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In this seminar talk, the concept of the so called Verdier
localisation of a triangulated category and the derived
category of an abelian category will be introduced. The
main goal of this talk is to establish the following theorem:

Theorem 0.1 (Verdier). For a triangulated subcategory
C of a triangulated category D, there exists a triangu-
lated category denoted “D/C” and a triangulated functor
F : D → D/C such that C is contained in the kernel of
F and F is universal with this property, i. e. all triangu-
lated functors T : D → E whose kernel contains C factor
uniquely through F .

After having explained the relevant vocabulary of this
theorem, we will construct the category D/C in order to
prove the theorem. Eventually we will de derived category
of an abelian category by taking the Verdier localisation
of its homotopy category.

If not stated otherwise, this talk follows the argumenta-
tion from [Nee01, pp. 73-99] and [Mur07]. The proofs of
most technical lemmas are ommited and can be found at
the same place. Also, any set theoretical considerations
are waived.

1. Necessary Definitions

The terms in Verdier’s theorem undefined yet are to be
made precise in this section. One might expect a trian-
gulated functor between triangulated categories to map
triangles to triangles; however, such a functor has to be
compatible with the suspension functor Σ in an appropri-
ate sense which motivates the following definition:

Definition 1.1. A triangulated functor between two trian-
gulated categories D and E consists of an additive func-
tor F : D → D′ together with a natural isomorphism
FΣ ∼= ΣF , such that it maps triangles to triangles.

Using this notion, we can reformulate the definition of
a triangulated subcategory as follows:

Definition 1.2. A strictly full1 additive subcategory C of
a triangulated category D is called a triangulated sub-
category if it satisfies either of the following equivalent
properties:

1i. e. it is closed under isomorphisms.

1. if viewed with the triangulated structure of D, it is a
triangulated category again, i. e. it contains all objects
necessary to complete C-morphisms to triangles, and
the embedding into D is a triangulated functor;

2. C is Σ-stable, i. e. ΣC = C, and for any triangle
X → Y → Z → ΣX with X,Y ∈ C also Z ∈ C.

In particular, the triangles in a triangulated subcategory
C are precisely the triangles in D consisting of objects in
C. As for morphisms of an additive category, it is useful
to define the kernel of a triangulated functor.

Definition 1.3. Given a triangulated functor F : D → D′,
its kernel is the full subcategory of D consisting of objects
{X ∈ D : FX ∼= 0}.

By using the natural isomorphism coming along with F
and the additivity of F , it is immediate that kerF admits
the following property:

Definition 1.4. A triangulated subcategory C ⊆ D is called
thick if ∀X,Y ∈ D : X ⊕ Y ∈ C ⇒ X,Y ∈ C, i. e. it
contains all direct summands of its objects.

It will turn out that kerF as given by Verdier’s theorem
is the smallest thick subcategory of D containing C.

2. The collection of morphisms MorC

Now, after having explained all termini used in the the-
orem, some facts about the category MorC have to be
recapitulated before constructing D/C.

Definition 2.1. Given a triangulated subcategory C ⊆ D,
let MorC be the collection of morphisms f : X → Y in D

MorC := {f ∈ HomD(X,Y )|X,Y ∈ D, cone f ∈ C},

, i. e. it contains precisely those morphisms f : X → Y of
D for which, if the morphism is completed to a triangle
X → Y → Z → ΣX, we have Z ∈ C.

This collection is well-defined because such a diagram
always exists in a triangulated category, and since the
third element Z of the triangle us inuque up to an isomor-
phism, this definition does not depend on the choice of
Z.

Remark 2.2. The collection MorC satisfies the following
properties:
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• Since 0 ∈ C as it is additive, MorC contains all iso-
morphism, i. p. all identities.

• by the octahedral axiom, MorC satisfies a two-of-three-
rule, i. e. if two of the morphisms f , g and gf are
morphisms in MorC, then the third is as well

• In particular, it is possible to compose morphisms in
MorC.

• MorC contains all homotopy pullbacks and pushouts
of its morphisms.

Actually, as a side remark, MorC together with all objects
of D forms a category.

