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1. The problem
e G connected semisimple algebraic group over @
e [ C G(1©) arithmetic subgroup
e Koo C G(R) maximal compact subgroup
¢ € L2(M\G(R)) is called cusp form <«

1) D¢ = X(D)¢, D € Z(gc);
2) ¢ is Koo-finite;
3)

/NP<R>mr\Np<R> #(ng) dn =0

for all proper rational parabolic subgroups P C G, Np
the unipotent radical of P.

Problem: Existence and construction of cusp forms
e A convenient way to count cusp forms is to count

the Casimir eigenvalues of cusp forms containing a
fixed Koo-type.



o LZ2,sp(M\G(R)) C L2(M\G(R)) space of cusp forms

e 0 . Koo — GL(Vy) irreducible unitary representation.

Heusp(@) = (Leusp(MG(R) & V">Koo

Space of [-cusp forms of "weight” o.
e Qe Z(gr) Casimir element.

e A\, selfadjoint operator in H{s,(0) induced by
—0c0(2) ® Id, poo regular representation of G(R).

Geometric interpretation: Assume that I is torsion
free. Let

be the Riemannian symmetric space and let E, —» X
be the homogeneous vector bundle attached to o. Set

E; = I’\Ea — M\X.
Then

(L2(MGR)) @ Vy) ™ 2 L2(M\X, Eo)



and
e = (V7)*V? — \Id,

where V7 is the canonical invariant connection of E,
and A\, the Casimir eigenvalue of o.

e A, has pure point spectrum in H{,sp(0):

A S A1 S A< — 00,

e cuspidal spectrum of ”"weight” o.

Counting function:

Niusp(A,0) = # {i: [\i| < A}

Let
X =G(R)/Ksw and d=dimX.

Weyl’'s constant:
- Vol (IM\ X)
C (4m)2r(d/2 + 1)

CrZ



Conjecture(Sarnak, 1984):
NEusp(A, ) ~ dim(e)C A%/2

as A — oo.

2. Results
1. Special cases
The conjecture has been proved in the following cases:

e A. Selberg, 1954: ' C SL(2,R) congruence sub-
group, o = 1.

e I. Efrat, 1987: I' C SL(2,R)™ Hilbert modular group,

o=1.

e A. Reznikov, 1993: I' C SOqp(n,1) congruence sub-
group, o = 1.

e St. Miller, 2001: ' = SL(3,7), o = 1.

e M., 2003: ' C SL(n,Z) principal congruence sub-
group, o arbitrary.



2. General results

Theorem(Donnelly). G semisimple algebraic group
over Q and I' C G(R) lattice. Then

NL oo O\,
lim sup cusp(A; 9)

| )\d/2 Sdlm(O')Cr
— 00

Theorem(Piatetski-Shapiro). Let o = 1. For every I
there exists a normal subgroup of finite index I’ of I
such that

lim Nlisp(A, 1) = oo.
A—00
e A.B. Venkov, G = SL(2).
e Let S be a finite set of primes containing at least two

finite primes. There exists C-(S) <1 with 0 < C(S)
for [ a deep enough congruence subgroup.

Theorem(Labesse-M.). Let G be almost simple, connec-

ted and simply connected such that G(R) is non com-
pact. For every congruence subgroup I C G(R) and
every o such that o[z =Id we have

NgUSD(Aa U)
2\d/2 '

dim(o)CrCr(S) < liminf
A—>00



3. Methods

The method is a combination of the Arthur trace for-
mula and the heat equation method.

a) G =SL(2).
e Selberg’s method

e [ C SL(2,R) discrete, co-finite area, o = 1.

A — —32 8_2 8_2
Y ox2 = 0y?2)

A: CR(M\H) — L*(I\H)
essentially self-adjoint.

SpecCpp(A) 10 =X <A1 <A < -+

S i =Tr (e | Lgisc(M\H)

1

e Use Selberg trace formula to compute the trace



o C(s) = (C;;(s)) scattering matrix
d(s) ;= det C(s).

Selberg trace formula applied to the heat kernel gives

_t)‘J - /]R—(l/Q - zr)e_(1/4+r2)t dr

__Area(lM\H) —1 logt
o 471 +O< Vi )

as t — 0+.

e Karamata's Theorem implies Weyl's law

1 Area(l"\H)
. \/_q5(1/2+w) dr ~ . A

Ndlsco‘)

as \ — oo.

