EQUIVARIANT SHEAVES ON FLAG VARIETIES

OLAF M. SCHNURER

ABSTRACT. We show that the Borel-equivariant derived category of sheaves
on the flag variety of a complex reductive group is equivalent to the perfect
derived category of dg modules over the extension algebra of the direct sum of
the simple equivariant perverse sheaves. This proves a conjecture of Soergel
and Lunts in the case of flag varieties.
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1. INTRODUCTION

Let G be a complex connected reductive affine algebraic group and B C P C G
a Borel and a parabolic subgroup. The main result of this article is an algebraic
description of the B-equivariant (bounded, constructible) derived category D%,C(X )
(see |[BL94]) of sheaves of real vector spaces on the partial flag variety X := G/P.

Let S be the stratification of X into B-orbits and ZCg(S) € D} (X) the equi-
variant intersection cohomology complex of the closure of the stratum S € S.
The (ZCp(S))ses are the simple equivariant perverse sheaves on X. Let ZCp(S)
be their direct sum and £ = Ext(ZCp(S)) its graded algebra of self-extensions
in D%’C(X ). We consider £ as a differential graded (dg) algebra with differential
d = 0. Let dgDer(&) be the derived category of (right) dg £-modules (see [Kel94])
and dgPer(€) the perfect derived category, i.e. the smallest strict full triangulated
subcategory of dgDer(€) containing £ and closed under forming direct summands.
We give alternative descriptions of dgPer(&) below.

Theorem 1 (cf. Theorem . There is an equivalence of triangulated categories
Dy, (X) = dgPer(Ext(ZCp(S))).
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Similar equivalences between equivariant derived categories and categories of dg
modules over the extension algebra of the simple equivariant perverse sheaves are
known for a connected Lie group acting on a point ([BL94, 12.7.2]), for a torus
acting on an affine or projective normal toric variety ([Lun9]), and for a complex
semisimple adjoint group acting on a smooth complete symmetric variety ([Gui05]).
The key point in the proof of these equivalences is the formality of some dg algebra
whose cohomology is the extension algebra.

Conjecturally ([Lun95, 0.1.3], [Soe01l 4]), the analog of Theorem [I| should hold
for the equivariant derived category of a complex reductive group acting on a pro-
jective variety with a finite number of orbits. (Theorem [I|is a special case of this
conjecture since D (G xp X) and D} (X) are equivalent by the induction equi-
valence.) Besides the above mentioned known results, there are other indications
(IBE0S, BY0S]) that this conjecture is true.

Let DP(X) be the (bounded) derived category of sheaves of real vector spaces
on X = G/P, and D(X,S) the full subcategory of S-constructible objects. Let
ZC(S) be the direct sum of the (non-equivariant) simple S-constructible perverse
sheaves on X, and F = Ext(ZC(S)) its graded algebra of self-extensions in D"(X).
The category dgPer(F) is defined similarly as dgPer(&) above. In the course of the
proof of Theorem [1| we obtain as a special case (of Theorem [3| below) the following
non-equivariant analog.

Theorem 2 (cf. Theorem . There is an equivalence of triangulated categories

D"(X,S) = dgPer(Ext(ZC(S))).

This Theorem [2| can also be obtained using localization and a shadow of Koszul
duality, using results of [BGS96]. Our proof, however, is much more straightforward
and works in greater generality.

The category Pervp(X) of equivariant perverse sheaves on X is the heart of the
perverse t-structure on D%)C(X)7 and similarly for Perv(X,S) C D®(X,S). The
corresponding t-structure on dgPer(£) and dgPer(F) can be defined for a more
general class of dg algebras; we explain this below. It turns out that the heart of
such a t-structure is equivalent to a full abelian subcategory dgFlag of the abelian
category of dg modules. The equivalences in Theorems [I] and [2] are in fact t-exact
and induce equivalences

Pervp(X) = dgFlag(Ext(ZCp(S))),
Perv(X,S) = dgFlag(Ext(ZC(S))),

i.e. algebraic descriptions of the categories of (equivariant) perverse sheaves. The
simple object ZC g(S) is mapped to eg€ (where eg € &€ is the projector from ZC 5 (S)
onto the direct summand ZCg(S)), which is an indecomposable projective dg &-
module. This seems to be part of a Koszul duality (cf. [BGS90, 1.2.6]).

The forgetful functor For : Dy (X) — D"(X,S) induces a surjective morphism

L
E — F of dg algebras and an extension of scalars functor (? @¢ F) : dgPer(€) —
dgPer(F). These two functors provide a connection between the equivalences in
Theorems |1 and [2} i. e. there is a commutative (up to natural isomorphism) square
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(see Remark
D%’C(X) —" = dgPer(Ext(ZCp(S)))

J{For i(?@%m

DP(X,S) —— dgPer(Ext(ZC(S))).

Let us comment on some purely algebraic results concerning certain perfect de-
rived categories of dg modules mentioned above (see [Sch08]). Let A = (A =
@D,-0 A", d) be a positively graded dg algebra with A° a semisimple ring and
d(A% = 0 (i.e. A° is a dg subalgebra). Let (L,)zew be the finite collection
of non-isomorphic simple (right) A°-modules, and dgPrae(A) the smallest strict
full triangulated subcategory of the derived category dgDer(A) of dg .A-modules
that contains all Em =L, ®40 A (where L, is concentrated in degree zero). Let
dgMod(A) be the abelian category of dg A-modules, and dgFlag(A) the full sub-
category of dgMod(.A) consisting of objects that have an Eac—ﬂag, i.e. a finite filtra-
tion with subquotients isomorphic to objects of {Ly}eew (without shifts). Then
dgPrae(A) coincides with dgPer(.A) and carries a natural bounded t-structure.
Moreover dgFlag(.A) is a full abelian subcategory of dgMod(.A) and naturally equiv-
alent to the heart of this t-structure. Let us note that there is another equivalent
full subcategory of dgPer(.A) consisting of certain filtered dg modules that is quite
accessible to computations (cf. Theorem [56).

These remarks apply in particular to the dg algebras £ and F defined above
and make the categories of dg modules appearing in our main equivalences quite
explicit. They also show that the categories of dg modules appearing in the main
equivalences of [Lun95] and [Gui05] are in fact of the form dgPer.

Assume for this paragraph that we work with sheaves of complex vector spaces.
Our main Theorems [1] and [2| remain true (see subsection and Remark [72).
Assume now in addition that G is semisimple and that P = B. Then the extension
algebras are isomorphic to morphism spaces of Soergel’s bimodules (see [Soe0ll
S0e92) [Soe90]). These bimodules are isomorphic to the (B-equivariant) intersection
cohomologies of Schubert varieties and can be described using the moment graph
picture (see [BMO1]). Thus, if T' C B is a maximal torus, the B-equivariant derived
category of the flag variety G/B only depends on the moment graph associated to
T acting on G/B.

Let us describe in more detail our approach to prove Theorem[I} We use notation
from subsequent sections without further explanation.

Step 1 (see section . Let X be a complex variety with a stratification 7 into
cells (i.e. T = CI7 for each T € 7). Under some purity assumptions explained
below we will establish an equivalence

(1) DP(X,T) = dgPer(Ext(ZC(T)))

of triangulated categories, of which Theorem [2]is a special case. Note that we could
write equivalently dgPrae on the right hand side. The proof works as follows. Since
T is a cell-stratification, there is an equivalence

D°(Perv(X,T)) = D°(X,T).



4 OLAF M. SCHNURER

There are enough projective objects in Perv(X, 7), so we find projective resolutions
Pr — ZIC(T) of finite length

..—>PT72—>P771—>P7Q—>IC(T)—>O.

Let P — ZIC(T) be the direct sum of these resolutions and B = &nd (P) the dg
algebra of endomorphisms of P. The functor Hom (P, ?) induces an equivalence

DP(Perv(X,T)) = dgPraegz({erB}rer).

Note that the cohomology of B is isomorphic to Ext(ZC(7)). Thus we obtain
equivalence if B is formal. In order to prove formality, we need to choose the
resolutions Pr — ZC(T') more carefully.

Each ZC(T') is the underlying perverse sheaf of a mixed Hodge module ic (1)
that is pure of weight dr. We construct resolutions ﬁT —1IC (T) in the category of
mixed Hodge modules so that the underlying resolutions Pr — ZC(T') are projective
resolutions as considered above. From these resolutions we get a dg algebra of mixed
Hodge structures with underlying dg algebra B = &nd (P). If each ZC(T) is 7-
pure of weight dr (i.e. all restrictions to strata in 7 are pure of weight dr), this
additional structure on B enables us to construct a dg subalgebra Sub(B) of B and
quasi-isomorphisms

B — Sub(B) - H(B)

of dg algebras, establishing the formality of B.
We will need the following slightly more general statement than equivalence ,
with essentially the same proof.

Theorem 3 (cf. Theorem . Let (X,S) be a stratified complex variety with ir-
reducible and simply connected strata. Let T be a cell-stratification refining S. If
ZC(S) is T -pure of weight dg for each S € S, there is a triangulated equivalence

D" (X, S) = dgPer(Ext(ZC(S))).

Step 2 (see sectionfd]). Let (X, S) and (Y, T) be stratified complex varieties with
irreducible and simply connected strata. Let ¢ : Y — X be a closed embedding
so that S — 7, S — SNY, is bijective and ilg.y, : SNY — S is a normally
nonsingular inclusion of a fixed codimension ¢ for all S € S. Then

(2) [—dJi* (ZC(S)) = TC(SNY)

for all S € S. If both stratifications S and 7 have compatible refinements by cell-
stratifications satisfying the purity conditions of Theorem [3] we obtain the vertical
equivalences in the following diagram.

[—c]i*

(3) D°(X,S) D°(Y,T)

dgPer(Ext(ZC(S))) —————— dgPer(Ext(ZC(T)))

L
7 ®  Ext(ZC(T))
Ext(ZC(S))

The extension of scalars functor in the lower row is induced by the isomorphisms
(2). This diagram is commutative (up to natural isomorphism). Unfortunately the
proof is rather technical.
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Step 3 (see section[6). Let X = G/P be a partial flag variety with stratification
S into B-orbits as before. We construct a sequence

LN SRR SN ) REE LN BN

of resolutions p, : F, — X of X satisfying several nice properties. For example,
each p,, is smooth and n-acyclic (in the classical topology), the quotient morphisms
qn : E, — E, := B\E, are Zariski locally trivial fiber bundles, and each S,, :=
{gn(p;1(9)) | S € S} is a stratification of E,,. The induced morphisms f,, : E,, —
E,, 11 define functors f;; : D*(Epy1,Sni1) — DP(E,,S,), and we obtain a sequence
of categories whose inverse limit is equivalent to the category we want to describe,

D} o(X) 2 1im D*(Ey, Sn).

Moreover, the morphisms f,, satisfy the assumptions of Step 2 (in particular, the
stratifications S, admit refinements where the purity conditions hold), and the
obtained commutative diagrams of the form provide an equivalence

lim D*(E,,S,) = lim dgPer(Ext(ZC(S,))).
P P
Finally, the obvious morphisms £ = Ext(ZCp(S)) — Ext(ZC(S,,)) of dg algebras

induce an equivalence
dgPer(Ext(ZCp(S))) — lim dgPer(Ext(ZC(Sn))).
This finishes the sketch of proof of Theorem

It would be nice to know whether the analog of Theorem |1|is true for D2 (G/P)
if @ is a parabolic subgroup of G containing B. Theorem |37| shows that the non-
equivariant version holds, i.e. we can replace the stratification S in Theorem [2] by
the stratification into @-orbits. We expect that our methods can be generalized to
affine flag varieties.

This article is organized as follows: In section [2] we introduce the main categories
of dg modules, show how dg modules can be used to describe certain triangulated
categories and prove an elementary but crucial result establishing the formality of
some dg algebras with an additional grading. Sections 3] [d and [6] contain essentially
the results explained above in Steps 1, 2 and 3 respectively. However the methods
are developed in a broader context and may be applied to other situations. Section[f]
contains some results on inverse limits of categories (of dg modules) used in Step
3.

Acknowledgments. This article contains the main results of my thesis [Sch07]
written at the University of Freiburg. I am very grateful to my advisor Wolfgang
Soergel for all his advice and enthusiasm. I would like to thank Peter Fiebig,
Catharina Stroppel, Geordie Williamson, and Anne and Martin Balthasar for useful
comments and discussions.

2. DIFFERENTIAL GRADED MODULES

2.1. DG Modules. We review the language of differential graded (dg) modules
over a dg algebra (see [Kel94, [Kel98| [BT.94]).

Let k be a commutative ring and A = (A = @,;, A*, d) a differential graded k-
algebra (= dg algebra). A dg (right) module over A will also be called an A-module
or a dg module if there is no doubt about the dg algebra. We often write M for a dg
module (M, dps). We consider the category dgMod(.A) of dg modules, the homotopy
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category dgHot(A) and the derived category dgDer(A) of dg modules. We denote
the shift functor on all these categories by M — {1} M, e.g. ({1} M) = M1,
diiym = —dy. We define {n} = {1}" for n € Z. Both dgHot(A) and dgDer(.A)
are triangulated categories.

A dg module P is called homotopically projective ([Kel98]), if it satisfies one
of the following equivalent conditions ([BL94, 10.12.2.2]):

(a) Homaghot (P, ?) = Homggper (P, 7), i. €. for all dg modules M, the canonical
map Homggtiot (P, M) — Homggper (P, M) is an isomorphism.

(b) Homggrot (P, M) = 0 for each acyclic dg module M.
In [Kel94, 3.1] such a module is said to have property (P), in [BL94] 10.12.2] the
term KC-projective is used. For example, A and each direct summand of A is homo-
topically projective.

Let dgHotp(.A) be the full subcategory of dgHot(.A) consisting of homotopically

projective dg modules. The quotient functor dgHot(A) — dgDer(A) induces a
triangulated equivalence ([Kel94, 3.1, 4.1])

(4) dgHotp(A) = dgDer(A).

Let dgPer(A) be the perfect derived category, i.e. the smallest strict (= closed
under isomorphisms) full triangulated subcategory of dgDer(A) containing A and
closed under forming direct summands.

Each morphism of dg algebras (dga-morphism) f : A — B induces on cohomol-
ogy a dga-morphism H(f) : H(A) — H(B). If H(f) is an isomorphism, f is called
a dga-quasi-isomorphism. Two dg algebras A and B are equivalent if there is
a sequence A «— C; — Co «— ... — ...« C, — B of dga-quasi-isomorphisms. A dg
algebra A is formal if it is equivalent to a dg algebra with differential d = 0. In
this case, A is equivalent to H(A).

If A — B is a morphism of dg algebras, we have the extension of scalars
functor ([BL94, 10.11])

prod5 = (? @4 B) : dgMod(A) — dgMod(B).
It descends to a triangulated functor prodi = (? ® 4 B) between the homotopy

L
categories and has the left derived functor prod5 = (?® 4 B) on the level of derived
categories. This left derived functor is an equivalence if A — B is a dga-quasi-
isomorphism ([Kel94} 6.1]).

2.2. Differential Graded Graded Algebras and Formality. We show that
some dg algebras with an extra grading are formal. Let k be a commutative ring
and R a differential graded graded (dgg) algebra, i.e. a Z?-graded associative k-
algebra R = @, ;o5 RY endowed with a k-linear differential d : R — R that is
homogeneous of degree (1, 0) and satisfies the Leibniz rule d(ab) = (da)b+ (—1)'adb
for all a € RY, b € R*. A dgg module M = (M, d) over R is a Z>-graded right
R-module M =€, ;.4 MY with a k-linear differential d : M — M of degree (1,0)
satisfying d(ma) = (dm)a + (—1)*mda for all m € M¥, a € RF'. Morphisms of
dgg modules are morphisms of the underlying Z2-graded R-modules of degree (0,0)
that commute with the differentials. We denote the category of dgg modules over
R by dggMod(R).

The cohomology of a dgg module over a dgg algebra R is a dgg module over the
the dgg algebra H(R). Morphisms of dgg algebras (dgga-morphisms) are algebra
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homomorphisms that are morphisms of dgg modules. The meanings of dgga-
quasi-isomorphism, equivalent and formal are the obvious generalizations from
dg algebras.

A Z%-graded k-module M = @ MY is pure of weight w, if M # 0 implies
j =14+ w. A dgg module or algebra is pure of weight w if the underlying bigraded
module is pure of weight w. Every pure dgg algebra R of weight w # 0 is the zero
algebra, since 1 € R%; hence it is also pure of weight 0.

Let M be in dggMod(R). We define a bigraded k-submodule I'(M) of M by

M if i < 7,
(5) D(M)¥ = { ker(d : M — MTLI) if i = j,
0 if i > j.

The differential of M restricts to a differential of I'(M). The multiplication on R
restricts to a multiplication on I'(R) and I'(R) becomes a dgg algebra. Similarly,
I'(M) is a dgg module over I'(R). In fact, we obtain a functor

(6) I : dggMod(R) — dggMod(T'(R)).

Proposition 4. If the cohomology H(R) of a dgg algebra R is pure of weight 0,
then R is formal. More precisely, R <« I'(R) — H(R) are dgga-quasi-isomorphisms
where T'(R) — R is the obvious inclusion and I'(R) — H(R) the componentwise
projection.

Proof. Let R be an arbitrary dgg algebra. We include the following picture illus-
trating the morphisms R <= I'(R) — H(R). The differentials go to the right, the
cocycle and cohomology modules of the complexes R*/ are denoted by Z% and H*
respectively.

0 — HY

ZOO — 0 HOO N 0

ROl N Rll
‘ROO N RIO

’Rol N le

‘

The proposition results from the following evident statements.

(a) The dgga-inclusion T'(R) — R induces on cohomology an isomorphism in
degrees (i,7) with ¢ < j (above the diagonal).

(b) If H(R) vanishes in degrees (7, j) with ¢ < j (the cohomology lives below the
diagonal), componentwise projection I'(R) — H(R) is a well-defined dgga-
morphism and induces on cohomology an isomorphism in degrees (i,7) (on
the diagonal).