For the kast point, we introduce the following notion:

Reminder 2.3. A commutative square

P
f //

g��

A

g′��
B

f ′ // Q

is called homotopy bicartesian if there is a triangle

P
( g
−f)−−−→ B ⊕ A → Q → ΣP . If so, P and Q are called

homotopy pullback and homotopy pushout respectively2

Homotopy pullbacks and pushouts always do exist.

With this notion in mind, the statement that MorC
contains all homotopy pullbacks and pushouts means that,
in the notation above, f or g are contained in MorC iff f ′

or g′ are, respectively. We state the following result that
in particular will apply to the Verdier quotient category:

Lemma 2.4. Once defined, the functor F : D → D/C as
well as any other triangulated functor D → D′ whose
kernel contains C ⊆ D maps MorC to isomorphisms.

Proof. We know that, in any triangulated category, a
morphism is an isomorphism iff it fits into a triangle
isomorphic to X → Y → 0 → ΣX. Applying F to an
arbitrary triangle where Z ∈ C yields

(X → Y → Z → ΣX)

F7−→ (FX → FY → FZ → ΣFX)

∼= (FX
∼=−→ FY → 0→ ΣFX).

Hence FX ∼= FY .

3. Construction, Categoriality

Slogan: Endow the objects of D with enhanced morphisms.
Although these will not form a category, after diving out
an appropriate equivalence relation, this will become a
category.

2Compare this to the short exact sequence 0 → A ×Q B

(
g
−f

)
−−−−→

B ⊕ A → Q → 0 an ordinary pullback in an abelian category
fits into.

Definition 3.1. For X,Y objects of D we define collections
of morphisms

ĤomD(X,Y ) :=
{
X

f←−W → Y : f ∈ MorC

}
.

Diagrams in ĤomD(X,Y ) are called roofs.

Since MorC contains all identities, ∀X ∈ D : (X
idX←−−

X
idX−−→ X) ∈ ĤomD(X,X,). In the following, let X,Y

denote arbitrary objects of D.

Definition and Lemma 3.2. The composition of roofs in

ĤomD(X,Y ) given by

(Y ←W → Z) ◦ (X ←W ′ → Y )

:=


W ×Y W ′

�� ��
W
�� ��

W ′

�� ��
X Y Z


is associative. i. e. a composition of two roofs is given by
a D-homotopy pullback above the “middle” object.

Note that, although the pullback always can be taken, it
is only unique up to a non-canonical isomorphism [Nee01,
p. 54]. Hence, the composition of roofs is only defined up
to isomorphisms.

Definition and Lemma 3.3. On ĤomD(X,Y ) there is a
equivalence relation +� which is compatible with the just
defined composition, given by (X ← Z → Y ) +� (X ←
Z ′ → Y ) iff there is a roof (X ←W → Y ) ∈ ĤomD(X,Y )
such that the diagram

Z ′

}}   
X Woo //

OO

��

Y

Z

aa ==

commutes. In particular the vertical morphisms are con-

tained in MorC. The equivalence class of X
f←− W

g−→ Y
is denoted by gf−1.

Proof. We have to show that the relation is an equivalence
relation compatible with the composition.

• Vertical morphisms are contained in MorC because of the
two-of-three-rule.

• Symmetry and reflexivity are obvious.

• For checking transitivity, let (X ← Z1 → Y ) +� (X ←
Z2 → Y ) +� (X ← Z3 → Y ). If this is spelled out, the
resulting diagram

Z1

}} !!

Z

OO

��vv ((
Z′′ // 44

00

..

X Z2
oo // Y

Z′

hh 66OO

��
Z2

aa ==
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can be completed by the homotopy pullback Z′′. Since
the vertical lines and thus their homotopy pullback are
contained in MorC , composing the appropriate morphisms
leads the desired diagram exhibiting (X ← Z1 → Y ) +�
(X ← Z3 → Y ).

• For proving that the relation is compatible with the com-

position in ĤomD(X,Y ), consider the following postcom-
position of two roofs that are in relation with a third one,
as well as the respective compositions:

W1

}} ""

V1
oo

  
X W

��

OO

oo // Y Voo // Z

W2

aa ==

V2
oo

>>

where Vi = Wi ×Y V . Taking the respective pullbacks

U1

!!

##
W1

}} !!

