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1. Automorphic forms, automorphic representations

Basic set up

I G connected semisimple Lie group, finite center, non-compact
type. For example: SL(n,R), Sp(n,R), SO(p, q), p, q ∈ N.

I H Lie group, Π(H) equivalence classes of irreducible unitary
representations of H.

I K ⊂ G maximal compact subgroup, Ex.: SO(n) ⊂ SL(n,R).

I X̃ = G/K Riemannian symmetric space.

I Γ ⊂ G lattice, i.e., discrete subgroup with vol(Γ\G ) <∞.

I X = Γ\X̃ locally symmetric space, manifold if Γ is torsion free.

Example: H2 ∼= SL(2,R)/SO(2), Γ = SL(2,Z), Γ\H2 modular
surface.



Automorphic forms

I g = Lie(G ), Z(gC) center of the universal enveloping algebra
of g⊗ C, Ω ∈ Z(gC) Casimir element.

I φ ∈ C∞(Γ\G ) is an automorphic form, if φ is K -finite,
Z(gC)-finite, and of moderate growth.

I Especially, a joint eigenfunction φ ∈ L2(Γ\G )K ∼= L2(Γ\X̃ ) of
Z(gC) is an automorpic function.

I P ⊂ G parabolic subgroup, P = MPAPNP , MP reductive,
AP
∼= (R+)k , NP nilpotent.

I P is called cuspidal parabolic, if (Γ ∩ NP)\NP is compact.

I φ ∈ C∞(Γ\G ) automorhic form, φ is called cusp form, if∫
(Γ∩NP)\NP

f (ng)dn = 0

for all proper cuspidal parabolic subgroups P of G .



Representation theory

I RΓ right regular representation of G in L2(Γ\G ), defined by

(RΓ(g)f )(g ′) = f (g ′g), f ∈ L2(Γ\G ).

I Langlands’ theory of Eisenstein series implies decomposition in
invariant subspaces

L2(Γ\G ) = L2
dis(Γ\G )⊕ L2

ac(Γ\G )

I L2
dis(Γ\G ) maximal invariant subspace, spanned by irreducible

subrepresentations,

RΓ,dis
∼=
⊕̂

π∈Π(G)
mΓ(π)π.

I mΓ(π) = dim HomG (π,RΓ) = dim HomG (π,RΓ,dis).

I mΓ(π) <∞ for all π ∈ Π(G ).



I L2
cus(Γ\G ) subspace of cusp forms, L2

cus(Γ\G ) ⊂ L2
dis(Γ\G ) and

L2
dis(Γ\G ) = L2

cus(Γ\G )⊕ L2
res(Γ\G ).

Main problem: Study multiplicities mΓ(π).

I Apart from special cases, one cannot hope to describe mΓ(π)
explicitly.

I There exist formulas for mΓ(π) if π is a discrete series
representation.



2. Asymptotic behavior of automorphic spectra

I Study behavior of multiplicity with respect to the growth of
various parameters such as the infinitesimal character or/and
the level of congruence subgroups.

Examples:
a) Weyl law.

I For σ ∈ Π(K ) let

Π(G ;σ) =
{
π ∈ Π(G ) : [π|K : σ] > 0

}
.

I λπ = π(Ω) Casimir eigenvalue of π ∈ Π(G ).

NΓ(λ;σ) =
∑

π∈Π(G ;σ)
|λπ |≤λ

mΓ(π).

Problem: Behavior of NΓ(λ;σ) as λ→∞.

Equivalent problem:

I σ = 1, X̃ = G/K , X = Γ\X̃ ,
L2(Γ\G )K ∼= L2(Γ\G/K ) = L2(X ), ∆: C∞(X )→ C∞(X )
Laplace operator.



Lemma (Kuga): −R(Ω) = ∆.

I 0 < λ1 ≤ λ2 ≤ · · · eigenvalues of ∆ in L2(X ).

I NΓ(λ) = #{j : λj ≤ λ}

Problem: Study behavior of NΓ(λ) as λ→∞.

b) Limit multiplicity problem.

I Let Π(G ) be equipped with the Fell topology.

