Analytic torsion of locally symmetric spaces and cohomology of arithmetic groups

Werner Müller

University of Bonn Institute of Mathematics

Münster, September 2 - Sptember 6

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1. Analytic torsion

Analytic torsion is an analytic tool to study torsion in the cohomolgy of arithmetic groups.

General set up:

- (X,g) a compact Riemannian manifold of dimension n.
- $\rho: \pi_1(X) \to GL(V)$ finite-dimensional representation.
- $E_{\rho} \rightarrow X$ associated flat vector bundle.
- *h* Hermitean fibre metric in E_{ρ} .

Let

 $\Delta_{p}(\rho) \colon \Lambda^{p}(X, E_{\rho}) \to \Lambda^{p}(X, E_{\rho})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

be the Laplace operator on E_{ρ} -valued *p*-forms.

- $\Delta_{\rho}(\rho)$ elliptic, self-adjoint, non-negative.
- ▶ $\Delta_{\rho}(\rho)$: $0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$ spectrum of $\Delta_{\rho}(\rho)$.

Let

$$\zeta_p(s; \rho) := \sum_{j=1}^{\infty} \lambda_j^{-s}, \quad \operatorname{Re}(s) > n/2,$$

be the zeta function of $\Delta_{\rho}(\rho)$. $\zeta_{\rho}(s; \rho)$ admits meromorphic extension to \mathbb{C} , holomorphic at s = 0. Put

$$\det \Delta_{\rho}(\rho) = \exp \left(-\frac{d}{ds} \zeta_{\rho}(s;\rho) \Big|_{s=0} \right).$$

Ray-Singer analytic torsion:

$$T_X(
ho) := \prod_{j=1}^n \left(\det \Delta_p(
ho)
ight)^{(-1)^{p+1}p/2}.$$

- $T_X(\rho)$ depends on the metrics g on X and h in E_{ρ} .
- If dim X is odd and H^{*}(X; E_ρ) = 0, then T_X(ρ) is independent of g and h.

• $\tau_X(\rho)$ Reidemeister torsion, defined in terms of a triangulation of X. Defined by a formula analogous to Ray-Singer torsion with Hodge Laplacian replaced by combinatorial Laplace operators.

Theorem (Cheeger, M.) For all unitary ρ , one has $T_X(\rho) = \tau_X(\rho)$. Extensions:

- Mü: ρ unimodular, equality holds.
- **b** Bismut-Zhang: general ρ , equality does not hold in genral.

Relation to cohomology

- M ⊂ V_ρ π₁(X)-invariant lattice, M associated local system of free Z-modules over X.
- ► Hodge isomorphism $H^p(X; \mathcal{M} \otimes \mathbb{R}) \cong \mathcal{H}^p(X; \mathcal{M} \otimes \mathbb{R})$, introduces inner product in $H^p(X; \mathcal{M} \otimes \mathbb{R})$. $R_p(\mathcal{M}) = \operatorname{vol}(H^p(X; \mathcal{M} \otimes \mathbb{R})/H^p(X; \mathcal{M})_{free})$

The regulator $R(\mathcal{M})$ is defined as

$$R(\mathcal{M}) := \prod_{p=0}^{n} R_{p}(\mathcal{M})^{(-1)^{p}}.$$

Lemma (Cheeger):

$$\tau_X(\rho) = R(\mathcal{M}) \cdot \prod_{p=0}^n \left| H^p(X; \mathcal{M})_{tors} \right|^{(-1)^{p+1}}.$$

Especially, if $H^*(X, \mathcal{M} \otimes \mathbb{R}) = 0$, then $H^*(X; \mathcal{M})$ is finite and

$$T_X(\rho) = \prod_{p=1}^n (\det \Delta_p(\rho))^{(-1)^{p+1}p/2} = \prod_{p=0}^n \left| H^p(X; \mathcal{M}) \right|^{(-1)^{p+1}}.$$

2. Analytic torsion for special classes of non-compact manifolds

- i) Manifolds with iterated fibred wedges,
- ii) Manifolds with iterated fibred cusps.

Basic examples

i) Manifolds with conical singularities.

$$\begin{aligned} X &= X_0 \cup C(N), \quad \partial X_0 = N \\ C(N) &= [0,1) \times N, \quad g|_{C(N)} = dr^2 + r^2 g_N. \end{aligned}$$

Results by: Dar, ..., Ludwig ii) Manifolds with cusps.

$$\begin{split} X &= X_0 \cup Z(Y), \quad \partial X_0 = Y \\ Z(Y)) &= [1,\infty) \times Y, \quad g|_{Z(Y)} = \frac{dr^2}{r^2} + r^{-2}g_Y. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results by: Albin-Rochon-Sher, Vertman, Mü.-Rochon

・ロト・日本・ヨト・ヨー うへの

3. Locally symmetric spaces

Special case of fibred corner metrics.

