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Equivariant Sheaves on Flag Varieties
OLAF M. SCHNURER

The aim of our talk was to give an algebraic description of the Borel-equivariant
derived category of sheaves on the flag variety of a connected reductive algebraic
group.

Let G be a complex algebraic group acting on a complex variety X. We in-
troduced the G-equivariant (bounded, constructible) derived category D .(X) of
sheaves of real or complex vector spaces on X (see [BL94]). It carries the perverse
t-structure with heart the category of G-equivariant perverse sheaves. If G acts
with finitely many orbits, there are only finitely many simple objects in this heart;
we denote their direct sum by JC. The extension algebra of this object is

Ext(J@) := @ Hom(J€, IC[n)).

neN

We view this graded algebra as a differential graded (dg) algebra with differential
d=0.

Let A be a dg algebra. We defined the derived category D(A) of A (see
e.g. [Kel98]). The perfect derived category Perf(A) of A is the thick subcate-
gory of D(A) generated by A (i. e. the smallest full triangulated subcategory that
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contains A and is closed under taking direct summands). Its objects are precisely
the compact objects in D(A).

The following conjecture of Soergel and Lunts (cf. [Lun95]) relates the geometric
category D%,C(X ) and the algebraic category Perf(Ext(JC)): If a complex reductive
group G acts on a projective variety X with finitely many orbits, there is an
equivalence of triangulated categories

DY o(X) = Perf(Ext(J€)).

This conjecture (or a similar statement) is known to be true for a connected
Lie group acting on a point ([BL94, 12.7.2]), for a torus acting on an affine or
projective normal toric variety ([Lun95]), and for a complex semisimple adjoint
group acting on a smooth complete symmetric variety (in the sense of de Concini
and Procesi) ([Gui05]). We recently became aware of a related result for the loop
rotation equivariant derived Satake category of the affine loop Grassmannian in
[BFO08]. Our main result is:

Theorem 1 ([Sch08]). Let G be a complex connected reductive affine algebraic
group, B C G a Borel subgroup, and X = G/B the flag variety. Then there is an
equivalence of triangulated categories

DY (X) = Perf(Ext(J€)).

We conclude with some remarks:

e Note that D%AX) is equivalent to @%70((1 xp X) or @%AX x X) by
the induction equivalence. Hence our result fits into the setting of the
conjecture.

e The perverse t-structure on D%ﬁC(X ) corresponds to a t-structure on the
perfect derived category Perf(Ext(J€)) that can be described for a more
general class of dg algebras (see [Sch08a]). This yields an algebraic de-
scription of the category of B-equivariant perverse sheaves on X.

e The algebra Ext(J@) is isomorphic to the endomorphism algebra of the
B-equivariant hypercohomology of J€ ([Soe01]); this hypercohomology
can be described using Soergel’s bimodules or the moment graph picture
([BMO1]). In particular, the category @%AX) depends only on the cor-
responding combinatorial data.

e The non-equivariant analog of this theorem is also true. In fact, we
prove the theorem as a limit of equivalences that are similar to the non-
equivariant analog. For the proof of the non-equivariant version we need
the formality of a carefully constructed dg algebra; to obtain this formality
we use mixed Hodge modules and purity results on intersection cohomol-
ogy complexes.
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MV-polytopes/cycles and affine buildings
MicHAEL EHRICG

1. BASiC NOTATIONS AND DEFINITIONS

We want to give a combinatorial construction of MV-polytopes. This is done
by using the LS-gallery model by Gaussent and Littelmann [1], a discrete and
building-theoretic version of Littelmann’s path model. This gives a construction
of MV-polytopes alternativ to the one given by Kamnitzer in [2] and [3] and
independent of the type of the algebraic group. We start by fixing the basic
notations.

Notation 1.1. By G we denote a complex, simply-connected, semi-simple alge-
braic group. We fix B C G a Borel subgroup, 17" C B a maximal torus, and denote
by W its Weyl group. In addition we denote by B~ the Borel subgroup opposite
to B, i.e., the Borel subgroup such that BN B~ = T, and by U~ its unipotent
radical. Finally we denote by O = C[[t]] the ring of formal power series and by
K = C((¢)) its field of fraction, the field of formal Laurent series.

Using these we have a number of associated objects.

Notation 1.2. Let us denote by § = G(X)/G(0) the affine Grassmannian, by
XV the coweight lattice of G, and by X the dominant coweights.

Let us now look at the basic geometric set-up:.
xvetl gl o P(V) —H xVeR.

The inclusion ¢ is an inclusion as T-fixed points and we denote the image of a
coweight A by t*, P(V) is a projective space over a suitable representation of the
affine Kac-Moody group f)(G) corresponding to GG, and the map p is its usual
moment map.



