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The main goal of this talk is to introduce projective and h-projective resolutions of complexes in an abelian
category and to show that under certain circumstances one has an equivalence of categories between the derived
category/full subcategory of bounded above complexes of the derived category and an appropriate subcategory
of the homotopy category, given by assigning to each complex X an h-projective/projective resolution of X.
Although I won't develop it here, there is a dual theory using injective/h-injective resolutions, which goes
through mostly in the same way.

Throughout this talk:

A = an abelian category

CA = corresponding category of cochain complexes

KA = corresponding homotopy category of cochain complexes

K−A ⊂ KA = full subcategory of bounded above complexes

KaA ⊂ KA = full subcategory of acyclic complexes

K−a A ⊂ KA = full subcategory of acyclic bounded above complexes

K−p A ⊂ KA full subcategory of bounded above complexes of projectives

DA = KA/KaA, the derived category of A
D−A = K−A/K−a A, equivalently D−A = full subcategory of DA of bounded above complexes

1 Preparation: projective resolutions of objects

De�nition 1.1. Let X be an object in A. A projective resolution of X is a complex of projectives P such that
Pn = 0 for n > 0 together with an augmentation map P 0 → X such that

· · · → P−2 → P−1 → P 0 → X → 0

is an acyclic complex.

De�nition 1.2. A has enough projectives if for every object X there is an epic map P � X where P is
projective.

Proposition 1.3. A has enough projectives i� every object has a projective resolution.

Proof. "⇐": clear. "⇒": given an object X, construct a projective resolution of X as indicated in the following
diagram, where the existence of the dashed arrows follows from the fact that A has enough projectives:

· · · P 2 P 1 P 0 X

ker(f1) ker(f0)

f2 f1

f0

The following two propositions are useful tools when working with projective resolutions.

Proposition 1.4 (Horseshoe Lemma). Suppose A has enough projectives. Then, given a short exact sequence
0→ X1 → X2 → X3 → 0 in A and projective resolutions P1 of X1 and P3 of X3, there is a projective resolution
P2 of X2 such that the diagram
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...
...

...

0 P−11 P−12 P−13 0

0 P 0
1 P 0

2 P 0
3 0

0 X1 X2 X3 0

commutes and has exact rows.

Proof. Construct P2 as indicated in the diagram

...
...

...

0 P−11 P−11 ⊕ P−13 P−13 0

0 Z0
1 Z0

2 Z0
3 0

0 P 0
1 P 0

1 ⊕ P 0
3 P 0

3 0

0 X1 X2 X3 0

∃ε
∃l

∃ε ∃l

where l exists by projectivity of P−q3 for q ∈ N, and ε exists by the universal property of the coproduct.

Proposition 1.5. Let P and A be complexes such that Pn is projective for n ≤ 0 and Hn(A) = 0 for n ≤ 1.
Then, given a map f : P 1 → A1 such that the composition P 1 → A1 → A2 is zero, there is up to homotopy a
unique map F : P → A satisfying F 1 = f and Fn = 0 for n > 1. We call such F a �lift� of f .

· · · P−1 P 0 P 1 P 2 · · ·

· · · A−1 A0 A1 A2 · · ·

f 0

Proof. Existence: We construct F inductively. For n ≥ 1, if Fn is already de�ned we de�ne Fn−1 as indicated
in the diagram

Pn−1 Pn Pn+1

ker(dnA)

An−1 An An+1

Fn−1

φ

Fn

dnA

where φ exists by the universal property of the kernel and Fn−1 exists by projectivity of Pn−1.

Uniqueness: By passing to the di�erence of two lifts F and F ′ we reduce to showing that any lift of f = 0 is null
homotopic. Supposing f = 0, we construct a homotopy h between F and the zero map. Let hn : Pn → An−1

be the zero map for n ≥ 2. Now we de�ne the rest of the homotopy inductively. If hn+1 is already de�ned for
n ≤ 1, hn is de�ned as indicated in the diagram

Pn Pn+1

ker(dnA)

An−1 An An+1

hn

dnP

φ

Fn−hn+1d
n
P

dnA
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where φ exists by the universal property of the kernel since

dnA(F
n − hn+1d

n
P ) = dnAF

n − dnAhn+1d
n
P = dnAF

n − (Fn+1 − hn+2dn+1
P )dnP = dnAF

n − Fn+1dnP = 0

and hn−1 exists by projectivity of Pn.

