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1 Derived Category of a Hereditary Abelian Category

Lemma 1.1. Let A be an abelian category. Suppose A has enough projectives. Let A and B
be objects in A; n ∈ Z. Then there is a canonical isomorphism

ExtnA(A,B) ∼= HomD(A)(A[0], B[n])

where we define ExtnA(A,B) := 0 for n < 0.

Proof. Let P ∗ be a projective resolution for A. Then

HomD(A)(A[0], B[n]) ∼= HomD(A)(P
∗, B[n])

∼= HomK(A)(P
∗, B[n])

∼= H−n(HomA(P ∗, B))

= ExtnA(A,B)

where the second isomorphism follows from proposition 2.7 in talk 5.
The third isomorphism follows from the observation that giving a chain map P ∗ → B[n]
amounts to giving a homomorphism f : P−n → B s.t. f ◦ d−n−1 = 0 (i.e. f is a cocycle), and
that such a map is homotopic to zero if and only if there is a g : P−n+1 → B s.t. f = g ◦ d−n
(i.e. f is a coboundary).

Remark 1.2. It follows immediately that for n,m ∈ Z:

HomD(A)(A[n], B[m]) ∼= Extm−nA (A,B)

Remark 1.3. Recall from homological algebra: Yoneda’s theory of extensions:
There is a bijection between Ext1A(A,B) and the set of equivalence classes of extensions;
which are short exact sequences of the form

0 B X A 0

(+ analogue for higher Ext-groups).
We can use this to define the Yoneda composition

ExtnA(A,B)× ExtmA(B,C)→ Extn+mA (A,C)
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For example, for A→ B in Ext0A(A,B) = HomA(A,B) and C → X → B in Ext1A(B,C), the
Yoneda composition is given by

C X ×B A A

One can check that under the identification HomD(A)(A[n], B[m]) ∼= Extm−nA (A,B), the com-
position of morphisms HomD(A)(A[l], B[m]) × HomD(A)(B[m], C[n]) → HomD(A)(A[l], C[n])
corresponds to the Yoneda composition Extm−lA (A,B)× Extn−mA (B,C)→ Extn−lA (A,C).

Recall that an abelian category is called semisimple, if every short exact sequence splits, or
equivalentely, if Ext1( , ) = 0.
In a previous talk, we proved that for A semisimple, the derived category D(A) is equivalent
to AZ. We will now slightly generalize this result.

Definition 1.4. An abelian category is called hereditary if Ext2( , ) = 0 (or equivalentely,
if Extn( , ) = 0 for all n ≥ 2).

Examples 1.5. • Any semisimple abelian category is hereditary.

• The category RepkQ of k-linear representations of a quiver Q is hereditary. (See later
in this talk.)

Proposition 1.6. If A is a hereditary abelian category, then every object in D(A) is isomor-
phic to a chain complex with all differentials 0.

Proof. Let X∗ be a chain complex. We want to show that in D(A), X∗ is isomorphic to

· · · Hn−1X HnX Hn+1X · · ·0 0 0 0

The short exact sequence

0 ker dn−1 Xn−1 im dn−1 0

yields a long exact sequence

0→Hom(HnX, ker dn−1)→ Hom(HnX,Xn−1)→Hom(HnX, im dn−1)

→Ext1(HnX, ker dn−1)→ Ext1(HnX,Xn−1)→Ext1(HnX, im dn−1)

→Ext2(HnX, ker dn−1)→ · · ·

Since Ext2(HnX, ker dn−1) = 0, the map Ext1(HnX,Xn−1)→ Ext1(HnX, im dn−1) is surjec-
tive. In particular, the extension

0→ im dn−1 → ker dn → HnX → 0

has an inverse image, i.e. there is a commutative diagram

0 Xn−1 En HnX 0

0 im dn−1 ker dn HnX 0
p
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with exact rows.
We obtain a commutative diagram

· · · 0 0 HnX 0 · · ·

· · · 0 Xn−1 En 0 · · ·

· · · Xn−2 Xn−1 Xn Xn+1 · · ·

where the vertical maps induce cohomology isomorphisms in degree n.
Combining these diagrams for all n:

· · · Hn−2X Hn−1X HnX Hn+1X · · ·

· · · Xn−2 ⊕ En−2 Xn−1 ⊕ En−1 Xn ⊕ En Xn+1 ⊕ En+1 · · ·

· · · Xn−2 Xn−1 Xn Xn+1 · · ·

0 0 0

where the vertical maps induce cohomology isomorphisms in every degree.

