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Abstract. For a target variety X and a nodal curve C, we introduce
a one-parameter stability condition, termed ϵ-admissibility, for maps
from nodal curves to X × C. If X is a point, ϵ-admissibility interpolates
between moduli spaces of stable maps to C relative to some fixed points
and moduli spaces of admissible covers with arbitrary ramifications over
the same fixed points and simple ramifications elsewhere on C.

Using Zhou’s calibrated tails, we prove wall-crossing formulas relating
invariants for different values of ϵ. If X is a surface, we use this wall-
crossing in conjunction with author’s quasimap wall-crossing to show
that relative Pandharipande–Thomas/Gromov–Witten correspondence
on X ×C and Ruan’s extended crepant resolution conjecture of the pair
X [n] and [X(n)] are equivalent up to explicit wall-crossings. We thereby
prove crepant resolution conjecture for 3-point genus-0 invariants in all
classes, if X is a toric del Pezzo surface.
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1. Introduction

1.1. Overview. Inspired by the theory of quasimaps to GIT quotients of
[CKM14], a theory of quasimaps to moduli spaces of sheaves was introduced
in [Nes21a]. When applied to Hilbert schemes of n-points S[n] of a surface
S, moduli spaces of ϵ-stable quasimaps interpolate between moduli spaces
of stable maps to S[n] and Hilbert schemes of 1-dimensional subschemes of
a relative geometry S × Cg,N/Mg,N ,

Mg,N (S[n], β) oo ϵ // Hilbn,β̌(S × Cg,N/Mg,N ), (1)

where Cg,N → Mg,N is the universal curve of a moduli space of stable
marked curves.
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This interpolation gives rise to wall-crossing formulas, which therefore
relate Gromov–Witten (GW) theory of S[n] and relative Donaldson–Thomas
(DT) theory of S × Cg,N/Mg,N . Alongside with results of [Nes21b], the
quasimap wal-crossing was used to prove various correspondences, among
which is the wall-crossing part of Igusa cusp form conjecture of [OP16]. For
more details, we refer to [Nes21a,Nes21b].

In this article we introduce a notion of ϵ-admissibility, depending on a
parameter ϵ ∈ R≤0, for maps

P → X × C

relative to X × x, where P is a nodal curve, (C,x) is a marked nodal curve
and X is a smooth projective variety.

As the value of ϵ varies, moduli spaces of ϵ-admissible maps interpolate
between moduli spaces of stable twisted maps to an orbifold symmetric
product [X(n)] and moduli space of stable maps to a relative geometry X ×
Cg,N/Mg,N ,

Kg,N ([X(n)], β) oo ϵ // M
•
h(X × Cg,N/Mg,N (γ, n)),

such that the various discrete data on both sides, like genus or degree of a
map, determine each other, as is explained in Section 2.3.

Using Zhou’s theory of calibrated tails from [Zho22], we establish wall-
crossing formulas which relates the associated invariants for different values
of ϵ ∈ R≤0. This wall-crossing is completely analogous to the quasimap
wall-crossing. The result is an equivalence of orbifold GW theory of [X(n)]
and relative1 GW theory X × Cg,N/Mg,N for an arbitrary smooth projec-
tive target X, which can be expressed in terms of a change of variables
applied to certain generating series. The change of variables involves so-
called I-functions, which are defined via localised GW theory of X × P1

with respect to C∗-action coming from the P1-factor. This wall-crossing
can be termed Gromov–Witten/Hurwitz (GW/H) wall-crossing 2, because if
X is a point, the moduli spaces of ϵ-admissible maps interpolates between
Gromov–Witten and Hurwitz spaces of a curve C.

In conjunction with the quasimap wall-crossing of [Nes21a], GW/H wall-
crossing establishes the square of theories for a smooth surface S, illustrated
in Figure 1. The square relates crepant resolution conjecture (C.R.C.),
proposed in [Rua06] and refined in [BG09, CCIT09], and Pandharipande–
Thomas/Gromov–Witten correspondence (PT/GW), proposed in [MNOP06a,
MNOP06a]. The square has some similarities with Landau–Ginzburg/Calabi–
Yau correspondence, as it is explained in Section 1.6.2.

1By relative, we mean a theory with relative insertions.
2Note that our terminology unintentionally resembles the terminology used in [OP06].

However, we do not know, if the two phenomena have any relation.
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quasimap
wall-crossing

GW/H
wall-crossing

GWorb([S(n)])GW(S[n])
C.R.C.

PTrel(S × Cg,N/Mg,N ) GWrel(S × Cg,N/Mg,N )
PT/GW

Figure 1. The square

With the help of the square, we establish the following results:
• 3-point genus-0 crepant resolution conjecture in the sense of [BG09]

for the pair S[n] and [S(n)] in all classes, if S is a toric del Pezzo
surface.
• the geometric origin of y = −eiu in PT/GW through C.R.C.

Moreover, a cycle-valued version of the wall-crossing should have applica-
tions in the theory of double ramifications cycles of [JPPZ17], comparison
results for the TQFT’s from [Cav07] and [BP08], etc. This will be addressed
in a future work.

Various instances of the vertical sides of the square were studied on the
level of invariants in numerous articles, mainly for C2 and Am - [OP10a],
[OP10b], [OP10c], [BP08], [PT19a], [Mau09], [MO09], [Che09] and etc. The
wall-crossings, however, provide a geometric justification for these phenom-
ena.

1.2. Analogy. Let us illustrate how the theory of quasimaps sheds light on
a seemingly unrelated theme of admissible covers.

1.2.1. ϵ-stable quasimaps. A map from a nodal curve C,

f : C → S[n],

is determined by its graph
Γf ⊂ S × C.

If the curve C varies, the pair (C,Γf ) can degenerate in two ways:
(i) the curve C degenerates;
(ii) the graph Γf degenerates.
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By a degeneration of Γf we mean that it becomes non-flat3 over C as a
subscheme of S × C, which is due to

• floating points;
• non-dominant components.

Two types of degenerations of a pair (C,Γf ) are related. GW theory of
S[n] proposes that C sprouts out a rational tail (C degenerates), whenever
non-flatness arises (Γf degenerates). DT theory, on the other hand, allows
non-flatness, since it is interested in arbitrary 1-dimensional subschemes,
thereby restricting degenerations of C to semistable ones (no rational tails).

A non-flat graph Γ does not define a map to S[n], but it defines a quasimap
to S[n]. Hence the motto of quasimaps:

Trade rational tails for non-flat points and vice versa.

The idea of ϵ-stability is to allow both rational tails and non-flat points,
restricting their degrees. The moduli spaces involved in (1) are given by the
extremal values of ϵ.

1.2.2. ϵ-admissible maps. The motto of GW/H wall-crossing is the following
one:

Trade rational tails for branching points and vice versa.

Let us explain what we mean by making an analogy with quasimaps. Let

f : P → C

be an admissible cover with simple ramifications introduced in [HM82, Chap-
ter 4]. If the curve C varies, the pair (C, f) can degenerate in two ways:

(i) the curve C degenerates;
(ii) the cover f degenerates.

The degenerations of f arise due to
• ramifications of higher order;
• contracted components and singular points mapping to smooth lo-

cus.
As previously, these two types of degenerations of a pair (C, f) are related.
Hurwitz theory of a varying curve C proposes that C sprouts out ratio-
nal tails, whenever f degenerates in the sense above. On the other hand,
Gromov–Wittengm theory of a varying curve C allows f to degenerate and
therefore restricts the degenerations of C to semistable ones. The purpose
of ϵ-admissible maps is to interpolate between these Hurwitz and Gromov–
Witten cases.

3A 1-dimensional subscheme Γ ⊂ S × C is a graph, if and only if it is flat.
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1.3. Definition. Let us now sketch the definition of ϵ-admissibility. Let
f : P → C be a degree-nmap between nodal curves, such that it is admissible
at nodes (see [HM82, Chapter 4] for admissibility at the nodes) and g(P ) =
h, g(C) = g. We allow P to be disconnected, requiring that each connected
component is mapped non-trivially to C. Following [FP02], we define the
branching divisor

br(f) ∈ Div(C),
it is an effective divisor which measures the degree of ramification away from
nodes and the genera of contracted components of P . If C is smooth, the
branching divisor br(f) is given by associating to the 0-dimensional complex

Rf∗[f∗ΩC → ΩP ]
its support weighted by Euler characteristics. Otherwise, we need to take
the part of the support which is contained in the regular locus of C.
Remark 1.1. To establish that the branching divisor behaves well in families
for maps between singular curves, we have to go through an auxiliary (at
least for the purposes of this work) notion of twisted ϵ-admissible map, as
is explained in Section 2. The construction of br for families in (6) and (7)
is the only place where we use twisted maps.

Using the branching divisor br, we now can define ϵ-admissibility by the
weighted stability of the pair (C, br(f)), considered in [Has03]. Similar sta-
bility was considered in [Deo14], where the source curve P is allowed to have
more degenerate singularities instead of contracted components. However,
the moduli spaces of [Deo14] do not have a perfect obstruction theory.
Definition. Let ϵ ∈ R≤0 ∪ {−∞}. A map f is ϵ-admissible, if

• ωC(e1/ϵ · br(f)) is ample;
• ∀p ∈ C, multp(br(f)) ≤ e−1/ϵ;

Remark 1.2. Note that the presence of exponential e1/ϵ in the definition is
mostly conventional, we could also make the definition with ϵ instead of e1/ϵ.
The reason is that we would like ϵ-admissibility to be defined for ϵ ∈ R≤0,
because ϵ-stability of quasimaps is defined for ϵ ∈ R>0. In this way we can
view both theories as a part of one theory which is defined for ϵ ∈ R. This
is useful for the purposes of crepant resolution conjecture.

One can readily verify that for ϵ = −∞, an ϵ-admissible map is an admis-
sible cover with simple ramifications. For ϵ = 0, an ϵ-admissible map is a sta-
ble4 map, such that the target curve C is semistable. Hence ϵ-admissibility
provides an interpolation between the moduli space of admissible covers
with simple ramifications Admg,h,n and the moduli space of stable maps
M

•
h(Cg/Mg, n),

Admg,h,n oo ϵ // M
•
h(Cg/Mg, n)

4When the target curve C is singular, by a stable map we will mean a stable map which
is admissible at nodes.
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After introducing markings x = (x1, . . . , xN ) on C and requiring maps to be
admissible over these markings, ϵ-admissibility interpolates between admis-
sible covers with arbitrary ramifications over markings and relative stable
maps. As it is explained in [ACV03], sometimes it is more convenient to
consider the normalisation of the moduli space of admissible covers - the
moduli space of stable twisted maps to BSn, denoted by Kg,N (BSn, h). For
the purposes of enumerative geometry (virtual intersection theory of moduli
spaces), the interpolation above can therefore be equally considered as the
following one

Kg,N (BSn, h) oo ϵ // M
•
h(Cg,N/Mg,N , n).

In fact, this point of view is more appropriate, if one wants to make an
analogy with quasimaps.

1.4. Higher-dimensional case. We can upgrade the set-up even further
by adding a map fX : P → X for some target variety X. This leads us to
the study of ϵ-admissibility of the data

(P,C,x, fX×fC),

which can be represented as a correspondence

P X

(C,x)

fX

fC

In this case, ϵ-admissibility also takes into account the degree of the compo-
nents of P with respect to the map fX , see Definition 2.4. If X is a point,
we get the set-up discussed previously.

Let β = (γ, h) ∈ H2(X,Z) ⊕ Z be an extended degree5. For ϵ ∈ R≤0 ∪
{−∞}, we then define

Admϵ
g,N (X(n), β)

to be the moduli space of the data

(P,C,x, fX × fC),

such that g(P ) = h, g(C) = g, |x| = N and the map fX × fC is of degree
(γ, n). The notation is slightly misleading, as ϵ-admissible maps are not
maps to X(n). However, it is justified by the analogy with quasimaps and is
more natural with respect to our notions of degree of an ϵ-admissible map
(see also Section 2.3).

