1. The wave equation

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds.

Let $U \subset \mathbb{R}^n$ be an open set and let

$$\Delta = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}$$

be the Euclidean Laplace operator. Then the wave equation on U is the following differential equation.

$$\begin{pmatrix} \frac{\partial^2}{\partial t^2} - \Delta \end{pmatrix} u(x,t) = f(x,t), u(x,t) = 0, \quad x \in \partial U, \ t > 0. u(x,0) = u_0(x), \quad \frac{\partial u}{\partial t}(x,0) = u_1(x).$$

Here f, u_0 and u_1 are given functions.

6.1. The wave equation on \mathbb{R}^n .

To understand the behavior of the solution of the wave equation we consider first the wave equation on the real line.

On \mathbb{R} we consider the following equation

$$\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}\right) u(x,t) = 0,$$
$$u(x,0) = g(x), \quad \frac{\partial u}{\partial t}(x,0) = h(x),$$

where $g, h \in C^2(\mathbb{R})$.

The first equation can be factored as follows

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x}\right) u = 0.$$

Put

$$v(x,t)$$
: = $\left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x}\right)u(x,t).$

Then we get

$$\frac{\partial}{\partial t}v(x,t) + \frac{\partial}{\partial x}v(x,t) = 0, \quad x \in \mathbb{R}, \quad t > 0.$$

This is a transport equation with constant coefficients. To solve this equation, we apply the Fourier transform with respect to x. Let

$$\hat{v}(\xi,t)$$
: = $\int_{\mathbb{R}} e^{-i\xi x} v(x,t) dx$.

Then we have

$$\frac{d}{dt}\hat{v}(\xi,t) + i\xi\hat{v}(\xi,t) = 0.$$

The solution is given by

$$\hat{v}(\xi,t) = e^{-it\xi}\hat{v}(\xi,0).$$

Hence we have

$$v(x,t) = v(x-t,0).$$

Let a(x) = v(x, 0). Then we get

$$\frac{\partial}{\partial t}u(x,t) - \frac{\partial}{\partial x}u(x,t) = a(x-t), \quad x \in \mathbb{R}, \quad t > 0.$$

this is a non-homogeneous transport equation. It can be solved by a similar method. The result is

$$u(x,t) = \int_0^t a(x + (t - s) - s) \, ds + u(x + t, 0)$$
$$= \frac{1}{2} \int_{x-t}^{x+t} a(y) \, dy + u(x + t, 0).$$

If we use the inatrial conditions

$$u(x,0) = g(x)$$
 and $u_t(x,0) = h(x)$,

we get

$$a(x) = v(x, 0) = u_t(x, 0) - u_x(x, 0)$$

= $h(x) - g'(x)$

Inserting this formula for a in the above equation, we obtain the following final form for the solution

(6.1)
$$u(x,t) = \frac{1}{2} \left[g(x+t) + g(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy , \ x \in \mathbb{R}, \ t > 0.$$

From this expression for the solution one can derive the following theorem.

Theorem 6.1. Assume that $g \in C^2(\mathbb{R})$, $h \in C^1(\mathbb{R})$, and define u(x,t) by (6.1). Then the following holds

1)
$$u \in C^2(\mathbb{R} \times [0,\infty]).$$

2) $\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}\right) u(x,t) = 0$ in $\mathbb{R} \times \mathbb{R}^+$

$$\lim_{\substack{(x,t) \to (x_0,0) \\ t > 0}} u(x,t) = g(x_0)$$
$$\lim_{\substack{(x,t) \to (x_0,0) \\ t > 0}} u_t(x,t) = h(x_0)$$

Assume that $\operatorname{supp} g$, $\operatorname{supp} h \subset (r-, r)$. Then it follows from (6.1) that $\operatorname{supp} u \subset (-r - t, r + t)$. This means that the wave equation on \mathbb{R} has finite propagation speed. Similar formulars hold for all $n \geq 1$. Namely consider on \mathbb{R}^n the wave equation.

$$\left(\frac{\partial^2}{\partial t^2} - \Delta\right)u(x,t) = 0, \quad u(x,0) = g(x), \ u_t(x,0) = h(x).$$