Define a measure on Π(G ) by

µΓ =
1

vol(Γ\G )

∑
π∈Π(G)

mΓ(π)δπ,

where δπ is the delta distribution.

Problem: Study the behavior of µΓ as vol(Γ\G )→∞.



c) Distribution of Hecke eigenvalues

Put Γ(1) = SL(2,Z), Sk(Γ(1)) space of cusp forms w.r.t. Γ(1) of
weight k .

Tn : Sk(Γ(1))→ Sk(Γ(1))

the n-th Hecke operator.

I Sk the set of all normalized Hecke eigenforms f ∈ Sk(Γ(1)).

Then
Tnf = af (n)f , f ∈ Sk .

Put λf (n) = n(1−k)/2af (n).
Deligne: λf (p) ∈ [−2, 2] for p prime.

Conjecture ( Serre): For each h ∈ C ([−2, 2])

1

π(x)

∑
p≤x

h(λf (p))→ 1

2π

∫ 2

−2
h(t)

√
4− t2 dt, x →∞.



Sato-Tate conjecture for modular forms.

Theorem (H. Nagoshi, 2006): Suppose that k = k(x) satisfies
log k
log x →∞ as x →∞. Then for every h ∈ C ([−2, 2]), we have

1

π(x)#Sk

∑
p≤x
f ∈Sk

h(λf (p))→ 1

2π

∫ 2

−2
h(t)

√
4− t2 dt, x →∞.

d) Analytic torsion
Analytic torsion is a more sophisticated spectral invariant which
recently found interesting applications to the study of the growth
of torsion in the cohomology of arithmetic groups. It is defined as
follows.

I Let (X , g) be a compact Riemannian manifold of dimension n,
ρ : π1(X )→ GL(V ) a finite dimensional representation of the
fundamental group, Eρ → X flat vector bundle, associated to
ρ, h fibre metric in Eρ.



I ∆p(ρ) : Λp(X ,Eρ)→ Λp(X ,Eρ) Laplace operator on
Eρ-valued p-forms, defined with respect to g and h.

I ∆p(ρ) is essentially self-adjoint. Its spectrum consisits of
eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · → ∞ of finite multiplicities.

I Let
ζp(s; ρ) :=

∑
λj>0

λ−sj , Re(s) > n/2,

zeta function of ∆p(ρ).

I ζp(s; ρ) admits meromorphic extension to s ∈ C, holomorphic
at s = 0.

I

det ∆p(ρ) := exp

(
− d

ds
ζp(s; ρ)

∣∣∣
s=0

)
regularized determinant of ∆p(ρ).



I The Ray-Singer analytic torsion TX (ρ) ∈ R+ is defined by

TX (ρ) :=
n∏

q=1

[det ∆q(ρ)](−1)q+1q/2 .

I π1(X ) = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γj ⊃ · · · ⊃ {e}, ∩Γj = {e},
tower of normal subgroups of finite index.

I Xj := Γj\X̃ finite covering of X , Ej → Xj flat vector bundle
associated to ρ|Γj

.

Problem: Study behavior of
log TXj

(ρj )

vol(Xj )
as j →∞.

e) Families of automorphic forms (Sarnak)



2. Conjectures and results

a) Wely law

i) Γ cocompact. n = dim X . Then the following Weyl law holds

NΓ(λ;σ) =
dim(σ) vol(Γ\G )

(4π)n/2Γ(n/2 + 1)
λn/2 + O(λ(n−1)/2), λ→∞.

I σ = 1: Avakumović, Hörmander: general elliptic operators.
I σ arbitrary: P. Ramacher.

ii) Γ\G non-compact:

Problem: Nonempty continuous spectrum.

Example: X = Γ\H2 hyperbolic surface of finite area,
non-compact.

I Continuous spectrum of ∆: [1/4,∞).
I possible eigenvalues of ∆: λ0 = 0 < λ1 ≤ λ2 ≤ · · · ,
I Eigenvalues λ ≥ 1/4 are embedded into the continuous

spectrum, unstable under perturbations.



Arithmetic groups.

Let G ⊂ GLn be a semisimple algebraic group over Q. Γ ⊂ G(Q) is
called arithmetic, if Γ is commensurable to G(Q) ∩ GLn(Z).