Niisc(N) = Niysp(A) + Njes(V),  Nyes(V) < C.



o[ =SL(2,72):
(s —1/2)C((2s — 1)'

#(s) = /7 M(s)C(2s)
¢'(1 +ir) .
¢(1 4 ir) < Clog(|r)”, |l = 2.
This implies

Area(M\H) \
41

Ncruspo\) ~ , A — 00.

e similar for T =T (N).

b) G =SL(n)

e Selberg trace formula is replaced by (noninvariant)
Arthur trace formula

S ()= K(f), feCx(GAa)).

XEX 0ecO
The following facts are needed to prove Weyl's law:

e Weak version of Ramanujan conjecture (Luo, Rud-
nick, Sarnak)



e Analytic properties of Rankin-Selberg L-functions
(Jacquet, Piatetski-Shapiro, Shalika, Shahidi, Moeg-
lin, Waldspurger,...), bounds on the logarithmic deri-
vatives.

A weaker result suffices: Let n;,, « = 1,2, be a cu-
spidal automorphic representation of GLy,(A). Set

L(s,m1 X T2)
L(l -|— S, m1 X 77'2)6(8,71'1 X 7.'("2).

/\(87 ml, 7T2) —

Then
T [N\
| [ Gir w1 m2)| dr < C Tlog(T + v(my x 72))
for T'> 0, where v(mw1 X 7o) is the analytic conductor.

e Description of the residual spectrum (Moeglin, Wald-
spurger).

e At present it seems to be out of reach to extend
these results to other groups.



Cc) Weaker result

Define
T 1: L?(M\H) — L?(M"\H)

by
T_1(z) = —Z.

N

Then T2, =1Id and
L*(M\H) = L3.(T\H) ® L?(I"\H)
e decomposition in even and odd functions.

o T _1FE(z,8) = E(z,s).

e A has pure point spectrum in L%(I‘\H). Correponds
to Dirichlet problem on one half Fy of the fundamen-
tal domain. One can use the same methods as in the
case of compact surfaces.



Area(F
NEOD ~ 4( +))\, A — 00

7

b) General case.

e (G connected and simply connected algebraic group
over ().

e Use simple trace formula which avoids continuous
spectrum.

e Adelic framework: G(A) = [T, ., G(Qp)

Kfin = H Kp, KpC G(Qp)
p<oO
Ksin C G(A¢iy) decomposable open compact subgroup,
M = Kfin N G(Q).

Strong approximation:

G(Q\G(A)/Ksin = T\G(R).



e S finite set of primes, |S| > 2.

L2,sp(GIQ\G(A), ) C LEysp(G(Q\G(A))
spanned by cusp form orthogonal to 1 and on which

Gg = H G(Qp)

peES
acts by the Steinberg representation. Put

r .
Hcdgp .= Lgusp(G(Q)\G(A)a S)Kf'”-
Let K = KooKfin- Set

Hlysp(0,9) = (L2usp(GIQ\G(A), $) ® V) .

e Acusp(o,S) spectrum of —poo(2) ®1d in H{gp(o, S).
e hy € C°(G(R)) kernel of e tAo,

® pso regular representation of G(R) in H{ysp.

Tr (poo(he) 1 HyiSp) = >0 m(N)e ™.
)\E/\Cusp(O',S)

e Apply simple version of Arthur's trace formula to
compute the trace and to determina the asymptotic
bahaviour as t — 0+.



3. Simple trace formula
a) Adelic version

Let

For foo € CP(G(R)):

Tt (poo (foo) | Hizp )

= Ir <Poo(foo @ efin) | Leusp(GIQ)\G(A), S)) '

e p regular representation of G(A).
b) Steinberg representation

o Gy, = G(Q)yp), P, C Gy, minimal parabolic.

et C Indgg(l)

unique irreducible subrepresentation.



o fp € C(Gp) pseudo-coefficient of Steinberg repre-
sentation, if

Tr(mp(fp)) =0, unless mp = {7{51:;

Tr(rst(fp)) =1, Tr(1p(fp)) = (—1)4
for some integer gq.

EXistence of pseudo-coefficients: Kazdan, Kott-
witz, Euler-Poincaré functions

o Kottwitz: O~(fp) = 0, for v € G(QQ) non elliptic.
e mg Steinberg representation of Gg.