5By a version of Riemann–Hurwitz formula, Lemma 2.9, the degree of the branching
divisor br(f) = m and the genus h determine each other, latter we will use m instead of h.
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As in the case of X is a point, we obtain the following description of these
moduli spaces for extremal values of ϵ,

M
•
h(X × Cg,N/Mg,N (γ, n)) = Adm0

g,N (X(n), β),

Kg,N ([X(n)], β) ρ−→ Adm−∞
g,N (X(n), β),

such that the map ρ is a virtual normalisation in the sense of the diagram
(16), which makes two spaces equivalent from the perspective of enumerative
geometry. We therefore get an interpolation,

Kg,N ([X(n)], β) oo ϵ // M
•
h(X × Cg,N/Mg,N (γ, n)),

which is completely analogous to (1).

1.5. Wall-crossing. The invariants of M•
h(X ×Cg,N/Mg,N (γ, n)) that can

be related to orbifold invariants of Kg,N ([X(n)], β) are the relative GW in-
variants taken with respect to the markings of the target curve C. More
precisely, for all ϵ, there exist natural evaluations maps

evi : Admϵ
g,N (X(n), β)→ IX(n), i = 1, . . . , N,

where IX(n) is a rigidified version of the inertia stack IX(n). We define

⟨τm1(γ1), . . . , τmN (γN )⟩ϵg,N,β :=
∫

[Admϵ
g,N (X(n),β)]vir

i=N∏
i=1

ψmi
i ev∗

i (γi, ),

where γ1, . . . , γN are classes in orbifold cohomologyH∗
orb(X(n)) and ψ1, . . . , ψN

are ψ-classes associated to the markings of the source curves. By Lemma
2.17, these invariants specialise to orbifold GW invariants associated to a
moduli space Kg,N ([X(n)], β) and relative GW invariants associated to a
moduli space M•

h(X × Cg,N/Mg,N (γ, n)) for corresponding choices of ϵ.
To relate invariants for different values of ϵ, we use the master space

technique developed by Zhou in [Zho22] for the purposes of quasimaps. We
establish the properness of the master space in our setting in Section 3,
following the strategy of Zhou.

To state compactly the wall-crossing formula, we define

F ϵg (t(z)) =
∞∑
n=0

∑
β

qβ

N !⟨t(ψ1), . . . , t(ψN )⟩ϵg,N,β ,

where t(z) ∈ H∗
orb(X(n),Q)[z] is a generic element, and the unstable terms

are set to be zero. There exists an element

µ(z) ∈ H∗
orb(X(n))[z]⊗ Q[[qβ]],

defined in Section 4.1 as a truncation of an I-function. The I-function is in
turn defined via the virtual localisation on the space of stable maps to X×P1

relative to X × {∞}. The element µ(z) provides the change of variables,
which relates generating series for extremal values of ϵ.
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Theorem. For all g ≥ 1, we have
F 0
g (t(z)) = F−∞

g (t(z) + µ(−z)).
For g = 0, the same equation holds modulo constant and linear terms in t.

The change of variables above is the consequence of a wall-crossing for-
mula across each wall between extremal values of ϵ, see Theorem 4.3.

1.6. Applications.

1.6.1. The square. For a del Pezzo surface S, we compute the wall-crossing
invariants in Section 5. A computation for analogous quasimap wall-crossing
invariants is given in [Nes21a, Proposition 6.10].

The wall-crossing invariants can easily be shown to satisfy PT/GW. Hence
when both quasimap and GW/H wall-crossings are applied, C.R.C. becomes
equivalent to PT/GW. For precise statements of both in this setting, we refer
to Section 6.1. This is expressed in terms of the square of theories in Figure
1.

In [PP17], PT/GW is established for S × P1 relative to S × {0, 1,∞} ⊂
S × P1, if S is toric. Alongside with [PP17], the square therefore gives us
the following result.

Theorem. If S is a toric del Pezzo surface, g = 0 and N = 3, then C.R.C.
(in the sense of [BG09]) holds for S[n] for all n ≥ 1 and in all classes.

Previously, the theorem above was established for n = 2 and S = P2

in [Wis11, Section 6]; for an arbitrary n and an arbitrary toric surface, but
only for exceptional curve classes, in [Che13]; for an arbitrary n and a simply
connected S, but only for exceptional curve classes and in sense of [Rua06],
in [LQ16]. We believe that with a little bit of effort, all of the results above
can be given a more natural proof by reducing them to PT/GW for S×P1 by
means of our wall-crossings, as PT/GW is a more computationally accessible
side.

If S = C2, C.R.C. was proved for all genera and any number of markings
on the level of cohomological field theories in [PT19b]. If S = An, it was
proved in genus-0 case and for any number of markings in [CCIT09] in
the sense of [CIR14]. For surfaces with c1(S) = 0, C.R.C. was established
in [FG03] with representation-theoretic methods, as GW invariants vanish
in this case. Crepant resolution conjecture was also proved for resolutions
other than those that are of Hilbert–Chow type. The list is too long to
mention them all.

The theorem can also be restated as an isomorphism of quantum coho-
mologies,

QH∗
orb(S(n)) ∼= QH∗(S[n]),

we refer to Section 6.2 for more details. The result is very appealing, because
the underlying cohomologies with classical multiplications are not isomor-
phic for surfaces with c1(S) ̸= 0, but the quantum cohomologies are. In
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particular, the classical multiplication on H∗
orb(S(n)) is a non-trivial quan-

tum deformation of the classical multiplication on H∗(S[n]).
We want to stress that C.R.C. should be considered as a more fundamental

correspondence than PT/GW, because it relates theories which are closer to
each other. Moreover, as [BG09] points out, C.R.C. explains the origin of
the change of variables,

y = −eiu, (2)
it arises due to the following features of C.R.C.,

(i) analytic continuation of generating series from 0 to -1;
(ii) factor i =

√
−1 in the identification of cohomologies of S[n] and S(d);

(iii) the divisor equation in GW(S[n]);
(iv) failure of the divisor equation in GWorb([S(n)]).

More precisely, (i) is responsible for the minus sign in (2); (iii) and (iv) are
responsible for the exponential; (ii) is responsible for i in the exponential.
More conceptual view on C.R.C. is presented in works of Iritani, e.g. [Iri09].

1.6.2. LG/CY vs C.R.C. We will now draw certain similarities between
C.R.C. and Landau-Ginzburg/Calabi-Yau correspondence (LG/CY), which
are schematically illustrated in Table 1. For all details and notation on
LG/CY, we refer to [CIR14].

LG/CY consists of two types of correspondences - A-model and B-model
correspondences. The B-model correspondence is the statement of equiv-
alence of two categories - matrix factorisation categories and derived cate-
gories. While the A-model correspondence is the statement of equality of
generating series of certain curve-counting invariants after an analytic con-
tinuation and a change of variables. Moreover, there exists a whole family of
enumerative theories depending on a stability parameter ϵ ∈ R. For ϵ ∈ R>0
it gives the theory of GIT quasimaps, while for ϵ ∈ R≤0 it gives FJRW
(Fan–Jarvis–Ruan–Witten) theory. GLSM (Gauged Linear Sigma Model)
formalism, defined mathematically in [FJR18], allows to unify quasimaps
and FJRW theory. The analytic continuation occurs, when one crosses the
wall at ϵ = 0.

In the case of C.R.C. we have a similar picture. B-model correspondence
is given by an equivalence of categorises, Db(S[n]) and Db([S(n)]). A-model
correspondence is given by an analytic continuation of generating series and
subsequent application of a change of variables, as it is stated in Section 6.
There also exists a family of enumerative theories depending on a parameter
ϵ ∈ R. For ϵ ∈ R>0, it is given by ϵ-stable quasimaps to a moduli space of
sheaves, while for ϵ ∈ R≤0 it is given by ϵ-admissable maps. It would be
interesting to know, if a unifying theory exists in this case (like GLSM in
LG/CY).

The above comparison is not a mere observation about structural simi-
larities of two correspondences. In fact, both correspondences are instances
of the same phenomenon. Namely, in both cases there should exist Kähler
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moduli spaces, MLG/CY and MC.R.C., such that two geometries in question
correspond to two different cusps of these moduli spaces (e.g. S[n] and [S(n)]
correspond to two different cusps of MC.R.C.). B-models do not vary across
these moduli spaces, hence the relevant categories are isomorphic. On the
other hand, A-models vary in the sense that there exist non-trivial global
quantum D-modules, DLG/CY and DC.R.C., which specialise to relevant enu-
merative invariants around cusps. For more details on this point of view,
we refer to [CIR14] in the case of LG/CY, and to [Iri10] in the case of C.R.C.

B-model A-model

LG/CY Db(XW ) ∼= MF(W ) GW(XW ) ϵ≤0←−−|0
ϵ>0−−→ FJRW(Cn,W )

C.R.C. Db(S[n]) ∼= Db([S(n)]) GW(S[n]) ϵ≤0←−−|0
ϵ>0−−→ GWorb([S(n)])

Table 1. LG/CY vs C.R.C
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Oberdieck for the supervision of my PhD. In particular, I am grateful to
Georg for pointing out that ideas of quasimaps can be applied to orbifold
symmetric products.
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present work and Maximilian Schimpf for providing the formula for Hodge
integrals.

A great intellectual debt is owed to Yang Zhou for his theory of cali-
brated tails, without which the wall-crossings would not be possible.

1.8. Notation and conventions. We work over the field of complex num-
bers C. Given a variety X, by [X(n)] we denote a stacky symmetric product
[Xn/Sn] and by X(n) its coarse quotient. We denote a Hilbert scheme of
n-points by X [n]. For a partition µ of n, let ℓ(µ) denote the length of µ and
age(µ) = n− ℓ(µ).

For a possibly disconnected twisted curve C with the underlying coarse
curve C, we define g(C) := 1− χ(OC) = 1− χ(OC).

We set eC∗(Cstd) = −z, where Cstd is the standard representation of C∗

on a vector space C.
Let N be a semigroup and β ∈ N be its generic element. By Q[[qβ]] we

will denote the (completed) semigroup algebra Q[[N ]]. In our case, N will be
various semigroups of effective curve classes.
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2. ϵ-admissible maps

Let X be a smooth projective variety, (C,x) be a twisted6 marked nodal
curve, defined in [AGV08], and let P be a possibly disconnected orbifold
nodal curve.

Definition 2.1. For a map
f = fX × fC : P→ X × C,

the data (P,C,x, f) is called a twisted pre-admissible map, if
• fC is étale over marked points and nodes;
• fC is a representable;
• f is non-constant on each connected component.

We will refer to P and C as source and target curves, respectively. Note
that by all the conditions above, P itself must be a twisted nodal curve with
orbifold points over nodes and marked points of C.

Consider now the following complex

RfC∗[f∗
CLC → LP] ∈ Db(C),

where the morphism f∗
CLC → LP is the one which is naturally associated to

the map fC. The complex is supported at finitely many points of the non-
stacky smooth locus, which we call branching points. They arise either due
to ramification points or contracted components of the map fC. Following
[FP02], to the complex above, we can associate an effective Cartier divisor

br(f) ∈ Div(C)
by taking the support of the complex weighted by its Euler characteristics.
This divisor will be referred to as a branching divisor.

Let us give a more explicit expression for the branching divisor. Let
P◦ ⊆ P be the maximal subcurve of P which contracted by the map fC. Let
P• ⊆ P be the complement of P◦, i.e. the maximal subcurve which is not
contracted by the map fC. By P̃• we denote its normalisation at the nodes
which are mapped into a regular locus of C. Note that the restriction of fC
to P̃• is a ramified cover, the branching divisor of which is therefore given
by points of ramifications.

By P̃◦,i we denote the connected components of the normalisation P̃◦ and
by pi ∈ C their images in C. Finally, let N ⊂ P be the locus of nodal points
which are mapped into regular locus of C. Following [FP02, Lemma 10,
Lemma 11], the branching divisor br(f) can be expressed as follows.

Lemma 2.2. With the notation from above we have

br(f) = br(f|P̃•
) +

∑
i

(2g(P̃◦,i)− 2)[pi] + 2f∗(N).

