Weak Weyl's law for congruence subgroups

Werner Müller

Mathematisches Institut Universität Bonn

Joint work with Jean-Pierre Labesse

Montreal, May 5, 2004

1. The problem

- G connected semisimple algebraic group over Q
- $\Gamma \subset G(\mathbb{Q})$ arithmetic subgroup
- \bullet $K_{\infty} \subset G(\mathbb{R})$ maximal compact subgroup

 $\phi \in L^2(\Gamma \backslash G(\mathbb{R}))$ is called cusp form \Leftrightarrow

1)
$$D\phi = \lambda(D)\phi, \quad D \in Z(\mathfrak{g}_{\mathbb{C}});$$

- 2) ϕ is K_{∞} -finite;
- 3)

$$\int_{N_P(\mathbb{R})\cap\Gamma\setminus N_P(\mathbb{R})}\phi(ng)\ dn=0$$

for all proper rational parabolic subgroups $P \subset G$, N_P the unipotent radical of P.

Problem: Existence and construction of cusp forms

• A convenient way to count cusp forms is to count the Casimir eigenvalues of cusp forms containing a fixed K_{∞} -type.

- $L^2_{\mathsf{cusp}}(\Gamma \backslash G(\mathbb{R})) \subset L^2(\Gamma \backslash G(\mathbb{R}))$ space of cusp forms
- $\sigma: K_{\infty} \to \mathsf{GL}(V_{\sigma})$ irreducible unitary representation.

$$H^{\mathsf{\Gamma}}_{\mathsf{cusp}}(\sigma) := \left(L^2_{\mathsf{cusp}}(\mathsf{\Gamma} \backslash G(\mathbb{R})) \otimes V_{\sigma}\right)^{K_{\infty}}$$

Space of Γ -cusp forms of "weight" σ .

- $\Omega \in Z(\mathfrak{g}_{\mathbb{C}})$ Casimir element.
- Δ_{σ} selfadjoint operator in $H_{\text{cusp}}^{\Gamma}(\sigma)$ induced by $-\rho_{\infty}(\Omega) \otimes \text{Id}$, ρ_{∞} regular representation of $G(\mathbb{R})$.

Geometric interpretation: Assume that Γ is torsion free. Let

$$X = G(\mathbb{R})/K_{\infty}$$

be the Riemannian symmetric space and let $\tilde{E}_{\sigma} \to X$ be the homogeneous vector bundle attached to σ . Set

$$E_{\sigma} = \Gamma \backslash \tilde{E}_{\sigma} \to \Gamma \backslash X.$$

Then

$$\left(L^2(\Gamma\backslash G(\mathbb{R}))\otimes V_\sigma\right)^{K_\infty}\cong L^2(\Gamma\backslash X,E_\sigma)$$

and

$$\Delta_{\sigma} = (\nabla^{\sigma})^* \nabla^{\sigma} - \lambda_{\sigma} \mathrm{Id},$$

where ∇^{σ} is the canonical invariant connection of \tilde{E}_{σ} and λ_{σ} the Casimir eigenvalue of σ .

• Δ_{σ} has pure point spectrum in $H_{\text{cusp}}^{\Gamma}(\sigma)$:

$$\lambda_0 \le \lambda_1 \le \lambda_2 \le \cdots \to \infty.$$

ullet cuspidal spectrum of "weight" σ .

Counting function:

$$N_{\mathsf{CUSp}}^{\mathsf{\Gamma}}(\lambda,\sigma) := \# \{i \colon |\lambda_i| \leq \lambda \}.$$

Let

$$X = G(\mathbb{R})/K_{\infty}$$
 and $d = \dim X$.

Weyl's constant:

$$C_{\Gamma} := \frac{\operatorname{Vol}(\Gamma \setminus X)}{(4\pi)^{d/2} \Gamma(d/2+1)}.$$

Conjecture(Sarnak, 1984):

$$N_{\rm CUSp}^{\Gamma}(\lambda,\sigma) \sim \dim(\sigma) C_{\Gamma} \lambda^{d/2}$$

as $\lambda \to \infty$.