O

We generalize Proposition [4] slightly to dgg algebras that look like matrices. Let
R be a dgg algebra and {e, }acr a finite set of orthogonal idempotent elements of
R satisfying 1 = > ;€q and d(eq) = 0 for all @ € I. We get a direct sum
decomposition R = @ R,p where R,3 := eqReg for o, 3 € I. The differential of
R induces differentials on each component R,g. In particular, we can consider the
cohomologies H(Rqg3).

Proposition 5. Let R and {eq}acr be as above. If there are integers (ng)acr
such that each H(Rog) is pure of weight nq —ng, then R is formal. More precisely,
there are a dgg subalgebra S of R containing all {eq}acr and quasi-isomorphisms
R «— 8 - H(R) of dgg algebras.
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Proof. Define S = @ S, C R by

R, if i + 10 —ng < J,
Sep = ker(dy: Rl — Ry57) it i+n, —npg=7j,
0 ifi4+ng —ng>jJ.

With the induced multiplication and differential, S becomes a dgg subalgebra S of
R. The inclusion § — R and the obvious projection S — H(R) are easily seen to
be quasi-isomorphisms of dgg algebras. ]

2.3. Subcategories of Triangulated Categories. Let 7 be a triangulated cat-
egory, with shift X — [1]X. If M is a set of objects of 7, we denote by tria(M) =
tria(M,7T) the smallest strict full triangulated subcategory of 7 that contains all
objects of M, and by thick(M) = thick(M, 7T) the closure of tria(M) under taking
direct summands. If X is an object of 7, we abbreviate tria({X}) by tria(X), and
similarly for thick.

Lemma 6 (Beilinson’s Lemma). Let F' : T — T’ be a triangulated functor be-
tween triangulated categories, and let M be a set of objects of T. If F induces
isomorphisms
Hom7 (X, [i]Y) = Homz (F(X), [i{|F(Y)),
forall X, Y in M and all i € Z, it induces a triangulated equivalence
tria( M) = tria(F(M)),
where F(M) ={F(X) | X € M}.

Proof. This follows by a standard dévissage argument. O

2.4. Derived Categories and DG Modules. Let A be an abelian category.
We denote by Ket(A), Hot(A) and Der(A) (or D(A)) the category of (cochain)
complexes in A, the homotopy category of complexes in A4 and the derived cat-
egory of A respectively, with shift functor A — [1]A. We often consider A as
a full subcategory of these categories, consisting of complexes (with cohomology)
concentrated in degree zero. If I is a subset of Z, we write Der! (A) for the full
subcategory of Der(A) with objects whose cohomology vanishes in degrees outside
I. For objects A and B in the derived category of A, we write Ext’y(A, B) for
Hompe,( 4y (A, B) := Homper(a) (4, [n] B) and Ext 4(A, B) for the direct sum of all
Ext"y (A, B), n € Z. We call

(7) Ext(A) := Exta(4, A) = @ Ext4(4, A).
nez

the extension algebra of A.
If M, N are complexes in A, let Hom (M, N) or Hom 4(M,N) denote the
complex of abelian groups with n-th component

Hom™(M,N) = ][ Homa(M~",N7)
i+j=n
and differential df = do f—(—1)" fod for each homogeneous f of degree n. The n-th

cohomology of this complex is Homog(4) (M, [n]N). With the obvious composition,
Hom (M, M) becomes a dg algebra that we denote by End (M). The functor

Hom (M, ?) : Ket(A) — dgMod(End (M)),
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induces a triangulated functor between the homotopy categories.
Recall the category dgPer(R) for a dg algebra R from subsection By defi-
nition, it is equal to thick(R,dgDer(R)). If M is a set of R-modules, we define

dgPraeg (M) := tria(M, dgDer(R)).

Proposition 7. Let A be an abelian category, and { Py }acr a finite set of complezes
in A such that the canonical maps

(8) HomHot(A)(Pa, [n]Pﬂ) — HOIHD(A) (Pa, [n}P/g)

are isomorphisms for all n € Z and all a, § € I. (For example, all P, could
be bounded above complexes of projective objects of A.) Define P = @ P, and
R = &nd (P). Let e, € RY be the projector from P onto its direct summand P,.
Then the functor Hom (P,?) induces a triangulated equivalence

(9) tria({Pa }aer, D(A)) = dgPraeg ({eaR}acr)-
Proof. Consider the diagram

tria({ Patacs, Hot(A)) — 22T tia({eaR  acr, dgHot(R))

| |

tria({ Pataer, D(A)) dgPraeg ({eaR}aer)

with obvious vertical functors. We claim that all arrows are equivalences. For the
arrow on the left this follows from and Lemma @ Since all e, R are homo-
topically projective dg modules, equivalence restricts to the equivalence on the
right. Since Homgot(a)(Pa, []Pg) and Homggpor(r) (€aR, [n]egR) are both natu-
rally identified with H" (egRe,) and these identifications are compatible with the
functor Hom (P, ?), Lemma |§| proves our claim. O

Remark 8. Let P be a complex in an abelian category A with endomorphism
complex R = &End (P). If the composition

Hom (

(10) Hot(A) 2220, 4eHot(R) — dgDer(R)

vanishes on acyclic complexes, it factors through ¢ : Hot(A) — Der(.A) to a trian-
gulated functor

(11) Hom (P, ?) : Der(A) — dgDer(R).

This is the case, for example, if P is a bounded above complex of projective objects

of A.
If we keep the assumptions of Propositionand assume that the composition
vanishes on acyclic complexes, then the restriction of yields directly equivalence

2.5. Perfect DG Modules. We recall some results from [Sch08]. We assume in
this subsection that A = (A, d) is a dg algebra satisfying the following conditions:
(P1) A is positively graded, i.e. A* = 0 for i < 0;
(P2) AY is a semisimple ring;
(P3) the differential of A vanishes on A, i.e. d(A%) = 0.
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The semisimple ring A° has only a finite number of non-isomorphic simple (right)
modules (L)zew. We view AY as a dg subalgebra A° of A and the L, as A°-
modules concentrated in degree zero. Extension of scalars yields A-modules Em =
L; ® 40 A. Define

dgPrae(A) := dgPrae 4 ({ Ly }uew)-
Let dgPer=" (and dgPer=° resp.) be the full subcategories of dgPer(.A) consisting

L
of objects M such that H' (M ® 4.A°) vanishes for i > 0 (for i < 0 respectively). Let
dgFlag(A) C dgMod(.A) be the full subcategory consisting of objects that have an

L,-flag, i.e. a finite filtration with subquotients isomorphic to objects of {Em}zGW
(without shifts).

Theorem 9 ([Sch08]). Let A be a dg algebra satisfying ((P3)

(1) Then dgPrae(A) = dgPer(A), i. e. dgPrae(A) is closed under taking direct
summands.

(2) (dgPer=C,dgPer=") defines a bounded (hence non-degenerate) t-structure
on dgPer(A).

(8) Its heart dgPer® is equivalent to dgFlag(A). More precisely, dgFlag(A) is a
full abelian subcategory of dgMod(A) and the obvious functor dgMod(A) —
dgDer(A) induces an equivalence dgFlag(A) = dgPer’.

(4) Any object in the heart dgPer® has finite length, and the simple objects in
dgPer’ are (up to isomorphism) the {Ly}zew .

3. FORMALITY OF DERIVED CATEGORIES

3.1. Sheaves and Perverse Sheaves. We only consider complex (algebraic) va-
rieties. Let X be a variety. We denote by Sh(X) the abelian category of sheaves
of real vector spaces with respect to the classical topology on X and by D"(X) =
Der”(Sh(X)) its bounded derived category. Let DP(X) be the full triangulated
subcategory of DP(X), consisting of complexes with algebraically constructible co-
homology ([BBD82, 2.2.1]).

Any morphism f : X — Y of varieties gives rise to functors f*, f., fi, f' relating
DP(X) and D"(Y). These functors would classically be written f~!, Rf., Rfi and
f' respectively. Similarly we write ® and #om for the derived functors of tensor
product and sheaf homomorphisms. We denote the constant sheaf with stalk R on
X by X. Verdier duality is defined by D = Dy = #om (?,c'(pt)) where ¢ : X — pt
is the unique map to the final object pt in the category of varieties. We have
Df, = fiD, Df* = f'D, and D? = id on DP(X).

An algebraic stratification of X is a finite partition S of X into non-empty locally
closed subvarieties, called strata, such that the closure of each stratum is a union of
strata. If S € § is a stratum, we denote by lg the inclusion of S in X. From now on,
if we speak about stratifications, we always mean algebraic Whitney stratifications.
In particular, all strata are nonsingular. We assume in the following that all strata
are irreducible varieties. The (complex) dimension of a stratum .S is denoted by dg.
A cell-stratification is a stratification such that each stratum .S is isomorphic to
an affine linear space, so S =2 C9s.

A sheaf F' € Sh(X) is called smooth (along a stratification S) or S-con-
structible, if I§(F) is a local system on S, for all S € S. Let Sh(X,S) C Sh(X)
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be the full subcategory of such sheaves. An object F of DP(X) is called smooth
(along S) or S-constructible, if all H(F) are in Sh(X,S).

Let (X,S) be a stratified variety. The full subcategory DP(X,S) C DP(X) of
S-constructible objects is a triangulated subcategory and closed under taking di-
rect summands. Middle perversity defines perverse t-structures on DP(X,S) and
DP(X), see [BBD82, 2.1, 2.2]. Their hearts Perv(X,S) and Perv(X) are the cat-
egories of smooth perverse sheaves and of perverse sheaves respectively. We have
Perv(X,S) = Perv(X)NDP(X,S). Since any object of DP(X,S) has perverse coho-
mology in finitely many degrees only ([BBD82] 2.1.2.1]), perverse truncation shows
the non-trivial inclusion in

(12) D"(X,S) = tria(Perv(X, S), DP(X)).
There is a triangulated equivalence of categories (see [Bei87, BBD82])
(13) real = realy : DP(Perv(X)) = DP(X).
We denote this functor often by A +— A :=real(A). In particular,
(14) real : Extpe,,(x)(4, B) = Extg,x) (4, B)

is an isomorphism for all A, B € D(Perv(X)). The corresponding statement for
sheaves that are smooth along a fixed stratification S is usually false.

If S is a cell-stratification and S € S a stratum, we define Ag = lg.([ds]S).
Since lg is affine, Ag belongs to Perv(X,S). The objects isomorphic to some Ag
are called standard objects.

Theorem 10 ([BGS96, 3.2, 3.3]). Let (X,S) be a cell-stratified variety. Then
the category Perv(X,S) is artinian and has enough projective and injective objects.
Fach projective object has a finite filtration with standard subquotients. Each object
has a projective resolution of finite length. There is a triangulated equivalence

(15) real = realx s : D”(Perv(X,S)) = D"(X,S);
(this functor is constructed in [BBD82| 3.1]) we denote it by A — A.

3.2. Mixed Hodge Structures. The following definitions and results are taken
from [Del71l [Del94] [DMOSK2).
A (real) mixed Hodge structure M consists of

(a) a real vector space Mg of finite dimension,

(b) a finite increasing filtration W on My, called weight filtration,

(c) a finite decreasing filtration F' on the complexification M¢ = C ®@g Mg,
called Hodge filtration,

such that the filtration W¢, obtained by extension of scalars, the filtration F' and
its complex conjugate filtration F form a system of three opposed filtrations on Mc,
i.e. grf, grqurZVC(MC) =0if n # p+¢. A morphism f: M — N of mixed Hodge
structures is an R-linear map fg : Mg — Ng that is compatible with the weight
filtrations and whose complexification f¢ is compatible with the Hodge filtration.

A mixed Hodge structure M has weights < n (resp. > n), if gr}’f’R(M) =
grl¥ (Mg) = W;Mg/W;_1Mg = 0 for j > n (resp. j < n). It is pure of weight
n, if it is of weight < n and of weight > n.

Let R(n) be the Tate structure of weight —2n. It is a pure Hodge structure of
weight —2n, with R(n)g = (271)"R € C = R(n)c.
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The category MHS of mixed Hodge structures is a rigid abelian R-linear tensor
category. It admits the fiber functor “underlying vector space” wy : MHS — R- mod
to the category of finite dimensional real vector spaces and is hence neutral tan-
nakian. A mixed Hodge structure M is polarizable, if each graded piece gr!V (M)
is a polarizable Hodge structure ([Del71l, 2.1.16]). The polarizable mixed Hodge
structures are a rigid tensor subcategory of MHS.

The functor gry’ : MHS — R-gmod, M — @, ., ngR(M), is an exact faithful
R-linear tensor functor to the category of finite dimensional graded real vector
spaces. We denote the composition of grg with the functor “underlying vector
space” 1 : R-gmod — R-mod by wyy. This functor wy : MHS — R-mod is a fiber
functor and there is an isomorphism of fiber functors ([Del94} p. 513])

(16) a:wy — wyy.

3.3. Mixed Hodge Modules. We denote by MHM(X) the abelian category of
mixed Hodge modules (over R) on a complex variety X (see [Sai94] [Sai89, [BGS96]).
Instead of mixed Hodge module we also say Hodge sheaf. There is a faithful
and exact functor rat : MHM(X) — Perv(X). It induces a triangulated func-
tor rat : D*(MHM(X)) — DP(Perv(X)). Objects and morphisms in MHM(X) or
in DP(MHM (X)) are sometimes denoted by a letter with a tilde, and omission of
the tilde means application of rat, e.g. M — M = rat(M).

There are functors ##om, ® and Verdier duality D. For f: X — Y a morphism
of complex varieties, we have functors f*, f., fi, f' relating D*(MHM(X)) and
DP(MHM(Y)). We have the usual adjunctions (f*, f.) and (fi, f') between these
functors, and Df, = fiD, Df* = f'D and D? = id. All these functors “commute”
with the composition

v :=real orat : DP(MHM(X)) — DP(Perv(X)) = DP(X),

where real is the equivalence .

The Hodge sheaves on the point pt are the polarizable mixed Hodge structures
([Sai89l 1.4]). Each Tate structure R(n) is in MHM(pt).

Each Hodge sheaf M € MHM (X)) has a finite increasing filtration W in MHM (X))
called weight filtration. This filtration is functorial, and M +— gr!V (M) is an exact
functor ([Sai89, 1.5]). A Hodge sheaf M has weights < n (resp. > n), if gr}/v (M)=0
for j > n (resp. j < n). More generally, a complex of Hodge sheaves M has weights
< n (resp. > n), if each H (M) has weights < n 41 (resp. > n+1i). It is called pure
of weight n, if it has weights < n and > n.

We give some properties of mixed Hodge modules.

(M1) If M € DP(MHM(X)) is of weight < w (resp. > w), so are fiM, f*M (resp.
fM, f'M) ([Sai89, 1.7]).
(M2) M is of weight < w if and only if DM is of weight > —w.
(M3) For any M € MHM(X), every gr’¥ (M) is a semisimple object of MHM (X))
([Saig9, 1.9]).
(M4) If M € D°(MHM(X)) is pure of weight n, we have a noncanonical isomor-
phism M = @, [—j]H/ (M) ([Sai89, 1.11]).
In the following, f : X — Y is a morphism of complex varieties, M, N, A, B, C,
D are objects of D*(MHM(X)) or D*(MHM(Y)), and ¢ : X — pt is the constant
mabp.
(M5) We have f*(A® B) = f*A® f*B.
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(M6) The Tate twist M (n) of M is defined by M(n) = M ® ¢*(R(n)) ([Sai89,
1.15]), satisfies M (0) = M and commutes with all functors f*, f*, f., fi.
(M7) If M is of weight < w, then M(n) is of weight < w — 2n, and [n|M is of
weight < w + n. The same statement with < replaced by >.
(M8) The adjunction (? ® B, #om (B,?)) ([Sai90, 2.9]) yields the composition
morphism
stom (B, C) @ stom (A, B) — s#om (A, C)
and in combination with the symmetry of the tensor product a morphism
stom (A, B) @ #om (C, D) — s#om (A® C,B® D).
(M9) We have ([Sai90, 2.9.3])
som (A, B) =D(A®DB).

(M10) From and [(M5)| we get
f'Hom (A, B) =D(f*A@ Df' B) = #om (f*A, f'B).
(M11) If f is smooth of relative (complex) dimension n, we have

[2n] f*(M)(n) = f'(M).

Let (X,S) be a stratified variety and MHM (X, S) the full abelian subcategory
of MHM(X) consisting of Hodge sheaves M satisfying rat(M) € Perv(X,S). We
denote by DP(MHM(X),S) the full subcategory of DP(MHM(X)) consisting of
complexes M satisfying v(M) € DP(X,S) (or, equivalently H* (M) € MHM(X, S),
for all i € Z). Objects of MHM(X,S) and D®(MHM(X),S) are called smooth
(along S).

Proposition 11. Let S = C" for somen € N and ¢ : S — pt the constant map. If
M € MHM(S, {S}) is a pure Hodge sheaf of weight w and smooth along the trivial
stratification, there is a pure Hodge structure E € MHM(pt) of weight w —n such
that M 2 [n]c*(E).

Proof. By [Sai89 2.2 Theorem|, M corresponds to a polarizable variation V' of
Hodge structure of weight w —n on S = C". The fiber V; of V at 0 € C" is a
polarizable Hodge structure of weight w—n. We denote its constant extension to C™
by Vo. Obviously, there is an isomorphism V = Vo of the underlying local systems
that respects the Hodge filtration at 0 € C™. By the Rigidity Theorem ([Sch73|
7.24], see also [CMSPO03, 13.1.9, 13.1.10]), this isomorphism is an isomorphism
of polarizable variations of Hodge structures of weight w — n. We obtain M =
[n]c*(Vy), where we now consider V) as a polarizable Hodge structure of weight
w —n on pt, in particular as an element of MHM(pt). |

If Y is a variety, we define ¥ = ¢*(R(0)) € DP(MHM(Y)), so v(Y) = Y. Let
X be an irreducible variety of dimension dx and j : U — X the inclusion of a
nonsingular affine open dense subset. The intersection cohomology complexes of X
are defined by ([Sai89, 1.13])

IC(X) .= im(ji([dx]U) — j«([dx]U)) € Perv(X) and

IC(X) = im(ji([do]U) — ju([d:]U)) € MHM(X).