Corollary 1.7. Let A be a hereditary abelian category and Db(A) its bounded derived cate-
gory. Consider the full subcategory Db(A) of Db(A) whose objects are the finite direct sums
of complexes of the form A[n], for A an object of A and n ∈ Z. Then the inclusion functor
Db(A)→ Db(A) is an equivalence of categories.
Homomorphisms in Db(A) are given by

Hom
Db(A)(A[n], B[m]) ∼=


HomA(A,B) if m = n

Ext1A(A,B) if m = n+ 1

0 else

and composition of morphisms is given by the Yoneda composition.
In particular, A[n] ∼= B[m] in Db(A) if and only if n = m and A ∼= B.

2 Reminder about quiver representations

Throughout the rest of the talk: let k be an algebraically closed field

Definition 2.1. • A quiver Q consists of the following data:

– a finite set Q0, called vertices
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– a finite set Q1, called arrows

– two maps s, t : Q1 → Q0, called source map resp. target map

• A finite-dimensional (k-linear) representation V of Q consists of:

– For every vertex i ∈ Q0 a finite-dimensional k-vectorspace Vi.

– For every arrow ρ ∈ Q1 a k-linear map Vs(ρ) → Vt(ρ).

• A morphism of representations V → W consists of for every i ∈ Q0 a k-linear map
Vi → Wi s.t. for any ρ ∈ Q1 the following diagram commutes:

Vs(ρ) Vt(ρ)

Vs(ρ) Wt(ρ)

So we have an (abelian, k-linear) category of k-linear representations, denoted RepkQ.

• A nontrivial path in Q is a sequence p = ρmρm−1 . . . ρ1 with s(ρi) = t(ρi−1)∀1 < i ≤ m.
We denote s(p) = s(ρ1) and t(p) = t(ρm).

• For every vertex i, we introduce a trivial path ei. Denote s(ei) = t(ei) = i

• The path algebra kQ of Q is the k-vectorspace with basis given by the set of trivial and
nontrivial paths. Multiplication is given by concatenation of paths:

1. For p = ρmρm−1 . . . ρ1 and p′ = ρ′m′ρ
′
m′−1 . . . ρ

′
1, we have

pp′ =

{
ρmρm−1 . . . ρ1ρ

′
m′ρ
′
m′−1 . . . ρ

′
1 if t(p′) = s(p)

0 else

2. eip =

{
p if t(p) = i

0 else
and pei =

{
p if s(p) = i

0 else

Example 2.2. Let Q = ~An
op

be given by

1 2 · · · nα1 α2 αn−1

Then kQ is the k-vectorspace with basis given by the paths pij for i ≥ j, where pii := ei
and pij = αj . . . αi−1; with the multiplication defined before. It is not hard to check that
kQ is isomorphic to the algebra of upper triangular n× n-matrices, where the isomorphism
is defined by pij 7→ Eij. (Here Eij is the matrix with coefficient 1 in position (i, j), and all
other coefficients 0.)
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Proposition 2.3. Let Q be a quiver. There is an equivalence of categories

RepkQ
op ' mod−kQ

(Here mod−kQ denotes the category of finite-dimensional right kQ-modules, and Qop is ob-
tained from Q by reversing all arrows.)

Proposition 2.4. Denote A = kQ. Every right A-module M has a projective resolution of
length at most 2.
This implies that Ext2A−mod( , ) vanishes, i.e. A−mod is a hereditary abelian category.

Theorem 2.5 (Gabriel). 1. A quiver Q has only finetely many isoclasses of indecompos-
able representations if and only if its underlying unoriented graph is a ”simply laced
Dynkin diagram”, i.e. one of the graphs in the following figure. In this case Q is called
a Dynkin quiver.

Figure 1: The simply laced Dynkin diagrams. The number of beads is equal to n.

2. The indecomposable representations are in a one-to-one correspondence with the positive
roots of the root system of the Dynkin diagram.

Our goal is to give a discription of the derived category Db(mod−kQ) for Q a Dynkin quiver.
By Gabriel’s theorem, mod−kQ has only finitely many indecomposable objects up to iso-
morphism. We also know that every object of mod−kQ decomposes into a finite sum of
indecomposable objects, unique up to isomorphism and permutation. Since mod−kQ is
hereditary, we can use corollary 1.7 to see that the indecomposable objects of Db(mod−kQ)
are given by the chain complexes M [n] (where M ∈ ind(mod−kQ), n ∈ Z), the map

ind(mod−kQ)/∼=× Z→ ind(Db(mod−kQ))/∼= : (M,n) 7→M [n]
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is a bijection, and that any object Db(mod−kQ) can be written in a unique way as a finite
direct sum of indecomposables. So the understand the category Db(mod−kQ), it suffices to
understand the subcategory ind(Db(mod−kQ)) of indecomposable objects. It will turn out
that the category ind(Db(mod−kQ)) is equivalent to the so-called mesh category of Q, which
we will define in the following section.

