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1. Automorphic forms, automorphic representations

Basic set up
» G connected semisimple Lie group, finite center, non-compact
type. For example: SL(n,R), Sp(n,R), SO(p, q), p,q € N.

H Lie group, MN(H) equivalence classes of irreducible unitary
representations of H.

K C G maximal compact subgroup, Ex.: SO(n) C SL(n,R).

X = G /K Riemannian symmetric space.

v

v

v

v

I C G lattice, i.e., discrete subgroup with vol(I'\G) < occ.
» X = I'\)? locally symmetric space, manifold if I" is torsion free.

Example: H? = SL(2,R)/SO(2), I = SL(2,Z), I'\H? modular
surface.



Automorphic forms
» g = Lie(G), Z(gc) center of the universal enveloping algebra
of g® C, Q € Z(gc) Casimir element.

¢ € C=(I'\G) is an automorphic form, if ¢ is K-finite,
Z(gc)-finite, and of moderate growth.

Especially, a joint eigenfunction ¢ € L2(M\G)X = 12('\X) of
Z(gc) is an automorpic function.

P C G parabolic subgroup, P = MpApNp, Mp reductive,
Ap = (RT)k, Np nilpotent.

P is called cuspidal parabolic, if (' Np)\Np is compact.
¢ € C>(I'\G) automorhic form, ¢ is called cusp form, if

/ f(ng)dn=0
(TNNp)\Np

for all proper cuspidal parabolic subgroups P of G.
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v

v
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Representation theory

> Rr right regular representation of G in L?(I'\G), defined by

(Rr(g)f)(g) = f(g'g), fel*\G).

» Langlands’ theory of Eisenstein series implies decomposition in
invariant subspaces

LY(T\G) = L3.(T\G) @ L3(T\G)

» [2 (M\G) maximal invariant subspace, spanned by irreducible
subrepresentations,

p——

Rr7dis & @WGH(G) mr(ﬂ')’iT

» mr(m) = dimHomg(m, Rr) = dim Homg (7, Rr 4is)-
» mr(m) < oo for all m € M(G).



» L2 (I'\G) subspace of cusp forms, L2 (M\G) C L3 (F'\G) and

Lglb(r\G) = LEus(r\G) ® Lfes(r\G)
Main problem: Study multiplicities mr (7).

» Apart from special cases, one cannot hope to describe mr ()
explicitly.

» There exist formulas for mr(m) if 7 is a discrete series
representation.



2. Asymptotic behavior of automorphic spectra

» Study behavior of multiplicity with respect to the growth of
various parameters such as the infinitesimal character or/and
the level of congruence subgroups.

Examples:
a) Weyl law.

» For o € M(K) let
N(G;o) = {m € N(G): [r|k: ] > 0}.
» A\ = () Casimir eigenvalue of m € M(G).
Nr(X\; o) = Z mr (7).

weN(G;o)
[Ax|<A

Problem: Behavior of Nr(\;0) as A — oo.

Equivalent problem:
»o=1 X=G/K X=T\X,
L2(M\G)K =2 [2(T\G/K) = L%(X), A: C®(X) — C*=(X)
Laplace operator.



Lemma (Kuga): —R(Q2) = A.
» 0< A < A < --- eigenvalues of A in L2(X).
> Nr(A) =#{j: A < A}

Problem: Study behavior of N(\) as A — oo.

b) Limit multiplicity problem.
» Let IN(G) be equipped with the Fell topology.
Define a measure on I(G) by

1
TGP
wel(G)

where J, is the delta distribution.

Problem: Study the behavior of yr as vol(I'\G) — oc.



c) Distribution of Hecke eigenvalues

Put I'(1) = SL(2,Z), Sk(T(1)) space of cusp forms w.r.t. (1) of
weight k.
Th: Sk(M(1)) — Sk(r(1))
the n-th Hecke operator.
» Sy the set of all normalized Hecke eigenforms f € S (I'(1)).
Then
Tof = af(n)f, f € 5.
Put Ar(n) = n1=kK/2a,(n).
Deligne:  Af(p) € [—2,2] for p prime.

