APPLICATIONS OF STABILITY CONDITIONS TO EXERCISES

AREND BAYER

1. T-STRUCTURES AND TORSION PAIRS

Exercise 1. Translate the lemma of 9 to a triangulated category, and prove it!

Exercise 2. Pick a spectral sequence proof in a derived categories textbook and replace it by an argument using the filtration by cohomology.

Exercise 3. Let \mathcal{T} be either the bounded derived cateogory of a smooth projective curve X, or of a quiver without relations. every object in \mathcal{T} is direct sum of its cohomology objects (coherent sheaves, or quiver representations, respectively).

Exercise 4. Consider one of the examples torsion pairs appearing in the lectures. Prove that they are indeed a torsion pair.

- **Exercise 5.** (1) Prove that if $\mathcal{A}^{\sharp} \subset \mathcal{D}$ the heart of a bounded t-structure, $A \to B \to C$ is an exact triangle in \mathcal{D} with $A, B \in \mathcal{A}^{\sharp}$, then the cohomology objects $H^i_{\sharp}(C) C$ with respect to \mathcal{A}^{\sharp} can be non-zero only for i = -1, 0.
 - (2) Show that A[♯] is an abelian category if we define the kernel of f: A → B to be H⁻¹_t(cone f) and the cokernel to be H⁰_t(cone f).
 - (3) Show that with this definition, any exact triangle $A \to B \to C$ induces a long exact cohomology sequence among the cohomology objects $H^i_{\sharp}(_)$.

Exercise 6. (*) Consider an elliptic curve E, and its auto-equivalence $\Phi \colon D^{b}(E) \to D^{b}(E)$ given by the Fourier-Mukai transform of the Poincaré line bundle. Determine the image $\Phi(\operatorname{Coh} E)$ of the heart of the standard t-structure.

Date: March 29, 2016.