Examples:
1) Principal congruence subgroup

Γ(N) :=

{
γ ∈ SL(2,Z) : γ ≡

(
1 0
0 1

)
mod (N)

}
2) F = Q(

√
−D), D ∈ N, square free, OF ring of integers of F ,

SL(2,OF ) ⊂ SL(2,C) Bianchi group,
a ⊂ OF ideal, Γ(a) ⊂ SL(2,OF ) principal congruence subgroup.

Theorem (Margulis): Let rankR G > 1 and Γ ⊂ G an irreducible
lattice. Then Γ is arithmetic.

Theorem (Serre): Let n ≥ 3. Every arithmetic subgroup
Γ ⊂ SL(n,Z) contains a principal congruence subgroup.



Conjecture 1. Weyl law holds for congruence subgroups or, more
generally, arithmetic groups.

Conjecture 2 (Phillips, Sarnak, 1986). Except for the Teichmüller
space of the once punctured torus, for a generic Γ ⊂ SL(2,R), the
Laplace operator has only finitely many eigenvalues. They are all
contained in [0, 1/4).

Reason: Eigenvalues, embedded in the continuous spectrum, are
unstable with respect to perturbations.

Results.

a) The real rank one case. Selberg 1954,

I X = Γ\H2, Γ ⊂ SL(2,R) lattice.

I X is a hyperbolic surface of finite area.



Theorem 1: The resolvent RX (s) = (∆− s(1− s))−1, defined for
Re(s) > 1/2, s 6= s̄ , extends to a meromorphic family of bounded
operator

RX (s) : L2
cpt(X )→ H2

loc(X )

with poles of finite rank.
Faddejev, Colin de Verdiere, Mü., Zworski-Guillopé,

Methods: Resolvent equation, Lax-Phillips cut-off Laplacian,
weighted L2-spaces, Fredholm theory.



I The poles of RX (s) are called resonances. The poles in
(1/2, 1] ∪ (1/2 + iR) correspond to eigenvalues. Scattering
resonances are poles of RX (s) with Re(s) < 1/2.

I s ∈ (1/2, 1] ∪ (1/2 + iR), then λ = s(1− s) is an eigenvalue.

I The poles are distributed in a strip of the form
−c < Re(s) ≤ 1.



The figure on the left hand side shows the expected distribution of
the resonances for a generic Γ. The figure on the right shows the
distribution of resonances for the modular surface SL(2,Z)\H2,
under the assumption of the Riemann hypothesis. Except for the
pole at s = 1, the scattering resonances are on the line
Re(s) = 1/4 and the poles corresponding to eigenvalues are on the
line Re(s) = 1/2.



Put
NΓ(λ) = #

{
j : λj ≤ λ2

}
.

Let Nscr(λ) be the number of scattering resonances, counted with
their order, in the circle of radius λ.

Theorem (Selberg): We have

2NΓ(λ) + Nscr(λ) ∼ Area(X )

2π
λ2, λ→∞.

For SL(2,Z) one can determine the scattering resonances:

{ρ ∈ C : ρ pole of RX (s), Re(s) < 1/2}
= {ρ ∈ C : ζ(2ρ) = 0, 0 < Re(ρ) < 1/2},

ζ(s) Riemann zeta function. Let N(T ) be the number of zeros of
ζ(s) with 0 < Im(s) < T , 0 < Re(s) < 1. Then

N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log T ), T →∞.



I Similar for Γ(N) ⊂ SL(2,Z). Scattering resonances for
Γ(N)\H correspond to zeros of Dirichlet L-functions L(s, χ)
for Dirichlet characters χ mod m with m|N.

Corollary (Selberg):

NΓ(N)(λ) ∼ Area(X )

4π
λ2, λ→∞.

b) Higher rank The Weyl law holds in the following cases:

i) σ = 1, no estimation of the remainder term.

I S. Miller: X = SL(3,Z)\ SL(3,R)/ SO(3).

I E. Lindenstrauss, A. Venkatesh: G of ajoint type, Γ ⊂ G
congruence subgroup.

ii) σ ∈ Π(K ) arbitrary, no estimation of the remainder term.