3 The mesh category of a quiver

Remark 3.1. • One can define infinite quivers in the same way as quivers, but without
the assumption that Q0 and Q1 are finite.

• An isomorphism Q
∼−→ Q′ of (infinite) quivers consists of bijections Q0

∼−→ Q′0 and
Q1

∼−→ Q′1 commuting with the source and target maps.

Definition 3.2. Let Q be a quiver. The repetition quiver ZQ of Q is the infinite quiver with:

• Vertices (ZQ)0 = Z×Q0.

• For every arrow α : i→ j in Q and every p ∈ Z, we have an arrow (p, α) : (p, i)→ (p, j)
and an arrow σ(p, α) : (p− 1, j)→ (p, i).

ZQ comes equipped with a map

σ : (ZQ)1 → (ZQ)1 :(p, α) 7→ σ(p, α)

σ(p, α) 7→ (p− 1, α)

and an automorphism τ given by

τ : (ZQ)0 → (ZQ)0 :(p, i) 7→ (p− 1, i)

τ : (ZQ)1 → (ZQ)1 :(p, α) 7→ (p− 1, α)

σ(p, α) 7→ σ(p− 1, α)

Example 3.3. For Q = ~A3, the repetition quiver is given by:

(−1, 3) (0, 3) (1, 3) (2, 3)

· · · (−1, 2) (0, 2) (1, 2) (2, 2) · · ·

(−1, 1) (0, 1) (1, 1) (2, 1)

σ(0,α2) σ(1,α2) σ(2,α2)

σ(0,α1)

(−1,α2)

σ(1,α1)

(0,α2)

σ(2,α1)

(1,α2) (2,α2)

(−1,α1) (0,α1) (1,α1) (2,α1)

Observation 3.4. If Q is a quiver s.t. the underlying graph has no loops, and Q′ is obtained
from Q by reversing an arrow, then their repetition quivers ZQ and ZQ′ are isomorphic (in
a way that is compatible with σ and τ).
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Definition 3.5. The path category k(Γ) of an (infinite) quiver Γ is the k-linear category
with:

• Objects: vertices of Γ.

• Hom(i, j) is the k-vectorspace with basis the set of all paths from i to j.

• The composition is induced by concatenation of paths.

Remark 3.6. • An ideal I of a k-linear category C consists of for any Hom(x, y) a
subspace I(x, y) s.t. for any f : x′ → x, h : y → y′ and g ∈ I(x, y) we have h ◦ g ◦ f ∈
I(x′, y′).

• The quotient category C/I has the same objects as C, and

HomC/I(x, y) := HomC(x, y)/I(x, y)

Definition 3.7. • The mesh ideal mesh(ZQ) is the ideal of k(ZQ), generated by the
mesh relators

rv =
∑

α:t(α)=v

ασ(α) ∈ Homk(ZQ)(τ(v), v)

where v runs through the vertices of ZQ.

• The mesh category k〈ZQ〉 of ZQ is the quotient category k(ZQ)/mesh(ZQ).

Example 3.8. For Q = ~A3, the mesh ideal mesh(ZQ) is generated by

(p, 2) (p− 1, 3) (p, 3)

(p, 1) (p+ 1, 1) (p, 2)

(p, 3) (p, 2) (p+ 1, 2)

(p, 2) (p+ 1, 3) (p+ 1, 1)

σ(p+1,α1) σ(p,α2)(p,α1) ;
(p,α2)

σ(p+1,α2) σ(p+1,α1)(p,α2)
+

(p+1,α1)

In order to avoid trouble with signs, we will instead work with the ideal generated by

(p, 2) (p− 1, 3) (p, 3)

(p, 1) (p+ 1, 1) (p, 2)

(p, 3) (p, 2) (p+ 1, 2)

(p, 2) (p+ 1, 3) (p+ 1, 1)

σ(p+1,α1) σ(p,α2)(p,α1) ;
(p,α2)

σ(p+1,α2) σ(p+1,α1)(p,α2) −
(p+1,α1)
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(we changed the plus in a minus). It’s easy to see that the obtained quotient categories are
equivalent (for example by replacing (p, α1) by −(p, α1)).
We can see that the only Hom-spaces in k〈ZQ〉 that are nonzero are Homk〈ZQ〉((p, 1), (p, 2)),
Homk〈ZQ〉((p, 1), (p, 3)), Homk〈ZQ〉((p, 2), (p, 3)), Homk〈ZQ〉((p, 2), (p+1, 1)), Homk〈ZQ〉((p, 2), (p+
1, 2)), Homk〈ZQ〉((p, 3), (p + 1, 2)), Homk〈ZQ〉((p, 3), (p + 2, 1)), and these are 1-dimensional.
So k〈ZQ〉 is isomorphic to the category given by the following figure.