Corollary 1.6. Suppose A has enough projectives. Then there exists up to natural isomorphism a unique
functor p : A → KA sending each object X to a projective resolution of X and each morphism f : X → Y to
the unique map pX → pY which �ts into the diagram

· · · pX−1 pX0 X 0 · · ·

· · · pY −1 pY 0 Y 0 · · ·

f

2 Projective resolutions of bounded above complexes

De�nition 2.1. Let X be a bounded above complex. A projective resolution of X is a bounded above complex
of projectives P together with a quasi-isomorphism P → X.

Remark. De�nition 1.1 is a particular case of De�nition 2.1 considering the object X as a complex concentrated
in degree 0 and requiring that the complex P satis�es Pn = 0 for n > 0.

The big aim of this secton is to show that, under the assumption that A has enough projectives, every bounded
above complex has a projective resolution and moreover this gives an equivalence of categories D−A ' K−p A.
A crucial piece will be the following property of bounded above complexes of projectives, which follows directly
from Proposition 1.5:

Proposition 2.2. Let P be a bounded above complex of projectives. Then HomKA(P,A) = 0 for every acyclic
complex A.

Also central is the following notion:

De�nition 2.3. Let X be a complex. A Cartan-Eilenberg (projective) resolution of X is a complex of complexes
P •,• = · · · → P−2,• → P−1,• → P 0,• together with a map of complexes P 0,• → X such that

(i) if Xq = 0, then P •,q = 0 is zero

(ii) for every q, the sequences

· · · → Bq(P−2,•)→ Bq(P−1,•)→ Bq(P 0,•)→ Bq(X)

· · · → Hq(P−2,•)→ Hq(P−1,•)→ Hq(P 0,•)→ Hq(X)

· · · → Zq(P−2,•)→ Zq(P−1,•)→ Zq(P 0,•)→ Zq(X)

· · · → P−2,q → P−1,q → P 0,q → X

are projective resolutions.

...
...

...

· · · P−1,−2 P−1,−1 P−1,0 · · ·

· · · P 0,−2 P 0,−1 P 0,0 · · ·

· · · X−2 X−1 X0 · · ·

Proposition 2.4. If A has enough projectives, every complex has a Cartan-Eilenberg resolution.

Proof. For every q ∈ Z �x projective resolutions of Bq(X) and Hq(X). By the horseshoe lemma, there is a
projective resolution of Zq(X) �tting in a commutative diagram with exact rows
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...
...

...

0 P−1qB P−1qZ P−1qH 0

0 P 0q
B P 0q

Z P 0q
H 0

0 Bq(X) Zq(X) Hq(X) 0

Similarly we get a projective resolution of Xq �tting in a commutative diagram with exact rows

...
...

...

0 P−1qZ P−1q P−1,q+1
B 0

0 P 0q
Z P 0q P 0,q+1

B 0

0 Zq(X) Xq Bq+1(X) 0

From this construction we obtain a map P •,q → P •,q+1
B → P •,q+1

Z → P •,q+1.

Check: the double complex P •,• so de�ned is indeed a Cartan-Einlenberg resolution.

Proposition 2.5. Suppose A has enough projectives. Then

1) For every bounded above complex X there is a triangle

P → X → A→ SP

in KA such that P is a bounded above complex of projectives and A is an acyclic complex. In particular, by
a long exact sequence argument P → X is a quasi-isomorphism, i.e. P is a projective resolution of X.

2) If P → X → A→ SP and P ′ → Y → A′ → SP ′ are triangles such that P, P ′ are bounded above complexes
of projectives and A,A′ are acyclic, for every morphism f : X → Y there is a unique morphism of triangles

P X A SP

P ′ Y A′ SP ′

f

extending f .

Proof. 1) Let X be a bounded above complex; suppose without loss of generality that Xn = 0 for n > 0.
Let P •,• be a Cartan-Eilenberg resolution of X. By our hypothesis about X this is a third quadrant double
complex, hence we can consider be the total complex P of P •,• and the total complex A of the augmented
double complex P •,• → X.

...
...

...

