.
It is easy to see that W is dense in (0, 1) and definable in Tk. Let µ : W → k−N

map a ∈ W to the smallest element y ∈ k−N such that y appears with non-zero
digit in the finite k-ary representation of a. For example, if k = 2 and a = 3

4 , then

µ(a) = 2−2. This function µ is definable in Tk. For a1, a2 ∈ W , we write a1 ≺W a2
if and only if either

• µ(a1) > µ(a2), or,
• µ(a1) = µ(a2) and a1 < a2.

Thus if k = 2, we get

1

2
≺W

1

4
≺W

3

4
≺W

1

8
≺W

3

8
≺W

5

8
≺W

7

8
≺ 1

16
. . .

The reader may check that (W,≺W ) is a dense ω-order.

The type B expansions given in the above example define many well-known fractals.
For example, T3 defines the usual “middle-thirds” Cantor set, which is obtained by
iteratively removing the open middle third starting with [0, 1]. Indeed, since it is
the set of exactly those elements in [0, 1] that have a ternary representation in which
1 does not appear, it can easily be defined using V3. Even though fractal objects are
definable, we can recover some tameness of continuous functions. By Block Gorman
et al. [6, Theorem 7.3], a continuous function f : [0, 1] → R definable in some Tk
is locally affine outside a nowhere dense set. However, the proof relies heavily on
automata theory rather than tame geometry, and is unlikely to generalize to other
type B expansions.

Question 3.13 ([45, Question 1.4]). Let R be type B and let f : [0, 1] → R be
definable and continuous. Is there a nowhere dense definable subset of [0, 1] such
that f is affine on each connected component of [0, 1] \ V ?

The best result in the generality of type B expansions is the following.

Theorem 3.14 ([45, Theorem 8.1]). Let R be type B and let f : [0, 1] → R be C2

and definable. Then f is affine.

3.1. Connections to neostability. We already argued that

geometric tameness ̸⇒ model-theoretic tameness.

The converse is true to a certain extent.

Theorem 3.15 (H.-Walsberg [44, Theorem A]). If R defines a dense ω-order, then
R defines an isomorphic copy of the two-sorted structure (N,P(N),∈,+1).
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Figure 4. The highlighted points are the left endpoints of
bounded complementary intervals of the Cantor ternary set after
the first few steps of the construction.

The structure (N,P(N),∈,+1) can be seen as the standard model of the monadic
second-order theory of one successor. It is an easy exercise to see that (N,P(N),∈
,+1) does not satisfy any of the Shelah-style combinatorial tameness conditions,
such as NIP or NTP2. Thus, by Theorem 3.15, an expansion that is not type
A cannot satisfy any of these conditions either. Therefore, all model-theoretic
tameness in the sense of Shelah is confined to type A expansions.

Theorem 3.16 (Miller’s conjecture for NIP expansions, Walsberg [74]). Let R be
an NIP expansion. Then R◦ is noiseless.

By [44], an NIP expansion cannot define a Cantor set, and Walsberg [74] deduces
from this that a noiseless NIP expansion is strongly noiseless; that is, if X,Y are
definable subsets of Rn with X ⊆ Y , then X is either nowhere dense in Y or X has
interior in Y . It is open whether this can be strengthened further.

Question 3.17 ([42]). Is every noiseless NIP expansion d-minimal?

There are several known results using strengthenings of NIP to deduce geometric
tameness in expansions of (R, <,+). By Simon [68, Theorem 3.6], every dp-minimal
expansion of (R, <,+) is o-minimal. If R is a strong (not necessarily NIP) expan-
sion of (R, <,+, ·), then R has o-minimal open core by Dolich and Goodrick [11,
Corollary 2.4].

3.2. Connections to metric dimensions. Dense ω-orderable sets appear natu-
rally when studying expansions of (R, <,+) by fractal objects. Indeed, let C ⊆ R
be a Cantor set, that is, C is a compact set without interior or isolated points.
We say an open interval in R is a complementary interval of C if it is a con-
nected component of the complement of C. Let L be the set of all left endpoints of
bounded complementary intervals of C. Observe that L is dense in C and definable
in (R, <,+, C). See Figure 4 for a visualization when C is the classical Cantor
ternary set. We now construct an ω-order on L, also definable in (R, <,+, C).

Let τ : L → R>0 map z ∈ L to the length of the complementary interval whose
endpoint is z. It is easy to check that τ is definable in (R, <,+, C). Now, for
a1, a2 ∈ L, we write a1 ≺C a2 if and only if either

• τ(a1) > τ(a2), or
• τ(a1) = τ(a2) and a1 < a2.

Since C is compact, we know that for every b ∈ R there are only finitely many
a ∈ L with τ(a) > b. Hence, (L,≺C) is an ω-order.

We now explain the connection to metric dimensions. For A ⊆ Rn, let dimH A
denote the Hausdorff dimension of A. We refer the reader to Falconer [24] for a
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definition of Hausdorff dimension, but we collect the following two properties that
we need here.

Fact 3.18. Let A,B ⊆ Rn. Then

(1) dimH A+ dimH B ≤ dimH(A×B),
(2) if A is Borel and dimH A > m, then there is an orthogonal projection

π : Rn → Rm such that π(A) has positive m-dimensional Lebesgue measure.

The second statement is known as Marstrand’s projection theorem, a fundamental
result in geometric measure theory.

Lemma 3.19 (Edgar-Miller [20, Lemma 1]). Let E ⊆ R be compact such that
dimH E > 0. Then there exists n ∈ N and an R-linear function f : Rn → R such
that f(En) has interior.

Proof. Let k ∈ N be such that k dimH(E) > 1. By Fact 3.18(1),

dimH(Ek) ≥ k dimH(E) > 1.

By Fact 3.18(2), there exists an orthogonal projection π : Rk → R such that
π(Ek) has positive Lebesgue measure. Thus, the difference set {a − b : a, b ∈
π(Ek)} has interior by Steinhaus [71]. Now, let f : R2k → R map (a1, . . . , a2k) to
π(a1, . . . , ak)− π(ak+1, . . . , a2k). □

Corollary 3.20 ([30, Theorem B]). Let C ⊆ R be a Cantor set such that dimH(C) >
0. Then (R, <,+, (x 7→ rx)r∈R, E) is type C.

Proof. Let f : Rn → R be an R-linear map such that f(Cn) has interior. Since L
is dense in C and f is continuous, we have that f(Ln) is dense in f(Cn) and hence
somewhere dense. Thus, f(Ln) is a dense ω-order in (R, <,+, C, f) by Lemma 3.3.
With Theorem 3.12, we conclude that (R, <,+, (x 7→ rx)r∈R, E) is type C. □

Therefore, Cantor sets with positive Hausdorff dimension cannot be defined in
expansions of the real ordered vector space on R that can be considered tame in
any logical or model-theoretic sense. We really need the vector space structure here:
recall that T3 is type B, yet defines the middle-thirds Cantor set, whose Hausdorff
dimension is log3(2).

4. Strong Baire Category Theorem

In this section, we prove the SBCT for expansions of R, roughly following the
argument in the proof of [41, 2.14]. Before doing so, we collect some preliminary
results about DΣ sets. Let R be an expansion of R.

Lemma 4.1 (Properties of DΣ sets).

(1) The image of a DΣ set under a continuous definable map is DΣ.
(2) Finite unions and finite intersections of DΣ sets are DΣ.
(3) If A ⊆ Rm × Rn is DΣ, then Ax is DΣ for every x ∈ Rm.
(4) If A ⊆ Rm × Rn is DΣ, then {x ∈ Rm : Ax has interior} is DΣ.