V1
oo

  
U

>>

  

X W

��

OO

oo // Y Voo // Z

U2

==

;;W2

aa ==

V2
oo

>>

defined by U = W ×Y V1 ×W W ×Y V2 = V1 ×Y V2

shows that both compositions are in relation. Hence the
relation is compatible with composition and thus forms a
equivalence relation.

Definition 3.4. The Verdier quotient D/C is the category
defined by the following data:

Obj(D/C) := Obj(D)

HomD/C(X,Y ) := ĤomD(X,Y )/+� .

Additionally, we the obvious functor

F : D → D/C
X 7→ X

(X
f−→ Y ) 7→ (X

1←− X
f−→ X)

is called Verdier localisation map.

The functor F will turn out to be our triangulated
functor whose existence is claimed by Verdier’s theorem.

Since the composition in ĤomD(X,Y ) is defined up to
non-canonical isomorphisms, it is well-defined in D/C.
We have already seen that the composition of roofs is
associative, and that contains all identities.

4. Properties of D/C, Universality of F

The functor F and the composition law immediately yield
the following result:

Lemma 4.1. If g ∈ MorC, then gf−1 is invertible, and its
inverse is given by (gf−1)−1 = fg−1. Furthermore, every
morphism gf−1 can be written as gf−1 = F (g)F (f)−1.

In particular, F (f) is an isomorphism if f ∈ MorC.
However, the following result shows the importance of the
functor F :

Proposition 4.2. The functor F : D → D/C is universal
among all functors mapping MorC to isomorphisms, i. e.
every functor T : D → E sending MorC to isomorphisms

factors as D F−→ D/C → E.

Proof. We can extend F to roofs in the obvious way.
Applying T the diagram of two equivalent roofs yields

TW
∼=
zz $$

TX TW ′oo
∼=
OO

//
∼= ��

TY

TW ′′
∼=

dd ::

showing all the left half of the diagram being isomorphic.
Hence, T maps equivalent morphisms to the same in
E .

To show Verdier’s theorem, we have yet to show that
D/C is a triangulated category and that F is a triangulated
functor.

Proposition 4.3. The category D/C is additive.

Proof. The following properties have to be shown:

Existence of a zero-object It comes to mind that 0 ∈ D
is a good candidate for the zero object. Indeed,

X
1←− X → 0 is a morphism into 0, and taking an

arbitrary morphism X
f←−W → 0, the commutative

diagram

P

~~ ��
f

��

X 0

X

`` ??

shows that 01−1 +� 0f−1. Hence for each object X
there is exactly one morphism into 0.

Existence of finite biproducts The obvious candidate is
X ⊕D/C Y = X ⊕D Y , which indeed satisfies the
universal properties of the product and coproduct in
D/C.

Group structure The addition given by f + g := X →
X⊕X

f⊕g−−−→ Y ⊕Y → Y has to yield a group law, i. e.
it has to contain additive inverses: Since composition
on D is linear, one can compute gf−1 + (−g)f−1 =
(g − g)f−1 = 0.
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5. Isomorphisms

Before being able to proof Verdier’s theorem, the following
utterly boring technical results are yet to be shown.

Lemma 5.1. For any morphism gf−1 in D/C satisfying
gf−1 +� 1 one has g ∈ MorC.

Proof. Via the commutative diagram associated to the equiv-
alence,

A
f

}}
g

!!
X Woo //

$

OO

ξ��

X

X

aa ==

where $ and ξ = g$ are contained in MorC, yielding f ∈
MorC .

Lemma 5.2. Two morphisms f, g : X → Y in D are
mapped to the same D/C-roof by F iff there exists an
equalising map E → X in MorC.

Proof. Being mapped to the same morphism means

X
1
~~

f

  
X Eoo

OO

//

��

Y

X
1

``
g

>>

hence E → X is the desired equalising morphism, Con-
versely, if such an equalising morphism exists, it fits into
this diagram.

Lemma 5.3. We can characterise isomorphisms and the
kernel of F as follows:

1. The morphism gf−1 is an isomorphism iff ∃l, r ∈ D :
lg, gr ∈ MorC.

2. Given an object X ∈ D, then FX ∼= 0 ∈ D/C ⇔
∃X ′ ∈ D : X ⊕X ′ ∈ C.

Proof. 1. (⇐) The morphisms F (lg) and F (gr) are invert-
ible since lg, gr ∈ MorC. Hence F (g) admits a left
and a right inverse and is thus invertible. Therefore,
also gf−1 is invertible.