Conjecture ( Serre): For each h € C([-2,2])

7T(1X)Zh(>\f(p)) 27T/ (t)V4— t2dt, x — oo.

p<x



Sato-Tate conjecture for modular forms.

Theorem (H. Nagoshi, 2006): Suppose that k = k(x) satisfies

:ggi — 00 as x — 0o. Then for every h € C([-2,2]), we have

W(X)l#sk S h(Ae(p) — % /_22 h(t)Va— 2dt, x - oo,

p<x
feSy

d) Analytic torsion

Analytic torsion is a more sophisticated spectral invariant which
recently found interesting applications to the study of the growth
of torsion in the cohomology of arithmetic groups. It is defined as
follows.

» Let (X, g) be a compact Riemannian manifold of dimension n,
p: m(X) = GL(V) a finite dimensional representation of the
fundamental group, E, — X flat vector bundle, associated to
p., h fibre metric in E,.



Ap(p): NP(X, E,) = NP(X, E,) Laplace operator on
E,-valued p-forms, defined with respect to g and h.

Ap(p) is essentially self-adjoint. Its spectrum consisits of
eigenvalues 0 < A\; < A < -+ — oo of finite multiplicities.

Let

=A%, Re(s)>n/2,

Aj>0

zeta function of Ap(p).

Cp(s; p) admits meromorphic extension to s € C, holomorphic

at s = 0.
s—O)

det A,(p) = exp (—jscp(s:,o)

regularized determinant of Ay(p).



» The Ray-Singer analytic torsion Tx(p) € RT is defined by
n Cent
Tx(p) := [ [det Ag(p)) 0" 972
g=1

> 7T1(X):r03r1 Ol DD er”- D) {e}, ﬂrj:{e},
tower of normal subgroups of finite index.

> X = I'J-\)? finite covering of X, E; — X; flat vector bundle
associated to pr .

log Tx. (p;
Problem: Study behavior of %ﬁ:g}’) as j — oo.
J

e) Families of automorphic forms (Sarnak)



2. Conjectures and results
a) Wely law

i) [ cocompact. n = dim X. Then the following Weyl law holds
dim(o) vol(M\G)
(47)"/2M(n/2 + 1)

Nr(X; o) = A2 L o(A=D/2y N S 0.

» o = 1: Avakumovié, Hormander: general elliptic operators.
» o arbitrary: P. Ramacher.

ii) '\ G non-compact:
Problem: Nonempty continuous spectrum.
Example: X = IN\H? hyperbolic surface of finite area,
non-compact.
» Continuous spectrum of A: [1/4,00).
> possible eigenvalues of A: Ag=0< A1 <A < -0

» Eigenvalues A > 1/4 are embedded into the continuous
spectrum, unstable under perturbations.



Arithmetic groups.

Let G C GL, be a semisimple algebraic group over Q. ' C G(Q) is
called arithmetic, if I' is commensurable to G(Q) N GL,(Z).

Examples:
1) Principal congruence subgroup

r(N) = {7 €SL(2,7): v = ((1) 2) mod (N)}

2) F =Q(v—-D), D € N, square free, OF ring of integers of F,
SL(2,Of) C SL(2,C) Bianchi group,
a C Of ideal, I'(a) C SL(2, OF) principal congruence subgroup.

Theorem (Margulis): Let rankg G > 1 and I' C G an irreducible
lattice. Then I is arithmetic.

Theorem (Serre): Let n > 3. Every arithmetic subgroup
I' € SL(n,Z) contains a principal congruence subgroup.



Conjecture 1. Weyl law holds for congruence subgroups or, more
generally, arithmetic groups.

Conjecture 2 (Phillips, Sarnak, 1986). Except for the Teichmiiller
space of the once punctured torus, for a generic ' C SL(2,R), the
Laplace operator has only finitely many eigenvalues. They are all

contained in [0,1/4).

Reason: Eigenvalues, embedded in the continuous spectrum, are

unstable with respect to perturbations.

Results.

a) The real rank one case. Selberg 1954,

» X =T\H?, I C SL(2,R) lattice.
» X is a hyperbolic surface of finite area.



