- [4] S. Fomin and C. Greene, Noncommutative Schur functions and their applications, Disc Math 306 (2006) 1080-1096.
- [5] T. Gannon, M. Walton, On fusion algebras and modular matrices. Comm. Math. Phys. 206 (1999), no. 1, 1–22.
- [6] D. Gepner, Fusion rings and geometry. Comm. Math. Phys. 141 (1991), no. 2, 381–411.
- [7] A. Lascoux and M.P. Schützenberger. Le monoïde plaxique, Quad. del. Ric. Sci. 109 129-156 (1981)
- [8] V. Kac, D. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. in Math. 53 (1984), no. 2, 125–264.
- [9] C. Korff, C. Stroppel: A combinatorial contruction of the WZNW-fusion ring for $\mathfrak{sl}(n)_k$ and the connection with quantum cohomology (in preparation).
- [10] A. Postnikov, Affine Approach to Quantum Schubert Calculus, Duke Math J 128 (2005) 473.
- [11] M. Reineke, Generic extensions and multiplicative bases of quantum groups at q=0. Represent. Theory 5 (2001), 147–163
- [12] K. Rietsch, Quantum Cohomology Rings of Grassmannians and Total Positivity, Duke Math J 110 (2001) 523-553.
- [13] C. Ringel, The composition algebra of a cyclic quiver. Towards an explicit description of the quantum group of type $A_n^{(1)}$. Proc. London Math. Soc. (3) 66 (1993), no. 3, 507–537.
- [14] B. Siebert and G. Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator. Asian J. Math. 1 (1997), pp. 679–695.
- [15] Verlinde, E. Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B (1988) 300, 360–376.
- [16] E. Witten. The Verlinde algebra and the cohomology of the Grassmanian. "Geometry, Topology, and Physics", 357–422, Conf. Proc. Lecture Notes Geom. Topology, IV, Internat Press, Cambridge MA, 1995.

Equivariant Sheaves on Flag Varieties

OLAF M. SCHNÜRER

The aim of our talk was to give an algebraic description of the Borel-equivariant derived category of sheaves on the flag variety of a connected reductive algebraic group.

Let G be a complex algebraic group acting on a complex variety X. We introduced the G-equivariant (bounded, constructible) derived category $\mathcal{D}^b_{G,c}(X)$ of sheaves of real or complex vector spaces on X (see [BL94]). It carries the perverse t-structure with heart the category of G-equivariant perverse sheaves. If G acts with finitely many orbits, there are only finitely many simple objects in this heart; we denote their direct sum by \mathfrak{IC} . The extension algebra of this object is

$$\operatorname{Ext}(\operatorname{\mathfrak{IC}}) := \bigoplus_{n \in \mathbb{N}} \operatorname{Hom}(\operatorname{\mathfrak{IC}},\operatorname{\mathfrak{IC}}[n]).$$

We view this graded algebra as a differential graded (dg) algebra with differential d = 0.

Let \mathcal{A} be a dg algebra. We defined the derived category $\mathcal{D}(\mathcal{A})$ of \mathcal{A} (see e.g. [Kel98]). The perfect derived category $\operatorname{Perf}(\mathcal{A})$ of \mathcal{A} is the thick subcategory of $\mathcal{D}(\mathcal{A})$ generated by \mathcal{A} (i. e. the smallest full triangulated subcategory that

contains \mathcal{A} and is closed under taking direct summands). Its objects are precisely the compact objects in $\mathcal{D}(\mathcal{A})$.

The following conjecture of Soergel and Lunts (cf. [Lun95]) relates the geometric category $\mathcal{D}^b_{G,c}(X)$ and the algebraic category $\operatorname{Perf}(\operatorname{Ext}(\mathfrak{IC}))$: If a complex reductive group G acts on a projective variety X with finitely many orbits, there is an equivalence of triangulated categories

$$\mathcal{D}_{G,c}^b(X) \cong \operatorname{Perf}(\operatorname{Ext}(\mathfrak{IC})).$$

This conjecture (or a similar statement) is known to be true for a connected Lie group acting on a point ([BL94, 12.7.2]), for a torus acting on an affine or projective normal toric variety ([Lun95]), and for a complex semisimple adjoint group acting on a smooth complete symmetric variety (in the sense of de Concini and Procesi) ([Gui05]). We recently became aware of a related result for the loop rotation equivariant derived Satake category of the affine loop Grassmannian in [BF08]. Our main result is:

Theorem 1 ([Sch08]). Let G be a complex connected reductive affine algebraic group, $B \subset G$ a Borel subgroup, and X = G/B the flag variety. Then there is an equivalence of triangulated categories

$$\mathcal{D}_{B,c}^b(X) \cong \operatorname{Perf}(\operatorname{Ext}(\mathfrak{IC})).$$