General set up

- ► G semi-simple Lie group, non-compact type, ...
- $K \subset G$ maximal compact subgroup,
- $\widetilde{X} = G/K$ Riemannian symmetric space,
- ► $\Gamma \subset G$ lattice, i.e., discrete subgroup, $vol(\Gamma \setminus G) < \infty$.
- $X = \Gamma \setminus \widetilde{X}$ locally symmetric space of finite volume,
- \triangleright Γ torsion free, then X is a manifold.

Flat vector bundles

- ▶ $\tau: G \rightarrow \mathsf{GL}(V)$ finite dimensional complex representation,
- ▶ $\rho := \tau|_{\Gamma} \colon \Gamma \to \mathsf{GL}(V)$, *G* semi-simple $\Rightarrow \rho$ unimodular.
- $\blacktriangleright \ \sigma := \tau|_{K} \colon K \to \mathsf{GL}(V),$
- ► $\widetilde{E}_{\sigma} \to \widetilde{X}$ homogeneous vector bundle, $E_{\sigma} = \Gamma \setminus \widetilde{E}_{\sigma} \to X$ locally homogeneous vector bundle.

Lemma $E_{\rho} \cong E_{\sigma}$ canonically isomorphic, induces canonical metric in E_{ρ} .

• One can use harmonic analysis to study $\Delta_p(\rho)$.

$$C^{\infty}(X, E_{\rho}) \cong (C^{\infty}(\Gamma \backslash G) \otimes V)^{K}.$$

$$\Delta_{
ho}(
ho) = -R_{\Gamma}(\Omega) \otimes \mathsf{Id} + au(\Omega_{\mathcal{K}}) \,\mathsf{Id} \,.$$

- ▶ $\Omega \in Z(\mathfrak{g}_{\mathbb{C}})$, $\Omega_{K} \in Z(\mathfrak{k}_{\mathbb{C}})$ Casimir elements,
- ► R_{Γ} right regular representation of G in $C^{\infty}(\Gamma \setminus G)$.
- $\Delta_{\rho}(\rho)$ has non-empty continous spectrum,
- Usual definition of analytic torsion does not work.

4. Regularized analytic torsion

4.1. Regularized trace of heat operators Idea goes back to Melrose.

Example: $X = \Gamma \setminus \mathbb{H}^2$ hyperbolic surface of finite area,

$$X = X_0 \cup \bigcup_{i=1}^m Y_i, \quad Y_i = [a_i, \infty) \times S^1.$$

- $T \gg 0$, X_T obtained by truncation of cusps at level T.
- $\Delta : C^{\infty}(X) \to C^{\infty}(X)$ hyperbolic Laplace operator.
- ► e^{-tΔ}, t > 0, heat operator, integral operator with kernel K(x, y, t).
- X compact, pre-trace formula: $Tr(e^{-t\Delta}) = \int_X K(x, x, t) dx$.

If X is not compact, then

$$\int_{X_T} K(x,x,t) dx = \log(T) a(t) + b(t) + O(T^{-1}), \quad ext{as } T o \infty.$$

Definition: $\operatorname{Tr}_{\operatorname{reg}}(e^{-t\Delta}) := b(t), t > 0.$

0 < λ₁ ≤ λ₂ ≤ ··· eigenvalues of Δ, E_k(z, s) Eisenstein series, C(s) "scattering matrix", obtained from zero Fourier coefficients of E_k(z, s), φ(s) := det C(s), s ∈ C.

Lemma:

$$Tr_{\rm reg}(e^{-t\Delta}) = \sum_j e^{-t\lambda_j} - \frac{1}{4\pi} \int_R e^{-(1/4+r^2)t} \frac{\varphi'}{\varphi} (1/2+ir) dr + \cdots$$

- Spectral side of Selberg trace formula.
- Used to define regularized Ray-Singer torsion T^{reg}_X(ρ) for hyperbolic manifolds X of finite volume.