I Mü.: Γ(N) ⊂ SL(n,Z) principal congruence subgroup of level
N, X = Γ(N)\SL(n,R)/ SO(n).



Matz, Mü. (Work in progress): Let G be a quasi-split classical
group, an inner form of SL(n), or the split exceptional group G2.
Then the Weyl law holds for all congruence subgroups Γ ⊂ G (Q)
and all σ ∈ Π(K ).

iii) σ = 1, estimation of the remainder term.
Let

Sn = SL(n,R)/SO(n), n ≥ 2,

and let Γ ⊂ SL(n,R) be a congruence subgroup. Let
0 = λ0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of ∆Γ in L2(Γ\Sn).

NΓ(λ) = #
{

j : λj ≤ λ2
}
.



Theorem 2 (Lapid, Mü.): Let d = dim Sn, N ≥ 3. Then

NΓ(N)(λ) =
Vol(Γ(N)\Sn)

(4π)d/2Γ(d/2 + 1)
λd + O(λd−1(log λ)max(n,3))

as λ→∞.

Theorem 3 (Finis, Lapid) Let G be a simply connected, simple
Chevalley group. Then there exists δ > 0 such that for any
congruence subgroup Γ of G (Z) one has

NX ,cus(λ) =
Vol(X )

(4π)d/2Γ(d2 + 1)
λd + O(λd−δ), λ→∞,

where X = Γ\G (R)/K and d = dim X .

I The method is based on the use of Hecke operators as in the
work of Lindenstrauss and Venkatesh, but in a slightly
different way.



Multidimensional version

I G = SL(n,R), G = NAK Iwasawa decomposition,

I a = Lie(A), W = W (G ,A).

I D(Sn) ring of invariant differential operators on Sn.

Harish-Chandra: D(Sn) ∼= S(aC)W .
Thus, if

χ : D(Sn) = S(a∗C)W → C

is a character, then

χ = χλ ↔ λ ∈ a∗C/W .

For λ ∈ a∗C let

Ecus(λ) =
{
ϕ ∈ L2

cus(Γ\Sn) : Dϕ = χλ(D)ϕ, D ∈ D(Sn)
}

Let mcus(λ) = dim Ecus(λ). Then the cuspidal spectrum is defined
as

Λcus(Γ) = {λ ∈ a∗C/W : mcus(λ) > 0}.



I Λcus(Γ) ∩ ia∗/W is the tempered spectrum

I Λcus(Γ)− (Λcus(Γ) ∩ ia∗/W ) the complementary spectrum.

Theorem (Lapid, Mü, 2007): Let Sn = SL(n,R)/SO(n) and
dn = dim Sn, Ω ⊂ ia∗ a bounded open subset with piecewise C 2

boundary, β(λ) be the Plancherel measure. Then as t →∞∑
λ∈Λcus(Γ(N)),λ∈tΩ

m(λ) =
vol(Γ(N)\Sn)

|W |

∫
tΩ
β(λ) dλ

+ O
(

tdn−1(log t)max(n,3)
)

and ∑
λ∈Λcus(Γ(N))
λ∈Bt(0)\ia∗

m(λ) = O
(

tdn−2
)
.

Duistermaat, Kolk, Varadarajan, 1979: This results holds for G
arbitrary, and Γ ⊂ G a uniform lattice.



b) Limit multiplicities

I µPL Plancherel measure on Π(G ), support of µPL is the
tempered dual Πtemp(G ).

I Up to a closed subset of Plancherel measure zero, the
topological space Πtemp(G ) is homeomorphic to a countable
union of Eucledian spaces of bounded dimension.

I Under this homeomorphism, the Plancherel density is given by
a continuous function.

I A relatively quasi-compact subset of Π(G ) is called bounded.

I Γ = Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γj ⊃ · · · tower of normal subgroups of
finite index, ∩jΓj = {e}.

µj =
1

vol(Γj\G )

∑
π∈Π(G)

mΓj
δπ.

Conjecture: µj → µPL as j →∞.