6By a twisted nodal curve we will always mean a balanced twisted nodal curve.
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Proof. By the definition of twisted pre-admissibility, all the branching
takes place away from orbifold points and nodes. Since the branching of a
map can be determined locally, we therefore can assume that both C and P

are ordinary nodal curves C and P .
Let

v : C̃ → C

be the normalisation of C at N , and let f̃ = f ◦ v. Recall that LC ∼= ΩC .
By composing the normalisation morphism LC → v∗v

∗LC with the natural
morphism v∗v

∗LC → v∗L
C̃

, we obtain following exact sequence

0→ ON → LC → v∗L
C̃
→ 0, (3)

which, in particular, implies that

χ(LC) = χ(ωC). (4)

On the other hand, since N is mapped to the regular locus of P and LP is
locally free at regular points, we obtain

0→ f∗LP → v∗f̃
∗LP → ON ⊗ f∗LP → 0. (5)

With the sequences (3) and (5), the proof of [FP02, Lemma 10] in our setting
is exactly the same. So is the proof of [FP02, Lemma 11] with (4). □

Remark 2.3. One could also use ωC instead of LC. For a smooth curve C, the
map ϕ : f∗

CωC → ωP is constructed in [FP02, Lemma 8]. If C is not smooth,
then fC is étale over nodal points, therefore in a neighbourhood U of a nodal
point we have a natural isomorphism ϕ|U : f∗

CωC|U
≃−→ ωP|f−1U . In general,

the map ϕ of [FP02, Lemma 8] over smooth locus of a nodal twisted curve
C glues with a map ϕ|U . In this way we obtain a map ϕ : f∗

CωC → ωP for a
nodal twisted curve C.

We fix L ∈ Pic(X), an ample line bundle on X, such that for all effective
curve classes γ ∈ H2(X,Z),

deg(γ) = c1(L) · β ≫ 0.

Let (P,C,x, f) be a twisted pre-admissible map. For a point p ∈ C, let

f∗Lp := f∗
XL|f−1

C
(p),

we set deg(f∗Lp) = 0, if f−1
C (p) is 0-dimensional. For a component C′ ⊆ C,

let
f∗L|C′ := f∗

XL|f−1
C

(C′).

Recall that a rational tail of a curve C is a component isomorphic to P1

with one special point (a node or a marked point). A rational bridge is a
component isomorphic to P1 with two special points.

Definition 2.4. Let ϵ ∈ R≤0 ∪ {−∞}. A twisted pre-admissible map f is
twisted ϵ-admissible, if
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(i) for all points p ∈ C,

multp(br(f)) + deg(f∗Lp) ≤ e−1/ϵ;

(ii) for all rational tails T ⊆ (C,x),

deg(br(f)|T ) + deg(f∗L|T ) > e−1/ϵ;

(iv)
|Aut(f)| <∞.

Lemma 2.5. The condition of twisted ϵ-admissability is an open condition.

Proof. The conditions of twisted ϵ-admissibility are constructable. Hence
we can use the valuative criteria for openness. Given a discrete valuation ring
R with a fraction field K, we therefore need to show that if a pre-admissible
map

(P,C,x, f) ∈M(X × Ctw
g,N/M

tw
g,N , (γ, n))(R)

is ϵ-admissible at a closed fiber Spec C of SpecR, then it is ϵ-admissible at
the generic fiber. In fact, each of conditions of ϵ-admissibility is an open
condition. For example, let

T ⊆ (C,x)
be a family of subcurves of (C,x) such that the generic fiber T| SpecK is a
rational tail that does not satisfy the condition (ii). Then the central fiber
T| Spec C of T will be a tree of rational curves, whose rational tails do not
satisfy the condition (ii), because the degree of both br(f) and f∗

XL can only
decrease on rational tails of T| Spec C. Note we use that br(f) is defined for
families of pre-admissible twisted maps to conclude that the degree of br(f)
is constant in families.

Other conditions of ϵ-admissibility can be shown to be open in a similar
way. □

A family of twisted ϵ-admissable maps over a base scheme B is given by
two families of twisted B-curves P and (C,x) and a B-map

f = fX × fC : P→ X × (C,x),

whose fibers over geometric points of B are ϵ-admissable maps. An isomor-
phism of two families

Φ = (ϕ1, ϕ2) : (P,C,x, f) ∼= (P′,C′,x′, f ′)

is given by the data of isomorphisms of the source and target curves

(ϕ1, ϕ2) ∈ IsomB(P,P′)× IsomB((C,x), (C′,x′)),

which commute with the maps f and f ′,

f ′ ◦ ϕ1 ∼= ϕ2 ◦ f.
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Definition 2.6. Given an element
β = (γ,m) ∈ H2(X,Z)⊕ Z,

we say that a twisted ϵ-admissible map is of degree β to X(n), of genus g
with N markings, if

• f is of degree (γ, n) and deg(br(f)) = m;
• g(C) = g and |x| = N .

We define
Admϵ

g,N (X(n), β)tw : (Sch/C)◦ → (Grpd)
S 7→ {families of ϵ-admissable maps over B}

to be the moduli space of twisted ϵ-admissible to X(n) maps of degree β and
genus g with N markings. Recall that LC is a perfect complex, since C is
l.c.i., so is LP. Hence following [FP02, Section 3.2] (see also [Deo14, Theorem
3.8]), one can construct the universal branching divisor

br : Admϵ
g,N (X(n), β)tw →Mg,N,m. (6)

The space Mg,N,m is an Artin stack which parametrises triples
(C,x, D),

where (C,x) is a genus-g curve with N markings; D is an effective divisor
of degree m disjoint from markings x. An isomorphism of triples is an iso-
morphism of curves which preserve markings and divisors.

There is another moduli space related to Admϵ
g,N (X(n), β)tw, which is

obtained by associating to a twisted ϵ-admissible map the corresponding map
between the coarse moduli spaces of the twisted curves. This association
defines the following map

p : Admϵ
g,N (X(n), β)tw →M(X × Cg,N/Mg,N , (β, n)),

where M(X×Cg,N/Mg,N , (β, n)) is the relative moduli space of stable maps
to the relative geometry

X × Cg,N →Mg,N ,

where Cg,N → Mg,N is the universal curve. By Lemma 2.5, the image of p
is open.
Definition 2.7. We denote the image of p with its natural open-substack
structure by Admϵ

g,N (X(n), β).

The closed points of Admϵ
g,N (X(n), β) are relative stable maps with re-

stricted branching away from marked points and nodes, to which we refer
as ϵ-admissable maps. On can similarly define pre-admissable maps. As in
Definition 2.1, we denote the data of a pre-admissible map by

(P,C,x, f).
The moduli spaces Admϵ

g,N (X(n), β) will be the central objects of our study.
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Remark 2.8. The difference between the moduli spaces Admϵ
g,N (X(n), β)

and Admϵ
g,N (X(n), β)tw is the same as the one between admissible covers

and twisted bundles of [ACV03]. We prefer to work with Admϵ
g,N (X(n), β),

because it is more convenient to work with schemes than with stacks for the
purposes of deformation theory and of analysis of the basic properties of the
moduli spaces. Moreover, the enumerative geometries of these two moduli
spaces are equivalent, at least for the relevant values of ϵ. For more details,
see Section 2.3 and Section 2.6.

Since br(f) is supported away from stacky points, the branching-divisor
map descends,

br : Admϵ
g,N (X(n), β)→Mg,N,m. (7)

The moduli spaces Admϵ
g,N (X(n), β) also admit a disjoint-union decomposi-

tion
Admϵ

g,N (X(n), β) =
∐
µ

Admϵ
g,N (X(n), β, µ), (8)

where µ = (µ1, . . . , µN ) is a N -tuple of ramifications profiles of fC over the
markings x.

Riemann–Hurwitz formula extends to the case of pre-admissible maps.

Lemma 2.9. If f : P → (C,x) is a degree-n pre-admissible map with ram-
ification profiles µ = (µ1, . . . , µN ) at the markings x ⊂ C, then

2g(P )− 2 = n · (2g(C)− 2) + deg(br(f)) +
∑
i

age(µi).

Proof. Using Lemma 2.2 and the standard Riemann–Hurwitz formula, one
can readily check that the above formula holds for pre-admissible maps. □

2.1. Properness. We now establish the properness of Admϵ
g,N (X(n), β),

starting with the following result.

Proposition 2.10. The moduli spaces Admϵ
g,N (X(n), β) are quasi-separated

Deligne-Mumford stacks of finite type.

Proof. By ϵ-admissibility condition, the map br factors through a quasi-
separated substack of finite type. Indeed, (C,x, br(f)) is not stable (i.e. has
infinitely many automorphisms), if one of the following holds

(i) there is a rational tail T ⊆ (C,x), such that supp(br(f)|T ) is at most
a point;

(ii) there is a rational bridge B ⊆ (C,x), such that supp(br(f)|B) is
empty.

Up to a change of coordinates, the restriction of fC to T or B must of the
form

zn : (⊔kP1) ⊔0 P
′ → P1 (9)
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at each connected component of P over T or B. Let us clarify the notation
of (9). The curve ⊔kP1 is disjoint union of k distinct P1. A possibly discon-
nected marked nodal curve (P ′,p) is attached via markings to the disjoint
union ⊔kP1 at points 0 ∈ P1 at each connected component of the disjoint
union; P ′ is contracted to 0 ∈ P1 in the target P1; while on i’th P1 in the
disjoint union, the map is given by zni for n = (n1, . . . , nk).

The fact that the restriction of fC is given by a map of such form can be
seen as follows. The condition (i) or (ii) implies that the restriction of fC
to T or B has at most two7 branching points, which in turn implies that
the source curve must be P1 by Riemann–Hurwitz theorem. A map from
P1 to itself with two ramifications points is given by zm : P1 → P1 up to
change of coordinate. For a rational tail T , there might also be a contracted
component P ′ attached to the ramification point.

In the case of (ii), the ϵ-admissibility condition then says that

deg(f∗L|B) > 0.

While in the case of (i),

deg(br(f)|T ) = multp(br(f))

for a unique point p ∈ T which is not a node. Hence ϵ-admissibility says
that

deg(f∗L|T )− deg(f∗Lp) > 0.
Since we fixed the class β, the conclusions above bound the number of
components T or B by deg(β). Hence the image of br is contained in a
quasi-compact substack of Mg,N,m, which is therefore quasi-separated and
of finite type, because Mg,N,m is quasi-separated and locally of finite type.

The branching-divisor map br is of finite type and quasi-separated, since
the fibers of br are sub-loci of stable maps to X × C for some nodal curve
C. The moduli space Admϵ

g,N (X(n), β) is of finite type and quasi-separated
itself, because br is of finite type and quasi-seperated and factors through a
quasi-separated substack of finite type. □

Lemma 2.11. Given a pre-admissable map (P,C,x, f). Let (P ′, C ′,x′, f ′)
be given by contraction of a rational tail T ⊆ (C,x) and stabilisation of the
induced map

f : P → X × C ′.

Let p ∈ C ′ be the image of contraction of T . Then the following holds

deg(br(f)|T ) + deg(f∗L|T ) = multp(br(f ′)) + deg(f ′∗Lp).

Proof. By Lemma 2.9,

2g(P|T )− 2 = −2d+ deg(br(f)) + d− ℓ(p),

7Remember that branching might also be present at the nodes.
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where ℓ(p) is the number of points in fiber above p, from which it follows
that

deg(br(f)) = 2g(P|T )− 2 + 2d− d+ ℓ(p)
= 2g(P|T )− 2 + d+ ℓ(p).

By Lemma 2.2,
multp(br(f)) = 2g(P|T )− 2 + 2ℓ(p) + d− ℓ(p)

= 2g(P|T )− 2 + d+ ℓ(p).
It is also clear by definition, that

deg(f∗L|T ) = deg(f∗Lp),
the claim then follows. □

Definition 2.12. Let R be a discrete valuation ring. Given a pre-admissible
map (P,C,x, f) over SpecR. A modification of (P,C,x, f) is a pre-admissible
map (P̃ , C̃, x̃, f̃) over SpecR′ such that

(P̃ , C̃, x̃, f̃)| SpecK′ ∼= (P,C,x, f)| SpecK′ ,

where R′ is a finite extension of R with a fraction field K ′.