We conclude with some remarks:

- Note that $\mathcal{D}_{B,c}^b(X)$ is equivalent to $\mathcal{D}_{G,c}^b(G\times_B X)$ or $\mathcal{D}_{G,c}^b(X\times X)$ by the induction equivalence. Hence our result fits into the setting of the conjecture.
- The perverse t-structure on $\mathcal{D}_{B,c}^b(X)$ corresponds to a t-structure on the perfect derived category $\operatorname{Perf}(\operatorname{Ext}(\mathfrak{IC}))$ that can be described for a more general class of dg algebras (see [Sch08a]). This yields an algebraic description of the category of B-equivariant perverse sheaves on X.
- The algebra $\operatorname{Ext}(\operatorname{IC})$ is isomorphic to the endomorphism algebra of the B-equivariant hypercohomology of IC ([Soe01]); this hypercohomology can be described using Soergel's bimodules or the moment graph picture ([BM01]). In particular, the category $\mathcal{D}^b_{B,c}(X)$ depends only on the corresponding combinatorial data.
- The non-equivariant analog of this theorem is also true. In fact, we prove the theorem as a limit of equivalences that are similar to the non-equivariant analog. For the proof of the non-equivariant version we need the formality of a carefully constructed dg algebra; to obtain this formality we use mixed Hodge modules and purity results on intersection cohomology complexes.

References

[BL94] Joseph Bernstein and Valery Lunts. *Equivariant sheaves and functors*, volume 1578 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1994.

[BF08] Roman Bezrukavnikov and Michael Finkelberg. Equivariant Satake category and Kostant-Whittaker reduction. Mosc. Math. J., 8(1):39–72, 2008. [BM01] Tom Braden and Robert MacPherson. From moment graphs to intersection cohomology. Math. Ann., 321(3):533–551, 2001.

[Gui05] Stéphane Guillermou. Equivariant derived category of a complete symmetric variety. Represent. Theory, 9:526–577, 2005.

[Kel98] Bernhard Keller. On the construction of triangle equivalences. In Derived equivalences for group rings, volume 1685 of Lecture Notes in Math., pages 155–176. Springer, Berlin, 1998

[Lun95] Valery Lunts. Equivariant sheaves on toric varieties. Compositio Math., 96(1):63–83, 1995.

[Sch08] Olaf M. Schnürer. Equivariant Sheaves on Flag Varieties. preprint, 2008. arXiv:0809.4785v1

[Sch08a] Olaf M. Schnürer. Perfect Derived Categories of Positively Graded DG Algebras. preprint, 2008. arXiv:0809.4782v1

[Soe01] Wolfgang Soergel. Langlands' philosophy and Koszul duality. In Algebra–representation theory (Constanta, 2000), 28:379–414, 2001.

MV-polytopes/cycles and affine buildings

MICHAEL EHRIG

1. Basic Notations and Definitions

We want to give a combinatorial construction of MV-polytopes. This is done by using the LS-gallery model by Gaussent and Littelmann [1], a discrete and building-theoretic version of Littelmann's path model. This gives a construction of MV-polytopes alternativ to the one given by Kamnitzer in [2] and [3] and independent of the type of the algebraic group. We start by fixing the basic notations.

Notation 1.1. By G we denote a complex, simply-connected, semi-simple algebraic group. We fix $B \subset G$ a Borel subgroup, $T \subset B$ a maximal torus, and denote by W its Weyl group. In addition we denote by B^- the Borel subgroup opposite to B, i.e., the Borel subgroup such that $B \cap B^- = T$, and by U^- its unipotent radical. Finally we denote by $\mathfrak{O} = \mathbb{C}[[t]]$ the ring of formal power series and by $\mathfrak{K} = \mathbb{C}((t))$ its field of fraction, the field of formal Laurent series.

Using these we have a number of associated objects.

Notation 1.2. Let us denote by $\mathcal{G} = G(\mathcal{K})/G(0)$ the affine Grassmannian, by X^{\vee} the coweight lattice of G, and by X^{\vee}_{+} the dominant coweights.

Let us now look at the basic geometric set-up:.

$$X^{\vee C} \xrightarrow{i} \mathcal{G}^{C} \longrightarrow \mathbb{P}(V) \xrightarrow{\mu} X^{\vee} \otimes \mathbb{R} .$$

The inclusion i is an inclusion as T-fixed points and we denote the image of a coweight λ by t^{λ} , $\mathbb{P}(V)$ is a projective space over a suitable representation of the affine Kac-Moody group $\hat{\mathcal{L}}(G)$ corresponding to G, and the map μ is its usual moment map.