Proof. The first three items follow easily from well-known properties of compact
subsets of Rn.
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For (4), let X ⊆ R>0 × Rm+n be a definable set witnessing that A is DΣ. In
particular, A =

⋃
r>0 Xr. It follows from the classical Baire category theorem that

{x ∈ Rm : Ax has interior} =
⋃
r>0

{x ∈ Rm : ∃y ∈ Rn
n∏

i=1

[yi, yi +
1

r
] ⊆ X(r,x)}

Since Xr is compact for each r ∈ R>0, it is easy to check that the same is true for

{x ∈ Rm : ∃y ∈ Rn
n∏

i=1

[yi, yi +
1

r
] ⊆ X(r,x)}.

□

Lemma 4.2. The following are equivalent:

(1) R◦ is o-minimal,
(2) R defines no infinite closed discrete set,
(3) R defines no infinite discrete set.

Proof. (3) ⇒ (1): Suppose every definable discrete set is finite. Let X ⊆ R be open
and definable. Thus, X is a countable union of disjoint intervals, and it is easy to
check that the set of midpoints of those intervals is definable in R◦. Let Y denote
this set. Clearly, Y is discrete, and hence finite. Therefore, X has finitely many
connected components. By Theorem 2.5, the open core of R is o-minimal.

(1) ⇒ (2): Since R◦ is o-minimal, every closed subset of R definable in R either has
interior or is finite. Since discrete sets do not have interior, every closed discrete
set definable in R has to be finite.

(2) ⇒ (3): Let D ⊆ R be infinite, discrete, and definable in R. We now construct
a definable set E ⊆ R such that E is infinite, closed, and discrete. For t ∈ R>0, set

Xt := {d ∈ D : (d− t, d+ t) ∩D = {d}}.
This definable family is decreasing; that is, Xs ⊆ Xt whenever s, t ∈ R>0 and t < s.
Further observe that each Xt is closed and discrete. Thus, if Xt is infinite for some
t ∈ R>0, we are done. Hence we can assume that Xt is finite for every t ∈ R>0.

Since D is infinite, there is a u ∈ R>0 such that Xu has cardinality at least 2. Let
g : (0, u) → D be defined by

t 7→ max
({

max
(
{(d− e)−1, d− e}

)
: d, e ∈ Xt, d > e

})
.

Note that g((0, u)) is infinite and unbounded, since D is infinite. However, g((t, u))
is finite for every t ∈ (0, u). Since g is strictly decreasing, we get that (1, N) ∩
g((0, u)) is finite for every N ∈ N. Thus, g((0, u)) is closed and discrete. □

The implication (2)⇒(3) first appeared in Fornasiero [27, Remark 4.16], but the
proof presented here is from [38, Lemma 3].

4.1. Proof of SBCT. Let R be an expansion of R that does not define Z. We
now prove the SBCT. First, suppose that R does not define an infinite, closed,
and discrete set. Then, by Lemma 4.2, the open core R◦ of R is o-minimal. Since
every DΣ set in R is definable in R◦, the SBCT follows. Thus, we can assume
that R defines an infinite, closed, and discrete set D ⊆ R. Note that D must be
unbounded. By possibly replacing the elements of D by their negations, we can
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assume that D ⊆ R>0. The order (D,<) has order-type ω. The successor function
σ : D → D mapping d ∈ D to min

(
D ∩ (d,∞)

)
is clearly definable in R.

Lemma 4.3. Let E ⊆ [0, 1]n+1 be DΣ such that Ea has empty interior for every
a ∈ [0, 1]n. Then there is ε > 0 such that for all a ∈ [0, 1]n there is x ∈ [0, 1] with(

x− ε, x+ ε
)
∩ Ea = ∅.

Proof. Suppose otherwise. Since E is DΣ, there is an increasing definable family
(Xy)y>0 such that E =

⋃
y>0 Xy and Xy is closed for each y ∈ R>0. Since D is

unbounded, we have that E =
⋃

d∈D Xd. Because X(d,a) ⊆ Ea for every a ∈ [0, 1]n

and Ea has empty interior, the set X(d,a) has empty interior as well. Since Xd is
closed, so is X(d,a) and hence X(d,a) is nowhere dense. Let (Y(d,a))d∈D,a∈[0,1]n be the
definable family such that Y(d,a) is the set of midpoints of bounded complimentary
interval of X(d,a). Let (g(d,a) : Y(d,a) → X(d,a))d∈D,a∈[0,1]n be the definable family
of maps given by

g(d,a)(x) := sup
(
X(d,a) ∩ (−∞, x]

)
.

Note that Y(d,a) is a discrete subset of (0, 1) and its image is dense in X(d,a).

We will now define a discrete set D′ ⊆ R. For d ∈ D, let δ(d) ∈ D be the smallest
element d′ ∈ D larger than d such that

Z(d,d′) := {a ∈ [0, 1]n : ∀x ∈ [0, 1]∃y ∈ X(d′,a) |x− y| ≤ d−1}
is non-empty. Since Xδ(d) is closed, the set Zd,δ(d) is closed as well. Let b : D →
[0, 1]n map d ∈ D to lexmin(Z(d,δ(d))). The function b is definable. Observe that⋃

d∈D

X(δ(d),b(d)) is dense in [0, 1].

Set
D′ := {d+ (σ(d)− d)c : d ∈ D, c ∈ Y(δ(d),b(d))}.

Let f : D′ → [0, 1] be the function mapping d + (σ(d) − d)c to gδ(d),b(d)(c). It is
easy to see that f is well-defined and definable, that D′ is discrete and, by our
assumption on E, that f(D′) is dense in [0, 1]. By Theorem 1.3 and the remark
following it, we conclude that R defines Z. This is a contradiction. □

Corollary 4.4. Let E ⊆ [0, 1]n+1 be DΣ such that Ea has empty interior for every
a ∈ [0, 1]n. Then there are intervals I1, . . . , Ip ⊆ [0, 1] such that for all a ∈ [0, 1]n

there is i ∈ {1, . . . , p} with Ii ⊆ [0, 1] \ Ea.

Proof. By Lemma 4.3 there is ε > 0 such that for all a ∈ [0, 1]n there is x ∈ [0, 1]
with |x − y| > ε for all y ∈ Ea. Now let p ∈ N>0 be such that p > 2ε−1. For
i ∈ {1, . . . , p}, set

Ii := [
(i− 1)

p
,
i

p
].

For each i the length of Ii is 1/p, and hence less than ε
2 . Thus for each a ∈ [0, 1]

there is i ∈ {1, . . . , p} such that Ii ⊆ [0, 1] \ Ea. □

We need the following easy fact from descriptive set theory.

Fact 4.5 (see [58, 1.5(3)]). Let A ⊆ Rm+n be Fσ with empty interior. Then

{x ∈ Rm : Ax has interior}
has empty interior.
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Proof. Let (Ak)k∈N be a family of closed subsets of Rm+n such that
⋃

k∈N Ak = A.
Suppose that {x ∈ Rm : Ax has interior} has non-empty interior. Let V be the set
of all open boxes in Rn with rational endpoints. Note that V is countable. Since
Ax =

⋃
k∈N(Ak)x, we obtain from the the classical Baire category theorem that

{x ∈ Rm : Ax has interior} =
⋃
k∈N

{x ∈ Rm : (Ak)x has interior}

=
⋃
k∈N

⋃
V ∈V

{x ∈ Rm : V ⊆ (Ak)x}.

Again by the classical Baire category theorem, we conclude that there is k ∈ N,
V ∈ V and an open box U ⊆ Rm such that

U ⊆ {x ∈ Rm : V ⊆ (Ak)x}.

Hence U × V ⊆ Ak ⊆ A. This contradicts our assumption on A. □

Proof of SBCT. We proceed by induction on n. We first consider the case that
n = 1. Let A ⊆ R be DΣ with empty interior. Suppose towards a contradiction
that there is an open interval I ⊆ R such that A ∩ I is dense in I. Since DΣ sets
are preserved under affine maps by Lemma 4.1(1), we can assume that I = (0, 1).
Note that A ∩ (0, 1) is DΣ by Lemma 4.1(2). By Lemma 4.3 there are ε > 0 and
x ∈ (0, 1) such that (

x− ε, x+ ε
)
∩A ∩ (0, 1) = ∅.