A modification of a family of curves C over a discrete valuation ring is
given by three operations:

• blow-ups of the central fiber of C;
• contractions of rational tails and rational bridges in the central fiber

of C;
• base changes with respect to finite extensions of discrete valuation

rings.
A modification of a pre-admissible map is therefore given by an appropriate
choice of three operations above applied to both target and source curves,
such that the map f can be extended as well.

Theorem 2.13. The moduli spaces Admϵ
g,N (X(n), β) are proper Deligne-

Mumford stacks.

Proof. We will now use the valuative criteria of properness for quasi-
separated Deligne-Mumford stacks. Let

(P ∗, C∗,x∗, f∗) ∈ Admϵ
g,N (X(n), β)(K)

be a family of ϵ-admissable maps over the fraction field K of a discrete
valuation ring R. The strategy of the proof is to separate P ∗ into two com-
ponents P ∗

◦ and P ∗
• , the contracted component and non-contracted one of

f∗
C , respectively (as it was done for Lemma 2.2). We then take a limit of f∗

|P ∗
•

preserving it as a cover over the target curve, and a limit of f∗
|P ∗

◦
as a stable

map. We then glue the two limits back and perform a series of modifications
to get rid of points or rational components that do not satisfy ϵ-admissibility.



18 DENIS NESTEROV

Existence, Step 1. Let
(P ∗

◦ ,q∗
◦) ⊆ P ∗

be the maximal subcurve contracted by f
∗
C∗ , the markings q∗

◦ are given by
the nodes of P ∗ disconnecting P ∗

◦ from the rest of the curve. By

(P ∗
• ,q∗

•) ⊆ P ∗

we denote the complement of P ∗
◦ with similar markings. Let

(P̃ ∗
• , t∗, t′∗)

be the normalisation of P ∗
• at nodes which are mapped by f∗

C∗ to the regular
locus of C∗, the markings t∗ and t′∗ are given by the preimages of those
nodes. The induced map

f̃∗
•,C∗ : P̃ ∗

• → C∗

is an admissible cover. By properness of admissible covers, there exists,
possibly after a finite base change8, an extension

((P•,q•, t, t′), (C,x), f̃•,C) ∈ Adm(R),

where Adm is the moduli space of stable admissible covers with fixed ram-
ification profiles, such that both source and target curves are marked, and
markings of the source curve are not allowed to map to the markings of the
target curve. The ramification profiles are given by the ramification profiles
of f̃∗

•,C∗ . If necessary, we then take a finite base change and modify the
central fibers of source and target curves to obtain a map

f• : P• → X × C,

such that f•,C is still an admissible cover (possibly unstable)9. Now let

f◦ : (P◦,q◦)→ X × C

be the extension of
f∗ : (P ∗

◦ ,q∗
◦)→ X × C

to SpecR. It exists, possibly after a finite base change, by properness of
the moduli space of stable marked maps. If necessary, we modify the curve
C to avoid contracted components mapping to the markings x. If we do
so, we modify P• accordingly to make f•,C admissible cover (again, possibly
unstable). We then glue back P◦ and P• at the markings (q◦,q•) and (t, t′)
to obtain a map

f : P → X × C.
Let

(P,C,x, f) (10)

8For this proof, if we take a finite extension R → R′, we relabel R′ by R.
9The map f• can be constructed differently. One can lift f̃∗

• : P̃ ∗
• → X × C∗ to an

element of the moduli of twisted stable map Kg,N ([SymnX]) after passing from admissible
covers to twisted stable maps and then take a limit there.
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be the corresponding pre-admissible map. We now perform a series of mod-
ification to the map above to obtain an ϵ-admissible map.

Existence, Step 2. Let us analyse (P,C,x, f) in relation to the conditions
of ϵ-admissibility.

(i) Let p0 ∈ C| Spec C be a point in the central fiber of C that does not
satisfy the condition (i) of ϵ-admissibility. There must be a contracted com-
ponent over p0, because f•,C was constructed as an admissible cover, pre-
serving the ramifications profiles. We then blow-up the family C at the
point p0 ∈ C. The map fC lifts to a map f̃C ,

P

Blp0C C

fC

f̃C

by the universal property of a blow-up, since the preimage of the point p0 is
a contracted curve (which is a Cartier divisor inside P ). The map fX is left
unchanged. Let T ⊂ Blp0C be the exceptional curve, which is also a rational
tail of the central fiber of Blp0C attached at p0 to C| Spec C. By Lemma 2.11,
we obtain that

deg(br(f̃)|T ) + deg(f̃∗L|T ) = multp0(br(f)) + deg(f∗Lp0) (11)

and, for all points p ∈ T ,

multp(br(f̃)) + deg(f̃∗Lp) < multp0(br(f)) + deg(f∗Lp0). (12)

We repeat this process inductively for all points of the central fiber for which
the part (i) of ϵ-admissibility is not satisfied. By (11) and (12), this proce-
dure will terminate and we will arrive at the map which satisfies the part
(i) of ϵ-admissibility. Moreover, the procedure does not create rational tails
which do not satisfy the part (ii) of ϵ-admissibility.

(ii) If a rational tail T ⊆ (C| Spec C,x| Spec C) does not satisfy the condition
(ii) of ϵ-admissibility, we contract it

P

C ConTC
fC

f̃C

The map fX is left unchanged. Let p0 ∈ ConTC be the image of the con-
tracted rational tail T . Since

deg(br(f̃)|P ) + deg(f̃∗L|P ) = multp0(br(f)) + deg(f∗Lp0),

the central fiber satisfies the condition (i) of ϵ-admissibility at the point
p0 ∈ ConTC. We repeat this process until we get rid of all rational tails
that do not satisfy the condition (ii) of ϵ-admissibility.
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(iii) By the construction of the family (10), all the rational bridges of C
satisfy the condition (iii) of ϵ-admissibility.

Uniqueness. Assume we are given two families of ϵ-admissible maps over
SpecR

(P1, C1,x1, f1) and (P2, C2,x2, f2),
which are isomorphic over SpecK. Possibly after a finite base change, there
exists a family of pre-admissible maps

(P̃ , C̃, x̃, f̃)

which dominates both families in the sense that there exists a commutative
square

P̃ X × C̃

Pi X × Ci

f̃

fi

(13)

We take a minimal family (P̃ , C̃, x̃, f̃) with such property. The vertical maps
are given by contraction of rational tails. Then by the equality

deg(br(f)|P ) + deg(L|P ) = multp0(br(f)) + deg(Lp0),

those rational tails cannot satisfy the condition (ii) of ϵ-admissibility, oth-
erwise the image point of contraction of a rational tail will not satisfy the
condition (i) of ϵ-admissibility. But (Pi, Ci,xi, fi)’s are ϵ-admissible by as-
sumption. Hence the target curves are isomorphic. By separatedness of the
moduli space of maps to a fixed target, it must be that

(P1, C1,x1, f1) ∼= (P̃ , C̃, x̃, f̃) ∼= (P2, C2,x2, f2).

□

2.2. Obstruction theory. The obstruction theory of Admϵ
g,N (X(n), β) is

defined via the obstruction theory of relative maps in the spirit of [GV05,
Section 2.8] with the difference that we have a relative target geometry X×
Cg,N/Mg,N . There exists a complex E•, which defines a perfect obstruction
theory relative to Mh,N ′ ×Mg,N ,

ϕ : E• → LAdmϵ
g,N (X(n),β))/Mh,N′ ×Mg,N

,

where Mh,N ′ is the moduli space of source curves with markings at the fibers
over marked points of the target curves; and Mg,N is the moduli space
of target curves. More precisely, such complex exists at each connected
component Admϵ

g,N (X(n), β, µ).

Proposition 2.14. The morphism ϕ is a perfect obstruction theory.

Proof. This is a relative version of [GV05, Section 2.8]. □
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2.3. Relation to other moduli spaces. Let us now relate the moduli
spaces of ϵ-admissible maps for the extremal values of ϵ ∈ R≤0 ∪ {−∞} to
more familiar moduli spaces.

2.3.1. ϵ = −∞. In this case the first two conditions of Definition 2.4 are
(i) for all points p ∈ C,

multp(br(f)) + deg(f∗Lp) ≤ 1;
(ii) for all rational tails T ⊆ (C,x),

deg(br(f)|T ) + deg(f∗L|T ) > 1.
Since multiplicity and degree take only integer values, by Lemma 2.2 and the
choice of L, there is only possibility for which the condition (i) is satisfied.
Namely, if fC does not contract any irreducible components and has only
simple ramifications.

To unpack the condition (ii), recall that a non-constant ramified map from
a smooth curve to P1 has at least two ramification points; it has precisely
two ramification points, if it is given by

z2 : P1 → P1 (14)
up to a change of coordinates. Hence

multp(br(f)) + deg(f∗Lp) = 1,
if and only if fC = z2 and fX is constant. In this case, |Aut(f)| =∞. In the
light of the condition (iii) of ϵ-admissibility, the condition (ii) is therefore
automatically satisfied.

We obtain that the data of a −∞-admissible map (P,C,x, f) can be
represented by the following correspondence

P X

(C,x,p)

fX

fC

where fC is a degree-n admissible cover with arbitrary ramifications over the
marking x and with simple ramifications over the unordered marking p =
br(f), such that |Aut(f)| < ∞. Hence the moduli space Adm−∞

g,N (X(n), β)
admits a projection from the moduli space of twisted stable maps with ex-
tended degree (see [BG09, Section 2.1] for the definition) to the orbifold
[X(n)],

ρ : Kg,N ([X(n)], β)→ Adm−∞
g,N (X(n), β), (15)

which is given by passing from twisted curves to their coarse moduli spaces.
Indeed, an element of Kg,N ([X(n)], β) is given by a data of

P X

(C,x,p)

fX

fC
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where fC is a representable degree-n étale cover over twisted marked curve
(C,x,p). The additional marking p is unordered, over this marking the map
fC must have simple ramifications after passing to coarse moduli spaces. The
map fX has to be fixed by only finitely many automorphisms of the cover
fC. Passing to coarse moduli space, the above data becomes the data of a
−∞-admissible map.

The virtual fundamental classes of two moduli spaces are related as fol-
lows.

Lemma 2.15.
ρ∗[Kg,N ([X(n)], β)]vir = [Adm−∞

g,N (X(n), β)]vir.

Proof. Let Kg,N (BSn,m) be the moduli stacks of twisted maps to BSn
(not necessarily stable) and Admg,m,n,N be the moduli stack of admissible
covers (again not necessarily stable). There exists the following pull-back
diagram,

Kg,N ([X(n)], β) Adm−∞
g,N (X(n), β)

Kg,N (BSn,m) Admg,m,n,N

π2

ρ

π2
(16)

The bottom arrow is a normalisation map, therefore it is of degree 1. By
[Cos06, Theorem 5.0.1], we therefore obtain the claim for virtual fundamen-
tal classes given by the relative obstruction theories,

ρ∗[Kg,N ([X(n)], β)/Kg,N (BSn,m)]vir

= [Adm−∞
g,N (X(n), β)/Admg,m,n,N ]vir. (17)

The moduli space Kg,N (BSn,m) is smooth and Admg,m,n,N is a locally com-
plete intersection (see [ACV03, Proposition 4.2.2]), which implies that their
naturally defined obstruction theories are given by cotangent complexes.
Using virtual pull-backs of [Man12], one can therefore express the virtual
fundamental classes given by absolute perfect obstruction theories as follows

[Adm−∞
g,N (X(n), β)]vir = (p ◦ π2)![Mg,N ]

= π!
2p

![Mg,N ]
= π!

2[Admg,m,n,N ]

= [Adm−∞
g,N (X(n), β)/Admg,m,n,N ]vir,

where
p : Admg,m,n,N →Mg,N

is the natural projection; we used that p![Mg,N ] = [Admg,m,n,N ], which is due
to the fact that the obstruction theory is given by the cotangent complex.
The same holds for Kg,N (BSn,m), hence we obtain that

ρ∗[Kg,N ([X(n)], β)]vir = [Adm−∞
g,N (X(n), β)]vir.