· · · P−2,−2 P−2,−1 P−2,0

· · · P−1,−2 P−1,−1 P−1,0

· · · P 0,−2 P 0,−1 P 0,0

· · · X−2 X−1 X0
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The augmentation map induces a map P → X and, unwinding the de�nitions, one sees that the mapping cone
of this map is precisely A. Thus we have a triangle P → X → A→ SP in KA. It remains to show:

i) P is a bounded above complex of projectives: since P •,• is a third quadrant double complex, Pn = 0 for n > 0.
Moreover, every component of the total complex P is a sum of projectives and hence projective.

ii) A is acyclic: follows from the following fact (presented here without proof):

Lemma 2.6. The total complex of a third quadrant double complex whose columns are acyclic is also acyclic.

2) Apply the cohomological functor HomKA(P,−) to the triangle P ′ → Y → A′ → SP ′ to get an exact sequence

0 = HomKA(P,A)→ HomKA(P, P
′)→ HomKA(P, Y )→ HomKA(P,A) = 0.

It follows that HomKA(P, P
′)→ HomKA(P, Y ) is an isomorphism, so there is a unique map g : P → P ′ making

the diagram

P X

P ′ Y

∃!g f (1)

commute. Similarly, applying Hom(−, A′) to the triangle P → X → A→ SP gives an exact sequence

0 = HomKA(SP,A
′)→ HomKA(A,A

′)→ HomKA(X,A
′)→ HomKA(P,A

′) = 0,

so we conclude that HomKA(A,A
′) → HomKA(X,A

′) is an isomorphism and thus there is a unique map
h : A→ A′ making the diagram

X A

Y A′

f ∃!h (2)

commute. By the axioms of a triangulated category, the diagram

P X A SP

P ′ Y A′ SP ′

g f

can be completed to a morphism of triangles and it follows that this morphism has to be

P X A SP

P ′ Y A′ SP ′

g f h

In particular, we get a (unique up to natural isomorphism) functor

p : K−A → K−A

sending each object X to a projective resolution of X and each morphism f : X → Y to the dashed morphism
indicated in (1).

Proposition 2.7. Let P be a bounded above complex of projectives. Then for every complex X the canonical
map HomKA(P,X)→ HomDA(P,X) is an isomorphism.

Proof. First note that, if X → Y is a quasi-isomorphism, the canonical map HomKA(P,X) → HomKA(P, Y )
is an isomorphism (apply HomKA(P,−) to the triangle X → Y → cone(f)→ SX where cone(f) is acyclic and
use a long exact sequence argument). We now show that HomKA(P,X)→ HomDA(P,X) is bijective.

Surjectivity. Consider a morphism φ : P → X in DA represented by a diagram P
f−→ Y

t←− X where t is a
quasi-isomorphism. Then the following diagram shows that φ can be represented by a morphism g : P → X in
KA whose existence comes from the surjectivity of the map HomKA(P,X)→ HomKA(P, Y ):
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Y

P Y X

X

id
f

f

∃g

t

t

id
t

Injectivity. If f, g : P → X in KA represent the same map in DA, we have a diagram

X

P Y X

X

h
f

g

id

h

id
h

From the injectivity of the map HomKA(P,X)→ HomKA(P, Y ) follows f = g.

Suppose for the rest of this section that A has enough projectives.

Proposition 2.8. The canonical functor q : K−p A → D−A gives an equivalence of categories.

Proof. q is essentially surjective because every bounded above complex X is isomorphic in D−A to pX, and
Proposition 2.7 shows that q is fully faithful.

Proposition 2.9. p : K−A→ K−A descends to a functor p : D−A → K−A

Proof. We show that p sends quasi-isomorphisms to isomorphisms: if f : X → Y is a quasi-isomorphism between
bounded above complexes, we have a square

pX X

pY Y

pf f

where f and the two horizontal maps are quasi-isomorphisms, so also pf is a quasi-isomorphism. Then pf
corresponds to an isomorphism under the equivalence K−p A

∼−→ D−A and hence also pf is an isomorphism.

Proposition 2.10. We have an adjunction p : D−A → K−A : q. In particular, p : D−A → K−p A is a left
adjoint and quasi-inverse of q : K−p A → D−A.