This contradicts the density of A ∩ (0, 1) in (0, 1).

Now suppose the statement of the SBCT holds for n. Let A ⊆ Rn+1 be DΣ with
empty interior. We need to show that A is nowhere dense. Let U ⊆ Rn+1 be open.
We will find an open set V ⊆ U such that A ∩ V = ∅.

First consider

Z := {x ∈ Rn : Ax has interior}.
This set is DΣ by Lemma 4.1(4). By induction Z either has interior or is nowhere
dense. Thus Z has empty interior by Fact 4.5, and hence is nowhere dense. Hence
there is an open set W ⊆ Rn such that W ∩ Z = ∅ and (W × R) ∩ U ̸= ∅. Now
replace U by (W ×R)∩U . Observe that (A∩U)a is nowhere dense for all a ∈ Rn.

Since A∩U isDΣ, we can assume that A = A∩U . Since the collection ofDΣ is closed
under definable continuous function by Lemma 4.1(1), we can reduce to the case
that U = (0, 1)n+1. Thus it is left to find an open set V ⊆ (0, 1)n+1 with A∩V = ∅.

Since A is DΣ, there are open intervals I1, . . . , Ip ⊆ [0, 1] such that for all a ∈ [0, 1]n

there is i ∈ {1, . . . , p} with Ii ⊆ [0, 1] \Aa. For i = 1, . . . , p, set

Ji := {a ∈ [0, 1]n : Aa ∩ Ii = ∅}.

Since Ji is a complement of aDΣ set, each [0, 1]n\Ji either has interior or is nowhere
dense by induction. Since

⋃p
i=1 Ji = [0, 1]n, there is j ∈ {1, . . . , p} such that Jj has

interior. Fix this j, and let V0 be an open subset of Jj . Then set V := V0 × Ij and
observe that A ∩ V = ∅. □
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Corollary 4.6. Let (At)t∈R>0
be an increasing definable family of nowhere dense

subsets of Rn. Then
⋃

t∈R>0
At is nowhere dense.

Proof. Note that At is nowhere dense for each t ∈ R>0. Thus, by the Baire category
theorem,

⋃
t∈R>0

At does not have interior. Since it is DΣ, the SBCT then implies
that it is nowhere dense. □

Corollary 4.7. Let A ⊆ Rn be DΣ. Then Rn \A either has interior or is nowhere
dense, and fr(A) is nowhere dense.

Proof. Suppose that Rn \ A does not have interior. Let U ⊆ Rn be an open box.
In order to show that Rn \ A is nowhere dense, it suffices to find an open subset
V ⊆ U such that (Rn \ A) ∩ V = ∅. Note that A ∩ U is DΣ, and hence either has
interior or is nowhere dense. Since Rn \ A does not have interior, the intersection
A ∩ U is dense in U . By SBCT we get that A ∩ U has nonempty interior. Let V
be this interior.

Note that the boundary of A is the union of two DΣ sets:

Rn \ bd(A) = (Rn \A) ∪ Å.

Thus bd(A) has interior or is nowhere dense. If bd(A) has interior, there is an open
box U ⊆ Rn such that A ∩ U is dense and codense in U . This contradict the fact
that A is DΣ. Thus bd(A) is nowhere dense. Since the frontier fr(A) is a subset of
the boundary bd(A), it is nowhere dense, too. □

5. Consequences of SBCT

“I would like to say a few words now about some topological con-
siderations which have made me understand the necessity of new
foundations for ‘geometric’ topology. [...] ‘General topology’ was
developed (during the thirties and forties) by analysts and in order
to meet the needs of analysis. [...] Even now, just as in the heroic
times when one anxiously witnessed the first time curves cheerfully
filling squares and cubes, when one tries to do topological geometry
in the technical context of topological spaces, one is confronted at
each step with spurious difficulties related to wild phenomena.”

Alexander Grothendieck in “Esquisse d’un Programme”

Let R be an expansion of (R, <,+, ·) that does not define Z. As noted in Goal
1.2, part of the tameness program is to study geometric tameness of definable sets in
R. Here, we understand geometric tameness in the sense of Grothendieck’s topolo-
gie modérée, and in this section aim to prove weak analogues of results known for
o-minimal structures. Two of the most fundamental results in o-minimality are the
monotonicity theorem and the smoothness theorem, and we will establish analogues
of these theorems for DΣ sets in R, basically as corollaries of the SBCT.

Before doing so, we want to collect one important, yet simple fact about DΣ sets.
Let X ⊆ R>0×Rn be a definable family of compact subsets such that Xr ⊆ Xs for
all r, s ∈ R>0 with r ≥ s. Then

⋃
r>0 Xr is DΣ. Indeed, the family (X 1

r
)r∈R>0

is

an increasing definable family of compact set witnessing that
⋃

r>0 Xr is DΣ. We
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will use this observation freely throughout the remainder.

Let X ⊆ Rm, let f : X → Rn and let ε > 0. For x ∈ X, we say that f has
ε-oscillation at x if for all δ > 0, there are y, z ∈ X such that |x − y| < δ and
|x− z| < δ, yet |f(y)− f(z)| ≥ ε. Let Dε denote the set of all x ∈ X at which f has
ε-oscillation. Set D(f) :=

⋃
ε>0 Dε(f). It is an easy exercise to check that Dε(f) is

closed in X, and f is discontinuous at x ∈ X if and only if x ∈ D(f).

Lemma 5.1. Let U ⊆ Rm be open and definable, let f : U → Rn be definable.
Then D(f) is DΣ, and one of the following holds:

(1) There is an open dense definable V ⊆ U such that the restriction of f to V
is continuous.

(2) There is a definable open V ⊆ U and ε > 0 such that V ⊆ Dε(f).

Proof. Each Dε(f) is closed in U and hence DΣ. Thus

D(f) = U ∩
⋃

ε∈R>0

Dε(f).

Then D(f) is DΣ by Lemma 4.1(1). Applying the SBCT, we obtain that D(f)
either has interior or is nowhere dense. If D(f) has no interior, then (1) holds.
Suppose now that D(f) has interior. By the classical Baire category theorem there
is ε > 0 such that Dε(f) has interior. Hence (2) holds. □

To illustrate that (2) in Lemma 5.1 can fail even for tame structures we give the
following example.

Example 5.2. Let R be (R, <,+, ·,Qrc), the expansion of the real field by the
real algebraic numbers. Recall that Ro is o-minimal. Consider the characteristic
function χQrc of the real algebraic numbers. Clearly, this function has ε-oscillation
at every point for all ε < 1.

Let U ⊆ Rm be open and f : U → Rn. We say f is Baire class one if it is a
pointwise limit of a sequence of continuous functions (fi : U → Rn)i∈N.

Proposition 5.3. Let U ⊆ Rm be open and let f : U → Rn be definable and Baire
class one. Then f is continuous on an open dense definable subset of U .

Proof. By a theorem of Baire (see [49, (24.14)]), the set D(f) is meager whenever
f is Baire class one. Thus condition (2) of Lemma 5.1 fails. Hence there is an
open definable V ⊆ U that is dense in U , such that the restriction of f to V is
continuous. □

Let f : X ⊆ Rm → R and x ∈ X. We say f is lower semicontinuous at x if
lim infy→x f(y) ≥ f(x), and f is lower semicontinuous if it is lower semicontin-
uous at every x ∈ X. A lower semicontinuous function is Baire class one (see [49,
(24.16)]).

Proposition 5.4. Let A ⊆ Rm+n be definable and compact, and let U ⊆ Rm be
open and definable such that Ax ̸= ∅ for all x ∈ U , and let f : U → Rn map x ∈ U
to the lexicographically minimal element of Ax. Then D(f) is nowhere dense and
thus there is a definable dense open subset V of U such that f is continuous on V .
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Proof. Since A is compact, the image f(U) is bounded. Thus for all x ∈ U , we
have that lim infy→x f(y) ∈ Ax and

f(x) ≤ lim inf
y→x

f(y).