Results:
a) Γ ⊂ G uniform lattice.
De George-Wallach, Delorme: Answer affirmative.

b) Γ ⊂ G non-uniform lattice.
Savin: π ∈ Πdis(G ) (discrete series), d(π) formal degree.

lim
j→∞

µj({π}) = d(π).

Theorem (Finis, Lapid, Mü.), 2014: Let G = SL(n,R) and
Γn(N) ⊂ SL(n,Z) the principal congruence subgroup of level N.
Let µN := µΓn(N).

1) For every Jordan measurable set A ⊂ Πtemp(G ) we have

µN(A)→ µPL(A), N →∞.

2) For every bounded subset A ⊂ Π(G ) \ Πtemp(G ) we have

µN(A)→ 0, N →∞.



d) Analytic torsion

I (X , g) compact Riemannian manifold, ρ : π1(X )→ GL(V )
finite dimensional representation, Eρ → X flat vector bundle
associated to ρ, h fibre metric in Eρ.

I Let T
(2)
X (ρ) be the L2-torsion, introduced by John Lott and

Mathai Varghese.

I Let π1(X ) = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γj ⊃ · · · ⊃ {e},
∩Γj = {e}, be a tower of normal subgroups of finite index.

I Xj := Γj\X̃ finite covering of X , Ej → Xj flat vector bundle
associated to ρ|Γj

.

Conjecture (Lück): The limit of log TXj
(ρj)/[Γ : Γj ] as j →∞

exists and

lim
j→∞

log TXj
(ρj)

[Γ : Γj ]
= log T

(2)
X (ρ).



Results

I X̃ = G/K Riemannian symmetric space of non-positive
curvature, Γ ⊂ G co-compact, torsion free lattice, X = Γ\X̃ .

I τ : G → GL(V ) finite dimensional representation, ρ = τ |Γ,
Eρ → X flat vector bundle associated to ρ.

I Ẽ → X̃ homogeneous vector bundle associated to
σ := τ |K : K → GL(V ). Then there is a canonical
isomorphism

Γ\Ẽ ∼= Eρ.

I g = Lie(G ), k = Lie(K ), g = k⊕ p Cartan decomposition.

I 〈·, ·〉 inner product in V , skew-symmetric with respect to k,
symmetric with respect to p.

I 〈·, ·〉 induces G -invariant metric in Ẽ and therefore, fibre
metric in Eρ ∼= Γ\Ẽ .



Theorem (Bergeron/Venkatesh). Let (Γj)j∈N be a family of normal

subgroups of finite index of Γ. Let Xj = Γj\X̃ . Let τ ∈ Rep(G )
and Ej → Xj the flat vector bundle associated to ρj = τ |Γj

,
equipped with the metric defined by the inner product 〈·, ·〉 in V .
Let θ : G → G be the Cartan involution. Assume that τ ◦ θ 6∼= τ
and vol(Xj)→∞. Then

lim
j→∞

log TXj
(ρj)

[Γ : Γj ]
= log T

(2)
X (τ).

I This theorem has interesting applications to the study of the
growth of torsion in the cohomology of arithmetic groups.



4. The Arthur-Selberg trace formula.
The trace formula is the main tool to study spectral problems for
locally symmetric spaces.
i) rankR G = 1.

I π unitary representation of G , f ∈ C∞c (G ),

π(f ) :=

∫
G

f (g)π(g)dg .

I Γ ⊂ G lattice, RΓ,dis right regular representation of G in

L2
dis(Γ\G ) = ⊕̂π∈Π(G)mΓ(π)Hπ.

Let Γ be cocompact and f ∈ C∞c (G ) K -finite. Then RΓ(f ) is a
trace class operator, let C (Γ) denote the Γ-conjugacy classes.

Tr RΓ(f ) =
∑

π∈Π(G)

mΓ(π) tr π(f )

=
∑

[γ]∈C(Γ)

vol(Γγ\Gγ)

∫
Gγ\G

f (g−1γg)dg .



I Gγ and Γγ centralizer of γ in G resp. Γ.

I JG (f , γ) =
∫
Gγ\G f (g−1γg)dg orbital integral.

I JG (f , γ) invariant distribution on G , can be studied by
Harish-Chandra’s Fourier inversion formula.