Set
1

~ VolI(Kg)

Tl’ﬂ's(es) — C(KS)TrWS(fS)
e Replace eg by fs.

: K
C(Kg) =dim (Hz$), eg XK

c) Assume: S contains two different finite primes.



Set
J = fo ® f5 ® éfin s-

e Then f is cuspidal at two places in the sense of
Arthur.

Then Arthur's trace formula

> ()= L(f)

xEX 0e0
IS reduced to

Tr(p(f) T Leusp(GIQ\G(A), S)) + 1(f)

= >, a(MO(f).

YEB,

o &, set of representatives of conjugacy classes of
semisimple elliptic elements in G(Q).

_ —1
O~(f) —/G(A)V\G(A) f(g~"~g) dg.



Final formula

Tr (oo (foo) | Heiizp )

= C(Kg) | ) a(MOy(f) —1(f)

YEBG,

e Advantage: avoids all difficulties due to the conti-
nous spectrum.

e Disadvantage: C(Kg) # 0, only if I is a deep
enough congruence subgroup.

4) Application to the heat kernel
a) The heat kernel
e 0. Koo — GL(Vy) irreducible unitary representation.

e v - X = G(R)/Kx associated homogeneous vec-
tor bundle.



Ay C°(X,Ey;) - C°(X,Ey)
elliptic differential operator induced by —2 ® Id.

Ay CX(X,Ey) = L?(X, Ey)

essentially self-adjoint.

e ¢ 180 smoothing operator.

(e—mdc,o) (g9) = / . Hi(g t91)¢(91) dg1,
Koo XKoo

o H; € (CH{(G(R)) ® End(V7))

Set
hi(g) == tr Hi(g), g€ G(R),t>0.

e 7 irreducible unitary representation of G(R)

Tr w(ht) = e "D dim Hom g (H(x), V).



b) Modified heat kernel

o hy ¢ C°(G(R)) needs modification.
Let
1 lu| < 1/2;
€ C°(R), =<’
p € C(R), ¢(u) {o, | > 1.

Let d(z,y) be the geodesic distance of z,y € X. Set

ot(9) 1= ¢ (d*(gz0,20)/Vt), g€ G(R), t>0.

The modified heat kernel is defined by

hi(g) == ot(g)hi(g), g€ G(R), t> 0.

Proposition.
T (poo(he)) — Tt (poo(Re)) | < Cem/V?
for 0 <t < 1.



Set

ft = ht @ efin s  fs,

where fg is a pseudo-coefficient of the Steinberg re-
presentation.

The simple trace formula combined with the proposi-
tion yields

Tr (poo(he) | Hejap) = C(Kg) S a(y)Oy(f2)
YEB,

+ O(1)
as t — 0.

c) Geometric side

We have

Ov(ft) — Ov(ﬁt)(/)’y(efin,S)Ov(fS)-

where

T\ — T (A1
OvR) = [ gy (957900 g



e supph; — Koo as t — 0+.

For h € G(R) let

C, = {ghg™ ! | g € G(R)}.

Let v ¢ Zo(R). Then
CyN K C Cy
IS a proper submanifold. By dominated convergence:

t420,(hy) — 0, t— 0.

Assume: z € Zg(R). Then

O~(ht) = he(z)
and
tro(z)

d/2 N
t / ht(Z) ? (47T)d/2vo|(Koo)7 t — 0.

Assume: o | Zi = Id.

Set dg = fg(z) and

Cg(lN) = C(Kg)dsVol(Kg).



Then
. d)2 r,S
1im t%2 Tt (poo(he) [ H' )
dim(o)Vol(IM\ X)
(47)d/2
Let \r = 7w (2) be the Casimir eigenvalue of w. Then

= Cg(IN)

Tr(poo(he) | Héisp)

= Y emp(n, S)dimHomg  (H(x), V).
T€M(G(R))

Set
N(IZ_USD(Ta g, S)

= Y mpr(n,S)dimHomg_(H(r), V}).
[ Ar|<T

Then Karamata's theorem implies

A Td/2 = dim(O')Cs(r)Cr.



e Cq(lM) #0 if and only if C(Kg) # 0.

e C(Kg) # 0, if the Steinberg representation contains
a non zero Kg-invariant vector. This is the case if
Kp C Ip, @ minimal parahoric subgroup for p € S.