(⇒) Assuming gf−1 is an isomorphism, in particular g is
invertible. A right rs−1 inverse such that grs−1

+� 1
yields that gr ∈ MorC. The morphism l can be
constructed analogously.

2. (⇒) If X → 0 is an isomorphism in D/C, then rotating

the split triangle Y → X ⊕ Y → X
0−→ ΣY yields

X
0−→ ΣY → Σ(X ⊕ Y ) → ΣX which exhibits

Σ(X ⊕ Y ) and hence X ⊕ Y as a member of C.
(⇐) Assuming X ⊕ Y ∈ C, we want to find left and

right factors that make X → 0 a member of C.
The zero morphism 0→ X yields the isomorphism
(0 → X → 0) ∈ MorC, and the zero morphism

X → 0 → ΣY fits into the triangle X
0−→ ΣY →

Σ(X ⊕ Y )→ ΣX, such that (X
0−→ ΣY ) ∈ MorC .

Proposition 5.4. The functor F maps a morphism X → Y
to an isomorphism iff for any triangle (X → Y → Z →
ΣX), ∃Z ′ : Z ⊕ Z ′ ∈ C.

Proof. Omitted. The rather technical proof can be found
in [Nee01, p. 92].

In particular, this shows that kerF is the smallest
thick subcategory of D category containing the direct
summands of objects in D.

6. Commutative Diagrams

Lemma 6.1. Any commutative square in D/C is isomor-
phic to the F -image of a D-commutative square.

Proof. Given a commutative D/C-square

W //

��

X

��
Y // Z,

the composed morphisms can be lifted to a composition of
morphisms in D (just consider the pullback diagram for the
roof composition)

W1

}}

// X ′

~~

��

W ′ // W3

""

44

// W | //

−

��

X

−

��

W2

==

��

Y | // Z

Y ′

<< ==

that is isomorphic to the original one in D/C. In this diagram,
roofs are marked by the ticks crossing the arrows. The object
W3 is taken as the homotopy pullback.

Now, the inner square is no diagram in D, hence the outer
diagram is not necessarily D-commutative. But since the inner
square is D/C-commutative, there is a D-equalizer in MorC for
both paths, denoted W ′. Hence we obtained

W ′

��

// X ′

��
Y ′ // Z

as a D-commutative square.

Proposition 6.2. Given a commutative diagram of two
D-triangles and two isomorphisms in D/C (dotted),

X
f //

��

Y //

g��

Z // ΣX

��
X ′ // Y ′ // Z ′ // ΣX ′,

the diagram can be completed to a commutative diagram
by a missing D/C-isomorphism Z → Z ′.

4



Proof. We assume that X ′ = X. Using the octahedral axiom
we obtain the triangle in

ΣX

Z

h

��

DD

ΣX

Y

DD

g ''
Z′

��

77

Y ′
77

''
X

f

DD

gf

77

Y ′′

��
''
ΣY

ΣZ,

hence Y ′′ is a direct summand of some object in C, hence h
is a D/C-isomorphism by applying the previous proposition
twice. The general case relies on this one and can be found in
[Nee01, p. 95].

7. Triangulated Structure

In order to turn D/C into a triangulated category, we
need to define the distinguished triangles:

Definition 7.1. Let the suspension functor Σ of D be ex-
tended to D/C via

Σ : D/C → D/C
X 7→ ΣDX

[X
f←−W

Y−→] 7→ [ΣX
Σf←−− ΣW

Σg−−→ ΣY ].

Let a candidate triangle in D/C be distinguished if it is
isomorphic to the image of a D-triangle under F .

Proposition 7.2. This turns D/C into a triangulated cate-
gory.

Proof. We have to make sure that

(TR0) candidate triangles isomorphic to triangles are
distinguished: immediate.

(TR2) “rotating” triangles yields triangles: immediate
from (TR2) in D.

(TR1) any morphism F (g)F (f)−1 : X ←W → Y can be
completed to a triangle: since D is triangulated, g can
be completed to a D-triangle W → Y → Z → ΣW .
By definition applying F yields the first row in the
commutative diagram

FW
g //

f ��

FY //

1��

FZ //

1��

ΣFW
Σf��

FX
gf−1

// FY // FZ // ΣFX

exhibiting both rows being isomorphic.