This definition does not depend on the choice of U, 1C (X) is simple and pure of
weight dx := dim¢ X and satisfies rat(ZC(X)) = ZC(X).
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If I3 : S — X is the inclusion of the closure of a stratum S in a stratified variety
(X,S), we denote I5, (ZC(S)) by ICs, and similarly for ICs. These objects are
smooth, i’E’S is simple and pure of weight dg, and we have rat(fCS) =71Cg. If S'is
a cell-stratification, the (ZCg)ses are precisely the simple objects of Perv(X,S).

In the introduction, we wrote ZC(S) and INC(S) instead of ZCg and ZCg. We
will use this notation later on again.

3.4. Construction of Epimorphisms from Projective Objects. In this sub-
section we describe an algorithm for constructing an epimorphism from a projective
object onto a given object. This algorithm will be used in subsection [3.5| in order
to show that there are enough perverse-projective mixed Hodge modules.

Let A be an artinian k-category, where k is a field. We write Hom, End, Ext, ®
instead of Hom 4, End 4, Ext 4, ®p, respectively. We make the following assump-
tions:

(E1) End(L) = k for all simple objects L in A.

(E2) There are enough projective objects in .A.
Note that implies that Hom(M, N) is finite dimensional, for all M, N € A.
Then |(E2)| shows that Ext'(M, N) is finite dimensional, for all M, N € A.

The following algorithm keeps extending simple objects to a given object until
this is no longer possible. In doing this, only non-trivial extensions are used.

Step 1: Take an object A € A as input datum.
Step 2: Set i =0 and Ag = A.
Step 3: While there is a simple object L € A with Ext'(A4;, L) # 0
Step 3.1: Take a simple object L € A with E := Ext'(A;, L) # 0.
Step 3.2: The element id € E*®F = Ext'(A4;, E*®L) gives ris to an extension
EF*® L — Ai+1 - Az
Step 3.3: Increase ¢ by 1.
Step 4: Define @ = A; and return the epimorphism @ = A; - Ay = A.

Proposition 12. Given any A € A, the above algorithm terminates after finitely
many steps and returns an epimorphism Q@ — A from a projective object Q.

Proof. We denote the length of an object X € A by A(X). Assume that our
algorithm does not stop. Then it constructs a sequence ... —» Ay —» A; —» Ay of
objects and epimorphisms with A(4g) < A(A1) < A(As) < .... By[(E2)] there are
a projective object P and an epimorphism my : P — Ay = A. Since A; — Ay is
epimorphic, there is a morphism m; : P — A lifting np : P — Agy. Proceeding
in this manner we obtain liftings 7; : P — A; of m;_1 for all i > 0. Now Lemma
below shows that all these m; are epimorphisms. In particular, we get the
contradiction A(4;) < A(P) for all i. So our algorithm stops. The returned object
Q is projective since Ext*(Q, L) = 0 for all simple objects L € A. O

1Perhaps we should explain what we mean by the object E* ® L. Let Nat be the following
category: Its objects are the natural numbers N; if m, n are objects of Nat, we define Hompnat (m, n)
to be the set of n X m-matrices over k; composition is matrix multiplication. We fix an equivalence
of categories ¢ : k- mod — Nat between the category of finite dimensional vector spaces over k
and Nat. There is an obvious functor (?®7) : Nat x A — A, (n,M) — n®@ M := MO". If Visa
finite dimensional vector space and M is in A, we define V@ M := ¢(V) ® M.
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Lemma 13. Let w: P — A be an epimorphism from an object P (not necessarily
projective) onto A. Let L be a simple object, E = Ext'(A, L) and

(17) 0-F*®L5MSA—0

the extension defined by id € E* ® E = Ext'(A,E* ® L). Let T : P — M be a
morphism such that com = . Then T is an epimorphism.

Proof. We have to show that

() The map 7* : Hom(M, N) — Hom(P, N) is injective.
holds for all objects N. If (N’,N,N") is a short exact sequence and (*)xs and
(*)n+ hold, then it is easy to see that (x)x is satisfied. So it is enough to prove
() for simple objects N.

Let N be simple. By applying Hom(?, N) to the exact sequence , we obtain
the exact sequence

0 — Hom(A, N) <= Hom(M, N) > Hom(E* ® L, N) % Ext!(A, N).
Our claim is that ¢* is bijective. For N 2 L this is clear, since Hom(E* ® L, N)
vanishes. If N = L there is an obvious map can : F — Hom(E* ® L, L) such that
d ocan = id. Since Hom(L, L) = k by can and hence § are isomorphisms.
This shows that ¢* is an isomorphism if N = L or N & L.
We now apply Hom(?,N) to co 7 = 7 and obtain 7* o ¢* = 7*. Since ¢* is
bijective and 7* is injective, 7* is injective and (x)y is true. O

3.5. Existence of Enough Perverse-Projective Hodge Sheaves. Let (X,S)
be a cell-stratified complex variety. A smooth Hodge sheaf P € MHM(X,S) is
called perverse-projective, if the underlying perverse sheaf P = rat(ﬁ) is a
projective object of Perv(X,S). A complex in MHM(X,S) is called perverse-

projective, if all its components are perverse-projective.

Proposition 14. If (X,S) is a cell-stratified complex variety, there are enough
perverse-projective objects in MHM(X,S), i. e. for every smooth Hodge sheaf Ae
MHM(X,S), there is a perverse-projective smooth Hodge sheaf Pe MHM(X, S)
and an epimorphism P A.

Proof. Postponed to the end of this subsection. O

Corollary 15. Fvery smooth Hodge sheaf A e MHM(X,S) has a perverse-
projective resolution P - g, i. e. there is a perverse-projective complex P =
(P, d™) in MHM(X,S) with P" =0 for n > 0 and a quasi-isomorphism P — A
in Ket(MHM(X,S)). Moreover, we can assume that this resolution is of finite

length, i.e. P" =0 for n < 0.

Proof. The first statement is obvious from the proposition, the second one follows
from Theorem [I0l [l

If M ,N € MHM(X) are Hodge sheaves on X with underlying perverse sheaves
M and N, there is a (polarizable) mixed Hodge structure on all Ext%erv(x) (M, N),
defined as follows. Let ¢ : X — pt be the constant map and M = real(M),
N =real(N). On a point, perverse cohomology and ordinary cohomology coincide,
and we get

v(H! c.Hom (M, N)) = H' ¢, #0m (M, N) = Extly, x,(M, N).
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Thus, we obtain a natural mixed Hodge structure on Extéh( x)(M, N). We transfer
this structure to Ext{)erv(x)(M, N) (using (14)) and denote it by Ext{)erv(x) (M, N)
(and by Hompew(x)(M,N) for i = 0). If M, N are smooth along our cell-
stratification, the analogous argument equips Extpe.(x s)(M,N) with a mixed
Hodge structure Extpe,,(x,s)(M, N).

Remark 16. Our construction defines bifunctors
Extpery(x(7,7) : MHM(X)*P x MHM(X) — MHS.

The usual long exact Ext-sequences in both variables underlie exact sequences of
mixed Hodge structures. Furthermore, if A, B and C are Hodge sheaves, composi-
tion defines a morphism of mixed Hodge structures

(18) Extpery(x) (B, C) ® Exth,,, x) (4, B) = Bxtill ((4,0).

This can be seen as follows. If F, G are in D°(MHM(X)) there is a natural
morphism ¢, F®c.G — c.(FR®G). We compose this morphism for F' = som (B, C)
and G = Jfom (A, B) with ¢, of the morphism .s#om (B,C) ® stom (A, B) —
Hom (A, C) (cf.|(M8)) and get a morphism

cxHtom (B, C) @ cutom (A, B) — c,.#om (A, C).
Now we take the (i + j)-th cohomology and use the obvious morphism of mixed
Hodge structures H' (¢, F) @ H/ (¢,G) — H'*/ (cxF' @ c.@) in order to get morphism
(18). The analogous remarks are valid for Extpe,,(x s)-
Lemma 17. Let F': A — B be an exact faithful functor between abelian categories,
F : D(A) — D(B) its derived functor, and f a morphism in D(A). Then f is an
isomorphism if and only if F(f) is an isomorphism.

Proof. This is an easy exercise. ([l

Lemma 18. Let A, B € MHM(X) be Hodge sheaves on X, let M € MHM(pt) be
a polarizable mized Hodge structure and ¢ : X — pt the constant map. Then there
are natural isomorphisms

(19) M ®@c,A = ("M ® A)
(20) "M ® s#om (A, B) = stom (A,c*M ® B).
in DP(MHM(pt)) and DP(MHM(X)) respectively.
Proof. The morphism is the image of the identity morphism of ¢* M ® A under
the chain of obvious morphisms
Hom(¢*M @ A,¢*M @ A) — Hom(¢*M ® c*c,A,c*M ® A)
= Hom(c* (M ® ¢, A),c*M ® A)
= Hom(M ® c. A, c.(c*M ® A)),
where Hom = Hompb - Since v(M) is a finite dimensional vector space,

v is an isomorphism, and Lemma applied to rat, shows that is an
isomorphism.

The morphism comes from the identifications ((M6)} [(M9))
"M =D(c*"R(0) ® Dc* M) = s#om (¢*R(0), c* M)
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and the morphism
stom (¢*R(0),¢" M) @ #om (A, B) — H#om (¢'R(0) ® A, "M ® B)
=om (A, c*M ® B).
All these morphisms are mapped to isomorphisms by the functor v, so is an
isomorphism by Lemma [17) and equivalence ((13)). O

Lemma 19. Let A, B € MHM(X,S), M € MHM(pt), and let ¢ : X — pt be the
constant map. Then ¢*M @ B € MHM(X,S), and there is a natural isomorphism
M ® EXti’erv(Xﬁ') (Av’ E) = EXt{:’erv(X,S) (27 C*M ® E)

of (polarizable) mized Hodge structures, for all i € Z.
Proof. The first statement is obvious. Isomorphisms and yield an isomor-
phism

M ® c,#om (A, B) = c,#om (A, c*M ® B)
Taking the i-th cohomology and using the exactness of the functor (M ®?) finishes
the proof. O

Proof of Proposition[I]. If M , N € MHM(X) are Hodge sheaves, there is a short
exact sequence (see [Sai90])

0— Hll\/IHM(pt) (HomPerv(X)(Mv N)) - Ethl\/IHM(X) (M, N)
- Hg/IHM(pt) (EXtIIDerV(X) (M? N)) — 0,
where waHM(pt) is the absolute Hodge cohomology functor: For A € MHM(pt),
it is defined by Higpi(pe (4) := Extigmpn (R(0), A). The categories MHM(X, S)
and Perv(X, S) are closed under extensions in D*(MHM(X)) and DP(X) ([BBDS82,

1.3.6, 3.1.17]). Thus, for smooth M, N € MHM(X,S), there is a short exact
sequence

0— Hll\/[HM(pt)(HomperV(X,S)(M7 N)) — Ethl\/IHM(X,S)(Ma N)

(21) L
—’Hg/[HM(pt) (Ethlverv(x,S)(Ma N)) — 0.

Let M , N € MHM(X,S) and counsider the polarizable mixed Hodge structure
E= Ext%,erv(xjs)(M, N). The map can : R(0) — E* ® E, 1+ id, is a morphism
of polarizable mixed Hodge structures, i.e. an element can & Hg/IHM(pt) (E* @ E).
Lemma (19| yields an isomorphism

E* ® E = E* ® Ethl:’erV(X,S) (]/\\4/, N) L Ethl:’erV(X,S) (M, c* (E*) ® j\?)
of polarizable mixed Hodge structures. The exact sequence shows that there
is an extension of smooth Hodge sheaves
HEY@ON — K — M
such that the underlying extension of perverse sheaves is given by the element
idp € E* ® E = Extpery(x.s) (M, c*(E*) ® N).
We now use the following algorithm in order to prove our proposition.
Step 1: Take an object Ae MHM(X,S) as input datum.
Step 2: Set i =0 and Ag = A.
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Step 3: While there is a stratum S € S with Ext%,erv(xﬁ) (Zl,fés) #0
Step 3.1: Take a stratum S € S with E = Extéerv(x’s) (gz,.fés) # 0.
Step 3.2: Choose, as explained above, an extension c* (E*) ® ivCS — gi_l,.l —»
A; of smooth Hodge sheaves such that the underlying extension of
perverse sheaves is given by id € E* ® E.
Step 3.3: Increase i by 1.
Step 4: Define P= Ai and return the epimorphism P= A —» AO = A of smooth
Hodge sheaves.
The underlying algorithm is the algorithm from subsection [3.4] for A = Perv(X,S).
Since S is a cell-stratification, this choice of A is justified by Theorem [I0] Thus,
Proposition [[2] shows that our algorithm terminates and returns an epimorphism
P — A from a perverse-projective smooth Hodge sheaf P. O

3.6. Comparison of Mixed Hodge Structures. Let A, B € MHM(X,S) be
smooth Hodge sheaves on a cell-stratified variety (X,S), with underlying smooth
perverse sheaves A and B. As explamed in subsection m there is a (polarizable)
mixed Hodge structure ExtperV(X ) (A, B) on Extperv(x s)(A, B).

Now assume that P — A and Q — B are perverse-projective resolutions of finite
length (cf. Corollary and Deﬁmtlon., with underlying projective resolutions P —
Aand Q — B. We apply Hompey(x,5)(7,7) to P and @ and get a double complex
of (polarizable) mlxed Hodge structures (see Remark [16) with (4, j)-component
Hompery(x 3)(P QJ) We denote its simple complex by Hom perv(x 3)(P Q) or
s1mply by Hom (P Q) (We use this notation also for arbitrary complexes P and
Q in MHM(X,S).) The underlying complex of real vector spaces is the complex
Hom (P,Q) = Hom pery(x,s)(P, Q) from subsection The n-th cohomology

H"(Hom perv(xﬁ)(}g,@)) is a mixed Hodge structure, and its underlying vector
space is

H"("Hom Perv(X,S)(Pa Q) = HomHot(Perv(X,S))(Pv [n]Q)
= Extpery(x.5) (P Q) = Extpe(x.s)(P, B)
< Extpery(x,s5)(4, B).
Proposition 20. The (polarizable) mized Hodge structures
Etherv(X,S)(g>§) and H"(Hom pery(x.5) (P, Q))
with underlying vector space Extp,,,(x s)(A4, B) are isomorphic.

Proof. We write Hom, Hom and Ext instead of Hompe,y(x, sy, Hom perv(x,s) and
Extperv(x,s) respectively, and show the existence of 1somorphlbmb of mixed Hodge
structures

(22) Ext"(A, B) & H"(Hom (P, B)) & H"(Hom (P, Q)).

Let us construct the isomorphism on the left in . We decompose P — Ainto
short exact sequences as follows. For i < 0, let K be the image of the differential
Pi=1 _, Pi and define K! = A. For each i < 0, we get a short exact sequence
(IN( : ISi, K i+1). The associated long exact Ext-sequence in the first variable gives
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an exact sequence of mixed Hodge modules (see Remark
(23) 0 — Hom(K*', B) — Hom(P?, B)) — Hom(K", B)
— Ext! (K", B) = 0
and isomorphisms
(24) Ext’ (K', B) = Ext/T1(K*t!, B)
for all j > 1. The 0-th cohomology of the complex C := Hom (f’, E) is
H°(C)) = ker (Hom(ﬁo, B) — Hom(K°, f?)) =, Hom(4, B)
byfori:(). For m > 0 we have
H™+(C) = cok (Hom(]s_m, B) — Hom(K ™™, E))
= Bxt (K™ B)
= Ext™ (4, B)
by and repeated use of . This establishes the isomorphism on the left in

(22). The isomorphism on the right is a consequence of the following Lemma
applied to the quasi-isomorphism @ — B. O

Lemma 21. Let ]3, @ and R be complezes in MHM(X, S), and assume that P is
perverse-projective and bounded above. Then any quasi-isomorphism f : Q) — R in
Ket(MHM(X,S)) induces a quasi-isomorphism Hom (P, Q) — Hom (P, R).

Proof. Tt suffices to prove that rat(f) : @ — R in Ket(Perv(X,S)) induces a quasi-
isomorphism Hom (P, Q) — Hom (P, R). But this follows from Remark |

Remark 22. Assume that P — /I, @ HN/BSNand R— C are_perverse-projective
resolutions of finite length. Then Hom (P, Q) and Hom (Q, R) are complexes of
(polarizable) mixed Hodge structures. The obvious composition map

Hom (Q, R) ® Hom (P, Q) — Hom (P, R)

is a morphism of complexes of mixed Hodge structures. It induces a morphism of
mixed Hodge structures

H'(‘Hom (Q, R)) @ H (Hom (P, Q)) — H"" (Hom (P, R)).

Under the identifications from (the proof of) Proposition this morphism corre-
sponds to the morphism in Remark The reason for this fact is that both
morphisms are just the composition of morphisms in the derived category of per-
verse sheaves, if we forget about the mixed Hodge structures.

3.7. Local-to-Global Spectral Sequence. If X is a complex variety and M a
complex of sheaves (of Hodge sheaves respectively) on X, the hypercohomology
H(M) := H(X; M) := H(c. M) is a complex (with differential zero) of vector spaces
(of mixed Hodge structures respectively). Here ¢ : X — pt is the constant map. If
l:Y — X is a locally closed subvariety, the local hypercohomology of M along Y
is Hy (M) := H(I'M) = H(l,I'M).

Consider now a complex variety X filtered by closed subvarieties X = Xy D
X1 DD X, =0. If M € D°(X) is a complex of sheaves, there is a local-to-

global spectral sequence with F;-term EY? = H’;;q_ x4, (M) converging to EZ =
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gr? (HPT4(M)). Tt can be constructed from an injective resolution of M, cf. [BGS96,
3.4].

Even though there are not enough injective Hodge sheaves, we shall construct a
similar spectral sequence of mixed (polarizable) Hodge structures, if M is a complex
of Hodge sheaves on our filtered variety X. In order to do so, we need the following
technical proposition.