Hence f is lower semicontinuous. Now apply Proposition 5.3.

Let n ∈ N>1 and suppose the statement holds for n− 1. Let ε > 0. By the SBCT
it is enough to show that Dε(f) is nowhere dense. Let C be the projection of A
onto the first m+n−1 coordinates. Let g : C → R map (x, y) ∈ C ∩Rm×Rn−1 to
minA(x,y). By the base case n = 1, the set Dε(g) is nowhere dense in Rm × Rn−1.

Let h : U → Rn−1 map x ∈ U to lexminCx. By induction, Dε(h) is nowhere dense.
It follows that Dε(f) is nowhere dense. □

We are going to prove the fiber lemma for DΣ sets. It is known to hold for all
definable sets in noiseless structures by [55, Main Lemma]. Here we follow the
argument in the proof of [29, Lemma 49(2)].

Corollary 5.5 (Fiber Lemma). Let A ⊆ Rm+n be DΣ. Then

{x ∈ Rm : (Ax) ̸= Ax}
is nowhere dense.

Proof. Let π : Rm+n → Rm be the coordinate projection onto the first m coordi-
nates. Set

E := {x ∈ Rm : Ax \ (Ax) ̸= ∅}.
For each open box B ⊆ Rn, set

EB := {x ∈ Rm : Ax ∩B ̸= ∅, (Ax) ∩B = ∅}.
Observe that

EB ⊆ fr(π(Rm ×B) ∩A)).

Since π(Rm × B) ∩ A) is DΣ, its frontier is nowhere dense by Corollary 4.7 that
fr(π(Rm ×B) ∩A)). Thus EB is nowhere dense. Define

C := {(r, x, y) ∈ R>0 × Rm × Rn : |y| ≤ r−1, (x, y) ∈ A,dist(y,Ax) ≥ r}
Observe that

E =
⋃
r>0

π(Cr).

By Corollary 4.6 it is left to show that π(Cr) is nowhere dense for each r > 0.
Suppose not. Let r ∈ R>0 be such that π(Cr) has interior, and let U ⊆ Rm be

an open subset of π(Cr). Set Z := (Cr), and let f : U → Rm map x ∈ U to
lexminZx. By Proposition 5.4 there is an open dense subset V of U such that f |V
is continuous. Note that the graph of f is a subset of Z. By continuity of f , we
can find an open box B ⊆ Rn with side lengths less than r and open subset W ⊆ V
such that f(W ) ⊆ B. Let (x, y) ∈ Cr ∩ (Rm × B). Since B has side lengths less
than r, we have that Ax ∩B = ∅. It follows that

π(Cr ∩ (Rm ×B)) ⊆ EB .

Then
W ⊆ π(Z ∩ (Rm ×B)) ⊆ π(Cr ∩ (Rm ×B)) ⊆ EB .

This contradicts nowhere denseness of EB . □
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Corollary 5.6. Let U ⊆ Rn be open and let f : U → R be DΣ. Then D(f) is
nowhere dense.

Proof. Let V ⊆ U be an open box. It is enough to find an open subset of V that
does not intersect D(f). For each r ∈ R>0, let

Vr := {x ∈ V : |f(x)| ≤ r}.

By Corollary 4.6 there is r ∈ R>0 such that Vr is somewhere dense. Since Vr is DΣ,
it has interior. Then by Corollary 5.5 there is an open subset W ⊆ Ar such that
for all x ∈ W

graph(f)x = {f(x)}.
Thus f is continuous on W . Thus D(f) ∩W = ∅. □

Theorem 5.7 (Monotonicity). Let f : U → R be definable and continuous, and
let U ⊆ R. Then there is a definable open set V ⊆ U dense in U such that on each
connected component of V the restriction of f to V is either strictly increasing,
strictly decreasing or constant.

Proof. Let

V1 = {x ∈ U : f is constant on an open interval around x}
V2 = {x ∈ U : f is strictly increasing on an open interval around x}
V3 = {x ∈ U : f is strictly decreasing on an open interval around x}.

Each V1, V2, V3 is open. Set V := V1 ∪ V2 ∪ V3. Let C be a connected component
of V . Observe that there is i ∈ {1, 2, 3} such that C is a connected component of
Vi. Furthermore, it is easy to check that if i = 1, then f is constant on C, if i = 2,
then f is strictly increasing on C and, otherwise, f is strictly decreasing on C. It
is left to show that U \ (V1 ∪ V2 ∪ V3) has empty interior.

Suppose not. Let I be a compact interval contained in U \ (V1 ∪ V2 ∪ V3). Since
I∩V1 = ∅, we have that f is non-constant on I. Since f is continuous, the image f(I)
contains an open interval by the intermediate value theorem. Let J be such an open
subinterval of f(I). Define the function g : J → R such that g(r) = min(I∩f−1(r)).
Observe that g is injective by construction. By Proposition 5.4 this function g is
lower-semicontinuous, and thus there is an open subinterval J ′ ⊆ J such that the
restriction of g to J ′ is continuous. Thus g maps J ′ homeomorphically onto an
subinterval I ′ ⊆ I, and hence the restriction of f to I ′ is strictly monotone. □

Another fundamental result for o-minimal structures is that every definable function
from R to R is differentiable outside finitely many points. A similar result holds
for continuous functions definable in R.

Theorem 5.8 (Differentiability). Let k ∈ N>0, let f : U → R be definable and
continuous, and let U ⊆ Rn be open. Then there is an open definable set V ⊆ U
dense in U such that the restriction of f to V is Ck.

Instead of the technical proof in full generality, we will give a quick proof under the
assumption that n = 1. The full proof can be founded in [29, Lemma 51].

Proof of Theorem 5.8, n = 1. Since the derivative of a definable differentiable func-
tions is definable, it is enough to consider the case that k = 1. By Theorem 5.7,
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there is an open dense set V0 ⊆ U such that f is either strictly monotone or con-
stant on each connected component of V0. Replacing U by V0, we can assume that
U = V0.

Consider the definable set

Y := {x ∈ U : f is not differentiable at x}.

We will show that Y is nowhere dense. Suppose towards a contradiction that there
is an interval I ⊆ U such that Y ∩ I is dense in I. By Lebesgue’s differentiability
theorem, the set Y is Lebesgue null and hence Y ∩ I is also co-dense in I. Set

Z := {(x, h, y) ∈ I × R ̸=0 × R : h ̸= 0, y =
f(x+ h)− f(x)

h
}.

Note that Z is DΣ. By Corollary 5.5 there is a dense open definable subset V1 of I
such that Zx = Zx for all x ∈ V1. Thus for all x ∈ V1 \ Y ,

(Zx)0 = (Zx)0 = {f ′(x)}.

Set

G := {(x, y) ∈ R2 : (x, 0, y) ∈ Z}, H := {(r, x) ∈ R>0 × V1 : Gx ⊆ [−r, r]}.

Note that the
⋃

r>0 Hr contains V1 \Y , and hence is dense in I. Thus by Corollary

4.6 there is r ∈ R>0 such that Hr has interior. Let J be an open interval contained
in this interior, let gmin : J → R be the function mapping x to minGx∩ [−r, r], and
let gmax : J → R map x to maxGx ∩ [−r, r]. Observe that for all x ∈ J \ Y

gmin(x) = f ′(x) = gmax(x).

Using Proposition 5.4, we can find a dense open definable set V2 ⊆ J such that
gmin and gmax are continuous on V2. Since gmin and gmax agree on V2 \ Y and this
set is dense in V2, we get that gmin = gmax on V2. It follows that for all x ∈ V2

gmin(x) = gmax(x) = f ′(x).

This contradicts density of Y ∩ I in I.