Theorem 1: The resolvent Rx(s) = (A — s(1 — s))~ 1, defined for
Re(s) > 1/2, s #5, extends to a meromorphic family of bounded
operator

Rx(s) : L2

cpt

(X) = Hao(X)
with poles of finite rank.
Faddejev, Colin de Verdiere, M., Zworski-Guillopé,

Methods: Resolvent equation, Lax-Phillips cut-off Laplacian,
weighted L?-spaces, Fredholm theory.



» The poles of Rx(s) are called resonances. The poles in
(1/2,1]U(1/2 4 iR) correspond to eigenvalues. Scattering
resonances are poles of Rx(s) with Re(s) < 1/2.

scattering
poles .
L] - eigenvalues
L]
L]
° /

e [—eo—o

Re(s)=1/2

» se€(1/2,1]U(1/2+ iR), then A = s(1 — s) is an eigenvalue.
» The poles are distributed in a strip of the form
—c < Re(s) < 1.



Re(s)=1/2 Re(s)=1/4 Re(s)=1/2

The figure on the left hand side shows the expected distribution of
the resonances for a generic . The figure on the right shows the
distribution of resonances for the modular surface SL(2,Z)\H?,
under the assumption of the Riemann hypothesis. Except for the
pole at s = 1, the scattering resonances are on the line

Re(s) = 1/4 and the poles corresponding to eigenvalues are on the
line Re(s) =1/2.



Put
Nr(\) = #{j: A < N}
Let Ny (\) be the number of scattering resonances, counted with

their order, in the circle of radius .

Theorem (Selberg): We have

Area( X
2Nr()\) + Nscr(>\) ~ re;ﬂ_())\zv A — oo.

For SL(2,Z) one can determine the scattering resonances:
{p € C: p pole of Rx(s), Re(s) < 1/2}
={p € C:((2p) =0, 0 <Re(p) <1/2},

¢(s) Riemann zeta function. Let N(T) be the number of zeros of
¢(s) with 0 < Im(s) < T, 0 < Re(s) < 1. Then
T T

-
N(T) = Elgg—z——kO(logT) T — 0.



» Similar for [(N) C SL(2,Z). Scattering resonances for
I'(N)\H correspond to zeros of Dirichlet L-functions L(s, x)
for Dirichlet characters x mod m with m|N.

Corollary (Selberg):

Area(X)

N\ = oo
47

Nrny(A) ~

b) Higher rank The Weyl law holds in the following cases:

i) 0 =1, no estimation of the remainder term.
» S. Miller: X =SL(3,Z)\SL(3,R)/SO(3).
» E. Lindenstrauss, A. Venkatesh: G of ajoint type, [ C G
congruence subgroup.
ii) o € M(K) arbitrary, no estimation of the remainder term.

» Mi.: T'(N) C SL(n,Z) principal congruence subgroup of level
N, X =T(N)\SL(n,R)/SO(n).



Matz, Mi. (Work in progress): Let G be a quasi-split classical
group, an inner form of SL(n), or the split exceptional group G,.
Then the Weyl law holds for all congruence subgroups I' C G(Q)
and all o € M(K).

iii) o = 1, estimation of the remainder term.
Let
Sp=SL(n,R)/SO(n), n>2,

and let I C SL(n,R) be a congruence subgroup. Let
0=MXo <A1 <X <--- be the eigenvalues of Ar in L2(I'\S,).

Nr(\) = #{j: )\ < A}



Theorem 2 (Lapid, Mii.): Let d =dimS,, N > 3. Then

Vol(T(N)\Sn)

d d—1 max(n,3
(a2 1 1) T O log )™ )

Nrny(A) =
as A — oo.

Theorem 3 (Finis, Lapid) Let G be a simply connected, simple
Chevalley group. Then there exists > 0 such that for any
congruence subgroup ' of G(Z) one has

_ Vol(X)
" @mRr(g + 1)

N cus(A) A+ 0N, A= o,
where X =T\ G(R)/K and d = dim X.

» The method is based on the use of Hecke operators as in the
work of Lindenstrauss and Venkatesh, but in a slightly
different way.



Multidimensional version

» G =SL(n,R), G = NAK lwasawa decomposition,
> a = Lie(A), W = W(G, A).
» D(Sp) ring of invariant differential operators on S,,.