2. Results

1. Special cases

The conjecture has been proved in the following cases:

- A. Selberg, 1954: $\Gamma \subset SL(2,\mathbb{R})$ congruence subgroup, $\sigma = 1$.
- I. Efrat, 1987: $\Gamma \subset SL(2,\mathbb{R})^n$ Hilbert modular group, $\sigma = 1$.
- A. Reznikov, 1993: $\Gamma \subset SO_0(n,1)$ congruence subgroup, $\sigma = 1$.
- St. Miller, 2001: $\Gamma = SL(3, \mathbb{Z}), \ \sigma = 1.$
- M., 2003: $\Gamma \subset SL(n,\mathbb{Z})$ principal congruence subgroup, σ arbitrary.

2. General results

Theorem(Donnelly). G semisimple algebraic group over \mathbb{Q} and $\Gamma \subset G(\mathbb{R})$ lattice. Then

$$\limsup_{\lambda \to \infty} \frac{N_{\text{cusp}}^{\Gamma}(\lambda, \sigma)}{\lambda^{d/2}} \le \dim(\sigma) C_{\Gamma}.$$

Theorem(Piatetski-Shapiro). Let $\sigma = 1$. For every Γ there exists a normal subgroup of finite index Γ' of Γ such that

$$\lim_{\lambda \to \infty} N_{\text{cusp}}^{\Gamma'}(\lambda, 1) = \infty.$$

- A.B. Venkov, G = SL(2).
- Let S be a finite set of primes containing at least two finite primes. There exists $C_{\Gamma}(S) \leq 1$ with $0 < C_{\Gamma}(S)$ for Γ a deep enough congruence subgroup.

Theorem(Labesse-M.). Let G be almost simple, connected and simply connected such that $G(\mathbb{R})$ is non compact. For every congruence subgroup $\Gamma \subset G(\mathbb{R})$ and every σ such that $\sigma|_{Z_{\Gamma}} = \mathrm{Id}$ we have

$$\dim(\sigma)C_{\Gamma}C_{\Gamma}(S) \leq \liminf_{\lambda \to \infty} \frac{N_{\operatorname{cusp}}^{\Gamma}(\lambda, \sigma)}{\lambda^{d/2}}.$$

3. Methods

The method is a combination of the Arthur trace formula and the heat equation method.

a)
$$G = SL(2)$$
.

- Selberg's method
- $\Gamma \subset SL(2,\mathbb{R})$ discrete, co-finite area, $\sigma = 1$.

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right).$$

$$\Delta: C_c^{\infty}(\Gamma \backslash H) \to L^2(\Gamma \backslash H)$$

essentially self-adjoint.

$$Spec_{pp}(\Delta): 0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots$$

$$\sum_{i} e^{-t\lambda_{i}} = \operatorname{Tr}\left(e^{-t\Delta} \upharpoonright L^{2}_{\operatorname{disc}}(\Gamma \backslash H)\right)$$

Use Selberg trace formula to compute the trace

• $C(s) = (C_{ij}(s))$ scattering matrix $\phi(s) := \det C(s)$.

Selberg trace formula applied to the heat kernel gives

$$\begin{split} \sum_{j} e^{-t\lambda_{j}} - \frac{1}{4\pi} \int_{\mathbb{R}} \frac{\phi'}{\phi} (1/2 + ir) e^{-(1/4 + r^{2})t} \, dr \\ = \frac{\operatorname{Area}(\Gamma \backslash H)}{4\pi} t^{-1} + O\left(\frac{\log t}{\sqrt{t}}\right) \\ \text{as } t \to 0+. \end{split}$$

Karamata's Theorem implies Weyl's law

$$N_{
m disc}^{\Gamma}(\lambda) - rac{1}{4\pi} \int_{-\sqrt{\lambda}}^{\sqrt{\lambda}} rac{\phi'}{\phi} (1/2 + ir) \; dr \sim rac{{
m Area}(\Gamma ackslash H)}{4\pi} \lambda$$
 as $\lambda o \infty$

$$N_{\mathsf{disc}}^{\mathsf{\Gamma}}(\lambda) = N_{\mathsf{cusp}}^{\mathsf{\Gamma}}(\lambda) + N_{\mathsf{res}}^{\mathsf{\Gamma}}(\lambda), \quad N_{\mathsf{res}}^{\mathsf{\Gamma}}(\lambda) \le C.$$