Thus there is an open dense definable subset V ⊆ U such that f is differentiable
on V . The above argument can now be used to find an open dense definable subset
of V on which f is C1. □

6. More on metric geometry

“A set on which all usual dimensions coincide is called dimension-
ally concordant. Otherwise, it is a fractal.”
“This definition of a fractal took care of the frontier against Euclid.”

Benôıt Mandelbrot (slightly rephrased)

In our attempt to make progress toward Miller’s conjecture, we now return to
metric dimensions. Our goal in this section is to show that all usual dimensions
coincide for DΣ sets definable in expansions of R that do not define Z. Thus, in the
above terminology, all such sets are dimensionally concordant, and hence exhibit
tameness in the Mandelbrotian sense.
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6.1. Topological dimensions. We begin by introducing two notions of topologi-
cal dimension. The first is a classical dimension for topological spaces. Let X be
a topological space. We define the small inductive dimension, denoted indX,
inductively: if X is empty, then indX = −∞, and for X ̸= ∅, we set indX to be
the infimum over all k ∈ N such that for every x ∈ X and open neighborhood V
of x, there exists an open set U ⊆ X such that x ∈ U ⊆ V and the boundary of
U (regarded as a topological space via the subspace topology) has small inductive
dimension strictly less than k. Here, a subset E of Rn is equipped with the topology
induced by the Euclidean topology on Rn. Thus, indE refers to the small induc-
tive dimension with respect to this topology. On such spaces, the small inductive
dimension coincides with the large inductive dimension and the Lebesgue cover-
ing dimension. We refer to Engelking [23] for more details about these topological
dimensions and the proofs of the following facts.

Fact 6.1. Let A,B ⊆ Rn. Then

(1) indA = n if and only if A has nonempty interior in Rn,
(2) indA ≤ indB, if A ⊆ B,
(3) indA = maxi∈N indAi for A =

⋃
i∈N Ai with each Ai closed.

(4) if A is Fσ and indA ≥ m, then there is a coordinate projection π : Rn → Rm

such that π(A) has interior.

The compact case of (4) is due to Nöbeling, see [23, 1.10.23]. In o-minimality,
another notion of topological dimension is often used. Let E ⊆ Rn be nonempty.
The naive dimension of E, denoted dimE, is the maximum m ∈ N for which
there exists a coordinate projection π : Rn → Rm such that π(E) has interior.
We define dim ∅ := −∞. This notion of dimension is much more convenient with
regard to definability. For example, it is easy to check that whenever A ⊆ Rm×Rn

is definable and k ∈ N, then
{x ∈ Rm : dimAx ≥ k}

is definable. We now collect the following facts, leaving the easy proofs to the
reader.

Fact 6.2. Let A,B ⊆ Rn. Then

(1) dimA = n if and only if A has nonempty interior.
(2) dimA ≤ dimB, if A ⊆ B,
(3) dimA×B = dimA+ dimB.

In o-minimal structures these dimensions coincide. However, in general they do
not. For example, consider a space filling curve, that is a continuous surjection
f : [0, 1] → [0, 1]2. Its graph has naive dimension 2, as its projection onto the last
two coordinates has interior, however its small inductive dimension is 1. Towards
our goal to show that all usual dimensions coincide, we first establish that these
two topological dimensions agree on DΣ sets.

Proposition 6.3. Let E ⊆ Rn be DΣ. Then dimE = indE.

Before we give the proof of Proposition 6.3, we need a lemma about the small
inductive dimension.

Lemma 6.4. Let A ⊆ Rm be DΣ and let f : A → Rn be continuous and definable.
Then ind f(A) ≤ indA.
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Proof. Since A is DΣ, it can be written as a countable union of compact definable
sets. Thus, by Fact 6.1(3) we can assume that A is compact. By Fact 6.1(4) there is
a coordinate projection π : Rn → Rind f(A) such that the image of f(A) under π has
interior. After replacing f with π ◦ f , we may assume that n = ind f(A) and that
f(A) has nonempty interior. Let U ⊆ Rn be an open box in this interior. Define
g : U → Rm by sending u ∈ U to the lexicographic minimum of f−1({u}) ∩ A.
By Proposition 5.4, there is an open subset V ⊆ U such that g|V is continuous.
Note that f(g(x)) = x for all x ∈ V , and g(f(y)) = y for all y ∈ g(V ). Since g is
continuous, it is an homeomorphism. Hence

ind f(A) = indV = ind g(V ) ≤ indA. □

Proof of Proposition 6.3. By Fact 6.1(4), we already know that dimE ≥ indE. It
is left to show that indE ≥ dimE. Let π : Rn → RdimE be a coordinate projection
such that π(E) has interior. By Lemma 6.4 and Facts 6.1 and 6.2

indE ≥ indπ(E) = dimE. □

Corollary 6.5. Let E ⊆ R be DΣ and nowhere dense, and let f : En → R be
definable and continuous. Then f(En) is nowhere dense.

Proof. By Lemma 6.4 and Proposition 6.3

dim f(En) = ind f(En) ≤ indEn = dimEn = ndimE = 0.

Since f(En) is DΣ, the SBCT implies that f(En) is nowhere dense. □

Since the graphs of continuous functions are closed, we can deduce as a corollary
that no space-filling curve is definable in R, one of the wild phenomena described
by Grothendieck in the quote above. However, there are definable sets in tame
expansions for which the naive and small inductive dimensions differ. Returning
to Example 5.2, the graph of the characteristic function χQrc has small inductive
dimension 0, since it is totally disconnected. However, the projection onto the first
coordinate is R, and hence the naive dimension of the graph is 1.

6.2. Metric dimensions. We now turn our attention to metric dimensions. Let
E ⊆ Rn. For r ∈ R>0, let N(E, r) be the minimum number of boxes of side length r
needed to cover E. For E ̸= ∅, the upper Minkowski dimension of E is defined
as

dimME := lim sup
r→0

log(N(E, r))

log( 1r )
.

We set dimM∅ = −∞. We say E is M-null if dimME = 0. The upper Minkowski
dimension also appears as upper Minkowski–Bouligand dimension and upper box-
counting dimension in the literature.

Fact 6.6. Let A,B ⊆ Rn be bounded and let f : A → Rm be Lipschitz. Then

(1) dimMA = n if A has nonempty interior.
(2) dimMA ≤ dimMB, if A ⊆ B,
(3) dimMA ∪B = max{dimMA,dimMB},
(4) dimMA = dimMA,
(5) dimMf(A) ≤ dimMA,
(6) dimMAk = kdimMA,
(7) dimM (A×B) ≤ dimMA+ dimMB.
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In contrast to the Hausdorff dimension the upper Minkowski dimension can assign
positive values to countable sets. In particular,

dimM{ 1
n

: n ∈ N>0} =
1

2
, yet ind{ 1

n
: n ∈ N>0} = 0

See [24, Example 3.5] for a proof. Thus the non-definability of Z is necessary to
have equality of upper Minkowski dimension and the topological dimensions even
for closed definable subsets of Rn. The following theorem states that this non-
definability is also a sufficient condition.

Theorem 6.7 (H.-Miller [41]). Let E ⊆ Rn be DΣ and bounded. Then

indE = dimE = dimME.

If Theorem 6.7 holds for every set definable in R◦ and not just for Σ-definable sets,
then Miller’s conjecture is true. Indeed, suppose that Theorem 6.7 is true in this
broader context, and let E ⊆ Rn be definable in R◦. Suppose that E does not have
interior, yet is somewhere dense. Let U ⊆ Rn be an open box such that U ∩ E is
dense in U . Then

dim(U ∩ E) = dimM (U ∩ E) = dimMU ∩ E ≥ dimMU = n.

Thus, U ∩ E has interior, which contradicts our assumption that E does not have
interior.

In the statement of Theorem 6.7, we can replace dimME with the Assouad di-
mension of E, a “uniform” version of the Minkowski dimension. To be precise,
the Assouad dimension of E is defined as the infimum over all α such that there
exist constants C and ρ with the property that, for 0 < r < R < ρ, we have

sup
x∈E

N(BR(x) ∪ E, r) ≤ C

(
R

r

)α

.