Let $n \geq 3$ be odd. Let m = (n+1)/2, $g \in C^{m+1}(\mathbb{R}^n)$ and $h \in C^m(\mathbb{R}^n)$. Let $\gamma_n = 1 \cdot 3 \cdot 5 \cdots (n-2)$. Then the unique solution of the wave equation is given by

$$\begin{split} u(x,t) &= \frac{1}{\gamma_n} \Bigg[\frac{\partial}{\partial t} \Bigg(\frac{1}{t} \ \frac{\partial}{\partial t} \Bigg)^{\frac{n-3}{2}} \Bigg(t^{n-2} \int_{\partial B(x,t)} g \ dS \Bigg) \\ &+ \Bigg(\frac{1}{t} \ \frac{\partial}{\partial t} \Bigg)^{\frac{n-3}{2}} \Bigg(t^{n-2} \int_{\partial B(x,t)} h ds \Bigg) \Bigg]. \end{split}$$

This formula also shows that the wave equation satisfies finite propagation speed.

6.2. Energy methods.

Energy methods are an important tool to establish finite propagation speed for the wave equation. We illustrate this for the Laplace operator. For $x_0 \in \mathbb{R}^n$, $t_0 > 0$, let

$$C = \left\{ (x,t) \colon 0 \le t \le t_0, \ \| \ x - x_0 \| \le t_0 - t \right\}.$$

Theorem 6.2. (Finite propagation speed).

Assume that $u(x,0) = u_t(x,0) \equiv 0$ on $B(x_0,t_0)$. Then $u \equiv 0$ in C.

Proof. Define the energy of the solution by

(6.2)
$$e(t) = \frac{1}{2} \int_{B(x_0, t_0 - t)} \left(u_t(x, t)^2 + \| \nabla u(x, t) \|^2 \right) dx, 0 \le t \le t_0.$$

Then we have

$$\begin{aligned} \frac{d}{dt}e(t) &= \int_{B(x_0,t_0-t)} (u_t u_{tt} + \langle \nabla u, \nabla u_t \rangle) dx \\ &- \frac{1}{2} \int_{\partial B(x_0,t_0-t)} (u_t^2 + |\nabla u|^2) ds \\ &= \int_{B(x_0,t_0-t)} u_t (u_{tt} - \Delta u) dx \\ &+ \int_{\partial B(x_0,t_0-t)} \frac{\partial u}{\partial \nu} u_t \, ds - \frac{1}{2} \int_{\partial B(x_0,t_0-t)} \frac{1}{2} \left(u_t^2 \parallel \nabla u \parallel^2 \right) dS \\ &= \int_{\partial B(x_0,t_0-t)} \left(\frac{\partial u}{\partial \nu} u_t - \frac{1}{2} u_t^2 - \frac{1}{2} \parallel \nabla u \parallel^2 \right) dS. \end{aligned}$$

Now note that

$$\left|\frac{\partial u}{\partial \nu}u_t\right| \le |u_t| \cdot \|\nabla u\| \le \frac{1}{2}|u_t|^2 + \frac{1}{2}\|\nabla u\|^2$$

This implies that

$$\frac{d}{dt}e(t) \le 0.$$

Thus $e(t) \leq e(0) = 0$ for $0 \leq t \leq t_0$. By (6.2) it follows that $u_t \equiv 0$ and $\nabla u \equiv 0$ in C. This implies that $u \equiv c$ and therefore, u = 0.

6.3. **Gradient and divergence.** As preparation for the study of the wave equation on manifolds we recall some facts about the dicergence and the gradient on a Riemannian manifold.

Let X be a Riemannian manifold. Let $f \in C^{\infty}(X)$. Then the gradient grad $f \in C^{\infty}(TX)$ of f is defined by

$$\langle \operatorname{grad} f(p), Y_p \rangle = Y(f)(p) = df(Y)(p)$$

for all $Y \in C^{\infty}(TY)$. Let

$$\nabla \colon C^{\infty}(TX) \to C^{\infty}(T^{x}X \otimes TX)$$

be the Levi-Civita connection associated to the Riemannian metric of X. Let $Y \in C^{\infty}(TX)$. The divergence div Y of the vector field Y is defined by

$$\operatorname{div} Y(p) = \operatorname{Tr}(\xi \in T_p X \longmapsto \Delta_{\xi} Y \in T_p X).$$