• $\Gamma = SL(2, \mathbb{Z})$:

$$\phi(s) = \sqrt{\pi} \frac{\Gamma(s - 1/2)\zeta(2s - 1)}{\Gamma(s)\zeta(2s)}.$$

$$\left|\frac{\zeta'(1+ir)}{\zeta(1+ir)}\right| \le C\log(|r|)^6, \quad |r| \ge 2.$$

This implies

$$N_{\mathsf{cusp}}^{\mathsf{\Gamma}}(\lambda) \sim \frac{\mathsf{Area}(\mathsf{\Gamma} \backslash H)}{4\pi} \ \lambda, \quad \lambda o \infty.$$

• similar for $\Gamma = \Gamma(N)$.

b)
$$G = SL(n)$$

Selberg trace formula is replaced by (noninvariant)
 Arthur trace formula

$$\sum_{\chi \in \mathfrak{X}} J_{\chi}(f) = \sum_{\mathfrak{o} \in \mathcal{O}} J_{\mathfrak{o}}(f), \quad f \in C_c^{\infty}(G(\mathbb{A})^1).$$

The following facts are needed to prove Weyl's law:

 Weak version of Ramanujan conjecture (Luo, Rudnick, Sarnak) ullet Analytic properties of Rankin-Selberg L-functions (Jacquet, Piatetski-Shapiro, Shalika, Shahidi, Mœglin, Waldspurger,...), bounds on the logarithmic derivatives.

A weaker result suffices: Let π_i , i = 1, 2, be a cuspidal automorphic representation of $GL_{n_i}(\mathbb{A})$. Set

$$\Lambda(s,\pi_1,\pi_2) = \frac{L(s,\pi_1 \times \tilde{\pi}_2)}{L(1+s,\pi_1 \times \tilde{\pi}_2)\epsilon(s,\pi_1 \times \tilde{\pi}_2)}.$$

Then

$$\int_{-T}^{T} \left| \frac{\Lambda'}{\Lambda} (ir, \pi_1, \pi_2) \right| dr \le C \ T \log(T + \nu(\pi_1 \times \tilde{\pi}_2))$$

for T>0, where $\nu(\pi_1\times\tilde{\pi}_2)$ is the analytic conductor.

- Description of the residual spectrum (Mæglin, Waldspurger).
- At present it seems to be out of reach to extend these results to other groups.

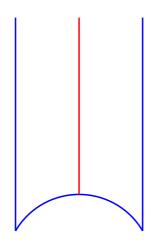
c) Weaker result

Define

$$T_{-1} \colon L^2(\Gamma \backslash H) \to L^2(\Gamma \backslash H)$$

by

$$T_{-1}(z) = -\overline{z}.$$



Then $T_{-1}^2 = \operatorname{Id}$ and

$$L^{2}(\Gamma\backslash H) = L^{2}_{+}(\Gamma\backslash H) \oplus L^{2}_{-}(\Gamma\backslash H)$$

- decomposition in even and odd functions.
- $T_{-1}E(z,s) = E(z,s)$.
- \triangle has pure point spectrum in $L^2_-(\Gamma \backslash H)$. Correponds to Dirichlet problem on one half F_+ of the fundamental domain. One can use the same methods as in the case of compact surfaces.

$$N_{-}^{\Gamma}(\lambda) \sim \frac{\operatorname{Area}(F_{+})}{4\pi}\lambda, \quad \lambda \to \infty.$$

b) General case.

- G connected and simply connected algebraic group over \mathbb{Q} .
- Use simple trace formula which avoids continuous spectrum.
- Adèlic framework: $G(\mathbb{A}) = \prod_{p < \infty}' G(\mathbb{Q}_p)$

$$K_{\mathsf{fin}} = \prod_{p < \infty} K_p, \quad K_p \subset G(\mathbb{Q}_p)$$

 $K_{\mathsf{fin}} \subset G(\mathbb{A}_{\mathsf{fin}})$ decomposable open compact subgroup,

$$\Gamma = K_{\mathsf{fin}} \cap G(\mathbb{Q}).$$

Strong approximation:

$$G(\mathbb{Q})\backslash G(\mathbb{A})/K_{\mathsf{fin}}\cong \Gamma\backslash G(\mathbb{R}).$$

• S finite set of primes, $|S| \ge 2$.