Here, we will only provide the proof of Theorem 6.7 for n ∈ {1, 2} and the upper
Minkowski dimension. When n = 2, we will also assume that E is compact. This
simplifies the argument by allowing us to ignore the bookkeeping necessary to make
the argument uniform for n > 1, while still explaining the key trick in the proof
from [41].

Luukainen [52] writes, using dimB instead of dimM ,

“A fractal might be defined - adapting Mandelbrot - as non-empty
compact metric space X for which at least one of the always valid
inequalties

dimX ≤ dimH X ≤ dimBX ≤ dimBX ≤ dimA X

for the topological, Hausdorff, lower box-counting, upper box-counting,
and Assouad, respectively, of X is strict. [...] On the other hand, if
the inequalities above are all equalities, that is, if dimA X = dimX,
then the compact metric space X and its metric might be called
antifractal or flat.”

Using this notation, Theorem 6.7 gives that all definable compact subsets of Rn are
antifractal or dimensionally corcordant in Mandelbrot’s terminology.
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Proof of Theorem 6.7, assuming R◦ is o-minimal. Since E is DΣ, it is definable in
R◦. By Kurdyka and Parusiński [51], there are N ∈ N and for each i = 1, . . . , N a
bi-Lipshitz map fi : Ui ⊆ Rni → Rn such that

(1) n1 ≤ · · · ≤ nN = dimE,
(2) Ui is open for i = 1, . . . , N , and

(3) E =
⋃N

i=1 fi(Ui).

By Fact 6.6(5), we have that for every i = 1, . . . , N

dimMfi(Ui) = dimMUi = ni.

Thus by Fact 6.6(3)

dimME = max{ni : i = 1, . . . , N} = nN = dimE.

□

6.3. The unary case. We begin by proving the case n = 1 of Theorem 6.7. As
an input we use the following variant of Marstrand’s projection theorem for upper
Minkowski dimension.

Theorem 6.8 (Projection lemma, Falconer-Howroyd [25]). Let m,n ∈ N be such
that m ≤ n, and let E ⊆ Rn be analytic. Then there is a linear map T : Rn → Rm

such that

dimMT (E) ≥ dimME

1 + ( 1
m − 1

n )dimME
.

Corollary 6.9. Let E ⊆ R be analytic such that dimME > 0. Then there is n ∈ N
and a linear map T : Rn → R such that dimMT (En) > 1

2 .

Proof. By Theorem 6.8, for every n ∈ N there is a linear map T : Rn → R such
that

dimMT (En) ≥ dimMEn

1 + (1− 1
n ) dimEn

=
ndimME

1 + (n− 1)dimME
=

dimME
1
n + (1− 1

n )dimME
.

The right hand side goes to 1 as n → ∞. □

For a subset X ⊆ R, the set of difference quotients of X is defined as

Q(X) := {x1 − x2

x3 − x4
: x1, x2, x3, x4 ∈ X,x3 ̸= x4}.

Note that Q(X) is the set of slopes of non-vertical lines connecting distinct points
in X2.

Lemma 6.10 (Falconer’s trick). Let I ⊆ R be an open interval. Then there is
c ∈ R>0 and a rotation Z : R2 → R2 such that for every E ⊆ R with Q(E) ∩ I = ∅
there is a Lipschitz function f : R → R with Lipschitz constant c such that Z(E2)
is contained in the graph of f .

Proof. Let a, b ∈ R be such that I = (a, b). Set

C := {(x, y) ∈ R>0 × R : ax < y < bx} ∪ {(x, y) ∈ R<0 × R : bx < y < ax}.
Observe that C is an open double cone centered at the origin. Let ℓ be the axis of
C, and ℓ⊥ be the line through the origin perpendicular to ℓ. Let Z be the counter-
clockwise rotation of R2 mapping ℓ to the y-axis and ℓ⊥ to the x-axis. Note that
Z(C) is again an open double cone centered at the origin. Let π : R2 → R be the
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coordinate projection onto the first coordinate. See Figure 5 for a visualization.

Let E ⊆ R be such that Q(E)∩I = ∅. We are going to show that Z(E2) is contained
in the graph of a Lipschitz function with the Lipschitz constant just depending on
C, but not on E. First, we observe that {u − v : u, v ∈ E2} is disjoint from C.
Hence

{Zu− Zv : u, v ∈ E2} = Z({u− v : u, v ∈ E2})
is disjoint for Z(C). Thus, the restriction of π to Z(E)2 is injective. Indeed, if
π(Zu) = π(Zv) for u, v ∈ E2 with u ̸= v, then Zu− Zv ∈ Z(ℓ), and in particular,
in Z(C). This is a contradiction. Let g : π(Z(E2)) → R map x to the unique
y ∈ R such that (x, y) ∈ Z(E2). Note that the graph of g contains Z(E2). Since
{Zu − Zv : u, v ∈ E2} ∩ Z(C) = ∅, it is easy to see that g is Lipschitz with
a Lipschitz constant depending only on the cone Z(C). By Kirszbraun’s theorem
[50], we can extend g to a Lipschitz function f : R → R without changing the
Lipschitz constant. □

Falconer’s trick is implicit in the proof of [30, Lemma]. It is due to Kenneth
Falconer and replaces, in [30], an explicit box-counting argument that relied on
additive combinatorics.

Lemma 6.11 (Fornasiero-H.-Miller [30]). Let E ⊆ R be bounded such that dimME >
0. Then there exist n ∈ N and a linear T : Rn → R such that Q(T (En)) is dense
in R.

Proof. By Corollary 6.9 there are n ∈ N and T : Rn → R linear such that
dimMT (En) > 1

2 . Replacing E by T (En), we may assume that dimM (E) > 1
2

and show that Q(E) is dense. Towards a contradiction, suppose that Q(E) is not
dense in R. By Lemma 6.10, there is a Lipschitz function f : R → R and a rotation
Z : R2 → R2 such that Z(E2) is contained in the graph of f . The graph of a
Lipschitz function from R to R has upper Minkowski dimension 1 by Fact 6.6(5).
Since Z is bi-Lipschitz, we have that

dimME2 = dimMZ(E2) ≤ 1.

Z

x

yℓ⊥

ℓ

C

x

y

π

Z(ℓ)

Z(ℓ⊥)

Z(C)

Figure 5. Visualization of Falconer’s trick in Lemma 6.10
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Thus

dimME =
dimME2

2
≤ 1

2
.

This contradicts our assumption on E. □

Proof of Theorem 6.7, n = 1. Let E ⊆ R be DΣ. Then by SBCT, we know that E
either has interior or is nowhere dense. If E has interior,

dimE = 1 = dimME.

Now suppose that E is nowhere dense. Then dimE = 0, and it is left to show that
dimME = 0. Suppose towards a contradiction that dimME > 0. By Lemma 6.11
there exist n ∈ N and a linear T : Rn → R such that Q(T (En)) is dense in R. This
contradicts Corollary 6.5. □

6.4. A stronger Projection Lemma and uniform M-nullness. For the proof
of Theorem 6.7 when n = 2, we need a uniform version of the result in the unary
case. To achieve this, we require a minor strengthening of Theorem 6.8. As in [25],
we denote by Gn,m the Grassmannian of all m-dimensional subspaces of Rn, and
by γn,m the natural invariant measure on Gn,m, which we assume to be normalized.
For V ∈ Gn,m, we write πV : Rn → V for the orthogonal projection onto V .

Lemma 6.12. ([25, Corollary 2]) Let E ⊆ Rn, r ∈ R>0 and s ∈ R such that
N(E, r) ≥ r−s. Then∫

Gn,m

1

N(πV (E), h)
dγn,m(V ) ≤ (c+ 1)rs,

where c only depends on n and m, and h = r1+s(1/m−1/n).