In local coordinates grad f and $\div Y$ can described as follows. Let $x_1,...,x_n$ be local coordinates. Let

$$g = \sum_{i,j=1}^{n} g_{ij} dx_i \otimes dx_j$$

be the Riemannian metric in these coordinates. Furthermore, let

$$(g^{kl}) = (g_{ij})^{-1}, \quad \bar{g} = \det(g_{ij}).$$

and

$$Y = \sum_{j=1}^{n} f_j \frac{\partial}{\partial x_j}.$$

Then we have

grad
$$f = \sum_{k=1}^{n} \sum_{l=1}^{n} \left(g^{kl} \frac{\partial f}{\partial x_l} \right) \frac{\partial}{\partial x_k}$$

and

div
$$Y = \frac{1}{\sqrt{\overline{g}}} \sum_{j=1}^{n} \frac{\partial}{\partial x_j} \left(\sqrt{\overline{g}} f_j \right)$$

Lemma 6.3. For all $f \in C^{\infty}(X)$ and $Y \in C^{\infty}(TX)$ we have $(\operatorname{grad} f, Y) = -(f, \operatorname{div} Y)$.

Proof. Using a partition of unity, the proof can be reduced to the case where $\operatorname{supp} f$ is contained in a coordinate chart U. Then

$$(\operatorname{grad} f, Y) = \int_{U} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \left(g^{kl} \frac{\partial f}{\partial x_{l}} \right) g_{kj} f_{j} \sqrt{\overline{g}} dx = \int_{U} \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} f_{j} \sqrt{\overline{g}} dx$$
$$= -\int_{U} f \frac{1}{\sqrt{\overline{g}}} \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \left(f_{j} \sqrt{\overline{g}} \right) \sqrt{\overline{g}} dx = -\int_{U} f \operatorname{div} Y d\mu(x)$$
$$= -(f, \operatorname{div} Y).$$

The Riemannian metric defines an isomorphism.

$$\phi \colon TX \cong T^*X.$$

It induces an isomorphism

$$\phi \colon C^{\infty}(TX) \cong \Lambda^1(X).$$

Lemma 6.4. (1) For all $f \in C^{\infty}(X)$ we have

$$\phi(\operatorname{grad} f) = df.$$

(2) For all $Y \in C^{\infty}(TX)$ we have

$$-\operatorname{div}(Y) = d^{\star}(\phi(Y)).$$

6.4. Symmetric hyperbolic systems. Let X be a Riemannian manifold and $E \to X$ a Hermitian vector bundle over X. Denote by (\cdot, \cdot) the inner product in $C_c^{\infty}(E)$ induced by the Riemannian metric and the fibre metric in E. Let

$$D\colon C^{\infty}(E)\to C^{\infty}(E)$$

be an elliptic differential operator of order 1. Assume that D is formally self-adjoint.

Example: The basic example is the Dirac operator $D: C^{\infty}(S) \to C^{\infty}(S)$ on a spin manifold.

Let $\pi: T^*X \to X$ the cotangent bundle. Let

$$\sigma_D \colon \pi^* E \to \pi^* E$$

be the principal symbol of D. We recall its definition. Let $x \in X$, $\xi \in T_x^*X$, and $e \in E_x$. We choose $f \in C^{\infty}(X)$ with

f(x) = 0, $df(x) = \xi,$ and $\varphi \in C^{\infty}(E)$ with $\varphi(x) = e$. Then

$$\sigma_D(x,\xi)(e) = D(F\varphi)(x).$$

Lemma 6.5. For any $f \in C^{\infty}(X)$ and $\varphi \in C^{\infty}(E)$ we have (6.3) $D(f\varphi) = \sigma_D(df)(\varphi) + fd\varphi.$

Note that

$$\sigma_D(x,\xi)^t = -\sigma_d(x,\xi)$$

Definition 6.6. For $\Omega \subset X$ let

$$c(\Omega): = \sup \left\{ \parallel \sigma_D(x,\xi) \parallel : \xi \in T_x^{\star}, \parallel \xi \parallel, x \in \Omega \right\}.$$

 $c(\Omega)$ is called the propagation speed of D on Ω .

Now we consider the wave equation

(6.4)
$$\frac{\partial u}{\partial t} = iDu, \quad u(x,0) = u_0(x),$$

where $u_0 \in C^{\infty}(E)$.