$$L^2_{\mathsf{CUSp}}(G(\mathbb{Q})\backslash G(\mathbb{A}), S) \subset L^2_{\mathsf{CUSp}}(G(\mathbb{Q})\backslash G(\mathbb{A}))$$

spanned by cusp form orthogonal to 1 and on which

$$G_S = \prod_{p \in S} G(\mathbb{Q}_p)$$

acts by the Steinberg representation. Put

$$H_{\mathsf{cusp}}^{\Gamma,S} := L_{\mathsf{cusp}}^2(G(\mathbb{Q}) \backslash G(\mathbb{A}), S)^{K_{\mathsf{fin}}}.$$

Let $K = K_{\infty}K_{\text{fin}}$. Set

$$H^{\Gamma}_{\mathsf{cusp}}(\sigma,S) := \left(L^2_{\mathsf{cusp}}(G(\mathbb{Q})\backslash G(\mathbb{A}),S)\otimes V_{\sigma}\right)^K.$$

- $\Lambda_{\text{Cusp}}(\sigma, S)$ spectrum of $-\rho_{\infty}(\Omega) \otimes \text{Id}$ in $H_{\text{Cusp}}^{\Gamma}(\sigma, S)$.
- $h_t \in C^{\infty}(G(\mathbb{R}))$ kernel of $e^{-t\Delta_{\sigma}}$.
- ρ_{∞} regular representation of $G(\mathbb{R})$ in H_{cusp}^{Γ} .

$$\operatorname{Tr}\left(
ho_{\infty}(h_t) \upharpoonright H_{\operatorname{Cusp}}^{\Gamma,S}\right) = \sum_{\lambda \in \Lambda_{\operatorname{Cusp}}(\sigma,S)} m(\lambda) e^{-t\lambda}.$$

• Apply simple version of Arthur's trace formula to compute the trace and to determine the asymptotic bahaviour as $t \to 0+$.

3. Simple trace formula

a) Adèlic version

Let

$$e_{\mathsf{fin}} = \frac{1}{\mathsf{Vol}(K_{\mathsf{fin}})} \chi_{K_{\mathsf{fin}}}.$$

For $f_{\infty} \in C_c^{\infty}(G(\mathbb{R}))$:

$$\operatorname{Tr} \left(
ho_{\infty}(f_{\infty}) \upharpoonright H^{\Gamma,S}_{\operatorname{cusp}} \right)$$

$$= \operatorname{Tr} \left(
ho_{\infty}(f_{\infty} \otimes e_{\operatorname{fin}}) \upharpoonright L^{2}_{\operatorname{cusp}}(G(\mathbb{Q}) \backslash G(\mathbb{A}), S) \right).$$

• ρ regular representation of $G(\mathbb{A})$.

b) Steinberg representation

• $G_p = G(\mathbb{Q}_p)$, $P_p \subset G_p$ minimal parabolic.

$$\pi_{\mathsf{St}} \subset \mathsf{Ind}_{P_p}^{G_p}(1)$$

unique irreducible subrepresentation.

• $f_p \in C_c^{\infty}(G_p)$ pseudo-coefficient of Steinberg representation, if

$$\operatorname{Tr}(\pi_p(f_p)) = 0$$
, unless $\pi_p = \begin{cases} \pi_{\operatorname{St}}; \\ 1. \end{cases}$

$$Tr(\pi_{St}(f_p)) = 1, \quad Tr(1_p(f_p)) = (-1)^q$$

for some integer q.

Existence of pseudo-coefficients: Kazdan, Kott-witz, Euler-Poincaré functions

- Kottwitz: $\mathcal{O}_{\gamma}(f_p) = 0$, for $\gamma \in G(\mathbb{Q})$ non elliptic.
- π_S Steinberg representation of G_S .

Set

$$C(K_S) = \dim\left(\mathcal{H}_{\pi_S}^{K_S}\right), \quad e_S = rac{1}{\operatorname{Vol}(K_S)}\chi_{K_S}.$$

$$\operatorname{Tr}\pi_S(e_S) = C(K_S)\operatorname{Tr}\pi_S(f_S)$$

- Replace e_S by f_S .
- c) Assume: S contains two different finite primes.