□
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2.3.2. ϵ = 0. By the first two conditions of Definition 2.4, the map fC
can have arbitrary ramifications and contracted components of arbitrary
genera (more precisely, the two are only restricted by n, g, N and β). In
conjunction with other conditions of Definition 2.4 we therefore obtain the
following identification of moduli spaces

Adm0
g,N (X(n), β) = M

•
m(X × Cg,N/Mg,N , (γ, n)), (18)

where the space on the right is the moduli space of relative stable maps with
disconnected domains to the relative geometry

X × Cg,N →Mg,N ,

where Cg,N →Mg,N is the universal curve and where the markings play the
role of relative divisors. Instead of fixing the genus of source curves, we fix
the degree m of the branching divisor. At each componentAdm0

g,N (X(n), β, µ)
of the decomposition (8), the genus of the source curve and the degree of
the branching divisor are related by Lemma 2.9.

The obstruction theories of two moduli spaces are equal, since the obstruc-
tion theory of the space Adm0

g,N (X(n), β) was defined via the obstruction
theory of relative stable maps.

2.4. Inertia stack. We would like to define evaluation maps of moduli
spaces Admϵ

g,N (X(n), β) to a certain rigidification of the inertia stack IX(n)

of [X(n)], for that we need a few observations.
The inertia stack can be defined as follows

IX(n) =
∐
[g]

[Xn,g/C(g)],

where the disjoint union is taken over conjugacy classes [g] of elements of
Sn, Xn,g is the fixed locus of g acting on Xn and C(g) is the centraliser
subgroup of g. Recall that conjugacy classes of elements of Sn are in one-
to-one correspondence with partitions µ of n. Let us express a partition µ
in terms to repeating parts and their multiplicities,

µ = (η1, · · · , η1︸ ︷︷ ︸
m1

, · · · , ηs, · · · , ηs︸ ︷︷ ︸
ms

).

We define
C(µ) :=

s∏
t=1

Cηt ≀ Smt , (19)

here Cηt is a cyclic group and ” ≀ ” is a wreath product defined as

Cηt ≀ Smt := CΩt
ηt

⋊ Smt ,

where Ωt = {1, . . . ,mt}; Smt acts on CΩt
ηt

by permuting the factors. There
exist two natural subgroups of C(µ)

Aut(µ) :=
s∏
t=1

Smt and N(µ) :=
s∏
t=1

CΩt
ηt

(20)
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as the notation suggests, Aut(µ) coincides with the automorphism group
of the partition µ. The inclusion Aut(µ) ↪→ C(µ) splits the following the
sequence from the right

1→ N(µ)→ C(µ)→ Aut(µ)→ 1. (21)

Viewing a partition µ as a partially ordered10 set, we define Xµ as the
self-product of X over the set µ. More precisely,

Xµ ∼= Xℓ(µ),

where ℓ(µ) is the length of the partition µ. The group C(µ) acts on Xµ as
follows. The products of cyclic groups CΩ

ηt
acts trivially on corresponding

factors of Xµ, while Smt permutes the factors corresponding to the same
part ηt. These actions are compatible with the wreath product.

Given an element g ∈ Sn in a conjugacy class corresponding to a partition
µ, we have the following identifications

C(g) ∼= C(µ) and Xn,g ∼= Xµ,

such that the group actions match. In particular, with the notation intro-
duced above the inertia stack can be re-expressed,

IX(n) =
∐
µ

[Xµ/C(µ)], (22)

and by the splitting of (21) we obtain that

IX(n) =
∐
µ

[Xµ/Aut(µ)]×BN(µ). (23)

We thereby define a rigidified version of IX(n),

IX(n) :=
∐
µ

[Xµ/Aut(µ)].

Note, however, that this is not a rigidified inertia stack in the sense of
[AGV08, Section 3.3], IX(n) is a further rigidifiction of IX(n).

Recall that as a graded vector space, the orbifold cohomology is defined
as follows

H∗
orb(X(n),Q) := H∗−2age(µ)(IX(n),Q).

By (22), we therefore get that

H∗
orb(X(n),Q) = H∗−2age(µ)(IX(n),Q) = H∗−2age(µ)(IX(n),Q). (24)

10µi ≥ µj , ⇐⇒ j ≥ i.
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2.5. Invariants. Let
−−−→
Admϵ

g,N (X(n), β) be the moduli space obtained from
Admϵ

g,N (X(n), β) by putting the standard order11 on the fibers over marked
points of the source curve. The two moduli spaces are related as follows∐

µ

[
−−−→
Admϵ

g,N (X(n), β, µ)/
∏

Aut(µi)] = M
ϵ
g,N (X(n), β). (25)

There exist naturally defined evaluation maps at marked points

evi :
−−−→
Admϵ

g,N (X(n), β)→
∐
µ

Xµ, i = 1, . . . , N.

By (20), (22) and (25), we can define evaluation maps

evi : Admϵ
g,N (X(n), β)→ IX(n), i = 1, . . . , N, (26)

as the composition

Admϵ
g,N (X(n), β) =

∐
µ

[
−−−→
Admϵ

g,N (X(n), β, µ)/
∏

Aut(µi)] evi−−→

evi−−→
∐
µ

[Xµ/Aut(µ)] = IX(n).

For universal markings

si : Admϵ
g,N (X(n), β)→ Cg,N

to the universal target curve

Cg,N → Admϵ
g,N (X(n), β),

we also define cotangent line bundles

Li := s∗
i (ωCg,N/Adm

ϵ
g,N (X(n),β)), i = 1, . . . , N,

where ωCg,N/Adm
ϵ
g,N (X(n),β) is the universal relative dualising sheaf. We de-

note
ψi := c1(Li).

With above structures at hand we can define ϵ-admissible invariants.

Definition 2.16. The descendent ϵ-admissible invariants are

⟨τm1(γ1), . . . , τmN (γN )⟩ϵg,β :=
∫

[Admϵ
g,N (X(n),β)]vir

i=N∏
i=1

ψmi
i ev∗

i (γi, ),

where γ1, . . . , γN ∈ H∗
orb(X(n)) and m1, . . .mN are non-negative integers.

2.6. Relation to other invariants. We will now explore how ϵ-admissible
invariants are related to the invariants associated to the spaces discussed in
Section 2.3.

11We order the points in a fiber in accordance with their ramification degrees.
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2.6.1. Classes. Let {δ1, . . . δmS} be an ordered basis of H∗(X,Q). Let
µ⃗ = ((µ1, δℓ1), . . . , (µk, δℓk))

be a cohomology-weighted partition of n with the standard ordering, i.e.
(µi, δℓi) > (µi′ , δℓi′ ),

if µi > µi′ , or if µi = µi′ and ℓi > ℓi′ . The underlying partition will be
denoted by µ. For each µ⃗, we consider a class

δl1 ⊗ · · · ⊗ δlk ∈ H
∗(Xµ,Q),

we then define
λ(µ⃗) := π∗(δl1 ⊗ · · · ⊗ δlk) ∈ H∗

orb(S(d),Q),
where

π :
∐
µ

Xµ → IX(n)

is the natural projection. More explicitly, as an element of
H∗(Xµ,Q)Aut(µ) ⊆ H∗

orb(X(n),Q),
the class λ(µ⃗) is given by the following formula∑

h∈Aut(µ)
h∗(δl1 ⊗ · · · ⊗ δlk) ∈ H∗(Xµ,Q)Aut(µ).

The importance of these classes is due to the fact they form a basis of
H∗

orb(S(n),Q), see Proposition 6.1.

2.6.2. Comparison. Given weighted partitions
µ⃗i = ((µi1, δi1), . . . , (µiki

, δiki
)), i = 1, . . . , N,

the relative GW descendent invariants associated to the moduli spaceM•
m(X×

Cg,N/Mg,N , (γ, n)) are usually12 defined as∫
[M•

m(X×Cg,N/Mg,N ,(γ,n))]vir

n∏
i=1

ψmi
i

ki∏
j=1

ev∗
i,jδ

i
j ,

such that the product is ordered according to the standard ordering of
weighted partitions and

evi,j : M•
m(X × Cg,N/Mg,N , (γ, n))→ X, i = 1, . . . , N, j = 1, . . . , ki,

are evaluation maps defined by sending a corresponding point in a fiber over
a marked point.

In the case of Kg,N ([X(n)], β), we define evaluation maps as the composi-
tion

evi : Kg,N ([X(n)], β)→ IX(n) → IX(n), i = 1, . . . N,
where we used (23).

12Note that sometimes the factor 1/|Aut(µ⃗)| is introduced, in this case we add such
factor for all classes defined previously.
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The next lemma concludes the comparison initiated in Section 2.3. In
what follows, by a ψ-class on Kg,N ([X(n)], β) we will mean a coarse ψ-class.
Orbifold ψ-classes are rational multiples of coarse ones.

Lemma 2.17.

⟨τm1(λ(µ⃗1)), . . . , τmN (λ(µ⃗N ))⟩0g,β =
∫

[M•
m(X×Cg,N/Mg,N ,(γ,n))]vir

N∏
i=1

ψmi
i

ki∏
j=1

ev∗
i,jδ

i
j

⟨τm1(λ(µ⃗1)), . . . , τmN (λ(µ⃗N ))⟩−∞
g,β =

∫
[Kg,N ([X(n)],β)]vir

N∏
i=1

ψmi
i ev∗

iλ(µ⃗i).

Proof. In the light of our conventions, it is a straightforward application
of projection and pullback-pushforward formulas. □

3. Master space

3.1. Definition of the master space. The space R≤0∪{−∞} of ϵ-stabilities
is divided into chambers, inside of which the moduli space Admϵ

g,N (X(n), β)
stays the same, and as ϵ crosses a wall between chambers, the moduli space
changes discontinuously. Let ϵ0 ∈ R≤0∪{−∞} be a wall and ϵ+, ϵ− be some
values that are close to ϵ0 from the left and the right of the wall, respectively.
We set

d0 = e−1/ϵ0 and deg(β) := m + deg(γ) = d.

From now on, we assume
2g − 2 +N + 1/d0 · deg(β) ≥ 0

and
1/d0 · deg(β) > 2,

if (g,N) = (0, 0).

Definition 3.1. A pre-admissible map (P,C, f,x) is called ϵ0-pre-admissible,
if

(i) for all points p ∈ C,
multp(br(f)) + deg(f∗Lp) ≤ e−1/ϵ0 ;

(ii) for all rational tails T ⊆ C,
deg(br(f)|T ) + deg(f∗L|T ) ≥ e−1/ϵ0 ;

(iii) for all rational bridges B ⊆ C,
deg(br(f)|B) + deg(f∗L|B) > 0;

We denote by Admϵ0
g,N (X(n), β) the moduli space of ϵ0-pre-admissible

maps. Let Mss
g,N,d be the moduli space of weighted semistable curves de-

fined in [Zho22, Definition 2.1.2]. There exists a map
Admϵ0

g,N (X(n), β)→Mss
g,N,d

(P,C, f,x) 7→ (C,x, d),
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where the value of d on a subcurve C ′ ⊆ C is defined as follows
d(C ′) = deg(br(f|C′)) + deg(f∗L|C′).

By MAdmϵ0
g,N (X(n), β) we denote the moduli space of ϵ0-pre-admissible

maps with calibrated tails, defined as the fiber product

MAdmϵ0
g,N (X(n), β) = Admϵ0

g,N (X(n), β)×Mss
g,N,d

MM̃g,N,d,

whereMM̃g,N,d is the moduli space of curves with calibrated tails introduced
in [Zho22, Definition 2.8.2], which is a projective bundle over the moduli
spaces of curves with entangled tails over a moduli space of curves with
entangled tails, M̃g,N,d, see [Zho22, Section 2.2]. The latter is constructed
by induction on the integer k by a sequence of blow-ups at the loci of curves
with at least k rational tails of degree d0.

Definition 3.2. Given a pre-admissible map (P,C, f,x). We say a rational
tail T ⊆ (C,x) is of degree d0, if

deg(br(f)|T ) + deg(f∗L|T ) = d0.

We say a branching point p ∈ C is of degree d0, if
multp(br(f)) + deg(f∗Lp) = d0.

Definition 3.3. We say a rational tail T ⊆ (C,x) is constant, if
|Aut((P,C, f,x)|T )| =∞.