(TR4) Consinder the following partially filled commu-
tative diagram in D/C representing the octahedral
axiom:

ΣX

Z

DD

ΣX

Y

DD

g ''
Z ′

77

Y ′
77

''
X

f

DD

gf

77

Y ′′

''
ΣY.

We construct the missing morhpisms exihibing the
missing triangle as follows; slogan: use the octahedral
axiom in D by lifting all assertions from D/C to D.
Throughout this proof, latin letters denote objects in
D/C whereas greek letters denote the corresponding
objects in D. Since triangles in D/C are given as iso-
morphic images of D-triangles, we have the following
diagram where all arrows from back to front are in
MorC :

Ξ //

~~

Υ //

}}

Ω //

}}

ΣΞ

{{
X // Y //

��

Z // ΣX

Ξ //

��

Υ′ //

}}

Ω′ //

}}

ΣΞ

{{
X // Y ′ // Z ′ // ΣX ′

We also can lift the D/C-commutative square in the
front to D, hence

Ξ̄ //

��

Ῡ //

}}

Ω̄ // ΣΞ̄

{{
X // Y //

��

Z // ΣX

Ξ̄ //

��

Ῡ′ //

}}

Ω̄′ // ΣΞ̄

{{
X // Y ′ // Z ′ // ΣX ′

Now we can use that Ξ̄ → Ῡ → Ω̄ → ΣΞ̄ and
Ξ → Υ → Ω → ΣΞ (as well as the bottom trian-
gles in D) can be made isomorphic in D/C by the
last proposition, which allows us to assume that we
have a D/C-isomorphism of triangles

Ξ
ϕ //

~~

Υ //

}}

γ ��

Ω //

}}

ΣΞ

{{
X // Y //

��

Z // ΣX

Ξ //

��

Υ′ //

}}

Ω′ //

}}

ΣΞ

{{
X // Y ′ // Z ′ // ΣX ′
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Since the octahedral axiom holds in D, we can con-
struct

ΣΞ

Ω

DD

��

ΣΞ

Υ

DD

γ
''

Ω′

��

77

Υ′
77

''
Ξ

ϕ

DD

γϕ

77

Ω′′

��
''
ΣΥ

ΣΩ,

which exhibits the morphism Z → Z ′. Now we can
put Ω′′ into a diagram

Ξ //

~~

��

Υ′ //

}}

Ω′ //

||

��

ΣΞ

{{

��

X //

f

��

Y ′ // Z // ΣY

��

Υ //

~~

Υ′ //

}}

Ω′′ // ΣΥ

{{
Y

g
// Y ′ // Z ′′ // ΣY ′

Again, we can complete the D/C isomorphism in the
bottom row by the same argument as above (i. e.
find the D-triangle D/C-isomorphic to the bottom
which isD/C-isomorphic to the bottom back triangle),
hence we find a morphism Z ′ → Z ′′ that fits into a
triangle Z → Z ′ → Z ′′ → ΣZ in D/C. Putting all
this together, we obtain

ΣX

Z

��

DD

ΣX

Y

DD

g ''
Z ′

��

77

Y ′
77

''
X

f

DD

gf

77

Z ′′

��
''
ΣY

ΣZ,

showing that the octahedral axiom holds in D/C.

Corollary 7.3. The functor F is triangulated and has the
universal property claimed in Verdier’s theorem, finally
establishing its proof.

Proof. Choosing the identity as a natural isomorphism
FΣ ∼= ΣF immediately shows that F maps triangles to
triangles since triangles in D/C are defined to be isomor-
phic to images of triangles under F . Its universality has
already been shown.

8. Derived Categories

This section follows the construction given in [Wei94, sect.
10.1–10.4] and [Mur06, pp. 11-19]. We will apply the
Verdier localisation procedure just developed to the ho-
motopy category in order to eventually define the concept
of the derived category.