Example

I X = Γ\H2 a compact hyperbolic surface.

I ∆: C∞(X )→ C∞(X ) Laplace operator. Let
λ0 = 0 < λ1 ≤ λ2 ≤ · · · → ∞ the eigenvalues of ∆.

I ∆̃ : C∞(H2)→ C∞(H2) Laplace operator on the universal
covering of X .

I k(t, x , y) kernel of e−t∆̃. There exists ht(·) ∈ C∞(R+) such
that

k(t, x , y) = ht(d(x , y)).

I ht may be regarded as C∞-function on SL(2,R) which is
SO(2)-bi-invariant.



Then the STF, applied to the heat operator e−t∆, gives the
following equality

Tr RΓ(ht) =
∞∑
j=0

e−tλj =
vol(X )

4π

∫
R

e−(1/4+r2)tr tanh(πr)dr

+
∑
{γ}6={e}

`(γ0)

2 sinh(`(γ)/2)

e−
t
4
− `(γ)2

4t

√
4πt

.

This implies
∞∑
j=0

e−tλj ∼ vol(X )

4π
t−1, t → 0,

and by Karamata’s theorem we obtain Weyl’s law

NΓ(λ) =
vol(X )

4π
λ+ o(λ),

as λ→∞.



b) Γ not uniform.∑
π∈Πdis(G)

mΓ(π) tr π(f ) + contr. of cont. spectrum

= vol(Γ\G )f (e) + weighted orbital integrals

Example: G = SL(2,R), Γ = SL(2,Z).

E (z , s) =
∑

γ∈Γ∞\Γ

Im(γz)s =
∑

(m,n)=1

y s

|mz + n|2s
, Re(s) > 1, z = x+iy ,

Eisenstein series.

I E (z , s) admits meromorphic extension to s ∈ C, holomorphic
on Re(s) = 1/2.

I E (·, s) ∈ C∞(Γ\H2) and ∆zE (z , s) = s(1− s)E (z , s).

I r ∈ R 7→ E (z , 1/2 + ir) is a generalized eigenfunction.



I Fourier expansion: E (x + iy , s) = y s + c(s)y 1−s +
∑

n 6=0 · · · .
I c(s) scattering matrix.

I Contribution of the continuous spectrum given by∫
R

f (r)
c ′

c
(1/2 + ir)dr .

I G = KAN Iwasawa decomposition, log : N → n.

I Weighted orbital integral:∫
N

f (n) log ‖ log n‖dn.

The basic idea in the application of the trace formula is to show
that the additional terms are negligible.



Example: Weyl law, Γ = SL(2,Z), 0 = λ0 < λ1 ≤ λ2 ≤ · · ·
eigenvalues of ∆ on Γ\H2. Selberg trace formula applied to the
heat operator e−t∆ gives∑

j

e−tλj− 1

4π

∫
R

e−(1/4+r2)t c ′

c
(1/2 + ir)dr + · · ·

=
vol(Γ\H)

4π

∫
R

e−(1/4+r2)tr tanh(πr)dr + · · · .

I study behavior as t → 0+.

One has

c(s) =
√
π

Γ(s − 1/2)ζ(2s − 1)

Γ(s)ζ(2s)

The zeta function satisfies |ζ ′(1 + it)| � (log |t|)6 for |t| ≥ 2. This
implies that ∑

j

e−tλj ∼ vol(Γ\H)

4π
t−1, t → 0 + .



Tauberian theorem implies the Weyl law.

Limit multiplicities

I C∞c,fin(G ) bi-K -finite functions in C∞c (G ).

I f ∈ C∞c,fin(G ), π ∈ Π(G ), f̂ (π) := tr π(f ).

I π ∈ Π(G ) 7→ f̂ (π) Fourier transform.

Sauvageot’s density principle: Assume that for all f ∈ C∞c,fin(G )

one has µj(f̂ )→ µPL(f̂ ) as j →∞. Then µj → µPL, j →∞, in
the weak sense.

Now
vol(Γj\G )µj(f̂ ) = Tr RΓ,dis(f ), µPL(f̂ ) = f (e).