In other words, a rational tail T ⊆ (C,x) is constant, if at each connected
component of P|T , the map fC|T is equal to

zn : (⊔kP1) ⊔0 P
′ → P1

up to a change of coordinates. The notation is the same as in (9).

Definition 3.4. A B-family family of ϵ0-pre-admissible maps with cali-
brated tails

(P,C,x, f, e,L, v1, v2)
is ϵ0-admissible, if

1) any constant tail is an entangled tail;
2) if a geometric fiber Cb of C over a point b ∈ B has rational tails of de-

gree d0, then those rational tails contain all the degree-d0 branching
points;

3) if v1(b) = 0, then (P,C,x, f)b is ϵ−-admissible;
4) if v2(b) = 0, then (P,C,x, f)b is ϵ+-admissible.

Let
MAdmϵ0

g,N (X(n), β) ⊂MAdmϵ0
g,N (X(n), β)

denote the moduli space of genus-g, N -marked, ϵ0-admissable maps with
calibrated tails.
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3.2. Obstruction theory. The obstruction theory of MAdmϵ0
g,N (X(n), β)

is defined in the same way as the one of Admϵ
g,N (X(n), β). There exists a

complex E•, which defines a perfect obstruction theory relative to Mh,N ′ ×
MM̃g,N,d,

ϕ : E• → L
MAdm

ϵ0
g,N (X(n),β)/Mh,N′ ×MM̃g,N

.

The fact that it is indeed a perfect obstruction theory is a relative version
of [GV05, Section 2.8].

3.3. Properness.

Theorem 3.5. The moduli space MAdmϵ0
g,N (X(n), β) is a quasi-separated

Deligne-Mumford stack of finite type.

Proof. The proof is the same as in [Zho22, Proposition 4.1.11]. □

We now deal with properness of MAdmϵ0
g,N (X(n), β) with the help of val-

uative criteria of properness. We will follow the strategy of [Zho22, Section
5]. Namely, given a discrete valuation ring R with the fraction field K. Let

ξ∗ = (P ∗, C∗,x∗, f∗, e∗,L∗, v∗
1, v

∗
2) ∈MAdmϵ0

g,N (X(n), β)(K)
be a family of ϵ0-admissable map with calibrated tails over SpecK. We will
classify all the possible ϵ0-pre-admissible extensions of ξ∗ to R up to a finite
base change. There will be a unique one which is ϵ0-admissible.

3.3.1. (g,N, d) ̸= (0, 1, d0). Assume (g,N, d) ̸= (0, 1, d0) and η∗ does not
have rational tails of degree d0. Let

η∗ = (P ∗, C∗,x∗, f∗) and λ∗ = (e∗,L∗, v∗
1, v

∗
2)

be the underlying pre-admissable map and the calibration data of η∗, re-
spectively. Let

ξ− = (η−, λ−) ∈MMϵ0
g,N (X(n), β)(R′)

be family over degree-r extension R′ of R, where the ϵ−-pre-admissible map
η− = (P−, C−,x−, f−).

is constructed according to the same procedure as (10). More precisely,
we apply modifications of Step 2 with respect to ϵ−-stability; we leave the
degree-d0 branching points which are limits of degree-d0 branching points
of the generic fiber untouched. The family η− is the one closest to being
ϵ−-admissible limit of η∗. The calibration λ− is given by a unique extension
of λ∗ to the curve C−, which exists by [Zho22, Lemma 5.1.1 (1)].

Let
{pi | i = 1, . . . , ℓ}

be an ordered set, consisting of nodes of degree-d0 rational tails and degree-
d0 branching points of the central fiber

pi ∈ C−| Spec C ⊂ C−.
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We now define
bi ∈ R>0 ∪ {∞}, i = 1, . . . , ℓ

as follows. Set bi to be ∞, if pi is a degree-d0 branching point. If pi is a
node of a rational tail, then we define bi via the singularity type of C− at pi.
Namely, if the family C− has a Ab−1-type singularity at pi, we set bi = b/r.

We now classify all ϵ0-pre-admissible modifications of ξ− in the sense of
Definition 2.12. By [Zho22, Lemma 5.1.1 (1)], it is enough to classify the
modifications of η−.

All the modifications of η− are given by blow-ups and blow-downs around
the points pi after taking base-changes with respect to finite extensions of
R. The result of these modifications will be a change of singularity type of
η− around pi. Hence the classification will depend on an array of rational
numbers

α = (α1, . . . , αℓ) ∈ Qℓ≥0,

the nominator of which keeps track of the singularity type around pi, while
the denominator is responsible for the degree of an extension of R. The
precise statement is the following lemma.

Lemma 3.6. For each α = (α1, . . . , αℓ) ∈ Qℓ≥0, such that α ≤ b, there exists
a ϵ0-pre-admissible modification ηα of η− with following properties

• up to a finite base change,

ηα ∼= ηα′ ⇐⇒ α = α′;

• given a ϵ0-pre-admissible modification η̃ of η−, then there exists α
such that

η̃ ∼= ηα

up to a finite base change.
• the central fiber of ηα is ϵ−-stable, if and only if a = b.

Proof. Let us choose a fractional presentation of (a1, . . . , aℓ) with a com-
mon denominator

(a1, . . . , aℓ) = ( a
′
1

rr′ , . . . ,
a′
ℓ

rr′ ).

Take a base change of η− with respect to a degree-r′ extension of R′. We
then construct ηα by applying modifications η− around each point pi, the
result of which is a family

ηαi = (Pαi , Cαi ,xαi , fαi),

which is constructed as follows.

Case 1. If pi is a node of a degree-d0 rational tail and ai ̸= 0, we blow-up
C− at pi,

Blpi(C−)→ C−.
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The map fC− then defines a rational map

fC− : P− 99K Blpi(C−).

We can eliminate the indeterminacies of the map above by blowing-up P−
to obtain an everywhere-defined map

fBlpi (C−) : P̃− → Blpi(C−),

we take a minimal blow-up with such property. The exceptional curve E of
Blpi(C−) is a chain of r′bi rational curves. The exceptional curve of P̃− is a
disjoint union ⊔Ej , where each Ej is a chain of rbi rational curves mapping
to E without contracted components. We blow-down all the rational curves
but the a′

i-th ones in both E and Ej for all j. The resulting families are Cαi

and Pαi , respectively. The family Cαi has an Aα′
i−1-type singularity at pi.

The marking x− clearly extends to a marking xαi of Cαi . The map fBlpi (C−)
descends to a map

fCαi
: Pαi → Cαi .

The map f−,X is carried along with all those modifications to a map

fαi,X : Pαi → X,

because exceptional divisors are of degree 0 with respect to f−,X , hence the
contraction of curves in the exceptional divisors does not introduce any in-
determinacies. We thereby constructed the family ηαi .

Case 2. Assume now that pi is a node of a degree-d0 rational tail, but
ai = 0. The family Cαi is then given by the contraction of that degree-d0
rational tail, it is smooth at pi. The marking x− extends to a marking xαi

of Cαi . The family Pαi is set to be equal to P−. The map fαi is the compo-
sition of the contraction and f−.

Case 3. If pi is a branching point, we blow-up C− inductively a′
i times,

starting with a blow-up at pi and then continuing with a blow-up at a point
of the exceptional curve of the previous blow-up. We then blow-down all
rational curves in the exceptional divisor but the last one. The resulting
family is Cαi , it has an Aa′

i
-type singularity at pi. The marking x− extends

to the marking xαi of Cαi . The map fC− then defines a rational map

fC− : P− 99K Cαi .

We set
fCαi

: Pαi → Cαi

to be the minimal resolution of indeterminacies of the rational map above.
More specifically, Pαi is obtained by consequently blowing-up P− and blowing-
down all the rational curves in the exceptional divisor but the last one. The
map f−,X is carried along, as in Case 1.
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It is not difficult to verify that the central fiber of ηα is indeed ϵ0-pre-
admissible. Up to a finite base change, the resulting family is uniquely
determined by α = (α1, . . . , αℓ) ∈ Qℓ≥0 and independent of its fractional
presentation, because of the singularity types at points pi and the degree of
an extension R.

Given now an arbitrary ϵ0-pre-admissible modification
η = (P,C,x, f)

of η−. Possibly after a finite base change, there exists a modification

η̃ = (P̃ , C̃, x̃, f̃)
that dominates both η and η− in the sense of (13). We take a minimal
modification with such property. The family η̃ is given by blow-ups of C−
and P−. By the assumption of minimality and ϵ0-pre-admissibility of η,
these are blow-ups at pi. By ϵ0-pre-admissibility of η, the projections

C̃ → C and P̃ → P

are given by contraction of degree-d0 rational tails or rational components
which do not satisfy ϵ0-pre-admissibility. These are exactly the operations
described in Steps 1,2,3 of the proof. Uniqueness of of maps follows from
seperatedness of the moduli space of maps to a fixed target. Hence we obtain
that

η ∼= ηα

for some α = (α1, . . . , αℓ) ∈ Qℓ≥0, where α is determined by the singularity
types of η at points pi. □

3.3.2. (g,N, d) = (0, 1, d0). We now assume that (g,N, d) = (0, 1, d0). In
this case the calibration bundle is the relative cotangent bundle along the
unique marking. Moreover, there is no entanglement. Given a family of
pre-admissible maps (P,C,x, f), we will denote the calibration bundle by
MC . Therefore the calibration data λ is given just by a rational section s of
MC .

Let
ξ− = (η−, λ−) ∈MAdmϵ0

0,1(X(n), β)(R′)
be the family over degree-r extension R′ of R, such that η− is again given
by (10), if there is no degree-d0 branching point in η∗. Otherwise, let η−
be any pre-admissible limit. The calibration data λ− is given by a rational
section s− which is an extension of the section s∗ of MC∗ to MC− .

Given a modification η̃ of η− over a degree-r′ extension of R′, the section
s∗ extends to a rational section s̃ of M

C̃
.

Definition 3.7. The order of the modification η̃ is defined to be ord(s̃)/r
at the closed point of SpecR′.

We set b = ord(s−)/r, of there is no degree-d0 branching point in the
generic fiber of η∗. Otherwise set b = −∞.
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Lemma 3.8. For each α ∈ Q, such that α ≤ b, there exists a ϵ0-pre-
admissible modification ηα of η− of order α with following properties

• up to a finite base change,

ηα ∼= ηα′ ⇐⇒ α = α′;

• given a ϵ0-pre-admissible modification η̃ of η−, then there exists α
such that

η̃ ∼= ηα

up to a finite base change.
• the central fiber of ηα is ϵ−-stable, if and only if α = b.

Proof. Assume η∗ does not have a degree-d0 branching point. We choose
a fractional presentation α = α′/rr′. We take a base change of η− with
respect to a degree-r′ extension of R′. We blow-up consequently α′ times
the central fiber at the unique marking. We then blow-down all rational
curves in the exceptional divisor but the last one. The resulting family with
markings is (Cα,xα). We do the same with the family P− at the points in
the fiber over the marked point to a obtain the family Pα and the map

fPα : Pα → C̃,

the map f−,X is carried along with blow-ups and blow-downs. The resulting
family of ϵ0-pre-admissible maps is of order α.

Assume now that the generic fiber has a degree-d0 branching point. We
take a base change of η− with respect to a degree-r′ extension of R′. After
choosing some trivialisation of MC∗ , we have that

s∗ = πr
′α− ∈ K ′,

where α− is the order of vanishing of s− before the base-change and π is some
uniformiser of R′. Because of automorphisms of P1 which fix a branching
point and a marked point, we have an isomorphisms of ϵ0-pre-admissible
maps with calibrated tails,

(η∗, s∗) ∼= (η∗, πc · s∗)

for arbitrary c ∈ Z. Hence we can multiply the section s− with πα
′−r′α− to

obtain a modification of order α.

The fact that these modifications classify all possible modifications follow
from the same arguments as in the case (g,N, d) ̸= (0, 1, d0). □

Theorem 3.9. The moduli space MAdmϵ0
g,N (X(n), β) is proper.

Proof. With the classifications of modifications of η− of Lemma 3.6 and
Lemma 3.8, the proof of properness follows from the same arguments as
in [Zho22, Proposition 5.0.1].