Proof. Given X ∈ D−A and Y ∈ K−A, we have natural isomorphisms

HomKA(pX, Y )
∼−→ HomDA(pX, Y )

∼←− HomDA(X,Y )

where the �rst map is the canonical one, which is an isomorphism by the previous proposition, and the second
one is induced from the canonical map pX → X which is an isomorphism in DA. Checking naturality, i.e.
commutativity of the following diagrams for each morphism X → X ′ and Y → Y ′, is straightforward.

HomKA(pX, Y ) HomDA(pX, Y ) HomDA(X,Y )

HomKA(pX
′, Y ) HomDA(pX

′, Y ) HomKA(X
′, Y )

HomKA(pX, Y ) HomDA(pX, Y ) HomDA(X,Y )

HomKA(pX, Y
′) HomDA(pX, Y

′) HomKA(X,Y
′)
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3 Homotopically projective resolutions of complexes

Noticing that in the previous section the only property of bounded above complexes of projectives that was
essentially used was the fact that all the maps from such a complex to an acyclic complex are null homotopic,
we are led to the following natural generalization of bounded above complexes of projectives:

De�nition 3.1. A complex X is called homotopically projective (h-projective) if HomKA(X,A) = 0 for every
acyclic complex A.

Examples. 1) Bounded above complexes of projectives are homotopically projective.

2) (Arbitrary) sums of homotopically projective complexes are homotopically projective.

3) Complexes of projectives with vanishing di�erential are h-projective.

De�nition 3.2. Let X be a complex. An h-projective resolution of X is an h-projective complex P together
with a quasi-isomorphism P → X.

Let KhpA ⊂ KA be the full subcategory of h-projective complexes. The big aim of this secton is to show,
in resemblance with the last section, that, in the category of R-modules, every complex has an h-projective
resolution and moreover this gives an equivalence of categories DA ' KhpA. We follow precisely the same steps
as in last section, ommiting proofs when they go through basically unchanged.

Lemma 3.3. Let X → Y → Z → SX be a triangle in KA. If two of the complexes X,Y ,Z are h-projective, so
is the third.

Proof. For each acyclic complex A, apply the cohomological functor HomKA(−, A) to the triangle to obtain a
long exact sequence

· · · → HomKA(X,A)→ HomKA(Y,A)→ HomKA(Z,A)→ HomKA(SX,A)→ HomKA(SY,A)→ · · ·

If two of the complexes are h-projective, two terms in every three in the sequence are zero, and it follows that
the remaining terms are also zero. Hence the third complex is also h-projective.

Lemma 3.4. Let 0→ X → Y → Z → 0 be a short exact sequence in CA which is split in every component. If
two of the complexes X,Y ,Z are h-projective, so is the third.

Proof. Follows from the previous lemma using the fact (seen in the �rst talk) that a componentwise split short
exact sequence in CA induces a triangle in KA.

From now on we set A = R-mod for some ring R.

Proposition 3.5. Let

P0
i0−→ P1

i1−→ · · · → Pq
iq−→ · · ·

be a sequence of complexes in CA such that each morphism iq has split injective components and all the sub-
quotients Pq+1/Pq are h-projective. Then lim−→Pq is h-projective.

Proof. First we show by induction that every Pq is h-projective.

Base case: P0 = P0/0 = P0/P−1 is h-projective by hypothesis.

Induction step: For each q ∈ N, 0 −→ Pq
iq−→ Pq+1 −→ Pq+1/Pq −→ 0 is a component-wise split short exact

sequence. Since Pq+1/Pq is h-projective by hypothesis, if Pq is h-projective then Lemma 3.4 implies that also
Pq+1 is h-projective.

In particular, the sum of all the Pq is h-projective. Now consider the short exact sequence

0 −→
⊕
p∈N

Pp
φ−→

⊕
q∈N

Pq −→ lim−→Pq −→ 0 (3)

where

φ =


1
−i0 1

−i1 1
−i2 1

. . .


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This sequence splits component-wise: if sq : Pq+1 → Pq (not necessarily a morphism of complexes) is a
component-wise left inverse of iq, then setting

σ =


0 −s0 −s0s1 −s0s1s2

0 −s1 −s1s2
0 −s2

. . .


(again not necessarily a map of complexes) we get σφ = id, so σ is a component-wise split of (3). Hence, by
lemma 3.3 it follows that lim−→Pq is h-projective.

Proposition 3.6.