Harish-Chandra: D(S,) = S(ac)".
Thus, if
is a character, then
X=X\ A€ap/W.
For A € ag: let
Ec(N) = {9 € L2,(N\S,): Dy = xa(D)e. D € D(Sy)}

Let meus(A) = dim Eus(A). Then the cuspidal spectrum is defined

N Aeus(M) = {X € ag/W: meus(A) > 0}



> Acus(l) Nia*/W is the tempered spectrum
> Acus(lM) — (Acus(I) Nia* /W) the complementary spectrum.
Theorem (Lapid, Mi, 2007): Let S, = SL(n,R)/SO(n) and

d, =dim S,, Q C ia* a bounded open subset with piecewise C?
boundary, 5(\) be the Plancherel measure. Then as t — oo

3 m(A):"O"W|\5/5A)dA

AEAcus(T(N)),\ELQ

+ 0 (4 (log £y

and

Y m)=0 (td”_z) .

AAcus(T(N))
AEB:(0)\ia*

Duistermaat, Kolk, Varadarajan, 1979: This results holds for G
arbitrary, and [ C G a uniform lattice.



b) Limit multiplicities
» upy Plancherel measure on IN(G), support of ppy is the
tempered dual Memp(G).

> Up to a closed subset of Plancherel measure zero, the
topological space Miemp(G) is homeomorphic to a countable
union of Eucledian spaces of bounded dimension.

» Under this homeomorphism, the Plancherel density is given by
a continuous function.

» A relatively quasi-compact subset of [1(G) is called bounded.

» =l DID>---DI;D--- tower of normal subgroups of
finite index, N;I’; = {e}.

1
pi=— mrOr.
J = Vol(T;\G) W;(:G) J

Conjecture: pj — ppp as j — oo.



Results:
a) [ C G uniform lattice.
De George-Wallach, Delorme: Answer affirmative.

b) ' C G non-uniform lattice.
Savin: 7 € Myis(G) (discrete series), d(m) formal degree.

lim p1;({}) = d(r).

Jj—o0o

Theorem (Finis, Lapid, Mii.), 2014: Let G = SL(n,R) and
I,(N) C SL(n,Z) the principal congruence subgroup of level N.
Let un := pr (n)-

1) For every Jordan measurable set A C lNMiernp(G) we have

pn(A) = ppr(A), N — oo,
2) For every bounded subset A C M(G) \ Miemp(G) we have

un(A) =0, N — oco.



d) Analytic torsion

» (X, g) compact Riemannian manifold, p: m1(X) — GL(V)
finite dimensional representation, £, — X flat vector bundle
associated to p, h fibre metric in E,.

> Let T)(<2)(p) be the L2-torsion, introduced by John Lott and
Mathai Varghese.

» Let m(X)=To DM DM D>---DI;D---D{e},
Al; = {e}, be a tower of normal subgroups of finite index.

> X = I'J-\)? finite covering of X, E; — X; flat vector bundle
associated to pr .

Conjecture (Liick): The limit of log Tx;(p;)/[: T;] as j — oo
exists and
log Tx; (1))

: e
A o Tx (P)-



Results

» X = G/K Riemannian symmetric space of non-positive
curvature, I C G co-compact, torsion free lattice, X = N\ X.

» 7: G — GL(V) finite dimensional representation, p = 7|r,
E, — X flat vector bundle associated to p.

» E— X homogeneous vector bundle associated to
0 :=T|k: K — GL(V). Then there is a canonical
isomorphism B

MNE=E,.

» g = Lie(G), t = Lie(K), g = £ @ p Cartan decomposition.

» (-,-) inner product in V/, skew-symmetric with respect to ¢,
symmetric with respect to p.

> (-,-) induces G-invariant metric in E and therefore, fibre
metric in E, = T'\E.



Theorem (Bergeron/Venkatesh). Let (I';)jen be a family of normal
subgroups of finite index of I'. Let X; = Fj\)~(. Let 7 € Rep(G)
and E; — X; the flat vector bundle associated to p; = T]rj,
equipped with the metric defined by the inner product (-,-) in V.
Let 8: G — G be the Cartan involution. Assume that 7060 2% 7
and vol(X;) — co. Then

log Tx.(pj) @)
lim ——L——="=log T :
Am ey e Tk ()
» This theorem has interesting applications to the study of the
growth of torsion in the cohomology of arithmetic groups.