We will now use this lemma to strengthen [25, Theorem 3(a)]. The proof of this
strengthening is essentially the same as that of the original result.

Lemma 6.13 (Uniform projection lemma). Let X ⊆ Rm×Rn, s ∈ R, ε ∈ R>0 and
let (ak)k∈N be a sequence of elements of Rm and (rk)k∈N be a sequence of positive
real numbers such that limk→∞ rk = 0 and for all k ∈ N

N(Xak
, rk) ≥ r−s

k .

Then there is a linear map T : Rn → Rm and a sequence (kℓ)ℓ∈N of natural numbers
such that for all ℓ ∈ N

N(T (Xakℓ
), hkℓ

) ≥ h−tε
kℓ

,

where tε =
s−ε

1+s(1/m−1/n) and hk := r
1+s(1/m−1/n)
k .

Proof. By Lemma 6.12,∫
Gn,m

1

N(πV (Eak
), hk)

dγn,m(V ) ≤ (c+ 1)rsk.

Hence

γn,m
(
{V ∈ Gn,m :

1

N(πV (Eak
), hk)

)
≥ rs−ε

k }
)
≤ (c+ 1)rεk.
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Let tε :=
s−ε

1+s(1/m−1/n) . Then

∞⋃
j=1

⋂
k≥j

{V ∈ Gn,m : N(πV (Eak
), hk) ≤ htε

k }

⊆
∞⋃
j=1

⋂
k≥j

{V ∈ Gn,m :
1

N(πV (Eak
), hk)

≥ rs−ε
k },

has γn,m-measure 0. Pick V in the complement of this set, and let T be πV . □

We say a family (Xa)a∈Y of subsets of Rn is uniformly M-null if

lim sup
r→0

log(N(Xa, r))

log 1
r

= 0 uniformly in a.

Proposition 6.14. Let E ⊆ [0, 1]n+1 be DΣ such that Ea is nowhere dense for all
a ∈ [0, 1]n. Then (Ea)a∈[0,1]n is uniformly M-null.

Proof. Suppose not. Then there is s ∈ (0, 1) such that for arbitrarily small r ∈ R>0

there is a ∈ [0, 1]m with

N(Ea, r) ≥ r−s.

Pick a sequence (rk)k∈N of real numbers with limk→∞ rk = 0 and a sequence (ak)k∈N
of elements of [0, 1]m such that for every k ∈ N

N(Eak
, rk) ≥ r−s

k .

Note that every d ∈ N and k ∈ N

N(Ed
ak
, rk) > r−sd

k .

We now apply Lemma 6.13. Taking d ∈ N large enough, we can find by an t ∈ R
with t > 1/2 and a linear map T : Rn → R such that (after replacing (ak)k∈N by a
subsequence and rk by hk) for all k ∈ N

N(T (Ed
ak
), rk) ≥ r−t

k .

Consider now the set

A := {(a, x) ∈ [0, 1]n × [0, 1] : x ∈ Q(T (En
a ))}.

By Corollary 6.5, the fiber Aa is nowhere dense for every a ∈ [0, 1]n. Since the
graph of Q ◦ T is DΣ, we have that A is DΣ as well. Thus by Corollary 4.4 there
are intervals J1, . . . , Jp ⊆ R such that for each a ∈ [0, 1]m there is i ∈ {1, . . . , p}
with Ji ⊆ [0, 1] \ Aa. From Lemma 6.10 we obtain Lipschitz constants c1, . . . , cp
and rotations Z1, . . . , Zp such that for each a ∈ [0, 1]n there is i ∈ {1, . . . , p} and a
Lipschitz function fa : R → R with Lipschitz constant ci such that

T (Ed
a)

2 ⊆ Zi

(
graph(fa)

)
.

Observe that there is r0 > 0 such that for all r < r0

N(T (Ed
a)

2, r) ≤ N(Zi graph(fa), r) < r−2t.

However for all k ∈ N,
N(T (Ed

a)
2, rk) ≥ r−2t

k .

□
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6.5. The planar case. We consider the case n = 2 and E compact of Theorem
6.7. Let E ⊆ [0, 1]2 be compact. For x, y ∈ [0, 1], we will use the following notation:

Ex := {z ∈ [0, 1] : (x, z) ∈ E}, Ey := {z ∈ [0, 1] : (z, y) ∈ E}.
Let fE : [0, 1]2 → [0, 1] be the function mapping (x, y) to

min
(
(Ex ∪ {2}) ∩ [y,∞)

)
.

For y ∈ [0, 1], we write fE( , y) for the function mapping x ∈ [0, 1] to fE(x, y). We
need to analyze points of discontinuity of these functions. For ε ∈ R>0, set

Dε(E) := E ∪ {(x, y) ∈ [0, 1]2 : x ∈ Dε(fE( , y))}.
Set D(E) :=

⋃
ε>0 Dε(E).

Lemma 6.15. Let ε > 0. Then Dε(E) is closed, and hence D(E) is DΣ.

Proof. Let (x0, y0) ∈ [0, 1]2 \ Dε(E). Since (x0, y0) /∈ E, there is δ0 ∈ R that

Bδ0((x, y)) ⊆ [0, 1]2 \ E.

Thus for every (x, y) ∈ Bδ0((x0, y0)),

(1) fE(x, y) = fE(x, y0).

Since x0 /∈ Dε(fE( , y0)), there is a δ1 ∈ R>0 such that for all z ∈ Bδ1(x0),

(2) fE(Bδ1(x0), y0) ⊆ Bε(fE(z, y0)).

Let δ ∈ R>0 be such that δ + δ1 < δ0, and let (x, y) ∈ Bδ((x0, y0)). Then for each
z ∈ Bδ1(x), we have that (z, y) ∈ Bδ0((x0, y0)) and by (1)

fE(z, y) = fE(z, y0).

Thus by (2) for every z ∈ Bδ1(x),

fE(Bδ1(x), y) = fE(Bδ1(x), y0) ⊆ Bε(fE(z, y0)) = Bε(fE(z, y)).

Hence x /∈ Dε(fE( , y)). Thus Bδ((x0, y0)) ⊆ [0, 1]2 \ Dε(E). □

Proof of Theorem 6.7, n = 2, E compact. If E has interior, then

dimE = dimME = 2.

Hence, we can assume that E does not have interior. If dimE = 0, then the image
of E under each coordinate projection has empty interior, and since E is closed, it
is nowhere dense. By case n = 1 of Theorem 6.7, these two sets are M-null. Thus,
E is a subset of the product of two M-null sets, and therefore, dimME = 0.

We have reduced to the case where dimE = 1. Consider the definable sets

A1 := {x ∈ [0, 1] : Ex has interior}, A2 := {y ∈ [0, 1] : Ey has interior}.
Then, A1 and A2 are both DΣ by Lemma 4.1(4), and each either has interior or is
nowhere dense by the SBCT. Since E does not have interior, both A1 and A2 do
not have interior by Fact 4.5. The unary case of Theorem 6.7 then implies that A1

and A2 are M-null. Set A := A1 ∪A2. Since A1 and A2 are M-null, so is A. By
Fact 6.6(7),

dimM (A× [0, 1]) ≤ 1.

Towards a contradiction, suppose that dimME > d > 1. Set

E′ := E \ (A× [0, 1]).
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Then, dimME′ > d by Fact 6.6(3). Since E is compact and A is closed, it follows
that E′ is DΣ. Since E′

x has empty interior for every x ∈ [0, 1], we know that
E′

x is nowhere dense for every x ∈ [0, 1]. Hence, by Proposition 6.14, the families
(E′

x)x∈[0,1] and (E′y)y∈[0,1] are uniformly M-null. By Lemma 6.15, the set D(E)
is DΣ. By Proposition 5.4, we know that each D(E)y is nowhere dense whenever
y /∈ A. Observe that D(E) ∩ E′ is DΣ. Hence, the family (D(E)y ∩ E′y)y∈[0,1] is
uniformly M-null by Proposition 6.14.