□



34 DENIS NESTEROV

4. Wall-crossing

4.1. Graph space. For a class β = (β,m) ∈ H2(X,Z)⊕ Z consider now
M

•
m(X × P1/X∞, (γ, n)),

the space of relative stable maps with disconnected domains of degree (γ, n)
to X × P1 relative to

X∞ := X × {∞} ⊂ X × P1.

One should refer to this moduli space as graph space, as it will play the
same role, as the graph space in the quasimap wall-crossing. Note that we
fix the degree of the branching divisor m instead of the genus h, the two are
determined by Lemma 2.9.

There is a standard C∗-action on P1 given by
t[x, y] = [tx, y], t ∈ C∗,

which induces a C∗-action on M
•
m(X × P1/X∞, (γ, n)). Let

Fβ ⊂M
•
m(X × P1/X∞, (γ, n))C∗

be the distinguished C∗-fixed component consisting of maps to X × P1 (no
expanded degenerations). Said differently, Fβ is the moduli space of maps,
which are admissible over∞ ∈ P1 and whose degree lies entirely over 0 ∈ P1

in the form of a branching point. Other C∗-fixed components admit exactly
the same description as in the case of quasimaps in [Nes21a, Section 6.1].

The virtual fundamental class of Fβ,
[Fβ]vir ∈ A∗(Fβ),

is defined via the fixed part of the perfect obstruction theory of
M

•
m(X × P1/X∞, (γ, n)).

The virtual normal bundle Nvir
Fβ

is defined by the moving part of the ob-
struction theory. There exists an evaluation map

ev : Fβ → IX(n)

defined in the same way as (26).

Definition 4.1. We define an I-function to be

I(q, z) = 1 +
∑
β ̸=0

qβev∗

(
[Fβ]

eC∗(Nvir
Fβ

)

)
∈ H∗

orb(X(n))[z±]⊗Q Q[[qβ]].

Let
µ(z) ∈ H∗

orb(X(n))[z]⊗Q Q[[qβ]]
be the truncation [zI(q, z) − z]+ by taking only non-negative powers of z.
Let

µβ(z) ∈ H∗
orb(X(n))[z]

be the coefficient of µ(z) at qβ.
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For later, it is also convenient to define

Iβ := 1
eC∗(Nvir

Fβ
)
∈ A∗(Fβ)[z±].

4.2. Wall-crossing formula. From now on, we assume that

2g − 2 + n+ 1/d0 deg(β) > 0,

for (g,N, d0) = (0, 1, d0) we refer to [Zho22, Section 6.4]. There exists a
natural C∗-action on the master space MAdmϵ0

g,N (X(n), β) given by

t · (P,C,x, f, e,L, v1, v2) = (P,C,x, f, e,L, t · v1, v2), t ∈ C∗.

By arguments presented in [Zho22, Section 6], the fixed locus admits the
following expression

MAdmϵ0
g,N (X(n), β)C∗ = F+ ⊔ F− ⊔

∐
#»
β

F #»
β ,

we will now explain the meaning of each term in the union above, giving a
description of virtual fundamental classes and virtual normal bundles.

4.2.1. F+. This is a simplest component,

F+ = Adm
ϵ+
g,N (X(n), β), Nvir

F+ = M∨
+,

where M∨
+ is the dual of the calibration bundle M+ on Admϵ+

g,N (X(n), β), with
a trivial C∗-action of weight -1, cf. [Zho22]. The obstruction theories also
match, therefore

[F+]vir = [Admϵ+
g,N (X(n), β)]vir

with respect to the identification above.

4.2.2. F−. We define

Ãdm
ϵ−
g,N (X(n), β) := Adm

ϵ−
g,N (X(n), β)×Mg,N,d

M̃g,N,d,

then
F− = Ãdm

ϵ−
g,N (X(n), β), Nvir

F− = M−,

where, as previously, M− is the calibration bundle on Ãdm
ϵ−
g,N (X(n), β) with

trivial C∗-action of weight 1. The obstruction theories also match and

p∗[Ãdm
ϵ−
g,N (X(n), β)]vir = [Admϵ−

g,N (X(n), β)]vir,

where
p : Ãdm

ϵ−
g,N (X(n), β)→ Adm

ϵ−
g,N (X(n), β)

is the natural projection.
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4.2.3. F
β⃗
. These are the wall-crossing components, which will be responsible

for wall-crossing formulas. Let
#»

β = (β′, β1, . . . , βk)
be a k+ 1-tuple of classes in H2(X,Z)⊕Z, such that β = β′ + β1 + · · ·+ βk
and deg(βi) = d0. Then a component F #»

β is defined as follows

F #»
β = {ξ | ξ has exactly k entangled tails,

which are all fixed tails, of degree β1, . . . , βk}.
Let

Ei F #»
β i = 1, . . . , k,

pi

be the universal i-th entangled rational tail with the universal marking pi
given by the node. We define ψ(Ei) to be the ψ-class associated to the
marking pi. Let

g̃lk : M̃g,N+k,d−kd0 × (M0,1,d0)k → M̃g,N,d

be the gluing morphism, cf. [Zho22, Section 2.4]. Let

Di ⊂ M̃g,N,d

be a divisor defined as the closure of the locus of curves with exactly i + 1
entangled tails. Finally, let

Y → Ãdm
ϵ−
g,N (X(n), β′)

be the stack of k-roots of M∨
−.

Proposition 4.2. There exists a canonical isomorphism

g̃l∗kF #»
β
∼= Y ×(IX(n))k

i=k∏
i=1

Fβi
.

With respect to the identification above we have

[g̃l∗kF #»
β ]vir =[Y ]vir ×(IX(n))k

i=k∏
i=1

[Fβi
]vir,

1
eC∗(g̃l∗kNvir

F #»
β

)
=

∏k
i=1(z/k + ψ(Ei))

−z/k − ψ(E1)− ψn+1 −
∑∞
i=kDi

·
k∏
i=1

Iβi
(z/k + ψ(Ei)).

Proof. See [Zho22, Lemma 6.5.6]. □

Theorem 4.3. Assuming 2g − 2 +N + 1/d0 · deg(β) > 0, we have

⟨τm1(γ1), . . . , τmn(γN )⟩ϵ+g,β − ⟨τm1(γ1), . . . , τmn(γN )⟩ϵ−g,β

=
∑
k≥1

∑
β⃗

1
k!

∫
[Admϵ−

g,N+k
(X(n),β′)]vir

i=N∏
i=1

ψmi
i ev∗

i (γi)·
a=k∏
a=1

ev∗
n+aµβa(z)|z=−ψn+a
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where β⃗ runs through all the (k + 1)-tuples of effective curve classes

β⃗ = (β′, β1, . . . , βk),

such that β = β′ + β1 + · · ·+ βk and deg(βi) = d0 for all i = 1, . . . , k.

Sketch of Proof. We will just explain the master-space technique. For all
the details we refer to [Zho22, Section 6]. By the virtual localisation formula
we obtain

[MAdmϵ0
g,N (X(n), β)]vir

=
(∑

ιF⋆∗

(
[F⋆]vir

eC∗(Nvir
F⋆

)

))
∈ AC∗

∗ (MAdmϵ0
g,N (X(n), β))⊗Q[z] Q(z),

where F⋆’s are the components of the C∗-fixed locus of MAdmϵ0
g,N (X(n), β).

Let

α =
i=N∏
i=1

ψmi
i ev∗

i (γi) ∈ A∗(MAdmϵ0
g,N (X(n), β))

be the class corresponding to decedent insertions. After taking the residue13

at z = 0 of the above formula, capping with α and taking the degree of the
class, we obtain the following equality∫

[Admϵ+
g,N (X(n),β)]vir

α−
∫

[Admϵ−
g,N (X(n),β)]vir

α

= deg
(
α ∩ Resz=0

(∑
ιFβ∗

(
[Fβ]vir

eC∗(Nvir
Fβ

)

)))
,

where we used that there is no 1/z-term in the decomposition of the class

[MAdmϵ0
g,N (X(n), β)]vir ∈ AC∗

∗ (MAdmϵ0
g,N (X(n), β)),

and that
1

eC∗(M±) = 1
z

+O(1/z2).

The analysis of the residue on the right-hand side presented in [Zho22, Sec-
tion 7] applies to our case. The resulting formula is the one claimed in the
statement of the theorem. □

We define

F ϵg (t(z)) =
∞∑
n=0

∑
β

qβ

N !⟨t(ψ), . . . , t(ψ)⟩ϵg,N,β ,

where t(z) ∈ H∗
orb(S(n),Q)[z] is a generic element, and the unstable terms

are set to be zero. By repeatedly applying Theorem 4.3 we obtain.

13i.e. by taking the coefficient of 1/z of both sides of the equality.
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Corollary 4.4. For all g ≥ 1 we have
F 0
g (t(z)) = F−∞

g (t(z) + µ(−z)).
For g = 0, the same equation holds modulo constant and linear terms in
t(z).

For g = 0, the relation is true only moduli linear terms in t(z), because the
moduli space Admϵ+

0,1(X(n), β) is empty, if e1/ϵ+ · deg(β) ≤ 1. In particular,
Theorem 4.3 does not hold. As for quasimaps, the wall-crossing takes a
different form in this case. More specifically, [Nes21a, Theorem 6.6] and
[Nes21a, Theorem 6.7] apply verbatim to the case of ϵ-admissible maps.

5. Del Pezzo

In this section we determine the I-function in the case X = S is a del
Pezzo surface. Firstly, consider the expansion

[zI(q, z)− z]+ = I1(q) + (I0(q)− 1)z + I−1(q)z2 + I−2(q)z3 + . . . ,

we will show that by the dimension constraint the terms I−k vanish for all
k ≥ 1.

For this section we consider H∗
orb(X(n)) with its naive14 grading. Let z

be of cohomological degree 2 in H∗
orb(X(n))[z±]. The virtual dimension of

M
•
m(X × P1/X∞, (γ, n), µ) is equal to∫

c1(S)
β + n+ ℓ(µ).

Hence, by the virtual localisation, the classes involved in the definition of
I-function

ev∗

(
[Fβ,µ]vir

eC∗(Nvir)

)
∈ H∗(Sµ/Aut(µ))[z±] ⊆ H∗

orb(S(n))[z±],

have naive cohomological degree equal to

−2
(∫

c1(S)
β + n− ℓ(µ)

)
. (27)

Since S is a del Pezzo surface, the above quantity is non-positive, which
implies that

I0 = 1 and I−k = 0
for all −k ≥ 1, because cohomology is non-negatively graded. Moreover, the
quantity (27) is zero, if and only if

µ = (1, . . . , 1) and β = (0,m).
Let us now study Fβ,µ for these values of µ and β. It is more convenient to
put an ordering on fibers over ∞ ∈ P1, so let −→F β,µ be the resulting space.

14We grade it with the cohomological grading of H∗(IS(d), Q).
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We will not give a full description of −→F β,µ, even though it is simple. We will
only be interested in one type of components of −→F β,µ,

ιi : Mh,pi
× Sn ↪→

−→
F β,µ, (28)

where Mh,pi
is the moduli spaces of stable genus-h curve with one marking

labelled by pi, i = 1, . . . N . The embedding ιi is constructed as follows.
Given a point

((C,x), x1, . . . , xn)) ∈Mh,pi
× Sn,

let

(P̃ , p1, . . . , pn) =
i=n∐
i=1

(P1, 0) (29)

be an ordered disjoint union of P1 with markings at 0 ∈ P1. We define a
curve P by gluing (P̃ , p1, . . . , pn) with (C, pi) at the marking with the same
labelling. We define

fP1 : P → P1

to be an identity on P̃ and contraction on C. We define

fS : P → S

by contracting j-th P1 in P (with the curve C, if i = j) to the point xj ∈ S.
We thereby defined the inclusion

ιi((C, p), x1, . . . , xn)) = (P,P1, fP1 × fS),

where the map fP1 is clearly admissible at ∞ ∈ P1.
By Lemma 2.9,

h = m/2, (30)

in particular, m is even. More generally, any connected component of −→F β,µ

admits a similar description with the difference that there might more mark-
ings on possibly disconnected C by which it attaches to P̃ , i.e. P has more
nodes. These components are not relevant for our needs, as it will be ex-
plained below.