1) For every complex X there is a triangle

pX → X → aX → SpX

in KA such that pX is h-projective and aX is acyclic. In particular, pX is an h-projective resolution of X.

2) If P → X → A→ SP and P ′ → Y → A′ → SP ′ are triangles such that P, P ′ are h-projective and A,A′ are
acyclic, for every morphism f : X → Y there is a unique morphism of triangles

P X A SP

P ′ Y A′ SP ′

f

extending f .

Proof. 1) Again consider a Cartan-Eilenberg resolution P •,• of X. Since in R-mod there are arbitrary sums,
we can form the total complex P of P •,• and the total complex A of the augmented double complex P •,• → X.

...
...

...
...

· · · P−2,−2 P−2,−1 P−2,0 P 2,1 · · ·

· · · P−1,−2 P−1,−1 P−1,0 P 1,1 · · ·

· · · P 0,−2 P 0,−1 P 0,0 P 0,1 · · ·

· · · X−2 X−1 X0 X1 · · ·

As before we have a triangle P → X → A→ SP in KA. It remains to show:

i) P is h-projective: Let P≤p be the total complex of the double complex

· · · P p,−2 P p,−1 P p,0 P p,1 · · ·

...
...

...
...

· · · P−1,−2 P−1,−1 P−1,0 P 1,1 · · ·

· · · P 0,−2 P 0,−1 P 0,0 P 0,1 · · ·
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obtained by truncating P •,• at the pth row. Then P is the colimit of the sequence

P≤0 ⊂ P≤1 ⊂ P≤2 ⊂ · · ·

where each inclusion has split injective components and each quotient P≤p/P≤p−1 is isomorphic to P p,•. By
Proposition 3.5, to conclude that P is h-projective it is enough to show

Lemma 3.7. Each row P p,• of a Cartan-Eilenberg resolution is h-projective.

Proof. Since P p,• has projective boundaries and homology, we have split short exact sequences

0 Zq(P p,•) P p,q Bq+1(P p,•) 0
s

0 Bq(P p,•) Zq(P p,•) Hq(P p,•) 0
t

Hence P p,q = t(Hq(P p,•))⊕Bq(P p,•)⊕ s(Bq+1(P p,•)) and P p,• is the sum of

· · · 0−→ t(Hq−1(P p,•))
0−→ t(Hq(P p,•))

0−→ t(Hq+1(P p,•))
0−→ · · · (4)

with the family of complexes of the form

0 −→ s(Bq(P p,•)) −→ Bq(P p,•) −→ 0 (5)

for q ∈ N. Since (4) is h-projective (being a complex of projectives with vanishing di�erential) and also each
complex of the form (5) is h-projective (being a bounded complex of projectives), we conclude that the sum
P p,• is h-projective.

ii) A is acyclic: For each q ∈ Z let F q be the total complex of the truncated augmented double complex

...
...

...
...

· · · P−2,q−2 P−2,q−1 P−2,q Zq+1(P−2,•)

· · · P−1,q−2 P−1,q−1 P−1,q Zq+1(P−1,•)

· · · P 0,q−2 P 0,q−1 P 0,q Zq+1(P 0,•)

· · · Xq−2 Xq−1 Xq Zq+1(X)

Then A = lim−→F q and so, by the following fact (presented here without proof), it is enough to show that each
F q is acyclic.

Lemma 3.8. Let · · · → X−1 → X0 → X1 → X2 → · · · be a sequence of complexes of modules. Then, for every
i ∈ Z, Hi(lim−→Xn) = lim−→Hi(Xn).

But F q is the total complex of a third quadrant double complex with acyclic columns and thus is acyclic by
Lemma 2.6.

In particular, we get a (unique up to natural isomorphism) functor

p : KA → KA

sending each object X to an h-projective resolution of X.

Proposition 3.9. Let P be an h-projective complex. Then for every complex X the canonical map HomKA(P,X)→
HomDA(P,X) is an isomorphism.

Proposition 3.10. The canonical functor q : KhpA → DA gives an equivalence of categories.

Proposition 3.11. p : KA → KA descends to a functor p : DA → KA.
Proposition 3.12. We have an adjunction p : DA → KA : q. In particular, p : DA → KhpA is a left adjoint
and quasi-inverse of q : KhpA → DA.
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