Proposition 23. Let A be an abelian category and

al a2z Ar—1 ar

Ar—t A" =0

A Al
a finite sequence of objects and morphisms in D°(A). Then there is a bounded
complex K in A with o finite filtration F by subcomplezes, K = F'K > F1K D
<+ D F"'K D F'K =0, and quasi-isomorphisms u, : FPK — AP in Ket(A) such
that the diagram

al az as Qr—1 ar

AO Al A2 AT 1 A"

TUO Tul Tu2 Turl Tur
k k k k k

r—1

FOKéFIKéFZKé...éFrflKéFrK

commutes in D*(A). Here k, : FPK — FPTYK denotes the inclusion.

Proof. This seems to be well known, cf. the similar statement given in [BBD82,
3.1.2.7] without proof. For an explicit proof see [Sch07, Prop. 26| a

Now let M € DP(MHM(X)) be a complex of Hodge sheaves on X, where X is
a complex variety, filtered by closed subvarieties X = Xy D X; D --- D X, = 0.
If we let 4, : X, — X denote the inclusion, the adjunctions (ip. = ip!,’i;) yield a

sequence in DP(MHM(X))
M = iguily M <—— i iy M <—— =< iy _quib_ M <—— i, M = 0.

We apply c. to this sequence, where ¢ : X — pt. Proposition 23] shows that there
is a diagram

M <——— ¢ iy M <—— cuiguiy M . 0
K=FK~<~—F'K 2K o F'K =0,

where the lower horizontal row is a finite filtration on a complex K in MHS, the
vertical maps are quasi-isomorphisms in Ketb(MHS), and the diagram commutes
in DP(MHS). (We could write MHM(pt) instead of MHS.)

By [Lan02, Proposition XX.9.3], there exists a spectral sequence (E,,d,),>0
with EP? = HPT9(grh.(K)) and E%? = gr?(HP1?(K)). Using standard techniques
it is easy to identify the E;j-term of this spectral sequence with H&t‘i){pﬂ (M) (for

details see [Sch07) 2.11]). This proves

Proposition 24. Let X be a complex variety, filtered by closed subvarieties X =
XoD X1 DD X, =0, and M € D> (MHM(X)) a complex of Hodge sheaves on
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X. Then there is a spectral sequence (E,,d,),>o of (polarizable) mized Hodge struc-
tures with Ey-term EP? = Hfg‘ixpﬂ (M) that converges to ER9 = grP(HPTI(M))
(where H(M) is filtered by the images of the obvious maps Hx, (M) — H(M)).

3.8. Purity. Let (X,S) be a stratified complex variety, M e MHM(X) and w € Z.
We say that M is S-x-pure of weight w, if, for all strata S € S, the restrictions
ZEM are pure of weight w. It is S-!-pure of weight w, if all restrictions lgM are
pure of weight w, and S-pure of weight w, if it is S-x-pure and S-!-pure of weight
w.

Theorem 25. Let (X,S) be a cell-stratified complex variety, M,N e MHM(X, S)

smooth Hodge sheaves, and m, n € Z. If M is S-x-pure of weight m and N is S-I-
pure of weight n, the complex (with differential zero) of (polarizable) mixed Hodge
structures L ‘ .
EXtPeI‘V(X,S) (M7 N) = @ EXtZPerv(X,S) (M? N)
i€EN
is pure of weight n — m.

Proof. Recall that the mixed Hodge structure Extf;erv( X,S) (M , N) was defined from
H(c..#om (M, N)) = Hi(s#om (M, N)). We define X, to be the union of all strata
whose codimension in X is greater or equal to p, X, = (Jg ¢ S, ds +p < dime X S.
This defines a filtration of X by closed subvarieties, X = Xy D X; D --- D X, = (),
where r = dimc X + 1. Proposition shows that there is a spectral sequence of

mixed Hodge structures with E-term EY? = H’;:‘i x,,, (Hom (M, N)) converging

to EP: = grP (HPH4(#om (M, N))). Lemma [26( below shows that EP? is a pure
Hodge structure of weight p+ g+mn—m. There are no non-zero morphisms between
pure Hodge structures of different weights, hence our spectral sequence degenerates
at the Ei-term, i.e. By = Ey = ... = E.,. Furthermore, HP*9(#om (M, N))
is pure of weight p + ¢ + n — m, since it has a finite filtration with successive
subquotients that are pure and of the same weight (it is in fact isomorphic to the
direct sum of these subquotients, see |(M3)]). O

Lemma 26. Under the assumptions of Theorem [28] and with the notation intro-
duced in its proof, EY? = Hg(':q_XpH(ffom(M,N)) is a pure Hodge structure of
weight p+q+n —m.

Proof. The decomposition Xp—Xp11 =Ugc s, dg 4 p = dime x S 10to strata of codi-
mension p is the decomposition of X, —X,,;, into connected components. Therefore,
we have

+ AN ! AN
H' ., (o (M, N)) = &P HP (I 0m (M, N)),
S €S8, ds+p=dimcX

where lg : S < X is the inclusion of the stratum S € S. For each S € S, we have

by property
Iy om (M, N) = D(I5M @ DIy N).
The restrictions lgﬂ and Z'SJ\NI are pure, SO yields isomorphisms ZEM ~
;eI H (15M) and ISN = @, [—j]1 H/ (I N).
Fix i, j € Z. Since H'(I5M) is in MHM(S,{S}) and pure of weight m + i,
Proposition [11| shows that there is A’ € MHM(pt) pure of weight m + i — dg such
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that Hl(lgl\j) & [ds|c*A’. Then A := [dg —i]A’ € DP(MHM(pt)) is pure of weight
m and we have [—i] H (15 M M) = ¢*(A). If we proceed similarly and use |[(M7) and
we find B € D*(MHM)(pt)) pure of weight n such that [—j] H/ (l N) = c'(B)
Note that A and B are up to shift objects of MHM(pt). Using [((M10)} [(M11)| and
the adjunction isomorphism id = c.c*, we obtain

HPH (D(c*(A) @ D(c' B))) = HP* (¢, #om (A, B))
= HP* ([2dg]c.c* #om (A, B)(ds))
& HP' ([2ds]o#om (A, B)(ds)),
and this is pure of weight p + ¢ +n — m by [[M2)] [M7)] and [(M9)} O

3.9. Formality of some DG Algebras. Let X be a complex variety with a cell-
stratification S, and M e MHM(X,S) a smooth Hodge sheaf. By Corollary
there is a perverse-projective resolution P — M of finite length, with underlying
projective resolution P — M. As in subsection we consider the complex

A:= End (P) := Hompew(x,s)(ﬁ,ﬁ).

of (polarizable) mixed Hodge structures. Remark [22| shows that the multiplication
(= composition map) A A — Ais a morphism of complexes of mixed Hodge
structures. Note that a complex of mixed Hodge structures is the same as an object
of the tensor category dgMHS of differential graded mixed Hodge structures. So A
is a (unital) ring object in dgMHS (a “dg algebra of mixed Hodge structures”).

The exact faithful R-linear tensor functors “underlying vector space” wp, “as-
sociated graded vector space” gry, “underlying vector space” 1 and “underlying
vector space of the associated graded vector space” wy = 1o gri (see subsection
induce tensor functors (denoted by the same symbol):

I‘W
(25) dgMHS —2*5 dggMod(R)

o ]
dgMod(R) dgMod(R)

Here we consider R as a dg R-algebra concentrated in degree 0 and as a dgg R-
algebra concentrated in degree (0,0) (see subsections and . More elemen-
tary, dgMod(R) and dggMod(R) are the categories of dg real vector spaces and dg
graded real vector spaces respectively. The isomorphism a from induces an
isomorphism

(26) a:wy — wy

between the induced functors. Then A = wo(A) is the dg algebra £nd (P). Its coho-
mology is the extension algebra Extpery(x,s)(P) and isomorphic to Extpery(x,s)(M).

Theorem 27. Let (X,S), P— M, A and A be as above, and w an integer. Ifﬁ
is S-pure of weight w, then A is formal. More precisely, there are a dg subalgebra
Sub(A) of A and dga-quasi-isomorphisms A « Sub(A) — H(A).

Proof. Consider the dgg algebra R := gr!¥(A). Its graded components are R =
gr%(Ai). By Proposition and Theorem the complexes (with differential
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zero) of mixed Hodge structures H(Z) and Extpey( X’S)(Z\Al/ , M ) are isomorphic and
pure of weight 0. So

grm (H'(A)) = H'(gr(4)) = H(RY) = (H(R))"

vanishes for i # j, and the dgg algebra H(R) is pure of weight 0. ~Proposi‘cion
shows the existence of dgga-quasi-isomorphisms R « F(R) — H(R). We define

R := n(R) and T'(R) := n(I'(R)), apply n to R < I'(R) —» H(R) and obtain the
dga-quasi-isomorphisms in the first row in the following diagram

(27) ww(A) = R T(R) H(R) = ww (H(A))
NTaA NT NTG’H(/I)
wo(A) = A<—Sub(A) H(A) = wo(H(A)),

where the vertical isomorphisms come from the natural isomorphism and the dg
subalgebra Sub(A) C A is defined as the pull-back, i.e. Sub(A) := o= 1(T'(R)). All
vertical (horizontal) morphisms in this diagram are dga-(quasi-)isomorphisms. O

We generalize Theorem n 27| slightly as follows. Let (X,S) be as above, I a finite
set and P — Ma perverse-projective resolutions of finite length of smooth Hodge
sheaves M, (a € I). Let P be the direct sum of the (Py)acs, A = &End (P),
A=uwy(A ) = &nd (P) the dg algebra underlying the “dg algebra of mixed Hodge
structures” A and e, € AY the projector from P onto the direct summand P,.
The cohomology H(A) of A is isomorphic to the extension algebra Extpe,v(x,s)(M),
where M is the direct sum of the underlying perverse sheaves (M, )acr-

Theorem 28. Let X, S, I, P, — ]\701, A, A, e, be as above. Let wy € Z (veT)
be integers. If Ma is S-pure of weight we, for all a € I, then A is formal. More
precisely, there are a dg subalgebra Sub(A) of A containing all (eq)acs and quasi-
isomorphisms A < Sub(A) - H(A) of dg algebras.

Proof. The proof is very similar to that of Theorem 27} Mainly, we use Proposition
[] instead of Proposition [ O

3.10. Formality of Cell-Stratified Varieties.

Theorem 29. Let X be a complex variety with a cell-stratification S, (MQ)QGI a
finite number of smooth Hodge sheaves ]Tj € MHM(X,S) with direct sum M =
@Ma Denote by Ext(M) := Extgyx)(M) the extension algebra of M = ’U(]/\Z)
a dg algebra with differential d = 0. Let e, € Ext®(M) = Endgp(x)(M) be the
projector from M onto the direct summand M, = U(Ma). If there are integers

(Wa)acr, such that Ma is S-pure of weight w,,, for all o € I, there is an equivalence
of triangulated categories

(28) tria({M, }aer, D"(X)) = dgPracg, ) ({ea Ext(M) }aer)-

Under the equivalence we construct in the proof, the objects M, and e,, Ext(M)
correspond. We do not emphasize similar obvious correspondences in the following.

Due to the equivalences and we can replace Ext(M) by Extpe,y(x,s)(M)
or Extpery(x) (M), and also the left hand side of by tria({ M, }acr) formed in
DP(Perv(X,S))) or in DP(Perv(X)).
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Proof Let P, — M be perverse-projective resolutions of finite length (Corollary
and P, — M, the underlying projective resolutions in Perv(X S). Let P =
EBP and P = @ P,. As in the second part of subsection we define A =
&nd (P) and A = wo(A) = End (P). Theorem 28] yields a dg subalgebra Sub(A) of

A and dga-quasi-isomorphisms A < Sub(A4) — H(A). We claim that

(29) tria({M,}, D (X)) <=5 tria({M,}, DO (Perv(X, S)))
(30) Hom (B7), dgPrae, ({eqA})
7§ A
(31) = dgPracs,(a)({ea Sub(4)})
? é H(A)
Sub(A)
(32) ———— dgPraey 4 ({ea H(A)})
? %)Ext(M)
(33) ngraeExt(M)({eaEXt(M)})'

is a sequence of triangulated equivalences. By Theorem . is an equivalence.
The isomorphisms P, — M, in DP(Perv(X,S)), Pr0p051t10n @ and Remark I
show that is an equivalence. (The e, here are in fact representatives of the
eq in the theorem, but we do not care about this too much.) The dga-quasi-
isomorphisms A < Sub(A) — H(A) induce equivalences between the respective
derived categories dgDer and restrict to the equivalences (31)) and . The last
equivalence is similarly induced by the dga-isomorphism (c)
H(A) = H(End (P))=Ext(P) 2L Ext(M) 22 Ext(M).

~

O

Remark 30. We use the notation Formz_ 57 for the “formality equivalence”
constructed in the proof of Theorem @ to indicate that it mainly depends on the
perverse-projective resolutions P, — M,,.

3.11. Formality and Intersection Cohomology Complexes. Let (X,7) be a
cell-stratified complex variety, £ = Ext(ZC(7)) the extension algebra of the direct
sum ZC(7) of the (ZCt)rer, and er the projector from this direct sum onto ZCr.
Then the dg algebra £ satisfies the conditions hence

dgPraeg ({erf}rer) = dgPrae(€) = dgPer(Ext(ZC(T))

thanks to Theorem @ If IAéT is 7-pure of weight dr, for all T' € I, these equalities,
Theorem [29| and yield an equivalence

D"(X,T) = dgPer(Ext(ZC(T))).

Similarly, if 7' is a subset of 7 and all ICrv are T -pure of weight dr/, for T' € T,
we get by Theorem [29| an equivalence

(34) tria({ZCr }rre7r, DP(X)) = dgPer(Ext(ZC(T"))).
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Theorem 31. Let (X,S) be a stratified variety with simply connected strata. Let

T be a cell-stratification refining S. If ZCg is T -pure of weight dg for all S € S,
there is a triangulated equivalence

(35) D"(X,S) = dgPer(Ext(ZC(S))).

This equivalence is t-ezact with respect to the perverse t-structure on D*(X,S) and
the t-structure from Theorem[9 on dgPer. Restriction to the respective hearts yields
an equivalence

Perv(X,S) = dgFlag(Ext(ZC(S))).

Proof. Since each S € § is irreducible, it contains a (unique) dense stratum T'(S) €
T; then ICs = ICr(s). We apply equivalence to the set 7’ of these dense
strata. Then we use and the fact that the (ZCg)ges are the simple objects of
Perv(X,S). This show equivalence ([35]).

Since ZC(S) is mapped to es Ext(ZC(S)) (where eg is the obvious projector),
the remaining statements follow from Theorem [9] O

Remark 32. We use the notation FormZ for equivalence to indicate its

P—>fa(5)
dependence on the refinement 7 and the perverse-projective resolutions Pg — ZCg

(cf. Remark [30).

Remark 33. In Theorem it is sufficient to require that each 7C s is T-x-pure of
weight dg: If S is a stratum of a stratified variety and [ the inclusion of a subvariety,
we have D(ZCg) = ICs(dg) and obtain

I(ICs) = D(I"(D(ICs))) = D(*(ICs(ds))) = D(I"(ICs))(~ds).
So if I*(ZCg) is pure of weight dg, then I'(ZCs) is pure of weight dg.

3.12. Formality of Partial Flag Varieties. Let G be a complex connected re-
ductive affine algebraic group and a B C G Borel subgroup. Let P, () be parabolic
subgroups of G containing B. The Bruhat decomposition of the flag variety G/B
into B-orbits is a cell-stratification. More generally, the B-orbits on the partial
flag variety G/P form a cell-stratification, and the Q-orbits on G/P form a strati-
fication. (These stratifications are indeed Whitney stratifications thanks to [Kal05,
Thm. 2].)

Proposition 34. The Q-orbits in G/P are simply connected.
This is probably well-known but we could not find a proof in the literature.

Proof. Let Y C G/P be a Q-orbit and T C B C G a maximal torus. Then
Y = QwP/P for some w in the normalizer of T' in G. The stabilizer S of wP/P in
Q is Q NwPw~! and is connected as the intersection of two parabolic subgroups
of a connected reductive group ([Bor91l 14.22]). The exact sequence of homotopy
groups associated to the S-principal fiber bundle Q — Y, ¢ — qwP/P, shows that
it is sufficient to prove surjectivity of m1(S) — m1(Q). Note that T' C S. If Lq is
a Levi subgroup of @, then T C Lg and m(Q) = m1(Lg). Hence surjectivity is a
consequence of the following Lemma [35] (|

Lemma 35. If T is a mazimal torus in a connected reductive group L, then
m(T) — w1 (L) is surjective.
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Proof. Let A C L be a Borel subgroup containing 7. Then m(T) = m(A4) and
the long exact homotopy sequence for the A-principal fiber bundle L — L/A yields
an exact sequence m(A) — m (L) — m(L/A) — mo(A). Since A is connected
and fundamental groups of topological groups are abelian, w1 (L/A) is abelian and
vanishes since the flag variety L/A has only even cohomology. So m1(A) — m1(L)
is surjective. U

Theorem 36. Let F' € D*(MHM(G/P)) be pure and smooth along the stratification
by B-orbits. Let1:Y — G/P be the inclusion of a B-orbit. Then I*(F) and I'(F)
are pure as well, of the same weight as F.

Proof. Let m: G/B — G/P be the obvious projection and Z C 7~!(Y) the unique
Bruhat cell such that 7 induces an isomorphism Z = Y

Z——n1YY)——=G/B

T

Y —Y ! G/P.

Since 7 is smooth of relative dimension n = dim¢(P/B), 7 (F) = [-2n]x'(F)(—n)
and 7' (F) are pure of the same weight as F' (use[(M1)} [M7)|and[(M11)). Obviously,
7*(F) is smooth along the stratification by Bruhat cells, and so is 7'(F). Hence
we deduce from [Soe89, Parabolic Purity Theorem] that I*(F) and I'(F) are pure
of the same weight as F'. O

Theorem 37. Let Q be the stratification of G/P into Q-orbits. Then there is
a t-ezact equivalence D (G /P, Q) = dgPer(Ext(ZC(Q))) inducing an equivalence
Perv(G/P, Q) = dgFlag(Ext(ZC(Q))).