Proposition 6.7. Let $x_0 \in X$ and suppose that $B_r(x_0)$ is a geodesic coordinate system. Let $c: = c(B_r(x_0))$. Let $u \in C^{\infty}([-T,T], C^{\infty}(E))$ be a solution of

$$\frac{\partial u}{\partial t} = iD_u$$

Then we have

$$|| u(t) ||_{B_{r-ct}(x_0)} \le || u(0) ||_{B_r(x_0)}$$

for $0 \leq t < r/c$.

 $\mathit{Proof.}$ We define a smooth vector field Y_t on X by

$$Y_t(f)(x) = -i\langle u(x,t), \sigma_D(df_x, x)(u(x,t)) \rangle_x$$

Let $f \in C_c^{\infty}(X)$. Then by Lemma 6.4 we have

$$\int_X \operatorname{div} Y_t(x)\overline{f}(x)dx = (\operatorname{div} Y_t, f) = -(Y_t, \operatorname{grad} f) = -Y_t(f).$$

By definition of $Y_t(f)$ and (6.3) we get

$$\int_{X} \operatorname{div} Y_{t}(x) \bar{f}(x) dx = i \left(u(t), D(fu(t)) - f Du(t) \right)$$
$$= i \left(Du(t), fu(t) \right) - i \left(u(t), f Du(t) \right)$$
$$= i \int_{X} \left(\langle du(x, t), u(x, t) \rangle_{x} - \langle u(x, t), Du(x, t) \rangle_{x} \right) \bar{f}(x) dx.$$

Since this equality holds for every $f \in C_c^{\infty}(X)$, it follows that

(6.5)
$$\operatorname{div} Y_t(x) = i \langle Du(x,t), u(x,t) \rangle_x - i \langle u(x,t), Du(x,t) \rangle_x$$

Now

$$\begin{split} \frac{d}{dt} \int_{B_{r-ct}(x_0)} &\parallel u(x,t) \parallel^2 dx \\ &= \int_{B_{r-ct}(x_0)} \left(\left\langle \frac{\partial}{\partial t} u(x,t), u(x,t) \right\rangle_x + \left\langle u(x,t), \frac{\partial}{\partial t} u(x,t) \right\rangle_x \right) dx \\ &\quad - c \int_{\partial B_{r-ct}(x_0)} \parallel u(x,t) \parallel^2_x dS(x) \\ &= i \int_{B_{r-ct}(x_0)} \left(\left\langle Du(x,t), u(x,t) \right\rangle_x - \left\langle u(x,t), Du(x,t) \right\rangle_x \right) dx \\ &\quad - c \int_{\partial B_{r-ct}(x_0)} \parallel u(x,t) \parallel^2_x dS(x). \end{split}$$

For the last equality we used that u(x,t) satisfies the wave equation (6.6). Using (6.5) and the divergence theorem it follows that

$$\frac{d}{dt} \int_{B_{r-ct}(x_0)} \| u(x,t) \|_x^2 dx = \int_{B_{r-ct}(x_0)} \operatorname{div} Y_t(x) \cdot \overline{u(x,t)} dx$$
$$- c \int_{\partial B_{r-ct}(x_0)} \| u(x,t) \|_x^2 dS(x)$$
$$= \int_{\partial B_{r-ct}(x_0)} \langle Y_t(x), \nu(x) \rangle_x dS(x)$$
$$- c \int_{\partial B_{r-ct}(x_0)} \| u(x,t) \|_x^2 dS(x),$$

where $\nu(x)$ denotes the exterior unit normal vector field. Now observe that by the definition of $c = c(B_r(x_0))$

$$|\langle Y_t(x), \nu(x) \rangle_x| = |\langle u(x,t), \sigma_D(\nu(x), x)(u(x,t)) \rangle_x| \le c \parallel u(x,t) \parallel^2.$$

This implies that

$$\frac{d}{dt} \int_{B_{r-ct}(x_0)} \|u(x,t)\|_x^2 dx \le 0.$$

Thus we obtain

$$||u(t)||_{B_{r-ct}(x_0)} \le ||u(0)||_{B_r}(x_0).$$

which concludes the proof.