4. The Arthur-Selberg trace formula.
The trace formula is the main tool to study spectral problems for

locally symmetric spaces.
i) rankg G = 1.

» T unitary representation of G, f € C2°(G),

()= [ Fleym(e)de.
» [ C G lattice, Rr g;s right regular representation of G in

chlis(r\G) = E/|§7rel‘|(G)’7"F(7T)H7r~

Let I' be cocompact and f € C2°(G) K-finite. Then Rr(f) is a
trace class operator, let C(I') denote the I'-conjugacy classes.

TrRe(F)= > mr(w)trr(f)

weM(G)

= Z voI(FV\GV)/G\Gf(g_lvg)dg.

[vlec(r) 7



» G, and [, centralizer of v in G resp. T.
» Jo(f,v) = fGW\G f(g 'yg)dg orbital integral.

» Jg(f,~) invariant distribution on G, can be studied by
Harish-Chandra’s Fourier inversion formula.

Example
» X = T\H? a compact hyperbolic surface.
» A: C®(X) — C*°(X) Laplace operator. Let
A =0< A <X <. — o0 the eigenvalues of A.
» A: C®(H?) — C>(H?2) Laplace operator on the universal
covering of X.

> k(t,x,y) kernel of e~tD. There exists he(-) € C=(R™) such
that
k(t,X,y) = ht(d(X7y))

» hy may be regarded as C*°-function on SL(2,R) which is
SO(2)-bi-invariant.



Then the STF, applied to the heat operator e~ 2, gives the
following equality

oo
TrRr(h :Ze A = VOI(X)/e_(1/4+r2)trtanh(7rr)dr
Jj=0 R
e i
> =
2sinh(¢ 2
[Ele) S'"(( )/) At
This implies

ieft/\j ~ VOl(X) t*l

, t—0,
41

j=0

and by Karamata's theorem we obtain Weyl's law

vol(X)

Nr(A) = 41

A+ o(N),

as A — oo.



b) I not uniform.

Z mr(m) trw(f) + contr. of cont. spectrum
m€Mgis(G)
= vol(I"\ G)f(e) + weighted orbital integrals

Example: G =SL(2,R), I =SL(2,Z).

y° .
E(Z, S) = Z |m(’72)5 — Z m7 Re(s) > ]_7 z = x+ly,
YEM\I (m,n)=1
Eisenstein series.

» E(z,s) admits meromorphic extension to s € C, holomorphic
on Re(s) =1/2.

> E(-,s) € C®(N'\H?) and A,E(z,s) = s(1 —s)E(z,s).

» re R+ E(z,1/2 + ir) is a generalized eigenfunction.



v

Fourier expansion: E(x + iy,s) = y* + c(s)y*~° + S0

v

c(s) scattering matrix.

v

Contribution of the continuous spectrum given by

/ f(r)il(l/2 + ir)dr.
R C

v

G = KAN lIwasawa decomposition, log: N — n.

v

Weighted orbital integral:

/ f(n)log || log nl||dn.
N

The basic idea in the application of the trace formula is to show
that the additional terms are negligible.



Example: Weyl law, ' =SL(2,Z), 0 =X < A1 < X2 <
eigenvalues of A on M\H?. Selberg trace formula applied to the

heat operator e 2 gives
—en L[ (1/a4r2) i C
Ze i—— [ e = (1/2 +ir)dr + -
F 47 R C
vol(I"\H)

= 47T/Re(1/4+’2)trtanh(7rr)dr+'~

» study behavior as t — 0+.
One has

MNs—1/2)¢(2s —1)
c(s) =7
) (=) (2)
The zeta function satisfies |¢'(1 + it)| < (log |t|)® for |t| > 2. This
implies that

S W)

t—0+.
47 ’ +

Jj



Tauberian theorem implies the Weyl law.

Limit multiplicities
> C2%,(G) bi-K-finite functions in C°(G).

c,fin
> f e C%.(G), meN(G), f(r) = trm(f).
» 7 € N(G) — f(r) Fourier transform.