Proof. The strata of Q are simply connected by Proposition The cell-stratifi-

cation 7 of G/P into B-orbits refines Q, and every ZCq is 7-pure of weight dg,
for @ € Q (Theorem . Hence we can apply Theorem ([

3.13. Complex coefficients. Let (X,S) be a cell-stratified variety. We denote
the derived category of sheaves of complex vector spaces on X by DP(X )c and
use similar notation in the following. The obvious extension of scalars functor
DP(X) — DP(X)c, N — Ng restricts to a functor D*(X,S) — DP(X,S)c. This
functor is t-exact with respect to the perverse t-structure and maps projective
objects of Perv(X,S) to projective objects of Perv(X,S)c. If M, N are in DP(X)

we have a canonical isomorphism
(36) (C@R Home(X)(M, N) = Home(X)C(Mc,Nc).
Under the assumptions of Theorem [29| the complexified version

tria({Mac taer, D"(X)c) = dgPraeg,(y ) ({€a Ext(Mc)tacr)-

of equivalence is true: With the notation used in the proof of Theorem
(Py)c — (M) is a projective resolution in Perv(X,S)c. From we see that
C®gr A and End (Pg) are isomorphic as dg algebras. Since A is formal, the same is
true for £nd (Pc). Now it is easy to adapt the sequence of equivalences —
to the case of complex coefficients.

In particular, Theorem [37]is also true for complex coefficients.
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4. FORMALITY AND CLOSED EMBEDDINGS

We formulate in subsection the goal of this section and explain in subsection
the main application. The proof of the goal is divided into several parts and
given in the following subsections.

4.1. The Goal of the Section. Let (X,S) and (Y, 7T) be cell-stratified complex
varieties, and 7 : Y — X a closed embedding such that i(7) := {i(T) | T € T} C S.
We say for short that i : (Y,7) — (X,S) is a closed embedding of cell-stratified
varieties. (If S and 7 are merely stratifications, the term closed embedding of
stratified varieties is defined similarly.)

Assume that we are in the setting of Theorem[29/on X and on Y. More precisely,
let (Mg)aer and (Na)aer be finite collections of smooth Hodge sheaves on X and
on Y. Assume that there are integers (wq)aecr (resp. (Va)aecr) such that Ma (resp.
Ng) is S-pure (resp. T-pure) of weight w, (resp. v,), for all « € I.

Let p be an integer (in our applications, p will be the negative complex codi-
mension of the inclusion ¢ : Y — X, and we will have w,, + p = v, for all « € I).
Suppose that there are isomorphisms

(37) Gt [W]i*(Ma) = Ny
in D°(MHM(Y)), for all a € I. Let & : [u)i*(M) => N be the direct sum of these

isomorphisms, where M = @ M, and N = @ N,.
Let 71 : Py, — M, and py @ Qo — N, be perverse-projective resolutions and

7:P — M and p: @ — N their direct sum. The vertical equivalences in

[]i"

(38) tria({M,,}, D (X)) tria({IV,, }, DP(Y))

Formﬁ*’ﬁ[l,\/ /‘Orméﬂﬁl'\/

dgPracgyq ) ({ea Ext(2))) dgPracg, () ({ea BXH(N)})

? ® Ext(N)
Exe (M)
come from Theorem [29] cf. Remark[30] The upper horizontal arrow is the restriction
of [u]i* : DP(X) — DP(Y), the lower one is the restriction of the extension of scalars
functor coming from the composition

(39) Ext(M) 5 Ext([u)i* (M) < Ext(N),

~

where the o above the arrow indicates that the isomorphism is constructed using
the isomorphism o : [u]i*(M) = N.

Theorem 38. Keep the above assumptions. Then diagram commutes up to the
indicated natural isomorphism, i. e. there is a natural isomorphism (of triangulated
functors)

L
? & Ext(N))oForms — — Forms <o [u]i*.
( Ext (M) (7) ) P—M Q—N [,u]

Proof. Let A = &nd(P) and B = &nd (Q). We define A and Sub(A) as in the
proof of Theorem and B and Sub(B) accordingly. We only prove the theorem
in the case that I is a singleton, the general case being an obvious generalization.
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We expand diagram according to the sequence of equivalences (29)-(B3) to the
following diagram.
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tria(M, D" (X))

[uli*

realx s

tria( M, Db(Perv(X7 S)))

Proposition

[L]LPi*

—————— tria(

29

tria(N, DP(Y))

realy, 7

N, DP(Perv(Y,7)))

Hom (P,?) | ~ ~ | Hom (Q,?)
L
7® Hom (Q,[u]"i" (P))
dgPrae4(A) dgPraeg(B)
L
? ® Al~ ~|?7 ® B
Sub(A) Subsection Sub(B)
? US%(A)sub( Hom (Q,[u]Pi* (P
dgPraeg,, (4)(Sub(A)j dgPraeg,, g)(Sub(B))
L
? H(A) | ~ ~|? ® H(B)
Sub(A) Sub(B)
L
H(A
dgPraey 4)(H(A)) dgPraey ) (H(B))

L
7 ® BExt(M)
H(A)

2

{ibsection 111

L
[

? Ext(N)
BExt (M)

dgPraegy(ar) (Ext(M))

L
7?7 ® Ext(N)
H(B)

dgPraegy () (Ext(N))

The horizontal functors in this diagram will be explained in the rest of this section.
It will result from the specified Proposition, Corollary and subsections that all
squares commute up to natural isomorphism, as indicated by the diagonal arrows.

Since all vertical arrows are equivalences, this proves the theorem.

O
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4.2. Formality and Normally Nonsingular Inclusions. If f : ¥ — X is a
closed embedding of irreducible varieties and, in the classical topology, a normally
nonsingular inclusion of (complex) codimension ¢ (cf. [GMS8S8, 1.1.11]), we have a
canonical isomorphism ([GMS83] 5.4.1], and [BBDS82 0] for the different normaliza-
tion)

(41) [—c]f*(ZC(X)) = IC(Y) in Perv(Y).
It comes from a canonical isomorphism

(42) [—c]f*(ZC(X)) & ZC(Y) in MHM(Y).

Let i : Y — X be a closed embedding of varieties and assume that we have
stratifications S of X and 7 of Y (with irreducible strata). Suppose that S — 7T,
S — i71(S) = SNY, is bijective and that ilg, : SNY — S is a normally
nonsingular inclusion of a fixed codimension ¢, for all S € §. The isomorphisms

and induce isomorphisms
(43) [—=dJi*(ZCs) = ICsny in Perv(Y,T) and
(44) [~i*(ZCs) = ICsny in MHM(Y, 7).

Theorem 39. Leti:Y — X and S, T be as above. Assume that

(a) all strata in S and T are simply connected,
(b) there are cell-stratifications 8" and T’ refining S and T such that
e ICg is S'-pure of weight dg, for all S € S,
° ﬁZT is T'-pure of weight dr, for all T € T, and
e i: (V7)) — (X,8) is a closed embedding of cell-stratified varieties.

Let ]35 — sz and éT — féT be perverse-projective resolutions (smooth along the
cell-stratifications), for S € S and T € T. Then diagram

[—c]i*

DV(X,S) D(Y,T)
Formgﬁfcw)l” ?E é(s))EXt(IC(T» NlpoerHIC(T)
dgPer(Ext(ZC(S))) — dgPer(Ext(ZC(T)))

is commutative (up to natural isomorphism). The vertical functors are given by
Theorem (cf. Remark @), the extension of scalars functor is induced by the
isomorphisms . All functors in this diagram are t-exact (with respect to the
perverse t-structure and the t-structure from Theorem @

Proof. Except for the t-exactness of the horizontal functors, this is a consequence
of Theorem 3§ and the results of subsection [3.111

It is obvious that the extension of scalars functor is t-exact. The t-exactness
of [—¢]i* can be proved as follows: Since all strata in S are simply connected, the
(ZCs)ses are the simple objects of Perv(X,S). Every object of Perv(X,S) has
finite length. Now the isomorphisms and the long exact perverse cohomology
sequence show the t-exactness. (I



EQUIVARIANT SHEAVES ON FLAG VARIETIES 31

4.3. Closed Embeddings and (Perverse) Sheaves. Let i : (Y,7) — (X,S)
be a closed embedding of stratified varieties. Since i, is perverse t-exact [BBD82,
1.3.17, 1.4.16], Pi, : Perv(Y,7) — Perv(X,S) is exact and induces the functor i,
in diagram

realy, 7

(45) DP(Perv(Y, T)) — " DP(Y, T)

\Lpi* \Lz*
T

eal
Db (Perv(X,S)) 2 L Dh(X,S).
The horizontal functors were introduced in .

Proposition 40. Keep the above assumptions. Then diagram commutes up
to natural isomorphism.

Proof. This follows from the definition of the functor realx s given in [BBD82, 3.1];
for details see [Sch07, 3.3, 3.4]. O

Let i : (Y,7T) — (X,S8) be a closed embedding of cell-stratified varieties. Theo-
rem [10] shows that the right exact functor i* : Perv(X,S) — Perv(Y, T) has a left
derived functor LPi* between the bounded derived categories.

Proposition 41. Leti: (Y,7T) — (X,S) be a closed embedding of cell-stratified
varieties. Then there exists a natural isomorphism as indicated in the diagram

realx s

Db (Perv(X, S)) ———= > DP(X,S)

real
DY (Perv(Y, T)) =T S Dh(Y,T).

Proof. Both realization functors are equivalences of categories (Theorem and
up to these equivalences the functors P4, and i, coincide (Proposition. Now the
statement is a consequence of the adjunctions adjunctions (LPi*,Pi,) and (i*,i,).

O

4.4. Tensor Product with a DG Bimodule. By [Kel98 8.1.1, 8.1.2, 8.2.5],
there is a fully faithful functor p : dgDer — dgHot that is left adjoint to the
quotient functor g : dgHot — dgDer and has image in dgHotp. If we consider p as
a functor dgDer — dgHotp, it is quasi-inverse to the equivalence (4).

Let A and B be dg algebras and X a dg A-B-bimodule (with A acting on the
left and B on the right). This yields a triangulated functor

(?®4 X) : dgHot(A) — dgHot(B).

L
Its left derived functor is the pair ((? ® 4 X),0) (we use the definition of derived
functors from [Del77, C.D.I1.2.1.2, p. 301]), where

L
(704 X):=qo(?®4 X)op:dgDer(A) — dgDer(B)
and o is the natural transformation
L
(46) c:(7@4X)oqg—qo(?®4X)

coming from the adjunction (p, q).
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4.5. Passage from Geometry to DG Modules. Let I : A — B be a right exact
functor between abelian categories. We denote the induced functor Hotb(A) —
Hotb(B) by the same symbol. Assume that each object of A has a projective
resolution of finite length. Then I has a left derived functor LI : Der®(A4) —
Der(B). Let P and Q be bounded complexes of projective objects in A and B
respectively. Then Hom (Q, I(P)) is obviously a dg £nd (P)-End (Q)-bimodule.
It induces (see subsection the lower horizontal arrow in diagram

(47) Der”(A) = Der”(B)
i ‘Hom (P/ \L Hom (Q,?)
dgDer(&nd (P)) - dgDer(€&nd (Q)).
? ® Hom (Q,I(P))

" end (P)

The vertical functors are restrictions of the functors explained in Remark
We construct now a natural transformation 7 as indicated in the diagram. Since
Hom (Q,?) o LI is the left derived functor of

Hom (Q,?) oI : Hotb(A) — dgHot(&nd (Q)),

it is enough, by the universal property of left derived functors, to construct a natural
transformation 7 as indicated by the diagram

Hot"(A) Hot"(B)
‘I\L i Hom (Q,7)
Der®(A) z dgHot(&nd (Q))
Hom(P,?)\L lq
dgDer(&nd (P)) - dgDer(&nd (Q)).
?7 ® Hom (Q,I(P))
£nd (P)
Thus we define 7 to be the composition
L
Hom (P,q(?)) ® Hom(Q,I(P))
&End (P)
(48) =q(Hom (P,?)) © Hom(Q,I(P))
£nd (P)
o from
—_— q(Hom (P,7) ® Hom(Q, I(P)))
End (P)

I and composition
—
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Proposition 42. Assume in addition to the above assumptions that [u]I(P) = Q
m Derb(B) for some integer p. Then diagram induces the diagram

(49) tria( P, Der®(A)) G tria(Q, Der® (B))

lHom(PZL;;;;;;;%§;;55557 lHom(Qﬂ)

dgPrae ¢4 (p)(€nd (P)) —————— dgPrae g4 (o) (End (Q))

? & Hom (Q,UI(P))
£nd (P)

and T is a natural isomorphism.

Proof. We have LI(P) = I(P) in Der(B) and Hom (Q,[]I(P)) = &nd(Q) in
dgDer(€nd (Q)). Thus, after replacing the horizontal functors in diagram by
their composition with the shift [u], this diagram restricts to .

In order to show that 7 is a natural isomorphism, it is sufficient to check that 7p
or equivalently 7p is an isomorphism. Since mp is obtained by plugging in P in
(P is a complex of projective objects), this follows from the obvious isomorphism

Hom(Rq(P))gnéé(P) Hom (Q. 1(P))

= q('Hom (P, P)) ® gna (p) Hom (Q,I(P)))
= q(Hom (Q, I(P))).
|

Corollary 43. Under the assumptions of subsection[{.1}, the second square in di-
agram commutes up to natural isomorphism.

Proof. Take as A the category Perv(X,S) (using Theorem [L0), as I : A — B the
right exact functor ?i* : Perv(X,S) — Perv(Y,7) and as P and @ the complexes
denoted by the same symbols in subsection |4.1} By assumption, we have an iso-
morphism [p]i*(M) =5 N in DP(MHM(Y)). Hence [ui*(M) = N in DP(Y,T) or
equivalently [u]LPi*(M) = N in D"(Perv(Y,T)), by Proposition 41{and Theorem
But N is isomorphic to @ and LPi*(M) is isomorphic to Pi*(P) since P — M
is a projective resolution in Perv(X,S). O

4.6. DG Bimodules and Transformations.

Lemma 44. Let B — A be a dga-morphism and P a homotopically projective dg
B-module. Then P ®p A is homotopically projective.

Proof. Since ? ®p A is left adjoint to the restriction of scalars functor, we see that
Homggot(a) (P ®p A, ?) vanishes on acyclic dg A-modules. O

Assume that we are given dga-morphisms ¢ : B — A and ¢ : S — R. Let M
be a dg A-R-bimodule. By restriction of scalars we view M as a dg B-S-module.
Let x : N — M be a morphism of dg B-S-bimodules. We denote this situation as
follows.

(50) Soxw,
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We get the following diagram

%A
(51) dgDer(B) —— dgDer(A)

L 0 L
?®Nl / l?(@M
B A

dgDer(5) —— dgDer(R)
gR

and construct now the indicated natural transformation 6. From Lemma [44] we see
that the obvious transformation

(26 M)o (26 A) = (26 M)
A B B
is an isomorphism. So it is sufficient to define a transformation
8:(2&R)0(?ON) — (26 M)
s B B
But there is an obvious natural transformation

L L o from wi
(52) (?%@R)o(?%N)oqqo(?%@R)o(?@N)

B
L)qo(?%M)

that induces, by the universal property of left derived functors, the transformation
we want.

Proposition 45. Keep the assumptions from above. Let n € N be an element
such that the maps f : S — N, s+—ns and g : R — M, r — x(n)r are quasi-
isomorphisms of dg modules (so n € Z(N)? := N° Nkerdy). Then diagram
restricts to

L
QA
(53) dgPrae(B) —— dgPrae 4 (A)

L l 0] i L
QN QM
B ~ A
dgPraeg(S) —— dgPraeg(R)
2GR

and 0| is a natural isomorphism.

Proof. Since S 2 N and R = M in dgDer, diagram restricts to . IfN
is a dg B-module, then 6y is obtained by plugging in p(N) in (up to an
isomorphism coming from the adjunction isomorphism N = ¢(p(N)). In order
to show that 6| is a natural isomorphism, it is enough to check that fp is an
isomorphism. Since B is homotopically projective, we may assume p(B) = B.
Then 6p is given by

(54) ((B%N) (%R) = (q(N)QZ{)R) — q(N(}SaR) X q(M)

We may assume that the adjunction morphism p(q(N)) — N is given by f : S — N.
Then the composition of the last two maps in is identified with the isomorphism
q(g9) : ¢(R) — q(M) in dgDer(R). O
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4.7. DGG Bimodules. In subsection 2.2 we considered dgg modules over a dgg
algebra R. We defined a functor I' : dggMod(R) — dggMod(I'(R)) (see (5)), (6))
and used it to show that dgg algebras with pure cohomology are formal.

The construction of I' is easily extended to bimodules. If A and B are dgg
algebras and M is a dgg A-B-bimodule, then I'(M) becomes a dgg I'(A)-I'(B)-
bimodule. We get the following situation similar to (50)).

(55) (P(4) ~T(M) ~AT(B)] C

Here the inclusion I'(M) C M is a morphism of dgg I'(A)-I"(B)-bimodules. The co-
homology H(M) is a dgg H(A)-H(B)-bimodule. Assume now that the cohomologies
of A, B and M vanish in degrees (4, j) with ¢ < j. Then componentwise projection
defines the following morphisms of dgg algebras and dgg bimodules:

(56) (T(4) ~ T(M) ~T(B))— [H(A) ~ H(M) ~H(B))

We would like to apply Proposition 45| to the situations sketched in and ,
i.e. we need an element m € I'(M) inducing quasi-isomorphisms I'(B) — I'(M),
B — M and H(B) — H(M).

Lemma 46. Let B be a dgg algebra, M a dgg B-module and f : B — M a
quasi-isomorphism of (right) dgg B-modules. Then m = f(1) € T(M)% and the
multiplication maps (m+) : B — M, (m-) : T'(B) — I'(M), and (|m]-) : H(B) —
H(M) are quasi-isomorphisms of dgg modules (over B, T'(B) and H(B) ), where we
denote by [m] the class of m in H(M).