Let $c = c(B_r(x_0))$ and let

$$C = \{(t, x) : t \ge 0, \quad d(x, x_0) \le r - ct\}$$

Corollary 6.8. Let $u \in C^{\infty}([-T,T], C^{\infty}(E))$ be a solution of the equation

$$\frac{\partial u}{\partial t} = iDu$$

on C. Suppose that u(0) = 0 on $B_r(x_0)$. Then u = 0 on C.

Let $U = B_r(x_0) \subset X$ be a normal coordinate chart and let

$$\phi \colon E|_U \cong U \times \mathbb{C}^N$$

be a trivialization of $E|_U$. Let $D|_U$ be restriction of D to $C^{\infty}(U, E|_U)$. Then

$$\frac{\partial}{\partial t}u = iD|_U(u), \quad u(0,x) = u_0(x)$$

is a hyperbolic system of order 1 in \mathbb{R}^n . The usual theory for such systems implies existence of solutions with smooth initial conditions. In this way we get

Proposition 6.9. For every $x_0 \in X$ there exists r > 0 such that for $u_0 \in C^{\infty}(B_r(x_0, E))$ there exists a unique solution of

$$\frac{\partial u}{\partial t} = iD(u), \quad u(0,x) = u_0(x)$$

on

$$C_0 = \{(x,t) : t \ge 0, \quad d(x,s_0) \le r - ct\},\$$

where $c = c(B_r(x_0))$.

The next proposition extends the above result to a larger region.

Proposition 6.10. Let $S = B_R(x_0)$ be a compact ball in X. Let c: c(S) and

$$C_0 = \{(x,t) \colon t \ge 0, \ d(x,x_0) \le r - ct\}$$

Let $u_0 \in C^{\infty}(S, E)$. Then there is in C_0 a unique smooth solution of the equation

$$\frac{\partial u}{\partial t} = iD(u), \quad u(0) = u_0.$$

Proof. Since S is compact, there exists r > 0 such for all $y \in S$ the injectivity radius $i(y) \ge r$. Thus for all $y \in S$, $B_r(y)$ is a normal coordinate chart. It follows from Proposition (6.9) that for all $y \in B_{R-r}(x_0)$ and $u_0 \in C^{\infty}(B_r(y), E)$, the wave equation

$$\frac{\partial u}{\partial t} = iD(u), \quad u(0) = u_0,$$

has a unique C^{∞} -solution on the truncated cone

$$C_y = \{(x,t) \colon d(x,y) \le r - ct, 0 \le t \le r/2c\}.$$

By uniqueness, solutions agree on $C_y \cap C_z$. Therefore, we obtain a solution on the truncated cone

$$\{(x,t): d(x,x_0) \le R - ct, \ 0 \le t \le r/2c\}.$$

The solution u at time t = r/2c serves as initial condition on $B(x_0, R - r/2)$. If we repeat the above argument, we get a solution on the truncated cone

$$\{(x,t): d(x,x_0) \le R - ct, \ r/2c \le t \le r/c\}$$

and therefore, a solution on

$$\{(x,t): d(x,x_0) \le R - ct, 0 \le t \le r/c\}.$$

After a finite number of steps, we obtain a smooth solution on the cone with base S. \Box

Let $x_0 \in X$. Put

$$c(r): = c(B_r(x_0)), \quad r > 0$$

Theorem 6.11. Let X be a complete Riemannian manifold. Suppose that

$$\int_0^\infty \frac{dr}{c(r)} = \infty$$

1) Uniqueness: Suppose that $u \in C^{\infty}(X, E)$ is a solution of

$$\frac{\partial u}{\partial t} = iDu$$

on $[0,T] \times X$ with u(0) = 0. Then $u \equiv 0$.

2) Existence: Let $u_0 \in C^{\infty}(X, E)$. Then the wave equation

(6.6)
$$\frac{\partial u}{\partial t} = iDu \quad , \quad u(0) = u_0,$$

has a unique solution on $\mathbb{R} \times X$. Moreover, for fixed t, $u(\cdot, t)$ has compact support.