Set

$$f = f_{\infty} \otimes f_S \otimes e_{\mathsf{fin},S}.$$

ullet Then f is cuspidal at two places in the sense of Arthur.

Then Arthur's trace formula

$$\sum_{\chi \in \mathfrak{X}} I_{\chi}(f) = \sum_{\mathfrak{o} \in \mathcal{O}} I_{\mathfrak{o}}(f)$$

is reduced to

$$\operatorname{Tr}ig(
ho(f) \upharpoonright L^2_{\operatorname{cusp}}(G(\mathbb{Q}) \backslash G(\mathbb{A}), S)ig) + 1(f)$$

$$= \sum_{\gamma \in \mathfrak{G}_e} a(\gamma) \mathcal{O}_{\gamma}(f).$$

• \mathfrak{G}_e set of representatives of conjugacy classes of semisimple elliptic elements in $G(\mathbb{Q})$.

$$\mathcal{O}_{\gamma}(f) = \int_{G(\mathbb{A})_{\gamma} \backslash G(\mathbb{A})} f(g^{-1} \gamma g) \ dg.$$

Final formula

$$\operatorname{Tr}\left(
ho_{\infty}(f_{\infty}) \upharpoonright H_{\operatorname{cusp}}^{\Gamma,S}\right)$$

$$= C(K_S) \left(\sum_{\gamma \in \mathfrak{G}_e} a(\gamma) \mathcal{O}_{\gamma}(f) - 1(f)\right).$$

- Advantage: avoids all difficulties due to the continous spectrum.
- **Disadvantage:** $C(K_S) \neq 0$, only if Γ is a deep enough congruence subgroup.

- 4) Application to the heat kernel
- a) The heat kernel
- \bullet $\sigma: K_{\infty} \to \mathsf{GL}(V_{\sigma})$ irreducible unitary representation.
- $E_{\sigma} \to X = G(\mathbb{R})/K_{\infty}$ associated homogeneous vector bundle.

$$\Delta_{\sigma} : C^{\infty}(X, E_{\sigma}) \to C^{\infty}(X, E_{\sigma})$$

elliptic differential operator induced by $-\Omega \otimes Id$.

$$\Delta_{\sigma} : C_c^{\infty}(X, E_{\sigma}) \to L^2(X, E_{\sigma})$$

essentially self-adjoint.

• $e^{-t\Delta_{\sigma}}$ smoothing operator.

$$\left(e^{-t\Delta_{\sigma}}\varphi\right)(g) = \int_{G(\mathbb{R})} H_t(g^{-1}g_1)\varphi(g_1) dg_1,$$

$$ullet$$
 $H_t \in \left(\mathcal{C}^1(G(\mathbb{R})) \otimes \mathsf{End}(V_\sigma)
ight)^{K_\infty imes K_\infty}.$

Set

$$h_t(g) := \operatorname{tr} H_t(g), \quad g \in G(\mathbb{R}), \ t \geq 0.$$

ullet π irreducible unitary representation of $G(\mathbb{R})$

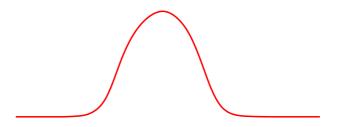
Tr
$$\pi(h_t) = e^{-t\pi(\Omega)} \dim \operatorname{Hom}_{K_{\infty}}(\mathcal{H}(\pi), V_{\sigma}^*).$$

b) Modified heat kernel

• $h_t \notin C_c^{\infty}(G(\mathbb{R}))$ needs modification.

Let

$$arphi \in C_c^\infty(\mathbb{R}), \quad arphi(u) = egin{cases} 1, & |u| < 1/2; \ 0, & |u| > 1. \end{cases}$$



Let d(x,y) be the geodesic distance of $x,y \in X$. Set

$$\varphi_t(g) := \varphi\left(d^2(gx_0, x_0)/\sqrt{t}\right), \quad g \in G(\mathbb{R}), \ t > 0.$$

The modified heat kernel is defined by

$$\tilde{h}_t(g) := \varphi_t(g)h_t(g), \quad g \in G(\mathbb{R}), \ t > 0.$$

Proposition.

$$\left| {\rm Tr} \left(\rho_\infty(h_t) \right) - {\rm Tr} \left(\rho_\infty(\tilde h_t) \right) \right| \le C e^{-c/\sqrt t}$$
 for 0 $< t \le 1$.