Proof. Since 1 € B% Nkerdg, we have m = f(1) € M Nkerdy = I'(M).
The functor T" is a “truncation functor” and maps quasi-isomorphisms to quasi-
isomorphisms, so I'(f) is a quasi-isomorphism. But f = (m-), I'(f) = (m-) and

H(f) = (Im]"). O

4.8. Triangulated Functors on Objects. Let A be an abelian category. The
stupid truncation functors o<;, o>; : Ket(A) — Ket(A), for i € Z, are defined as
follows: o<; preserves all components in degrees < ¢ and replaces all components in
degrees > i by zero; similarly for o>;. There are obvious transformations id — o<;
and o>; — id.

Proposition 47. Let A, B be abelian categories and F : Der®(A) — Der®(B) a
triangulated functor. Let

n -1
..—>O—>P7"d—>P7”+1—>...—>P71d—>PO£>M—>O—>...

be a bounded exact complex in A (a resolution of M ). Assume that F(P?) is an
object of B, for alli = —n,...,0, where we identify B with the heart of the standard
t-structure on Der®(B). Let F(P) be the complex

F(d™™) F(d™1)
E—— L —

= 0= F(PT) F(pPth —
in B. Then F(M) and F(P) are isomorphic in Der®(B).

F(P°) —-0—...

Proof. We write Hom instead of Hompe, (). The transformation o>¢ — id yields
an inclusion s : F(P%) = Uzo(ﬁ(P)) — ﬁ(P) in Ket”(B). By induction on n,
we prove the following more precise statement: There is an isomorphism a €

~

Hom(F(P), F(M)) such that a o s = F(p) in Der(B).
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For n = 0, this is obvious. Assume that n > 1. Consider the morphism f :
[~1]o<_1(F(P)) — os0(F(P)) = F(P° in Ket(B), given by F(d~!) in degree

~

zero. Its mapping cone is F(P), and we get a distinguished triangle

(57) 1o« (F(P)) L F(P%) % F(p) 1L

in Derb(B). Similarly, we get a distinguished triangle

(58) [2)o<_o(F(P)) % F(P~Y) L [“1]o-_y(F(P)) L

in Derb(B)7 where ¢ is the obvious inclusion, defined similarly as s above, and g is
a morphism in Ket(A), given by F(d=2) in degree zero.

We factorize d~! : P~' — PO as P~1 % K 2 P° where K = kerp = imd~".
By induction, applied to the exact complex

(...—>0—>P_"£>P_"'H—>...—>P_2£>P_11>K—>0—>...)7

there is an isomorphism [ € Hom([—l}ag,lﬁ(P), F(K)) such that fot = F(a) in
Der(B).
Consider now the diagram

! s ~ (1]

(59) [—1]o<_1(F(P)) F(PY) F(P) ——
’
F(K) —2 s p(poy 2% poary

Both rows are distinguished triangles, the upper one is , and the lower one
comes from the short exact sequence K 2, PO 2 M. We claim that this diagram
is commutative. If this is the case, we can complete the partial morphism (83,id)
of distinguished triangles in by some morphism a € Hom(F(P), F(M)) to a
morphism of distinguished triangles, and any such « is an isomorphism.

So let us show that f = F(b) o 3. If we apply Hom(?, F(P°)) to and use
Hom([—1]o<_o(F(P)), F(P°)) = 0, we get an injection

(?ot) : Hom([~1]o<_1(F(P)), F(P°)) < Hom(F(P~"), F(P°)).

Hence it is enough to check the equality fot = F(b)oBot. But F(b)ofBot =
F(b)oF(a)=F(d')=fot. O

4.9. Restriction of Projective Objects. Let i : (Y,7) — (X,S) be a closed
embedding of cell-stratified varieties.

Lemma 48. If V is an object of Perv(X,S) with a finite filtration with standard
subquotients, then i*(V) is in Perv(Y,T), so i*(V) = Pi* (V). If V is a projective
object of Perv(X,S), then the restriction i*(V') is a projective object of Perv(Y,T).

Proof. For standard objects Ag = lg1([ds]S), we have i*(Ag) = Ag if S € T and
i*(Ag) = 0 otherwise. Thus i*(Ag) is in Perv(Y, 7). Since Perv(Y,T) is stable by
extensions ([BBD82| 1.3.6]) this proves the first statement. The second statement
follows from Theorem [10| and the fact that Pi* is left adjoint to the exact functor
Pi,. O
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Corollary 49. If V € MHM(X,S) is perverse-projective, then i*(V) is an object
of MHM(Y, T) and perverse-projective, where we consider MHM(Y, T) as the heart
of the standard t-structure on D°(MHM(Y), 7).

Proof. Lemma |48 shows that v(i*(V)) is a projective object of Perv(Y,7T). This
implies that ¢*(V) is in MHM(Y, T), since rat : MHM(X) — Perv(X) is exact and
faithful. O

Remark 50. We define Pi*(V) := *(V) for perverse—prOJectlve V in MHM(X,S).

i
This notation is justified by rat(Pi*(V)) = Pi*(rat(V)) (cf. Corollary Proposition
).
In subsection we have defined a mixed Hodge structure Extperv( )(1\7 Y )
on Extperv(X)(M N) for objects M, N of MHM(X). The same definition also

works for objects M, N of DP(MHM(X)). Consider the obvious composition in
DP(MHM(X)) provided by several adjunction morphisms

Hom (M, N) — i,i* AHom (M, N) — i,som (i*(M),i*(N)).

We take hypercohomology and obtain morphisms of (polarizable) mixed Hodge
structures

EXt{Dcrv (X)

(M, N) = Exth iy (i* (31, 8" ().
These morphisms are natural in M and N. In particular, if P and @ are smooth
perverse-projective Hodge sheaves, then ¢*(P) and ¢*(Q) are smooth perverse-

projective Hodge sheaves and we get a morphism

(60) HomPerv(X,S)(ﬁvéj) — HomPerv(Y,T)(pi*(ﬁ)vpi*(é))
of mixed Hodge structures (see Corollary [49] and Remark [50)).

4.10. Passage to Cohomology Algebras. We combine our results in order to
prove that the third and fourth square in diagram commute up to natural
isomorphism.

Assume that we are in the setting described in subsection (with I a singleton).

So we are given a perverse-projective resolution of finite length P — M. Let
Pi*(P)i= (... — ... = P*(P7Y) = P*(P) - 0—...)

be the complex obtained by applying Pi* to P (cf. Corollary [49| and Remark .
We may and will assume that this complex ?i*(P) is a complex in MHM(Y, 7). The
underlying complex of smooth projective perverse sheaves is denoted by Pi*(P).

The definition of the complex A = End (]3) in subsection and the comments
around at the end of subsection show that there is a morphism of dg
algebras “of mixed Hodge structures”

(61) A= &nd(P) — &nd (Pi*(P)) = End ([u)Pi* (P)).
Recall that B = €nd (Q). Hence the dg &nd ([u]Pi* (P)- £nd (Q)-bimodule
V = Hom (Q, [u]"i* (P))

becomes a dg A-B-bimodule. Note that ﬁ, Band V are complexes of mixed Hodge
structures, and the differentials, multiplications and operations are morphisms of
mixed Hodge structures.
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We apply the tensor functors wp, gry , and wy = 1o gry from subsection
(cf. diagram (25))) to A, B and the A-B-bimodule V and call the obtained dg(g)
algebras and bimodules as shown here:

= = gy T——— =

(62) (AnVAB—=(RAW A5
e T

(A~ VABl—2>[RAW~S]

The isomorphism of dg algebras and bimodules indicated by the lower horizontal
arrow comes from the natural isomorphism .

Proposition 51. There is a quasi-isomorphism f: S - W of (right) dgg S-
modules.

Proof. By Proposition (using Corollary and assumption we have iso-
morphisms
[P (P) = [w)i*(M) = N

in D*(MHM(Y)); recall N € MHM(Y, 7). Hence H’([u]?i*(P)) vanishes for j # 0
and we get a sequence

Q — N & H([u]Pi" (P) — r<o([u]?i* (P)) — [u]?i*(P)

of quasi-isomorphisms in Ket”(MHM(X,S)), where T<o is the intelligent trunca-
tion functor as defined, for example, in [KS94l 1.3]. We apply Hom (@, ?) to this
sequence and obtain, using Lemma a sequence of quasi-isomorphisms of B-
modules connecting

B = Hom (Q,Q) and V = Hom (Q, [u]?i*(P)).

Hence H(S) and H(W) are isomorphic as dgg H(S)-modules. Choose w € Z(W )%

such that H(S) — H(W), s +— [w]s, is an isomorphism. Then f : S — W, s — ws,

is a quasi-isomorphism of dgg S-modules. ]

Lemma 46| shows that multiplication by w := f(1) € D(W)% defines quasi-
isomorphisms S — W, I'(S) — I'(W) and H(S) — H(W) of dgg modules.
We apply 1 to the morphisms of dgg algebras and bimodules

R W A S)5 (@) ~ri) ~1(S))
and denote the resulting situation by
(63) R W A S]D(D(R) A T(W) AT(S))

Multiplication by w € Z(I'(W))? still defines quasi-isomorphisms S — W and
I'(S) — I'(W) of dg modules, hence we can apply Proposition and obtain a
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natural isomorphism

L
7® R
T(R)

(64) dgPraep g (I'(R)) —— dgPraeg(R)

L L
? @ T'(W) QW
T'(R) ~ R

dgPraer g, (I'(S)) - dgPraeg(S).

?T® S
()

Since the cohomologies H(R), H(S) and hence H(W) are pure of weight zero (as
shown in the proof of Theorem , componentwise projection defines well-defined
morphisms of dgg algebras and modules

(0(B) ~ D7) ~ T(8) |~ [H(B) ~ HOW) ~ HES)

with underlying morphisms of dg algebras and modules

(D(R) ~ T(W) AT(S)] = [H(R) ~ H(W) ~H(S))

Multiplication by w € Z(I'(W))? and its class [w] € H(W)? defines quasi-isomor-
phisms T'(S) — T'(W) and H(S) — H(W) of dg modules, so application of Propo-
sition [45] yields a natural isomorphism
L
? & H(R)

T'(R)

(65) dgPraepg) (I'(R)) —— dgPraeyg) (H(R))

L L
?7 Q F(W)i / J{? ® H(W)
T'(R) ~ H(R)

dgPraep g (I'(S)) —— dgPraey g (H(S))

L
? @ H(S)
r(s)

A~V .~ BJ>(Sub(4) ~ Sub(V) ~ Sub(B)]

be the inverse image of (63) under the isomorphism a in (cf. diagram in
the proof of Theorem [27). Then diagrams and get transformed in the

third and forth square in diagram .

Let

4.11. Passage to Extension Algebras. We prove now that the fifth square in
diagram commutes up to natural isomorphism. The setting is as in subsection
Recall that M = rat(ﬂ) and M =real(M) = v(M) and similarly for N.

We define in the following isomorphisms of dg algebras and bimodules (with all
differentials equal to zero)

(H(4) A H(V) ~ H(B)) 22, (Ext(M) ~ Ext(N) A Ext(N))

(66) {reabreniren), (Ext(M) ~ Ext(N) ~ Ext(N) )

where we omit some indices Perv(X,S) and Perv(Y,7) in the second box. The right
module structures on these bimodules and the isomorphisms real are the obvious
ones. For the definition of the left module structures and the morphisms ¢, x and
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1 we have to recall and establish several isomorphisms. (The left module structures
on H(V) and Ext(M) were already defined, but we repeat the definition.)

There is an isomorphism & : [u]i*(M) => N in DP(MHM(Y)) by assumption
(see (37))). Define o := v(c) and let 7 be the natural isomorphism from Proposition
We obtain isomorphisms

(H)LPi" (M) S5 (i (M) £ N

The equivalence real : DP(Perv(X,S)) — DP(X,S) shows that there is a unique
isomorphism A : [u]LPi*(M) = N in DP(Perv(X,S)) such that real(\) = go[u]7as.

We denote the perverse-projective resolutions P — M and C~2 —~N by 7 and p,
and their underlying projective resolutions as 7 : P — M and p: Q — N. Since 7
is a projective resolution, we may assume that LP¢*(P) and LPi* (M) are identical
to Pi*(P) and that LPi*(7) is the identity. Hence we may consider \ also as an
isomorphism

A [u]Pi*(P) = N.

Instead of €O Homfyqperv(x,s)) and € Homp, pery(x,s)) We write Homyor and
Hompe,, and similarly for (Y, 7). The above isomorphisms give rise to dga-mor-
phisms

(]

H(A) = Homion(P) 2" Homyger (17" (P)),
Ext(M) Y Bxt () LPi* (M) 25 Ext(N),

Ext(M) 1% Exct([uli* (M) S Ext().

The first morphism comes from , the last one coincides with . These mor-
phisms and the obvious left multiplications define the left operations shown in .
The morphism ¢ is the composition

H(A) = Homypet (P)=Hompe (P) = Ext(P) = Ext(M),
1) is defined analogously, and x is given by
H(V) = Hompue (Q, [1)Pi* P) = Ext(Q, [u]Pi*(P)) 22 Ext(N).

It is easy to check that all morphisms in are isomorphisms of dg algebras
and dg bimodules respectively. We apply Proposition [45| to the situation and
the element n € H(V') corresponding to id € Ext(XN) and obtain the commutativity
(up to natural isomorphism) of the fifth square in diagram .

5. INVERSE LIMITS

5.1. Inverse Limits of Categories. We exhibit a definition of inverse limit of a
sequence of categories that will enable us to consider inverse limits of dg categories
(subsection [5.3) and to obtain a description of the equivariant derived category
(subsection [6.1]).

Let Co 2 Cy « ... Cp < Cpiq — ... or in short ((Cn), (Fy)) be a sequence
of categories (and functors). We call the following category the inverse limit of this
sequence and denote it by @Cn:

e Objects are sequences ((Mpy,)nen, (¢n)nen) of objects M, in C,, and isomor-
phisms ¢, : Fn(Mn+1) = M,.
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e Morphisms a : (M), (¢5)) — ((Nn), (1)) are sequences (cn)nen of mor-
phisms «,, : M,, — N, such that ¢,, o F},(ap+1) = ap 0 ¢y, for all n € N.

Lemma 52. Let N € N and assume that F,, : C,11 — Cp, is an equivalence for all
n > N. Then the obvious projection functor pry : imC,, — Cn s an equivalence.

Proof. Obvious. ]

A morphism of sequences ((Cy,), (Fy,)) and ((Dy), (Gr)) of categories is a sequence
v = (v,) of functors v, : C,, — D,, such that v, o F,, and G,, o v, 41 coincide (up
to natural isomorphism) for each n € N. Any such morphism v obviously defines a
functor lim v, : limC,, — lim D,,.

pa— p— —

In the following, we describe a setting in which this functor is an equivalence.
Let (Z,<) be a directed (i.e. for all I, J € T thereis K € T with I < K, J < K)
partially ordered set (e. g. the set of segments in Z, partially ordered by inclusion).
An Z-filtered category is a category C together with strict full subcategories (C);er
such that C! c C’ for I < J. We say that C is the union of the C if any object of
C is contained in some Cf. A morphism C — D of Z-filtered categories (Z-filtered
morphism) is a functor F : C — D inducing functors F : C! — DI for all I € T.

If ((Ch),(F,)) is a sequence of Z-filtered categories (and Z-filtered morphisms),
the inverse limit lim Cy, is filtered by the @CTIL We will use the following conditions
on a sequence of Z-filtered categories ((Cy,), (Fy,))-

(F1) For each I € T there is Ny € N such that, for all n > Ny, F!:CL,, — C]

is an equivalence.

(F2) limC,, is the union of the @C{L

Any morphism (v,) : ((Cr), (Fr)) — ((Dn), (Gr)) of sequences of Z-filtered cat-
egories induces an Z-filtered morphism @un : giﬂcn — liLnDn.

Proposition 53. Let (vy,) @ ((Cpn),(Fy)) — ((Dn),(Grn)) be a morphism of se-
quences of I-filtered categories and assume that both sequences satisfy condition
and that ((Cp), (F)) satisfies condition|(F1), If for all I € T there is N € N
such that, for alln > N, vl : CI — DI is an equivalence, then liillln : yﬂcn —
im D, is an equivalence and ((Dr), (Gy)) also satisfies condition .

Proof. Obviously ((D,,), (Gr)) also satisfies condition By condition |(F2)| it is

sufficient to show that each lim vl is an equivalence. But this follows from condition

and Lemma O

Frn— ' . .
Let 7y Lo T P Rl 7, L bea sequence of triangulated categories

and triangulated functors. Then @cn is obviously additive and the shift functors
of the various 7,, induce an obvious shift functor [1] on lim7,,. Assume that each
7, is an Z-filtered category and that all functors F), are Z-filtered morphisms (the
7,1 are not assumed to be stable under the shift).

Proposition 54. Let ((7,),(F,)) as above satisfy conditions and and
assume that each 7T, is closed under extensions in T,,. Then there is a unique class

D of triangles in im T, (considered as an additive category with shift functor [1])
such that QLHTmD) is a triangulated category and all projections pr; : H’Tn —
T are triangulated (i € N). A triangle ¥ is in D if and only if all pr;(¥X) are
distinguished (i € N).
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Proof. (Cf. [BL94, 2.5.2].) We denote by £ the class of triangles ¥ in lim 7, such
that all pr;(X) are distinguished and prove that (im7,,€) is a triangulated cat-
egory. In all axioms of a triangulated category ([Ver96]), only a finite set F' of
objects is involved, and the existence of some objects and morphisms is asserted.
So we may check these axioms in a suitable full subcategory 1&1’]’,{ of lin’]; con-
taining all [k] X, for X € F and k = —1,0,1. But this subcategory is equivalent to
7x, by Lemma (The condition that 73 is closed under extensions is used for
constructing a distinguished triangle with a given base.)