STF implies

µj(f̂ )+
1

vol(Γj\G )
(contr. of cont. spec)

= µPL(f̂ ) +
1

vol(Γj\G )
(sum of weighted orbital int.)



5. Automorphic L-functions.

Automorphic L-functions are the generalizations of Dirichlet
L-functions. They appear in the constant terms of Eisenstein
series. Logarithmic derivatives of automorphic L-functions are the
main ingredients of the contribution of the continuous spectrum to
the spectral side of the Arthur trace formula.

Example: G = SL(2,R), Γ = SL(2,Z)
Maass forms:

I f ∈ L2(Γ\H), ∆f = λf , λ ≥ 1/4, f (−z̄) = f (z).

Hecke operators:

Tnf (z) =
1√
n

∑
ad=n

d−1∑
b=0

f

(
az + b

d

)
, n ∈ N.

I [Tn,Tm] = 0, [Tn,∆] = 0, m, n ∈ N, selfadjoint in L2(Γ\H).
I Maass forms can be simultaneously diagonalized.

Tnf = λf (n)f , n ∈ N.



L(s, f ) :=
∞∑
n=1

λf (n)

ns
=
∏
p

Lp(s, f ), Re(s) > 1,

where

Lp(s, f ) = (1− α1,f (p)p−s)−1(1− α2,f (p)p−s)−1

I L(s, f ) is an example of an automorphic L-function, Euler
product of degree two.

I N(T ) number of zeros of L(s, f ) in | Im(s)| < T ,
0 < Re(s) < 1. Then

N(T ) ∼ 2

π
T log T , T →∞.

I Can be generalized to GLn and other groups G .

I To this end we need to pass to the adelic framework



I p prime number, Qp field of p-adic numbers, Zp ring of
p-adic intergers.

GLn(A) = GLn(R)×
∏
p

′ GLn(Qp)

I Restricted direct product. GLn(A) consists of all sequences
(g∞, g2, g3, · · · , gp, · · · ), gp ∈ GLn(Qp), such that
gp ∈ GLn(Zp) for almost all p.

I Kp := GLn(Zp) maximal compact in GLn(Qp).

I π irreducible unitary representation of GLn(A). Then
π = ⊗vπv , πv ∈ Π(GLn(Qv )), v =∞ or v = p,

I πp unramified for almost all p, i.e., πp has non-zero Kp-fixed
vector for almost all p.

I GLn(Q) ⊂ GLn(A) by diagonal embedding, discrete subgroup.

I π ∈ Π(GLn(A)) cuspidal automorphic representation, if π
occurs in the space of cusp forms L2

cus(GLn(Q)\GLn(A)).



I π cuspidal automorphic representation

I Automorphic L-function

L(s, π) =
∏
p

Lp(s, π), Re(s)� 0.

Using the Langlands parameters of πp, one defines numbers
αj ,π(p) as above. Then

Lp(s, π) =
n∏

j=1

(1− αj ,π(p)p−s)−1.

I L(s, π) standard automorphic L-function.

I One can form more general L-functions from these basic ones,
that is the tensor powers.

I πi cuspidal automorphic representations of GLni (A), i = 1, 2.

I Rankin-Selberg convolution is given as Euler product

L(s, π1 ⊗ π2) =
∏
p

L(s, π1,p ⊗ π2,p), Re(s)� 0.



I For p such that π1,p and π2,p are unramified, the local
L-factor is given by

L(s, π1,p ⊗ π2,p) =

n1∏
j=1

n2∏
k=1

(1− αj ,π1(p)αk,π2(p)p−s)−1.

I L(s, π1 ⊗ π2) admits meromorphic extension to C, satisfies
functional equation.

I Logarithmic derivatives of Rankin-Selberg L-functions are the
main ingredients of the contribution of the continuous
spectrum to the trace formula for GLn.

I Using the analytic properties of the Rankin-Selberg
L-functions, one can show that for the Weyl law and the limit
multiplicity problem for GLn, the contribution of the
continuous spectrum is negligible.

I To deal with the corresponding automorphic L-functions for
classical groups (symplectic, orthogonal, unitery) one can use
Arthur’s work on the endoscopic classification of automorphic
representations to reduce the problems to the case of
L-functions for GLn.