Approximation of L^2 -torsion:

1. Hyperbolic manifolds of finite volume

Theorem (M., Pfaff). $\mathbb{H}^d = SO_0(d, 1)/SO(d)$, $\Gamma(N) \subset \Gamma_0 = SO_0(d, 1)(\mathbb{Z})$ principal congruence subgroup, $\tau \in Rep(SO_0(d, 1))$ with $\tau \ncong \tau \circ \theta$, θ Cartan involution, $X_N = \Gamma(N) \setminus \mathbb{H}^d$. Then

$$\lim_{N\to\infty} \frac{\log \, T_{X_N}^{\mathrm{reg}}(\tau)}{[\Gamma_0\colon \Gamma(N)]} = t_{\widetilde{X}}^{(2)}(\tau) \operatorname{vol}(\Gamma_0 \backslash \mathbb{H}^d).$$

J. Raimbeault treated the 3-dimensional case.

7. Finite volume case

► $\Gamma(N) \subset SL(n; \mathbb{Z})$ principal congruence subgroup,

- F imaginary quadratic field, O_F ring of integers, a ⊂ O_F ideal, Γ(a) ⊂ SL(2, O_F) principal congruence subgroups.
- finite co-volume, not co-compact.

Goal: Extension of the results about growth of torsion to the finite volume case.

Conjecture (Bergeron): $(\Gamma_i)_{i \in \mathbb{N}}$ sequence of distinct finite index subgroups of $SL_n(\mathbb{Z})$. Then

$$\lim_{i\to\infty}\frac{\log|H_q(\Gamma_i;\mathbb{Z})_{\text{tors}}|}{[\mathsf{SL}_n(\mathbb{Z})\colon\Gamma_i]}=\alpha(n,q)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\alpha(n,q) = 0$, unless n = 3 and q = 2, or n = 4 and q = 4.

Moreover

$$\alpha(3,2) = \operatorname{vol}(\operatorname{SL}_3(\mathbb{Z}) \setminus \widetilde{X}_3) t_{\widetilde{X}_3}^{(2)}, \quad \alpha(4,4) = \operatorname{vol}(\operatorname{SL}_4(\mathbb{Z}) \setminus \widetilde{X}_4) t_{\widetilde{X}_4}^{(2)},$$

where $\widetilde{X}_n = \operatorname{SL}_n(\mathbb{R}) / \operatorname{SO}(n).$

Problems:

- 1. $\Delta_p(\rho)$ has continous spectrum, therefore $e^{-t\Delta_p(\rho)}$ is not trace class. We need to define a regularized trace of $e^{-t\Delta_p(\rho)}$, which leads to a regularized version $T_X^{\text{reg}}(\rho)$ of the Ray-Singer torsion.
- 2. Approximation of L^2 -torsion:

$$\lim_{N\to\infty}\frac{\log T_{X_N}^{\mathrm{reg}}(\rho)}{[\Gamma\colon\Gamma_N]}=t_{\widetilde{X}}^{(2)}(\rho)\operatorname{vol}(X).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. \overline{X} Borel-Serre compactification of $X = \Gamma \setminus \widetilde{X}$. Relation between $\mathcal{T}_X^{\text{reg}}(\rho)$ and Reidemeister torsion of \overline{X} .

Regularized trace of heat operators.

Example: $X = \Gamma \setminus \mathbb{H}^2$ hyperbolic surface of finite area,

$$X = X_0 \cup \bigcup_{i=1}^m Y_i, \quad Y_i = [a_i, \infty) \times S^1.$$

- $T \gg 0$, X_T obtained by truncation of cusps at level T.
- $\Delta : C^{\infty}(X) \to C^{\infty}(X)$ hyperbolic Laplace operator.
- $e^{-t\Delta}$, t > 0, heat operator, integral operator with kernel K(x, y, t).
- X compact, pre-trace formula: $Tr(e^{-t\Delta}) = \int_X K(x, x, t) dx$.

If X is not compact, then

$$\int_{X_T} \mathcal{K}(x,x,t) dx = \log(T) a(t) + b(t) + O(T^{-1}), \quad ext{as } T o \infty.$$

Definition: $\operatorname{Tr}_{\operatorname{reg}}(e^{-t\Delta}) := b(t), t > 0$. Hadamard regularization.

Example:
$$\Gamma = SL(2, \mathbb{Z}), X = \Gamma \setminus \mathbb{H}^2$$
.
• $0 < \lambda_1 \le \lambda_2 \le \cdots$ eigenvalues of Δ .
• $E(z, s) = \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} Im(\gamma(z))^s$, $Re(s) > 1$ Eisenstein series,
 $E(x + iy, s) = y^s + c(s)y^{1-s} + O(e^{-cy}), \quad y \to \infty$.

• c(s) scattering matrix.