If a class D of triangles satisfies the conditions of the proposition, then obviously
DcC& UYL:X LY - Z - [1]Xisin & there is a triangle ' : X LV —
7' — [1]X in D. All objects are in some Q’Tn[ Since ¥ and ¥’ become isomorphic

under pry, : h;n’];{ = T]\I,I, they are isomorphic in liﬂl’]jn and hence ¥ € D. O

Remark 55. We omit the obvious generalization of Proposition to Z-filtered
triangulated categories.

5.2. Filtered DG Modules. Let A be a dg algebra satisfying the conditions
We recall the definition of a certain equivalent subcategory of dgPer(.A). This
subcategory will enable us to prove the concise statement of Proposition

Recall the A-modules {Ez}mGW from subsection We consider the following
full subcategory dgFilt(A) of dgPer(A): Its objects are A-modules M admitting a
finite filtration 0 = Fy(M) C Fy(M) C --- C F,,(M) = M by dg submodules with
subquotients F;(M)/F,_1 (M) = {I;} L., in dgMod(A) for suitable I} >l > --- >
l, and z; € W.

Theorem 56 ([Sch08]). If A is a dg algebra satisfying|(P1) then the inclusion
dgFilt(A) C dgPer(A) is an equivalence of categories. Any object of dgFilt(A) is
homotopically projective. An object M of dgFilt(A) lies in dgPerS" (in dgPer=")
if and only if M is generated in degrees < n (in degrees > n) as a graded A-module.

5.3. Inverse Limits of Categories of DG Modules. Let A, be a positively
graded dg algebra with differential zero and AY_ isomorphic to a finite product of
division rings. If A, is the inverse limit of a sequence of dg algebras (A, )nen of
the same type that stabilizes in each degree, we show that dgPer(A.,) is the inverse
limit of the categories dgPer(.A4;). We first study the special case where only two
dg algebras are involved, and generalize afterwards.

5.3.1. Special Case. Let A = (A = @,;5,A’,d = 0) be a positively graded dg
algebra with differential zero and A° = [Lew ez A% a finite product of division
rings (here e, is the unit element of e, A°). In particular, A satisfies the conditions
The e, A° are up to isomorphism the simple A%modules, so dgPer(A) =
dgPrae 4 ({e; A}zew) thanks to Theorem [0 Let B be a dg algebra of the same type
and ¢ : A — B a dga-morphism. We assume that ¢° : A° — BY is an isomorphism.
Hence B =[] e, B, where we write e, instead of ¢(e,). The extension of scalars
functor induces a triangulated functor

L
prod5 = (? @4 B) : dgPer(A) — dgPer(B).

Since every object of dgFilt(.4) is homotopically projective (Theorem[56)) (and hence
“homotopically flat”) we can and will assume in the following that this functor is
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given by M — M ® 4 B on dgFilt(.A). Using Theorem [56it is then easy to see that
this functor is t-exact with respect to the t-structures from Theorem [9}

By a segment we mean in the following a non-empty bounded interval in Z. If
I = [a,b] is a segment (a, b € Z, a < b), we define |I| = b — a and dgPer! =
ngerZa N ngeer. If 7 is the poset of all segments in Z, partially ordered by
inclusion, then dgPer is an Z-filtered category and the union of the dgPer!. The
functor prodﬁ is a morphism of Z-filtered categories (as defined in subsection .

Lemma 57. Let X be in dgPer(A). If I is any segment, then X is in dgPer! (A)
if and only if prodi(X) is in dgPer’ (B).

Proof. This is a direct consequence of Theorem and the assumption that ¢° :
A% — BY is an isomorphism. (|

Proposition 58. Let ¢ : A — B be a morphism of dg algebras as above. If I
is a segment and ¢ an isomorphism up to degree |I| + 2 (i.e. ¢* : A® — B’ is
an isomorphism for all i < |I| + 2), then prods : dgPer’ (A) — dgPer!(B) is an
equivalence of categories.

Proof. We may assume that I = [0,b] for some b € N. The statement of the
proposition is true since morphisms, homotopies and differentials are defined and

can be defined in small degrees. But let us give the details.
prodﬁ is fully faithful: Let X', ) be in dgPer’ (A). We have to show that

prodﬁ : Homnger(A)(X,y) — Homnger(B)(¢(X)a ()

is an isomorphism, where we abbreviate ¢(X) = prod’ (X) and ¢()) = prod5 (D).
We may assume that X and ) are in dgFilt (Theorem [56]) and that
(67) X ={lh}en, AD {la}er,AD - & {ls}e, A,

Y ={mi}te,, A® {matew, A® - & {mi}e, A
as graded A-modules, with v;, w; € W, 0 < —l; < band 0 < —m; < b. Both
(X)) = X @4 B and ¢(Y) are given by the right hand side of (67)), if we replace A

by B there. Since objects of dgFilt are homotopically projective (Theorem it
is sufficient to show that

(68) prod? : Homagpor(4) (X, ¥) — Homagror(s) (4(X), 9(V))
is an isomorphism.
‘We have

Homgnioa(a) ({I}en A, {m}e,A) = ey A™ e,

for v, w € W, I, m € Z; here gMod(A) is the category of graded A-modules.
Since the differentials dx : X — {1}X, dy : Y — {1}Y are morphisms of graded
A-modules (the differential of A is zero), they are given by matrices « and y with en-
tries in A. Similarly, morphisms f € Homggmod (X, Y) are matrices satisfying yf =
fx, and homotopies h : X — {—1}Y are matrices. Each entry of these matrices is
homogeneous, more precisely, we have z;; € e,, Alit1-1; ;s Yij € €y, AT Cw;
fij € ew,A™i"bie, | and hi; € e,,, A" " lie, . The differential of ¢(X) is given by
the matrix ¢(x). The functor prod5 : dgMod(A) — dgMod(B) maps the matrix
f=(fi) to o(f) = (¢(fi;)), and similarly for homotopies.

Surjectivity of : Let fbe in Homggnod (¢(X), ¢(Y)). Since all entries of f
are of degree < b < |I| + 2, there is a unique matrix f such that ¢(f) = f and
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deg(fi;) = deg(ﬁj) for all ¢, j (and f;; = 0 if fij = 0). This f defines an element of
Homggmod (X, Y) if and only if the matrix equation yf = fz holds. All summands
in every entry of this equation have degree < b+1 < |I|+2, and ¢ is an isomorphism
up to degree |I| + 2. So it is enough to show that qﬁ(y)f: fgb(a:) But this is true
by assumption on f

Injectivity of (68): Assume that f in Homggnioa (X, Y) is mapped to ¢(f) = 0 in
Homggotr(8)(#(X), ¢(Y)). Then there is a homotopy b d(X) — {-1}¢(Y) alias
a matrix with entries in B, such that ¢(f) = %(b(m) + ¢(y)ﬁ Since all entries of
h are homogeneous of degree < b — 1 < |I| + 2, there is a unique matrix h with
¢(h) = h and deg(hi;) = deg(%ij). This matrix h defines a homotopy between f
and 0, because ¢ is an isomorphism up to degree |I] + 2.

prodﬁ is dense: Let X be an object of dgPer’ (B). We may assume that X is
in dgFilt and has, as a graded B-module, the form

X ={li}e, B& {lrtep,B& - & {l;}e,. B,

with 0 < —l; < —ly < --- < —l; <b. The differential dg is a matrix T, with all
entries in B of degree < b+ 1 < |I|+ 2. Let = be the unique matrix with entries in
A such that ¢(z) = z and deg(x;;) = deg(Z;;) for all ¢, j. Define

X = {l1}€,U1A &) {ZQ}eU2A ®---P {ls}evsA-

The matrix x defines a differential on X if and only if 22 = 0. In this matrix
equation, all summands have degree < b+ 2 < |I| + 2. But ¢(z?) = 72 = 0 holds,
and ¢ is an isomorphism in degrees < |I| + 2. Hence (X, x) is in dgFilt and the
A-module we are searching for. O

5.3.2. General Case. Let Ay o A — ... — A, Rl Ap+1 < ... be a sequence
of dg algebras and dga-morphisms. Assume that

(S1) Each A, = (4, = D;>, Al d = 0) is a positively graded dg algebra with
differential zero.

(S2) AJ =[I,cw €2A} is a finite product of division rings.

(S3) There is an increasing sequence 0 < 7o < r; < ... of non-negative integers
(ry) with r,, — oo for n — oo, such that each ¢, is an isomorphism up to
degree r,,. (In particular, all ¢2 : A2, — A9 are isomorphisms.)

The morphisms ¢,, induce extension of scalars functors ¢} := prodﬁ:+1 and we

obtain a sequence ((dgPer(A,)), (¢})) of categories or even of Z-filtered categories,
where 7 is the poset of segments in Z.

Proposition 59. Under the above assumptions, lﬂl dgPer(A,,) has a natural struc-
ture of triangulated category with the following class of distinguished triangles: A
triangle ¥ is distinguished if and only if all pr;(X) are distinguished (i € N).

Proof. We want to deduce this from Proposition It follows from [(S3)|and Propo-
sition [58| that our sequence ((dgPer(A,,)), (¢)) satisfies condition [(F1)} Condition
is fulfilled by Lemma It is clear that each dgPer is closed under extensions
in dgPer. t

Let Ao be a dg algebra with dga-morphism v,, : A, — A, (n € N) such
that v, = ¢, o vy for all n € N. Assume that there is an increasing sequence
0 < 59 < 51 <... of non-negative integers (s, ) with s,, — oo for n — oo, such that
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each v, is an isomorphism up to degree s,,. Equivalently, we could say that A, is
the inverse limit of our sequence (A, ),en of dg algebras, i.e. As = lim A,,.

Proposition 60. Under the above assumptions, the obvious functor dgPer(As) —
lim dgPer(A,) is a triangulated equivalence.

Proof. This is a consequence of Proposition [53| and Remark [55|since dgPer(A) is
equivalent to the inverse limit of the constant sequence ((dgPer(Ax)), (id)). O

6. FORMALITY OF EQUIVARIANT DERIVED CATEGORIES

6.1. Equivariant Derived Categories of Topological Spaces. We introduce
the equivariant derived category, following [BL94].

If Y is a topological space, we denote by Sh(Y) the category of sheaves of real
vector spaces on Y and by DT (Y) and DP(Y) its bounded below and bounded
derived category.

Let f : X — Y be a continuous map and n € NU {oo}. Given a base change
Y — Y we denote the induced map X Xy Y Y by f We say that f is n-acyclic
if for any base change Y — Y and any sheaf B € Sh(Y) the truncated adjunction
morphism B — Tgnﬁf*B is an isomorphism. Here 7<,, is the truncation functor
for n € N and 7<,, = id. The composition of n-acyclic maps is n-acyclic. A
topological space X is called n-acyclic if the constant map X — pt is n-acyclic.

Let G be a topological group. A G-space is a topological space X with a con-
tinuous G-action G x X — X. A G-map of G-spaces is a continuous G-equivariant
map. A G-space X is free if it has a covering by open G-stable subspaces G-
isomorphic to G-spaces of the form G x Y (for a suitable topological space Y') with
G-action g.(h,y) = (gh,y).

A resolution of a G-space X is a G-map from a free G-space to X. Morphisms
of resolutions are G-maps over X. Let p : P — X be a resolution of X and
q: P — G\P the quotient map. The category D& (X, P) is defined as follows:

e Objects M are triples (Mx, M, ) where My € DP(X), M in D*(G\P)
and p : p*(Mx) = ¢*(M) is an isomorphism in DP(P).

e Morphisms o : M — N (where M = (Mx, M,u) and N = (Nx, N,v))
are pairs (ax, @) where a : Mx — Nx and @ : M — N are morphisms in

DP(X) and DP(G\P) respectively such that v o p*(ax) = ¢*(@) o .

We have two obvious functors: The forgetful functor For : D2(X, P) — DP(X),
M — Mx, and the functor v : D2(X, P) — DP(G\P), M — M. If I is a segment
in Z, we let DL(X, P) be the full subcategory of D (X, P) consisting of objects
M with For(M) in DI(X). If p is surjective, this is equivalent to the condition
v(M) € DI(G\P).

A resolution p : P — X is n-acyclic if the continuous map p is n-acyclic. Note
that any n-acyclic map is surjective.

Proposition 61. Let v : P — R be a morphism of n-acyclic resolutionsp : P — X
andr: R — X, where n € NU{oc}. If I is a segment with n > |I|, the obvious
functor v* : D(X, R) — D2(X, P) restricts to an equivalence v* : DL(X,R) —
DL(X, P).

Proof. Let S = P xx R be the fiber product of P and R over X with projections
p:S — Pand ng : S — R. Then 7} : DL(X,P) — DL(X,S) and 7} :
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DL(X,R) — DL(X,S) are equivalences of categories by [BL94, 2.2.2] (but with
n > |I]). Let (idp,v) : P — S = P xx R be the unique morphism of resolutions
with 7p o (idp,v) =idp and g o (idp,v) = v. Then (idp,v)* is inverse to 75 and
v* = (idp, v)* o m} is an equivalence on Df. O

If P— X and R — X are oco-acyclic resolutions there is an equivalence of
DR (X, P) and D2(X, R) that is defined up to a canonical natural isomorphism.
The G-equivariant derived category D2(X) of X is defined to be D2(X, P), for
p: P — X an oo-acyclic resolution ([BL94) 2.7.2]). It is a triangulated category
(cf. [BL94, 2.5.2]).

We give a description of the equivariant derived category as an inverse limit.

Let Py — ... —» P, ELN P,+1 — ... be a sequence of morphisms of reso-
lutions p, : P, — X. It gives rise to a sequence of categories and functors
(DL(X, Py)), (7). We consider the inverse limit @Dg(X, P,) of these cate-

n
gories as defined in subsection [5.1} It is an additive category and has an obvious

shift functor. We denote by ~; the composition
lim Dg(X, P,) = Dg(X, P) 5 D*(G\P).

Proposition 62. Keep the above assumptions and assume that p, : P, — X
is n-acyclic, for each n € N. Then @Dg(){, P,) carries a natural structure of
triangulated category with the following class of distinguished triangles: A triangle
Y is distinguished if and only if all v;(X) are distinguished (i € N). Moreover, the
categories D2(X) and liLan(X, P,) are equivalent as triangulated categories.

Proof. This follows from [BL94l 2] (more details in [Sch07, 5.2]). O

6.2. Equivariant Derived Categories of Varieties. Let G be an affine algebraic
group (defined over C, as all varieties in the following). The definitions of a G-
variety and of a G-morphism between G-varieties are the obvious generalizations
from the topological category.

A Zariski principal fiber bundle (Zpfb) with structure group G (or G-
Zpfb) is a surjective G-morphism ¢ : E — B between G-varieties with the following
property: For every point in B, there is a Zariski open neighborhood U in B and
a G-isomorphism 7 : G x U = ¢~ 1(U) (here the G-action on G x U is given by
g.(h,u) = (gh,u)) such that g o 7 is equal to the projection pry; : G x U — U. A
map 7 as above is called a local trivialization over U. By abuse of notation we
often say that F is a Zpfb. A morphism f : E — E’ of G-Zpfbs is a G-morphism
f: E — E'. Tt induces a morphism f : B — B’ on quotient spaces.

Let X be a G-variety. A Zariski resolution of X is a datum (B <~ E % X)
consisting of a Zpfb ¢ : E — B together with a G-morphism p: F — X. We often
omit g : F — B from the notation and say that p: E — X is a Zariski resolution or
even that E is a Zariski resolution of X. Morphisms FE — E’ of Zariski resolutions
of X are G-morphisms over X.

Let n € NU {oo}. A variety (morphism of varieties) is called n-acyclic, if it is
n-acyclic with respect to the classical topology. A Zariski resolution (B <+ E £ X)
is n-acyclic if p is n-acyclic.

Let Ey Jo, Ei— ... > E, ELN E,11 — ... be a sequence of Zariski resolu-
tions of a G-variety X. If p, : E, — X is n-acyclic, Proposition provides a
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triangulated equivalence
(69) Dg(X) = lim Dg (X, Ey).

Let (X,S) be a stratified G-variety (we do not assume that the strata are G-
stable). We denote the full subcategory of D2(X) consisting of objects M with
For(M) € DP(X,S) by D&(X,S). Similarly, we define D2 (X, E,S) C D2(X, E),
if F is a Zariski resolution of X. If [ is a segment, we use the obvious definitions
for DL (X, S) etc.. Equivalence restricts to a triangulated equivalence

(70) Dg(X,S) = lim D¢ (X, Ey, S).

If X is a G-variety, we denote by Dg .(X) the full subcategory of Dg(X) con-
sisting of objects F' such that For(F) is constructible for some stratification of X.

Proposition 63. Let (X,S) be a stratified G-variety. If each stratum is a G-orbit,
then D2(X,S) = Dt();,C(X).

Proof. Let M be in D¢ (X) and [ : § — X the inclusion of an orbit. We have to
prove that H'(1*(For(M))) = For(H"(1*(M))) is a local system on S. But H*(I*(M))
is in the heart of the standard t-structure on Dg,C(S ) and hence a G-equivariant
constructible sheaf on the orbit S ([BL94} 2.5.3]). O

A G-stratification of a G-variety is a stratification by G-stable strata. A G-
stratified variety is a G-variety X with a G-stratification.
Let (X,S) be a G-stratified variety. An approximation (E, f) of (X,S) is a

sequence Fy — ... — E, ELN E,+1 — ... of Zariski resolutions (B, L N X)
of X. An approximation (E, f) is called an A-approximation if the following
conditions hold.
(A1) Each (B, <~ E, 2 X) is n-acyclic.
(A2) S, = {g.(p;*(S)) | S € S} is a stratification of B, for all n € N. (In
particular, each stratum of S, is irreducible.)
(A3) Every stratum in S, is simply connected.

Any A-approximation Fjy Jo, E, ELN yields a sequence By Jo, By B of
varieties, and a sequence ((DP(B,,S,)), (f5)) of triangulated categories.

Proposition 64. Let (E,f)=(...— E, In, E, i1 — ...) be an A-approzimation
of a G-stratified variety (X,S). Then there is a canonical triangulated equivalence

(71) liﬂlpg(X,En,S) Lliﬂlpb(Bnﬂgn)

Proof. The functor D2 (X, E,,) — D"(B,,), (Mx, M, i) — M, restricts to a functor
Vn : D2(X, E,, S) — DP(B,,S,), since g, is locally trivial. The inverse limit lim v,
is the functor in .