Let us now consider the virtual fundamental classes and the normal bun-
dles of these components Mh,pi

× Sn. By standard arguments, we obtain
that

ι∗i
[Fβ,µ]vir

eC∗(Nvir) = e(π∗
i TS ⊗ p∗E∨

h ) · e(E∨z)
z(z − ψ1) ,

where πi : Mh,pi
×Sn → S is the projection to i-th factor of Sn and p : Mh,pi

×
Sn →Mh,pi

is the projection to Mh,pi
; E is the Hodge bundle on Mh,pi

For other components of −→F β,µ, the equivariant Euler classes eC∗(Nvir)
acquire factors

1
z(z − ψi)
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for each marked point. This makes them irrelevant for purposes of deter-
mining the truncation of I-function. We therefore have to determine the
following classes

π∗

(
e(π∗

i TS ⊗ p∗E∨
h ) · e(E∨z)

z(z − ψ1)

)
∈ H∗(Sn)[z±],

where π : Mh,pi
×Sn → Sn is the natural projection, which is identified with

evaluation map ev via the inclusion (28).
Let ℓ1 and ℓ2 be the Chern roots of π∗

i TS . Then we can rewrite the class
above as follows ∫

Mh,1

E∨(ℓ1) · E∨(ℓ2) · E∨(z)
z(z − ψ1) ,

where

E∨(z) := e(E∨z) =
j=h∑
j=0

(−1)g−jλg−jz
j ,

and similarly for E∨(ℓ1) and E∨(ℓ2).
By putting these Hodge integrals into a generating series, we obtain their

explicit form. Note that below we sum over the degree m of the branching
divisor, which in this case is related to the genus h by (30). The result was
kindly communicated to the author by Maximilian Schimpf.

Proposition 5.1 (Maximilian Schimpf).

1 +
∑
h>0

u2h
∫
Mh,1

E∨(ℓ1) · E∨(ℓ2) · E∨(z)
z(z − ψ1) =

(sin(u/2)
u/2

) ℓ1+ℓ2
z

Proof. The claim follows from the results of [FP00]. Firstly,

1 +
∑
h>0

u2h
∫
Mh,1

E∨(ℓ1) · E∨(ℓ2) · E∨(z)
z(z − ψ1)

= 1 +
∑
h>0

u2h
∫
Mh,1

E∨(ℓ1/z) · E∨(ℓ2/z) · E∨(1)
1− ψ1

.

Now let
a = ℓ1/z, b = ℓ2/z

and
F (a, b) = 1 +

∑
h>0

u2h
∫
Mh,1

E∨(a) · E∨(b) · E∨(1)
1− ψ1

.

By using virtual localisation on a moduli space of stable maps to P1, we
obtain the following identities

F (a, b) · F (−a,−b) = 1;
F (a, b) · F (−a, 1− b) = F (0, 1).

These identities, with the fact F (a, b) is symmetric in a and b, imply that
F (a, b) = F (a, b)a+b (31)
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for integer values of a and b. Each coefficient of a power of u in F (a, b) is a
polynomial in a and b, hence the identity (31) is in fact a functional identity.

By the discussion in [FP02, Section 2.2] and by [FP02, Proposition 2], we
obtain that

F (0, 1) = sin(u/2)
u/2 ,

the claim now follows. □

Using the commutativity of the following diagram
−→
F β,µ Sn

Fβ,µ [S(n)]

e⃗v

π

ev

and Proposition 5.1, we obtain

I1(q) = log
(sin(u/2)

u/2

)
· 1
d− 1!π∗(c1(S)⊗ · · · ⊗ 1). (32)

For 2g − 2 +N ≥ 0 we define

⟨γ1, . . . , γN ⟩ϵg,γ :=
∑
k

⟨γ1, . . . , γN ⟩ϵg,(γ,m)u
m,

setting invariants corresponding to unstable values of g,N and β to zero. By
repeatedly applying Theorem 4.3, we obtain that

⟨γ1, . . . , γN ⟩0g,β =
∑
k≥1

1
k!

〈
γ1, . . . , γN , I1(q), . . . , I1(q)︸ ︷︷ ︸

k

〉−∞

g,β

.

Applying the divisor equation15 and (32), we get following corollary.

Corollary 5.2. Assuming 2g − 2 +N ≥ 0,

⟨γ1, . . . , γN ⟩0g,γ =
(sin(u/2)

u/2

)γ·c1(S)
· ⟨γ1, . . . , γN ⟩−∞

g,γ .

6. Crepant resolution conjecture

To a cohomology-weighted partition

µ⃗ = ((µ1, δℓ1), . . . , (µk, δℓk))

we can also associate a class in H∗(S[n],Q), using Nakajima operators,

θ(µ⃗) := 1∏k
i=1 µi

Pδℓ1
[µ1] · · ·Pδℓk

[µk] · 1 ∈ H∗(S[n],Q),

15One can readily verify that an appropriate form of the divisor equation holds for
classes in H∗(S(d), Q) ⊆ H∗

orb(S(d), Q).
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where operators are ordered according to the standard ordering (see Subsec-
tion 2.6.1). For more details on these classes, we refer to [Nak99, Chapter
8], or to [Obe18, Section 0.2] in a context more relevant to us.

Proposition 6.1. There exists a graded isomorphism of vector spaces

L : H∗
orb(S(n),C) ≃ H∗(S[n],C),

L(λ(µ⃗)) = (−i)age(µ)θ(µ⃗).

Proof. See [FG03, Proposition 3.5]. □

Remark 6.2. The peculiar choice of the identification with a factor (−i)age(µ)

is justified by crepant resolution conjecture - this factor makes the invariants
match on the nose. See the next section for more details.

6.1. Quasimaps and admissible covers. From now one we assume that
2g − 2 +N ≥ 0. Using [Nes21a, Corollary 3.13], we obtain an identification

H2(S[n],Z) ∼= H2(S,Z)⊕ Z. (33)

In the language of (quasi-)maps, it corresponds to association of the Chern
character to the graph of a (quasi-)map . Given classes γi ∈ H∗

orb(S(n),C),
i = 1, . . . N , and a class

(γ,m) ∈ H2(S,Z)⊕ Z,

for ϵ ∈ R>0 ∪ {0+,∞} we set

⟨γ1, . . . , γN ⟩ϵg,(γ,m) := ♯⟨L(γ1), . . . , L(γN )⟩ϵg,(γ,m) ∈ C,

the invariants on the right are defined in [Nes21a, Section 5.3] and L is
defined in Proposition 6.1. We set

⟨γ1, . . . , γN ⟩ϵg,γ :=
∑
m
⟨γ1, . . . , γN ⟩ϵg,(γ,m)y

m.

For ϵ = 0+, these are the relative PT invariants of the relative geometry
S×Cg,N →Mg,N . The summation over m with respect to the identification
(33) corresponds to the summation over ch3 of a subscheme.

Using wall-crossings, we will now show the compatibility of PT/GW and
C.R.C. Let us firstly spell out our conventions.

• We sum over the degree of the branching divisor instead of the genus
of the source curve. Assuming γi’s are homogenous with respect to
the age, the genus h and the degree m are related by Lemma 2.9,

2h− 2 = −2n+ m +
∑

age(γi).

For ϵ ∈ R≤0 ∪ {−∞}, let
′ ⟨γ1, . . . , γN ⟩ϵg,γ :=

∑
h
⟨γ1, . . . , γN ⟩ϵg,(γ,h)u

2h−2
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be generating series where the summation is taken over genus in-
stead. Then two two generating series are are related as follows

′ ⟨γ1, . . . , γN ⟩ϵg,γ = u2n−
∑

age(γi) · ⟨γ1, . . . , γN ⟩ϵg,γ .
• We sum over Chern character ch3 instead of Euler characteristics χ.

For ϵ ∈ R>0 ∪ {0+,∞}, let
′ ⟨γ1, . . . , γN ⟩ϵg,γ :=

∑
χ

♯⟨γ1, . . . , γN ⟩ϵg,(γ,χ)y
χ

be the generating series where the summation is taken over Euler
characteristics instead. Then by Hirzebruch–Riemann–Roch, theo-
rem the two generating series are related as follows

′ ⟨γ1, . . . , γN ⟩ϵg,γ = y(g−1)n · ⟨γ1, . . . , γN ⟩ϵg,γ .

• The identification of Proposition 6.1 has a factor of (−i)age(µ).
Taking into account all the conventions above and Lemma 2.17, we obtain
that [MNOP06b, Conjectures 2R, 3R] can be reformulated16 as follows.

PT/GW. The generating series ⟨γ1, . . . , γN ⟩0
+

g,γ (y) is a Taylor expansion
of a rational function around 0, such that under the change of variables
y = −eiu,

(−y)−γ·c1(S)/2 · ⟨γ1, . . . , γN ⟩0
+

g,γ (y) = (−iu)γ·c1(S) · ⟨γ1, . . . , γN ⟩0g,γ (u).

Assume now that S is a del Pezzo surface. Let us apply our wall-crossing
formulas. Using Corollary 5.2, we obtain
(−iu)γ·c1(S) · ⟨γ1, . . . , γN ⟩−∞

g,γ = (eiu/2− e−iu/2)γ·c1(S) · ⟨γ1, . . . , γN ⟩0g,γ . (34)

Using [Nes21a, Corollary 6.11], we obtain

(−y)−γ·c1(S)/2 · ⟨γ1, . . . , γN ⟩∞g,γ = (y1/2− y−1/2)γ·c1(S) · ⟨γ1, . . . , γN ⟩0
+

g,γ . (35)
Combining the two, we obtain the statement of C.R.C.

C.R.C. The generating series ⟨γ1, . . . , γN ⟩∞g,γ (y) is a Taylor expansion of a
rational function around 0, such that under the change of variables y = −eiu,

⟨γ1, . . . , γN ⟩∞g,γ (y) = ⟨γ1, . . . , γN ⟩−∞
g,γ (u).

By both wall-crossings, the statements of PT/GW and C.R.C. in the form
presented above are equivalent.

Corollary 6.3.
PT/GW ⇐⇒ C.R.C.

16We take the liberty to extend the statement of the conjecture in [MNOP06b] from a
fixed curve to a moving one; and from one relative insertion to multiple ones.
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6.2. Quantum cohomology. Let g = 0, N = 3. This is a particularly
nice case, firstly because these invariants collectively are known as quantum
cohomology. Secondly, the moduli space of genus-0 curves with 3 markings
is a point. Hence the invariants ⟨γ1, γ2, γ3⟩−∞

0,γ are relative PT invariants of
S×P1 relative to the vertical divisor S0,1,∞. In [PP17], PT/GW is established
for S × P1 relative to S × {0, 1,∞}, if S is toric. Corollary 6.3 then implies
the following.

Corollary 6.4. If S is toric del Pezzo, g = 0 and N = 3, then C.R.C.
holds in all classes.

The above result can also be stated as an isomorphism of quantum coho-
mologies with appropriate coefficient rings. Let

QH∗(S[n]) := H∗(S[n],C)⊗C C[[qγ ]](y)

QH∗
orb(S(n)) := H∗

orb(S(n),C)⊗C C[[qγ ]](eiu)

be quantum cohomologies, where C[[qγ ]](y) and C[[qγ ]](eiu) are rings of ratio-
nal functions with coefficients in C[[qγ ]] and in variables y and eiu, respec-
tively. The latter we view as a subring of functions in the variable u. The
quantum cohomologies are isomorphic by Corollary 6.4,

QL : QH∗
orb(S(n)) ∼= QH∗(S[n]),

where QL is given by a linear extension of L, defined in Proposition 6.1,
from H∗

orb(S(n),C) to H∗
orb(S(n),C) ⊗C C[[qγ ]] and by a change of variables

y = −eiu. In particular,

QL(α · qγ · yk) = (−1)kL(α) · qγ · eiku

for an element α ∈ H∗
orb(S(n),C). Ideally, one would also like to specialise

to y = 0 and y = −1, because in this way we recover the classical multi-
plications on H∗

orb(S(n),C) and H∗(S[n],C), respectively. To do so, a more
careful choice of coefficients is needed - we have to take rational functions
with no poles at y = 0 and y = −1.
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