Theorem:

$$Tr_{reg}(e^{-t\Delta}) = \sum_{j} e^{-t\lambda_{j}} - \frac{1}{4\pi} \int_{R} e^{-(1/4+r^{2})t} \frac{c'}{c} (1/2+ir) dr + \cdots$$

Spectral side of Selberg trace formula.

Used to define regularized Ray-Singer torsion T^{reg}_X(ρ) for hyperbolic manifolds X of finite volume.

Higher rank case, Approximation of L^2 **-torsion:** Joint work with Jasmin Matz.

- Pass to adelic framework.
- G semisimple algebraic group over Q, K_f ⊂ G(A_f) open compact subgroup, X̃ = G(ℝ)/K_∞,
- ► adelic locally symmetric space X(K_f) = G(Q)\(X̃ × G(A_f))/K_f.
- There exist lattices $\Gamma_i \subset \boldsymbol{G}(\mathbb{R})$, i = 1, ..., m, such that

$$X(K_f) = \Gamma_1 \setminus \widetilde{X} \sqcup \cdots \sqcup \Gamma_m \setminus \widetilde{X}.$$

G simply connected, Q-simple, then by strong approximation

$$X(K_f) = \Gamma \setminus \widetilde{X}, \quad \Gamma = (\boldsymbol{G}(\mathbb{R}) \times K_f) \cap \boldsymbol{G}(\mathbb{Q}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- We use Arthur's trace formula to define the regularized trace of the heat operators.
- ▶ h_t kernel of $e^{-t\tilde{\Delta}}$ on $\widetilde{X} = \boldsymbol{G}(\mathbb{R})/K_{\infty}$, $\phi_t := h_t \otimes 1_{K_f}$, $\phi_t \in \mathcal{C}(\boldsymbol{G}(\mathbb{A}); K_f)$.
- Let $J_{\text{spec}}(\phi_t)$ be the spectral side of the Arthur trace formula.

We have

$$J_{\mathrm{spec}}(\phi_t) = \sum_{[M]} J_{\mathrm{spec},M}(\phi_t),$$

where [M] runs over conjugacy classes of Levi subroups of G. For M = G we have

$$J_{\operatorname{spec},G}(\phi_t) = \sum_{\pi \in \Pi_{\operatorname{dis}}(G(\mathbb{A}))} m(\pi) \operatorname{dim} \left(\mathcal{H}_{\pi_f}^{K_f} \right) \Theta_{\pi_{\infty}}(h_t).$$

► If *M* is a proper Levi subgroup, the main ingredients of *J*_{spec,*M*}(φ_t) are logarithmic derivatives of intertwining operators. We define the regularized trace of the heat operator by

$$\mathsf{Tr}_{\mathrm{reg}}(e^{-t\Delta}) := J_{\mathrm{spec}}(\phi_t).$$

For $X = \Gamma \setminus \mathbb{H}^2$ it coincides with the previous definition. If $\rho \in \operatorname{Rep}(G)$ is not self-conjugate, the regularized analytic torsion is defined by

$$\log \mathcal{T}_{\mathcal{X}(\mathcal{K}_{f})}^{reg}(\rho) = \frac{1}{2} \sum_{q=1}^{n} (-1)^{q} q \left(\mathsf{FP}_{s=0} \frac{\zeta_{\rho}(s;\rho)}{s} \right),$$
$$\zeta_{\rho}(s;\rho) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \mathsf{Tr}_{\mathrm{reg}}(e^{-t\Delta_{q}(\rho)}) t^{s-1} dt.$$

Remark. It is a theorem that the integral converges for $\operatorname{Re}(s) > n/2$ and admits a meromorphic extension to \mathbb{C} .

(ロ)、(型)、(E)、(E)、(E)、(O)への

Let $X_n = \operatorname{SL}(n, \mathbb{R}) / \operatorname{SO}(n)$, $\Gamma(N) \subset \operatorname{SL}(n, \mathbb{Z})$ principal congruence subgroup, $X_n(N) = \Gamma(N) \setminus \widetilde{X}_n$, $\tau \in \operatorname{Rep}(\operatorname{SL}(n, \mathbb{R}))$, $\tau_{\theta} = \tau \circ \theta$, where θ is the Cartan involution.

Theorem (Matz, M.): Let $\tau \in \text{Rep}(SL(n, \mathbb{R}))$. Assume $\tau \not\cong \tau_{\theta}$. Then for $n \geq 2$ we have

$$\lim_{N\to\infty}\frac{\log T_{X_n(N)}^{\mathrm{reg}}(\tau)}{\operatorname{vol}(X_n(N))}=t_{\widetilde{X}_n}^{(2)}(\tau).$$

Moreover, if n > 4, then $t_{\widetilde{X}_n}^{(2)}(\tau) = 0$, and if n = 3, 4, then $t_{\widetilde{X}_n}^{(2)}(\tau) > 0$.