All categories D (X, E,,S) are Z-filtered by the DL (X, E,,,S) (where T is the
poset of segments in Z), and are the union of these subcategories. Similarly for
D"(B,,S,). For n > |I|, restriction f; : DL(X, Epi1,S) — DL(X, E,,S) is an
equivalence (Proposition .

We claim that v} : D}(X, E,,,S) — D!(B,,S,) is an equivalence for n > |I|.
By [BL94, Lemma 2.3.2] (but with n > |I|), v is fully faithful and its essential
image is closed under extensions in DP(B,,,S,,). Let S € S and S,, := ¢, (p;;1(9)).
The inclusions lg and lg, and proper base change give rise to an object “extension
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by zero of the constant sheaf on S” in D[C?’O] (X, E,,) that is mapped to lg,1S, under
Vn : D2(X, E,, S) — DP(B,,S,,). It follows from Lemmabelow that v/ is dense.

Proposition [53|shows that (71]) is an equivalence and that the Z-filtered category
DP(B,,,S,) satisfies condition Proposition equips liLm’Db(Bn7 Sy) with the
structure of a triangulated category, and it is obvious that is triangulated. [

Corollary 65. Let (E, f) be an A-approzimation, I a segment and N € N. If
N > |I|, the obvious functor liLnDI(Bn,Sn) — DI(By) is fully faithful.

Proof. The proof of Proposition [64] shows that £ : D!(B,11,S8,41) — DY(Bn,Sn)
is an equivalence for n > |I|. Hence Lemma shows that pry : liLnDI(Bn, Sp) —
D! (By,Sy) is an equivalence for N > |I|. O

Lemma 66. Let (X,S) be a stratified variety with simply connected strata and I a
segment in Z. Then every A € DI(X,S) is an iterated extension of objects ls1S[—i],
forSeS andiel.

Proof. The shift [1] and the truncation functors for the standard t-structure al-
low us to assume that A € Sh(X,S). If j is the inclusion of an open stratum
U and 7 the inclusion of its closed complement, we get a distinguished triangle
(17*(A), A,i.i*(A)). Since j*(A) is a finite direct sum of constant sheaves U, an
induction on the number of strata finishes the proof. O

6.3. Equivariant Intersection Cohomology Complexes. Let G be an affine
algebraic group of complex dimension dg and (X,S) a G-stratified variety. On
D2(X,S), there is the perverse t-structure whose heart is the category Pervg (X, S)
of equivariant perverse sheaves (smooth along S) (see [BL94, 5]). If £ is a G-
equivariant local system on S, we have the equivariant intersection cohomology
complex ZCq(S, L) = ls1.([ds]L) in Pervg(X,S). We are mainly interested in the
case of the constant G-equivariant local system S, on S and define ZCq(S) =
ICs(S,S). We will describe this object precisely using the following type of ap-
proximation.

An AB-approximation is an A-approximation (E, f) of (X,S) such that the
following conditions are satisfied.

(B1) Each morphism p,, : E,, — X is smooth of relative complex dimension d,, .

(B2) Each f, : B, — By is a closed embedding of varieties.

(B3) For allmn € Nand S € S, f, : S, — Spy1 is a normally nonsingular
inclusion of codimension ¢,,, where S,, := ¢, (p,,1(9)); here ¢,, only depends
on n.

Let (E, f) be an AB-approximation of (X, S). If we consider ZC(5) as an object
of @Db(Bn,Sn), using equivalences and , we have (cf. [BL94, 5.1], using

BI)
pr, (ZCa(S)) = [dg — dp,1IC(Sn) € D*(Bn, Sn).

In order to avoid to many shifts, we replace liLn’Db(Bn,Sn) by an equivalent cat-
egory as follows. Consider the following morphism of sequences of triangulated
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categories

(72) Db(30780)<LDb(Bl,Sl)#Db(B%SQ)<L...

l[dpgdG] l[dpl 7dG] l[d;DQ 7dG]

—c f* —c f* —e f*
D®(By, So) eollo DY(By,S)) Lali DP(By,S,) el

If we denote the inverse limit of the second row by @Db [B, Sy], this morphism
induces a triangulated equivalence

(73) lim D" (B, S,) = lim D"[B,,, S,].
— —

Conditions and [B3| show that each f, : B, — B, 1 meets the assump-
tions made before and in subsection So we obtain isomorphisms

(74) s [—cnl fE(ZC(Snt1)) = ZC(Sn) in Perv(B,,,S,) and
Tsm : [=cnl £ (ZC(Sni1)) = ZC(S,) in MHM(B,,, Sp).

As an object of @Db [B, Syp], the equivariant intersection cohomology complex

ICa(S) is ((ZC(Sn)), (ts.m)). Note that ZCq(S) = ((ZC(Sy)), (Ts.n)) is a natural
“Hodge lift” of ZC;(S). The same argument as in the proof of Theorem [39| shows
that all functors [—c,] £} in are t-exact with respect to the perverse t-structures.

6.4. Better Approximations and Formality. Let (E, f) be an approximation
of a G-stratified variety (X,S) and assume that we are given stratifications 7,, of
B,, for each n € N. The triple (E, f,7 = (7,,)) is called an ABC-approximation
if (E, f) is an AB-approximation and the following conditions hold.
(C1) Each 7, is a cell-stratification of B,, that is finer than the stratification S,,.
(C2) Each f,, : (Bn,7) — (Bnt1, Tnt1) is a closed embedding of (cell-)stratified
varieties. .
(C3) The Hodge sheaf ZC(S,,) is 7,-pure of weight dg,, for alln € Nand S € S.
(By Remark [33| we can equivalently require 7,,-x-purity of weight dg, .)

In subsection we show how to construct ABC-approximations.
For M, N in D%(X), define Ext™ (M, N) := Hompy (x) (M, [n]N) and

Ext(M,N) := @D Ext"(M, N).
nez
The (equivariant) extension algebra of M is Ext(M) := Ext(M, M).

Theorem 67. Let G be an affine algebraic group and (X,S) a G-stratified variety.
If (X,8) has an ABC-approzimation, there is a triangulated equivalence

(75) D2(X,S) = dgPer(Ext(ZCx(S))),

where ZCq(S) is the direct sum of the (ZCq(S))ses. This equivalence is t-exact with
respect to the perverse t-structure on DE(X, S) and the t-structure from Theoremlg
on dgPer(Ext(ZCq(S))). By restriction to the heart, it induces an equivalence of
abelian categories

(76) Pervg(X,S) = dgFlag(Ext(ZCq(S))).
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Proof. Let (E, f,7) be an ABC-approximation of (X,S). By , and

we have equivalences
(77) Dg(X,S) = limDg(X, En, 8) = lim D*(B,,, S,) = lim D°[B,,, S,].

of triangulated categories.

Properties and allow to apply Theorem (cf. Remark , and we

obtain equivalences

Pp— TT‘- . b ~
Form,, := Formﬁnafc(sn) : D°(Bp, Sn) — dgPer(&,)

of triangulated categories, where we fixed perverse-projective resolutions P, s, —
fC(Sn) and where &, = Ext(ZC(S,)). The isomorphisms induce dga-mor-
phisms ¢, : £,41 — &,. Properties and Theorem
yield the following commutative (up to natural isomorphism) diagram with trian-
gulated and t-exact functors:

—calfn
Db(Bn+1aSn+1) L Db(Bn7 Sn)

Form,, 11 lw " é} £ Form,, \LN
. n

En41
dgPer(&p41) . dgPer(&,).

Hence the sequence (Form,,),en defines a morphism between sequences of triangu-
lated categories. Its inverse limit establishes an equivalence

(78) lim D°[B,,, S,] = lim dgPer(E,,).

Define & := Ext(ZC¢(S)). This is a positively graded dg algebra with differ-
ential zero and has as degree zero part the product of |S| copies of R. From
we obtain dga-morphisms v, : £, — &, such that v,, = ¢, o v 41. Let J be a
segment such that ZCq(S) € DL(X). We deduce from Corollary [65| that v, is an
isomorphism up to degree n — |J| — 1. So our sequence of dg algebras ((&,), (¢))
satisfies (if we forget the first |J| + 1 members and renumerate, which is harmless
for the following) the conditions considered in subsection and E is
the inverse limit of this sequence. Proposition [59|shows that }iinnger(é'n) carries
a natural structure of triangulated category. Since all functors Form,, are triangu-
lated, it follows from Proposition [62| that equivalence is triangulated. Finally,
Proposition [60| provides a triangulated equivalence dgPer(£y) — lim dgPer(&,).
This establishes . Since ZC;(S) is mapped to es€, equivalence is t-
exact, and we obtain . O

6.5. Existence of ABC-Approximations. Let G be an affine algebraic group.
An ABCD-approximation of a G-stratified variety (X,S) is an ABC-approxi-
mation (F, f,7) of (X,S) satisfying the following condition.
(D) For each n € N, the Zptb ¢, : E, — B, can be trivialized around each
stratum T € 7,, (this means that there is an open subvariety U of B,
containing 7" such that g, has a local trivialization over U).

An ABCD-approximation for G is an ABCD-approximation of the G-stratified
variety (pt, {pt}).

Proposition 68. FEvery torus and any connected solvable affine algebraic group
has an ABCD-approximation.
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Let us remark that ABCD-approximations also exist for GL,,(C) and parabolic
subgroups of GL,,(C) (see [Sch07, 5.6]).

Proof. Let ¢q; : E; :== C**1\ {0} — B; := P(C) be the obvious C*-Zpfb. The
standard closed embeddings C**! < C*2, 2 — (z,0) induce morphisms of Zpfbs
fi: B; — E;y1. Let T; be the standard cell-stratification of B; = P*(C), the strata
being the orbits of the standard Borel subgroup of GL;11(C) under the natural
action. Note that F; is 2i-acyclic (cf. [BL94, 3.1]). Thus (B < E, f) is an ABCD-
approximation for C* (for details see [Sch07, 5.6]). Taking the obvious product of
this construction shows that any torus has an ABCD-approximation.

Now let G be a connected solvable group. Choose a maximal torus 7' C G and

let U C G be the unipotent radical. Let (B i ET . T, f7) be an ABCD-approxi-
mation for T. Define ES := ind$ El = G x¢ EF, and let f& := ind% fI. The
morphisms G x EI' — B;, (p,e) — ¢! (e) induce G-Zptbs ¢¢ : EY — B;. Since
multiplication U x T = G is an isomorphism we get an isomorphism of varieties
EfY = GxrEI & UxEYT. Since U is oo-acyclic and EY is i-acyclic, ES is i-acyclic.

G
So (B &L EC T, f¢) is an ABCD-approximation for G. O

Proposition 69. Let G be an affine algebraic group and (X,S) a G-stratified
variety. Assume that
(R1) S is a G-stratification into cells,
(R2) fé(S) is S-pure, for every S € S,
(R3) G has an ABCD-approzimation,
(R4) there is a G-stratified variety (Y,S) together with
(a) a G-equivariant locally closed embedding v : X — Y satisfying v(S) :=
{v(S)| S eS8} cCS, and
(b) a G-equivariant closed embedding of Y in a smooth G-manifold M.
Then (X,S) has an ABCD-approzimation.

Remark 70. Condition will be used for the proof of Possibly it is re-
dundant. It is satisfied for Schubert varieties and more generally for unions of
Borel-orbits that are locally closed in the flag variety (take as Y and M the flag
variety). For a normal projective G-variety Y and connected G, @ is satisfied
by [Sum74] or [Mum65].

Proof. If (B <~ E, f, T) is an ABCD-approximation for G, its i-th subdatum (B; <
E;, T;) satisfies an obvious subset of the conditions

So let (B <~ E,T) be the i-th subdatum of an ABCD-approximation for G.
Consider the commutative diagram

(79) ExgX~<~t—ExX—2s>x
B - E —=—pt.

Here g is the quotient map for the diagonal action of G on E x X, p is the second
projection, 7 the first projection and 7 the induced map on quotient spaces. We
claim that the upper row of diagram together with

N T) xS = {r NT)xg S| TeT,S eS8
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satisfies the conditions imposed on the i-th subdatum of an ABCD-approximation
of (X,S8).

The square on the left in is cartesian, ¢ is a Zpfb and 7 is a (Zariski locally
trivial) fiber bundle with fiber X. These statements are also true in the classical
topology. They can be deduced from local trivializations of r. If 7 : G x U =
r~1(U) is such a trivialization (cf. subsection over an open subvariety U of B,
diagram restricts to

u, “1g)e— ,U,T

UxX S O GxUx X —2>X
ipfu \LprGXU i
U Py G x U —5—>pt.

Here we consider U x X as an open subvariety of E X X, the inclusion given by
(u,z) — [7(1,u), x].

Since c¢ is i-acyclic and smooth, the same holds for p . fSesSisa
stratum, the intersection of E xg S = q(p™1(S)) with U x X C E xg X is U x S.
Hence E xg § := {E xg S | S € 8} is a stratification of F xg X (the
irreducibility of the strata will be established below). The long exact sequence of
homotopy groups for the fiber bundle 7 : E xg S — B with fiber S shows that
FE x¢g S is simply connected , since S is a cell and B is simply connected by
assumption.

Let S € S and T € 7T be strata. The intersection of r~}(T) xg S with U x X is
(TNU) xS, s0 7 HT) x¢ S is a stratification of E xg X. By[D] we find a local
trivialization 7 of r as above with T' C U. Then 7 x idx is a local trivialization of
gover Ux X, and 7 H(T) xg S =T x S C U x X is a cell (D] [CI).

By B is irreducible. Let T € 7 be dense in B. Then r~1(7T) is dense in E
and the cell 7~1(T) x ¢ S is dense in E xS, for all S € S, showing the irreducibility

of each stratum FE xg S ((A2).

Let S € S. We prove By Remark is is sufficient to show that ZC(E x ¢ S)
is (r~Y(7) xg S)-*-pure of weight dg + dg. Let R€ S, T € T. We choose U C B
open as above containing 7. Then the inclusion r (7)) xg R LB x g X looks like

txl
TxRYUxxLE X g X. Since j is an open embedding, j* preserves weights

and we obtain
(80) FHIC(E x¢ 8)) 2 IC(U x §) = IC(U)RIC(S)

Let 7 : T — B be the inclusion and 1C (B) the Hodge intersection cohomology
sheaf on B. Then I.(ZC(B)) = t*(ZC(U)), and restriction of yields

I"(IC(E xg S)) 2= t*(IC(U)) RIR(TC(S)) = I7(ZC(B)) K IR(ZC(S))

which is pure of weight dg + dg by assumptions and |(R2)]
Let (B L E.f, 7T) be an ABCD-approximation for G. Let
(Bi xag X L B x X 2% X, r7YT) x¢ S)

be the datum constructed from its i-th subdatum by the above method. We claim
that the sequence of these data together with the sequence of morphisms f; x idy :
E; x X — E;1 x X defines an ABCD-approximation of (X,S). Conditions
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and [C2| are obviously satisfied. A slight modification of the above arguments shows

-~

that (E; x¢ Y, E; Xg S) is a stratified variety. Consider the diagram

id Xxgv
EipnxgX ————Eipi XgY —=FEii Xg M
Tfixcidx Tfixcidy TfixcidM
id X gv
E; XgX E; ><GY E; XGM,

where both squares are cartesian. In the smooth manifold F; 1 xg M, the smooth
submanifold E; xg M is transverse to each stratum of the closed stratified variety
(Eit1xaY, Eiy1 x¢8). Tt follows from [GMBSS, 1.1.11] that condition [B3is satisfied.
(For each S € S, f; x idg obviously is a normally nonsingular inclusion of the same
codimension as f;. If this implies the same statement on quotient spaces, we can

do without [(R4)]) O

6.6. Formality of Equivariant Flag Varieties. Let G O P D B be respectively
a complex connected reductive affine algebraic group, a parabolic and a Borel sub-

group.
Theorem 71. If S is the stratification of G/P into B-orbits, there is a t-exact
equivalence of triangulated categories
DY (G/P) = D}(G/P,S) = dgPer(Ext(ZC(S))).
Restriction to the hearts induces an equivalence
Pervp(G/P) = Pervp(G/P,S) = dgFlag(Ext(ZCp(S))).
Proof. The B-stratified variety (G/P,S) has an ABCD-approximation by Theorem

and Propositions [68 and Hence we can apply Theorem [67] The equalities
follow from Proposition O

Remark 72. The strategy from subsection [3.13] also shows that the complexified
version of diagram commutes. This implies that Theorem is also true for
complex coefficients.

Remark 73. We claim that the diagram

(81) DY (G/P,S) — > dgPer(Ext(ZC5(S)))
\LFor J({? é Ext(ZC(S))
Ext(ZCp(S))

DP(G/P,S) —=— dgPer(Ext(ZC(S)))

is commutative (up to natural isomorphism). The horizontal equivalences are those
from Theorems and the vertical functors are the forgetful functor and the
induced extension of scalars functor.

The upper horizontal equivalence was established as the inverse limit of a se-
quence of equivalences (Form,,),en of categories (cf. proof of Theorem @ The
lower horizontal equivalence can be chosen equal to Formg. (If we use our method
for constructing the ABCD-approximation for (G/P,S) we have Ey = B x7 T X
G/P = B x G/P for T C B a maximal torus, and B\ Ey = G/P has the stratifica-
tion Sy = S.) Hence diagram is commutative.

Since all functors in diagram are triangulated and t-exact, we obtain by
restriction a commutative diagram relating the hearts.
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[BBDS2|

[Beig?)

[BGS96]
[BLO4]
[BFOg]
[BYOS]
[BMO1]
[Bor91]

[CMSP03]

[Del71]
[Del77]

[Del94]

[DMOS82]

[GMS83]
[GMSS]
[Gui05]
[Kal05)]
[Kel94]

[Kel98]

[KS94]
[Lan02]
[Lun9s]
[Mumé65)
[Saig9]

[Saig0]
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