Reminder 8.1. Given an additive category A, the cate-
gory of cochain complexes with objects in A is denoted
by Ch(A). Assuming that A is even abelian, the ho-
motopy category, denoted K(A) or simply K, is given
by objects of Ch(A) and morphisms of Ch(A) up to ho-
motopy. We saw that K is a triangulated category with
suspension functor Σ := [1] and distinguished triangles

X
f−→ Y → cone(f)→ X[1].

From now on, let K be the homotopy category of an
abelian category A.

Lemma 8.2. The full subcategory N ∈ K consisting of the
acyclic cochain complexes is a triangulated subcategory.
The corresponding collection MorN consists of all quasi-
isomorphisms.

Proof. Since a chain map is a quasi-isomorphism iff its
mapping cone is acyclic, the latter assertion is immediate.
Furthermore, N is strictly full, additive and closed under
[±1]. Given a triangle X → Y → Z → X[1] where X and
Y are exact, passing to the long exact sequence

· · · → HiY︸︷︷︸
0

→ HiZ → Hi+1X︸ ︷︷ ︸
0

→ · · ·

cohomology gives rise to immediately shows that also Z
has to be exact.

Definition 8.3. The derived category D(A) of an abelian
category A is given by the Verdier localisation K/N .

9. Bounded Derived Category

This section follows the construction given in [Mur06, sect.
3.3]. It comes to mind not only to consider the localisation
of cochain complexes along quasi-isomorphisms, but also
to obtain a localisation of any of the following subcategory
of Ch(A):

Definition 9.1. Given an abelian category A, besides the
abelian category of cochain complexes Ch(A) we define
full abelian subcategories of Ch(A) by

X• ∈ Ch+(A)⇔ ∀n� 0 : Xn = 0

X• ∈ Ch−(A)⇔ ∀n� 0 : Xn = 0

X• ∈ Chb(A)⇔ ∀|n| � 0 : Xn = 0
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and are called bounded above, bounded below and
bounded cochain complexes respectively. Let ∗ denote
either of +, − and b.

These subcategories give rise to the full subcategories
K∗ of K respectively. Note that K∗ is not replete in
general, and hence is called a fragile triangulated subcat-
egory. The following lemma ensures that the very same
construction of the derived category can be applied to
K∗:

Definition and Lemma 9.2. The respective full subcate-
gories N ∗ ⊆ K∗ consisting of acyclic cochain complexes
are triangulated subcategories and thus give rise to the
respective Verdier quotients denoted D∗. In particular, Db
is called the bounded derived category.

A. Localising via Multiplicative
Systems

For those attendants who have also attended the homolog-
ical algebra lecture, the following approach to localisation
of categories via multiplicative systems may be more famil-
iar. In fact, both formulations are equivalent as sketched
below.

Definition A.1. A multiplicative system S of a category
C is a collection of morphisms such that

MS1 it contains all identity morphisms and is closed
under composition;

MS2 any diagram of the form

∗
g //

t∈S ��

∗
s∈S��

∗
f
// ∗

can be completed if either the solid or dashed mor-
phisms are provided;

MS3 for morphisms f, g : X → Y , the relation ∃s ∈ S :
fs = gs⇔ ∃t ∈ S : tf = tg holds.

If furthermore C is triangulated, S is called to be compat-
ible with the triangulated structure on C if it is stable
under the suspension functor and the completion of mor-
phisms of triangles in S.

Obviously, the morphisms contained in MorC form a
multiplicative system. Another importand kind of mul-
tiplicative systems are those arising from cohomological
functors:

Definition A.2. A contravariant functor F : D → A of
a triangulated category into an abelian category is called
cohomological if it maps triangles X → Y → Z → ΣX
to long exact sequences

· · · → FΣX → FZ → FY → FX → FΣ−1Z → · · · .

The following theorem shows the relation between multi-
plicative systems, cohomological functors and localisation
along triangulated subcategories [Ver96, prop. 2.1.17],
[Wei94, prop. 10.4.1].

Theorem A.3. Given a cohomological functor F : D → A,
the collection of morphisms in D mapped to isomorphisms
by F , denoted S(F ), is a multiplicative system, called the
multiplicative system arising from F . Namely it is the
multiplicative system induced by the full subcategory of D
consisting of objects {X ∈ D : FX ∼= 0}.

In particular, the cohomology functor H0 gives rise
to the multiplicative system consisting of all quasi-
isomorphisms.
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