- 8. Connection with Reidemeister torsion and cohomology
 - Joint work with Fréderic Rochon.
- i) Hyperbolic manifolds of finite volume.
 - $G = SO_0(d, 1)$, K = SO(d), $\mathbb{H}^d = G/K$ hyperbolic *d*-space.
 - F ⊂ G torsion free lattice, X = F\\\mathbb{H}^d hyperbolic manifold of finite volume.
 - $\rho: G \to GL(V)$ irreducible finite-dimensional representation.
 - $E = \mathbb{H}^d \times_{\rho|_{\Gamma}} V$ associated flat vector bundle.
 - ▶ \overline{X} Borel-Serre compactification of X, \overline{X} compact manifold with boundary $Z = \partial \overline{X} = \sqcup_{i=1}^{m} T_i$, T_i torus.
 - ► The Reidemeister torsion \(\alpha\), \(E, \mu_X\) depends on a basis of the cohomology \(H^*(X; E)\).

Harder: $H^*(X; E) = H^*_{(2)}(X; E) \oplus H^*_{Eis}(X; E)$.

► H^{*}_{Eis}(X; E) Eisenstein cohomology, induced from H^{*}(∂X; E). Eisenstein cohomology classes are represented by differential forms which are Eisenstein series, evaluated at special points.

• If
$$\rho \not\cong \rho_{\theta}$$
, then $H^*_{(2)}(X; E) = 0$.

Let μ_Z be an orthonormal basis of H^{*}(Z; E). The theory of Eisenstein series gives rise to a basis μ_X of H^{*}_{Eis}(X; E).

• $\tau^{\text{Eis}}(X; E)$ Reidemeister torsion with respect to μ_X .

Theorem (M., Rochon) Assume that $\rho \ncong \rho_{\theta}$. Then

$$\log T_X^{\rm reg}(E) = \log \tau^{\rm Eis}(X; E) - \frac{1}{2} \log \tau(Z; E) - \kappa_{\Gamma}^{\rho} c_{\rho},$$

where $c_{\rho} \in \mathbb{R}$ is an explicit constant depending on ρ and κ_{Γ}^{ρ} is the number of connected components of Z on which the cohomology with values in E is non-trivial.

Method: Degeneration of closed manifolds.

- M = X̄ ∪_{∂X̄} X̄ double of X̄, {g_ε}_{ε>0}, family of Riemannian metrics on M, degenerating to the hyperbolic metric on each copy of X inside of M as ε → 0.
- Similar for the Hermitian metric h_E on E. We introduce a family of Hermitian metrics {h_ε}_{ε>0} on the double of E on M, degenerating to h_E on each copy of X as ε → 0.

Application to torsion in the cohomology **Example:**

Let $a_1, ..., a_d \in \mathbb{N}$ and let q be the quadratic form defined by

$$q(x_1,...,x_d,x_{d+1}) = a_1 x_1^2 + \cdots + a_d x_d^2 - x_{d+1}^2.$$

- Let G be the algebraic group defined by q. Then G is defined over Q and G := G(ℝ) ≅ SO(d, 1).
- ► $\Gamma := \boldsymbol{G}(\mathbb{Z})$ is a lattice in *G*. For $d \ge 4$, $\boldsymbol{G}(\mathbb{Z})$ is not co-compact. $X = \Gamma \setminus \mathbb{H}^d$.
- ▶ $\rho: \mathbf{G} \to \operatorname{GL}(V)$ rational representation, $\Lambda \subset V$ Γ -invariant lattice. $\Gamma(N) \subset \Gamma$ principal congruence subgroup, $X_j := \Gamma(j) \setminus \mathbb{H}^d$.

Theorem (M., Rochon): Let Λ be strongly L^2 -acyclic. Let $E_j = \mathbb{H}^d \times_{\rho|_{\Gamma(j)}} \Lambda$ be the bundle of free \mathbb{Z} -modules over X_j . Assume that $E_j \cong E_i^*$. Let d = 2n + 1. Then we have

$$\liminf_{j\to\infty}\frac{\sum_{q \text{ even }}\log|H^q(X_j;E_j)_{\text{tors}}|}{[\Gamma\colon\Gamma(j)]}\geq (-1)^n t^{(2)}_{\mathbb{H}^d}(\rho)\operatorname{vol}(\Gamma\backslash\mathbb{H}^d)>0.$$