Proof. We first establish uniqueness. Let R > 0. Put $S_R = B_R(x_0)$. We shall show that u(T) vanishes on S_R . Of course, we also have that u(T') vanishes for T' < T. Let

$$t_R = c(R+1)^{-1}, R > 0.$$

By Proposition (6.10), the wave equation (6.6) on

$$\{(x,t): d(x,x_0) \le R - c(R+1)t, 0 \le t \le t_R\}$$

10

with initial condition $u_0 \in C^{\infty}(S_{R+1}, E)$ has a unique solution. Hence u(T) on S_R is determined by $u(T - t_R)$ on S_{R+1} . By the same argument $u(T - t_R)$ is determined by $u(T - t_R - t_{R+1})$ on S_{R+2} . Since the sets S_R are compact, this may be continued indefinitely. Now we have

(6.7)
$$\sum_{n=0}^{\infty} t_{R+n} = \infty.$$

because c(R) is monoton and

$$\int_{1}^{\infty} \frac{dr}{c(r)} = \infty$$

by assumption. Hence there exists $N \in \mathbb{N}$ such that

$$T': = t_R + t_{R+1} + \dots + t_{R+N} < T$$

and $T' + t_{R+N+1} > T$. From our considerations above follows that $u(T)|_{S_R}$ is determined by $u(T - T')|_{S_{R+N}}$. Let

$$\varepsilon = (R + N + 1)(T - T').$$

Then it follows as above that $u(T - T')|_{S_{R+N}}$ is determined by $u(0)|_{S_{R+N+\varepsilon'}}$. Note that $T - T' \leq t_{R+N+1}$. But u(0) = 0. Hence $u(T - T')|_{S_{R+N}} = 0$. This implies that $u(T)|_{S_R} = 0$.

Next we establish existence. The argument is like the uniqueness proof run in reverse. Let $u_0 \in C_c^{\infty}(X, E)$. Let R > 0 such that $\operatorname{supp} u_0 \subset S_R$. Since X is complete, S_R is compact. By Proposition (6.10) there exists a C^{∞} -solution of (6.6) in

$$C = \{(x,t): 0 \le t \le t_{R+2}, d(x,x_0) \le R+3 - c(R+3)t\}$$

Moreover, it follows from the uniqueness part of Proposition (6.10) that the solution vanishes outside S_{R+1} . So we can extend it by 0 to a global solution on X which exists for time $0 \le t \le t_{R+2}$. Now we iterate this process. The solution at time $t = t_{R+2}$ is supported in S_{R+1} . By the above argument, it extends to a solution for $0 \le t \le t_{R+2} + t_{R+3}$ with support in S_{R+2} . Using again (6.7), we can extend the solution to any time t and for fixed t, u(t) has compact support.

For each t define a map

$$U_t \colon C_c^{\infty}(X, E) \to C^{\infty}(X, E)$$

by

$$U_t(u_0) = u(t),$$

where u is the unique solution of

$$\frac{\partial u}{\partial t} = iDu, \quad u(0) = u_0.$$

Corollary 6.12. Under the assumptions of Theorem (6.11), $\{U_t\}$ is a one-parameter group. Moreover, if $w \in C_c^{\infty}(X, E)$, we have

$$\frac{d}{dt}(U_t(u_0), w) = (iDU_t(u_0), w)$$

Finally $DU_t(u_0) = U_t(Du_0)$.

Proof. Let u(t): $= U_t(u_0)$. Then $u(t) \in C^{\infty}(X, E)$ and ∂u

$$\frac{\partial u}{\partial t} = iDu$$

Since $w \in C_c^{\infty}(X, E)$, we can differentiate unter the integral which gives

$$\frac{d}{dt}(U_t(u_0), w) = \left(\frac{\partial u}{\partial t}, w\right) = (iDU_t(u_0), w)$$

Moreover, $U_{s+t} = U_s \circ U_t$ and $DU_t = U_t D$ follows from uniqueness.

Note that U_t is unitary. Indeed we have

$$\begin{aligned} \frac{d}{dt} \parallel u(t) \parallel^2 &= \left(\frac{du}{dt}(t), u(t)\right) + \left(u(t), \frac{du}{dt}(t)\right) \\ &= \left(iDu(t), u(t)\right) + \left(u(t), iDu(t)\right) \\ &= \left(iDu(t), u(t)\right) - \left(iD(t), u(t)\right) = 0 \end{aligned}$$

6.5. Essential self-adjointness. In this section we apply the results obtained in the previous section to establish the essential self-adjointness of geometric operators.

We begin with an abstract result.