We finally reach the moment when we have to do actual box counting. To do this
efficiently, it is convenient to introduce further notation. For X ⊆ Rn and m ∈ N,
set

Nm(X) := card{(i, j) ∈ {0, . . . ,m− 1}2 : m−1([i, i+ 1]× [j, j + 1]) ∩X}.
Observe that

2−nNm(X) ≤ N(X,m−1) ≤ Nm(X).

Since these three families are uniformly M-null and dimME′ > d, we can pick an
m ∈ N and p ∈ R>0 such that

(1) d > 1 + p,
(2) Nm(E′) > 4md,
(3) Nm(A× [0, 1]) ≤ m1+p,
(4) for x ∈ [0, 1] and y ∈ [0, 1],

max{Nm(E′
x), Nm(E′y), Nm(D(E)y ∩ E′y)} < mp.

For convenience, set

F := {(i, j) ∈ {0, . . . ,m− 1}2 : m−1([i, i+ 1]× [j, j + 1]) ∩ E′ ̸= ∅,
m−1([i, i+ 1]× [j, j + 1]) ∩ (A× [0, 1]) = ∅}.

Set
G := {(i, j) ∈ F : m−1([i, i+ 1]× {j}) ∩ D(E) = ∅}.

Here, F corresponds to the set of boxes that intersect E′, but not E, and G repre-
sents the boxes which, in addition, do not contain any of the discontinuities of E.
For ease of notation, we will write fj for fE( ,

j
m ).

We now proceed with some elementary counting arguments: first, note that by (2)
and (3),

card(F ) ≥ Nm(E′)−Nm(A× [0, 1]) ≥ 4md −m1+p ≥ 3md.

By (4),

card(F \G) ≤ m ·mp = m1+p.

Thus, by (1) and (2),

card(G) = card(F )− card(F \G) ≥ 3md −m1+p ≥ 2md.

Set
H := {(i, j) ∈ F : fj(m

−1[i, i+ 1]) ⊆ m−1[j, j + 1]}.
Consider (i, j) ∈ G \H. Then

• fj is continuous on m−1[i, i+ 1]
• there is x0 ∈ m−1[i, i+ 1] such that fj(x0) ∈ m−1([j, j + 1])
• there is x1 ∈ m−1[i, i+ 1] such that fj(x1) /∈ m−1([j, j + 1])
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x

y

F \G

H

G \H

a

Figure 6. A visualization of the counting argument in the proof
of the planar case of Theorem 6.7. The ways lines indicate the
graphs of the various fj .

Thus, by the intermediate value theorem, there exists x2 ∈ m−1([i, i+1]) such that
fj(x2) = m−1(j + 1). So

[i, i+ 1] ∩ E′m−1(j+1) ̸= ∅.
Hence by (4)

card(G \H) ≤
m−1∑
j=0

Nm(E′m−1(j+1)) < m ·mp = m1+p < md.

Thus

card(H) = card(G)− card(G \H) > 2md −md = md.

Since 1 + p < d, there is i0 ∈ N such that

card{j ∈ N>0 : (i0, j) ∈ H} > mp.

Fix this i0. Let a ∈ m−1[i0, i0 + 1] and let j ∈ N>0 be such that (i0, j) ∈ H. Since
(i0, j) ∈ H,

fj(a) ∈ m−1[j, j + 1].

Hence, [j/m, (j + 1)/m] ∩ E′
a ̸= ∅. Thus

Nm(E′
a) ≥ card{j ∈ N>0 : (i0, j) ∈ H} > mp,

contradicting (4).
□

Figure 6 visualizes the counting argument from the preceding proof. The wavy
lines represent the graphs of the various fj . The striped boxes, with stripes run-
ning from the top-left to the bottom-right, correspond to boxes whose bottom-left
corners lie in F \ G; that is, boxes in F where the corresponding fj has points of
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discontinuity. The striped boxes with stripes running from the bottom-left to the
top-right correspond to boxes whose bottom-left corners are in H; that is, boxes
in F where fj is continuous but leaves the box. The shaded boxes correspond to
boxes with bottom-left corners in G \H.

In the above proof, we show that if E′ has a large upper Minkowski dimension,
then many boxes have bottom-left corners in G \H. This leads to a contradiction
with the fact that the fibers of E′ are uniformly M -null. Indeed, while each fiber
E′

a does not necessarily intersect each box containing an element of E′, it must
intersect every striped box, as highlighted by the thick vertical line. This is the key
observation in the proof: if there are many shaded boxes, there must be a ∈ [0, 1]
such that E′

a intersects too many boxes.

7. Outlook and open questions

While Miller’s conjecture has been the main focus of this survey, there are other
active directions in this research program. We list some of these here.

7.1. Generalizations of Pila-Wilkie. The Pila-Wilkie theorem [62], which counts
rational points on definable sets in o-minimal structures, has been a driving force
behind the recent surge of applications of o-minimality, particularly in arithmetic
geometry. Surprisingly, it remains an open question whether this theorem general-
izes to noiseless expansions of R. This question is explicitly raised in Comte and
Miller [10], where the authors establish Pila-Wilkie results over the real numbers,
but outside the o-minimal context. For certain non-o-minimal expansions of R that
have an o-minimal open core, Eleftheriou [21] proves an appropriate version of the
Pila-Wilkie theorem, accounting for the additional noise in these structures.

7.2. Definable completeness. In this survey, we focus on expansions of the real
field. A similar analysis can be conducted for expansions of arbitrary real closed
fields that satisfy a definable analogue of topological completeness. We say an ex-
pansion of a dense linear order (R,<) is definably complete if every bounded
definable subset of R has both a supremum and an infimum in R. Such struc-
tures are introduced by Miller [54] under the name structures with the intermediate
value property. Noiselessness in this generality was already studied in [28], and
a dichotomy corresponding to Theorem 1.3 is established by Fornasiero and Hi-
eronymi [29, Theorem A]. The results presented in Section 5 are already proven
in [29, Section 6.3] for definably complete expansions that do not define a discrete
subring. Feller [26] extends some of the results from Section 3 to definably complete
expansions of ordered groups. The advantage of definable completeness lies in its
first-order expressibility. Since it is preserved under elementary equivalence, the
compactness theorem can be applied to establish uniformity in parameters.

7.3. A more detailed analysis of noiselessness. Noiseless structures have been
studied in [55], and the results from Section 5 hold for all sets definable in such
structures, simply because the conclusion of the SBCT holds in this generality.
While this provides analogues of important theorems from o-minimality, there is
no known analogue of the cell decomposition theorem for these structures. The
methods used in the current proofs of the cell decomposition theorem for d-minimal
structures are unlikely to extend, as they rely on the existence of isolated points in
subsets of R that are definable in a d-minimal structure and have empty interior.
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7.4. Classification. Due to the intractability of Goal 1.1, we replaced interdefin-
ability with a less well-defined, coarser equivalence relation. There is another way
to address the apparently insoluble Goal 1.1: replace the set of all expansions of R
with some interesting subset. We already mentioned the classification of all expan-
sions of R by collections of locally closed trajectories of a linear vector field in [57].
See Miller’s chapter in this volume for more on classifications of expansions by tra-
jectories of more general vector fields. It is also natural to investigate expansions by
algebraic objects. Hieronymi, Walsberg, and Xu [46] establish a classification of ex-
pansions of R by infinite discrete subgroups of GLn(C), the general linear group of
degree n over the field of complex numbers. There, the question is raised whether
a similar classification holds for expansions by finite-rank subgroups of GLn(C).
Another very interesting question is whether a classification can be obtained for
expansions of R by subfields of R. Perhaps here, interdefinability is again too fine
of an equivalence relation, and a more realistic goal is a coarser classification up to
some form of tameness. Indeed, Miller asks in [55] whether every expansion of R by
a proper subfield of R either defines Z or has o-minimal open core. This question
remains open.
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