Set

$$f_t = \tilde{h}_t \otimes e_{\mathsf{fin},S} \otimes f_S,$$

where f_S is a pseudo-coefficient of the Steinberg representation.

The simple trace formula combined with the proposition yields

$$\operatorname{Tr}\left(
ho_{\infty}(h_t) \upharpoonright H_{\operatorname{Cusp}}^{\Gamma,S}\right) = C(K_S) \sum_{\gamma \in \mathfrak{G}_e} a(\gamma) \mathcal{O}_{\gamma}(f_t) + O(1)$$

as $t \to 0+$.

c) Geometric side

We have

$$\mathcal{O}_{\gamma}(f_t) = \mathcal{O}_{\gamma}(\tilde{h}_t)\mathcal{O}_{\gamma}(e_{\mathsf{fin},S})\mathcal{O}_{\gamma}(f_S).$$

where

$$\mathcal{O}_{\gamma}(\tilde{h}_{t}) = \int_{G(\mathbb{R})_{\gamma} \backslash G(\mathbb{R})} \tilde{h}_{t}(g_{\infty}^{-1} \gamma g_{\infty}) dg_{\infty}.$$

• $\operatorname{supp} \tilde{h}_t \to K_{\infty}$ as $t \to 0+$.

For $h \in G(\mathbb{R})$ let

$$C_h = \{ghg^{-1} \mid g \in G(\mathbb{R})\}.$$

Let $\gamma \notin Z_G(\mathbb{R})$. Then

$$C_{\gamma} \cap K_{\infty} \subset C_{\gamma}$$

is a proper submanifold. By dominated convergence:

$$t^{d/2}\mathcal{O}_{\gamma}(\tilde{h}_t) \longrightarrow 0, \quad t \to 0.$$

Assume: $z \in Z_G(\mathbb{R})$. Then

$$\mathcal{O}_{\gamma}(\tilde{h}_t) = h_t(z)$$

and

$$t^{d/2}h_t(z) \longrightarrow rac{{\sf tr}\sigma(z)}{(4\pi)^{d/2}{\sf vol}(K_\infty)}, \quad t o 0.$$

Assume: $\sigma \upharpoonright Z_{\Gamma} = \operatorname{Id}$.

Set $d_S = f_S(z)$ and

$$C_S(\Gamma) = C(K_S)d_S \text{Vol}(K_S).$$

Then

$$\lim_{t\to 0} t^{d/2} \mathrm{Tr} \Big(\rho_{\infty}(h_t) \restriction H^{\Gamma,S} \Big)$$

$$= C_S(\Gamma) \frac{\dim(\sigma) \operatorname{Vol}(\Gamma \backslash X)}{(4\pi)^{d/2}}.$$

Let $\lambda_{\pi} = \pi(\Omega)$ be the Casimir eigenvalue of π . Then

$$\mathsf{Tr}ig(
ho_\infty(h_t)
estriction H_{\mathsf{cusp}}^{\mathsf{\Gamma},S}ig)$$

$$= \sum_{\pi \in \Pi(G(\mathbb{R}))} e^{t\lambda_{\pi}} m_{\Gamma}(\pi, S) \dim \operatorname{Hom}_{K_{\infty}}(\mathcal{H}(\pi), V_{\sigma}^{*}).$$

Set

$$N_{\mathsf{cusp}}^{\mathsf{\Gamma}}(T,\sigma,S)$$

$$= \sum_{|\lambda_{\pi}| \leq T} m_{\Gamma}(\pi, S) \dim \operatorname{Hom}_{K_{\infty}}(\mathcal{H}(\pi), V_{\sigma}^{*}).$$

Then Karamata's theorem implies

$$\lim_{T \to \infty} \frac{N_{\text{cusp}}^{\Gamma}(T, \sigma, S)}{T^{d/2}} = \dim(\sigma) C_S(\Gamma) C_{\Gamma}.$$

- $C_S(\Gamma) \neq 0$ if and only if $C(K_S) \neq 0$.
- $C(K_S) \neq 0$, if the Steinberg representation contains a non zero K_S -invariant vector. This is the case if $K_p \subset I_P$, a minimal parahoric subgroup for $p \in S$.