• • • •

· · · • • • • · · ·

• • • •

Here every arrow represents a 1-dimensional Hom-space, and we can choose generators for
these Hom-spaces s.t. the generator of a horizontal red arrow is given by the composition of

the generators
•

• •
which equals the composition of the generators

• •

•
, and

the generator of another red arrow is the composition of the generators of the 2 corresponding
black arrows.

Theorem 3.9. Let Q be a Dynkin quiver.

• There is a canonical bijection from the vertices of ZQ to the set of indecompoasable
objects of Db(mod−kQ), taking (0,i) to the indecomposable projective module eiA.

• The above bijection extends to an equivalence of categories

k〈ZQ〉 ' ind(Db(mod−kQ))

A full proof of this theorem would take too much time. We will only give a proof for the case
Q = ~A3.

Corollary 3.10. By observation 3.4, it follows that if Q and Q′ are Dynkin quivers with the
same underlying Dynkin diagram, then their (bounded) derived categories are equivalent.

4 The category ind(Db(mod−k ~A3))

By Gabriel’s theorem, ~A3

op
has only finitely many indecomposable representations. It’s an

easy exercise to list all of them (we’ll denote the path algebra k ~A3 by A :

• (k ← 0← 0) ∼= e1A =: P1 = S1 (projective, simple)
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• (0← k ← 0) =: S2 (simple)

• (0← 0← k) =: I3 = S3 (injective, simple)

• (k
∼←− k ← 0) ∼= e2A =: P2 (projective)

• (0← k
∼←− k) =: I2 (injective)

• (k
∼←− k

∼←− k) ∼= e3A =: P3 = I1 (projective, injective)

All of these are obviously non-isomorphic indecomposable representations. To see that there
are no others, either use part 2 of Gabriel’s theorem, or just check explicitely.
It’s easy to compute Hommod−k ~A3

(M,N) for M and N indecomposable modules. We get

the following picture of ind(mod−k ~A3) (here M → N means Hommod−k ~A3
(M,N) ∼= k, else

Hommod−k ~A3
(M,N) = 0; furthermore if we replace every arrow by a well-chosen generator of

the corresponding vectorspace, the figure becomes a commutative diagram).

P3

P2 I2

P1 S2 I3

It’s also easy to find projective resolutions for the indecomposable objects:

0→ P1 → P2 → S2 → 0

0→ P1 → P3 → I2 → 0

0→ P2 → P3 → I3 → 0

We can use these to compute Ext1
mod−k ~A3

(M,N) for M and N indecomposable modules. We
find that all Ext-spaces are 0, except for the following 5:
Ext1(S2, P1), Ext1(I2, P1), Ext1(I2, P2), Ext1(I3, P2), Ext1(I3, S2)
which are 1-dimensional.
So, using corollary 1.7, we get the following picture of ind(Db(mod−k ~A3)):

P1[0] P3[1] S2[1] I1[1]

· · · P2[0] I2[0] P2[1] I2[1] · · ·

P3[0] S2[0] I1[0] P1[1]
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The only thing left to check to see that this category is equivalent to the category of example
3.8, is that (after choosing generators) the red dotted arrows are the compositions of 2
black ones. I.e. we need the maps Ext1(I2, P1) → Ext1(S2, P1), Ext1(I3, P2) → Ext1(I2, P2),
Ext1(I2, P1) → Ext1(I2, P2), Ext1(I3, P2) → Ext1(I3, S2) to be bijective. This can be easily
checked using the long exact sequences associated to the short exact sequences 0 → S2 →
I2 → I3 → 0 and 0→ P1 → P2 → S2 → 0.
This concludes the proof of theorem 3.9 in the case Q = ~A3.

Remark 4.1. Instead of computing the Ext-spaces via projective resolutions, we could also
have used the formula

dim Hommod−k ~A3
(M,N)− dim Ext1

mod−k ~A3
(M,N) = 〈dimM, dimN〉

where 〈 , 〉 : NQ0 × NQ0 → Z is the Euler form, defined by

〈x, y〉 =
∑
i∈Q0

xiyi −
∑
ρ∈Q1

xs(ρ)yt(ρ)

Example 4.2. For the quiver 1→ 2← 3, the category ind(mod−kQ) looks like

• •

• •

• •

which is not equivalent to ind(mod−k ~A3). However, if we construct from this the derived
category ind(Db(mod−kQ)) as we did above, we get the same picture as before, as predicted
by corollary 3.10.
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