Sauvageot's density principle: Assume that for all f € C2%,(G)

A A

one has pj(f) = ppr(f) as j — co. Then pj — ppr, j — o0, in
the weak sense.

Now A A
vol(T\G)j(F) = Tr Rr ais(),  ppr(f) = f(e).
STF implies

i (F)+ (contr. of cont. spec)

1
V0|(rj\G)

= upL(F) + (sum of weighted orbital int.)

1
VO|(rj\G)



5. Automorphic L-functions.

Automorphic L-functions are the generalizations of Dirichlet
L-functions. They appear in the constant terms of Eisenstein
series. Logarithmic derivatives of automorphic L-functions are the
main ingredients of the contribution of the continuous spectrum to
the spectral side of the Arthur trace formula.

Example: G =SL(2,R),  =SL(2,Z)
Maass forms:
» £ L2(M\H), Af = M, A\ > 1/4, f(—2) = f(2).

Hecke operators:

d—1
1 az+b
T,f(z) = — E f , N.
(2) Vn Jormitrert < d ) ne

> [Th, Tm] =0, [Tn, A] =0, m, n € N, selfadjoint in L?(F\H).
» Maass forms can be simultaneously diagonalized.

Tof = Ar(n)f, neN,




)= A’;(s”) “TILo(sF) Re(s) > 1,
n=1

p

where

Lo(s,f) = (1 —are(p)p ) 11 — azr(p)p*)

v

L(s, f) is an example of an automorphic L-function, Euler
product of degree two.

N(T) number of zeros of L(s,f) in [Im(s)| < T,

0 < Re(s) < 1. Then

v

2
N(T) ~ ;Tlog T, T — oc.

v

Can be generalized to GL, and other groups G.

v

To this end we need to pass to the adelic framework



p prime number, Q, field of p-adic numbers, Z, ring of
p-adic intergers.

GLn(A) = GLa(R) x [ ]/ GLA(Qp)

Restricted direct product. GL,(A) consists of all sequences

(g007g2,g35 e )gpa e )1 gp € GLn(@p), SUCh that
gp € GLn(Zp) for almost all p.

Kp := GL,(Zp) maximal compact in GL,(Qp).

7 irreducible unitary representation of GL,(A). Then
m™=®,my, ™ € N(GL,(Qy)), v=00o0r v =p,

7p unramified for almost all p, i.e., m, has non-zero K,-fixed
vector for almost all p.

GL,(Q) C GL,(A) by diagonal embedding, discrete subgroup.
m € MN(GL,(A)) cuspidal automorphic representation, if

cus(GLA(Q@)\ GL,(A)).

occurs in the space of cusp forms L2



» 7 cuspidal automorphic representation
» Automorphic L-function

L(s,m) =[] Lp(s.7), Re(s) > 0.

Using the Langlands parameters of 7, one defines numbers
aj(p) as above. Then

Lo(s,m) = [J(1 = er(p)p~*) .
j=1
» L(s, ) standard automorphic L-function.

» One can form more general L-functions from these basic ones,
that is the tensor powers.

» m; cuspidal automorphic representations of GL,, (A), i =1, 2.
» Rankin-Selberg convolution is given as Euler product

L(S,ﬂ'l & 7T2) = H L(S,?Tl,p ® 7r2,p)7 Re(s) > 0.
p



For p such that 71 , and 75 , are unramified, the local
L-factor is given by
n

L(s,m1p @ m2,p) H H(l imy (P)etkmy (P)P ™) 7

Jj=1k=1

L(s, m ® m2) admits meromorphic extension to C, satisfies
functional equation.

Logarithmic derivatives of Rankin-Selberg L-functions are the
main ingredients of the contribution of the continuous
spectrum to the trace formula for GL,,.

Using the analytic properties of the Rankin-Selberg
L-functions, one can show that for the Weyl law and the limit
multiplicity problem for GL,, the contribution of the
continuous spectrum is negligible.

To deal with the corresponding automorphic L-functions for
classical groups (symplectic, orthogonal, unitery) one can use
Arthur's work on the endoscopic classification of automorphic
representations to reduce the problems to the case of
L-functions for GL,.