Lemma 6.13. Let T be a symmetric operator in a Hilbert space \mathcal{H} with dense domain $\mathcal{D} \subset \mathcal{H}$. Suppose that $T(\mathcal{D}) \subseteq \mathcal{D}$). Furthermore suppose that there is a one-parameter group U_t of unitary operators on \mathcal{H} such that

$$U_t(\mathcal{D}) \subseteq \mathcal{D}, \quad U_t T = T U_t \text{ on } \mathcal{D}$$

and

$$\frac{d}{dt}U_t(u) = iTU_t(u)$$

for $u \in \mathcal{D}$. Then every power of T is essentially self-adoint.

Proof. Let $n \in \mathbb{N}$ and $A := T^n$. Then

$$A\colon \mathcal{D}\to \mathcal{H}$$

is symmetric. To show that A is essentially self-adjoint, it suffices to verify that

$$\overline{(A \pm i \operatorname{Id})(\mathcal{D})} = \mathcal{H}$$

Let $\psi \in \mathcal{H}$ and suppose that

$$((A \pm i)(\varphi), \psi) = 0, \ \forall \varphi \in \mathcal{D}.$$

Then it follows that $\psi \in \mathcal{D}(A^*)$ and

$$A^*\psi = \mp i\psi.$$

We consider the case where $A^*\psi = i\psi$. For $u \in \mathcal{D}$ define

$$f(t) = (U_t(u), \psi), \ t \in \mathbb{R}.$$

Since U_t is unitary, f(t) is bounded. Furthermore we have

$$\frac{d^n}{dt^n}f(t) = (iT^nU_t(u), \psi) = (iAU_t(u), \psi) = (i^nU_t(u), A^*\psi)$$
$$= -i^{n+1}(U_t(u), \psi) = -i^{n+1}f(t).$$

Thus f(t) satisfies the ordinary linear differential equation.

(6.8)
$$\frac{d^n f}{dt^n}(t) = -i^{n+1} f(t).$$

Let α_j , j = 1, ..., n, be the different roots of the equation

$$z^n = -i^{n+1}.$$

Then $e^{\alpha_j t}$, j = 1, ..., n, is a basis for the space of solutions of (6.8). Therefore f(t) can be written as

$$f(t) = \sum_{j=1}^{n} c_j e^{\alpha_j t}$$

for some constants $c_j \in \mathbb{C}$. Now observe that $\operatorname{Re}(\alpha_j) \neq 0$ for j = 1, ..., n. Since f is bounded this implies that $f \equiv 0$. Hence we get

$$(u,\psi) = f(0) = 0, \ u \in \mathcal{D}.$$

Since $\mathcal{D} \subset \mathcal{H}$ is dense, it follows that $\psi = 0$. The case $A^*\psi = -i\psi$ can be treated in the same way.

We can now state the main result about essential self-adjointness.

Theorem 6.14. Let X be a complete Riemannian manifold and $E \to X$ a Hermitian vector bundle over X. Let

$$D\colon C^{\infty}(X,E)\to C^{\infty}(X,E)$$

be an elliptic differential operator of order 1 which is formally self-adjoint. Assume that

$$\int_{1}^{\infty} \frac{dr}{c(r)} = \infty.$$

Let $T: C_c^{\infty}(X, E) \to L^2(X, E)$ be the operator which is defined by D. Then every power of T is essentially self-adjoint.

Proof. Let

$$U_t \colon C_c^{\infty}(X, E) \to C_c^{\infty}(X, E)$$

be the 1-parameter group, defined by Corollary 6.12. For each $t \in \mathbb{R}$ we have

$$||U_t(u)|| = ||u||, \ u \in C_c^{\infty}(X, E).$$

Indeed, for $u, w \in C_c^{\infty}(X, E)$, we have

$$\frac{d}{dt}(U_t(u), U_t(w)) = (iDU_t(u), U_t(w)) + (U_t(u), iDU_t(w))$$
$$((iD - iD)U_t(u), U_t(w)) = 0.$$

Hence U_t extends by continuity to a one-parameter family

$$U_t \colon L^2(X, e) \to L^2(X, E)$$

of unitary operators. The assumptions of Lemma 6.13 are satisfied. This implies the theorem. $\hfill \Box$

6.6. **Applications.** Now we are ready to apply the results of the previous section to geometric situations.

Let X be a complete Riemannian manifold. Let

$$D = d + d^* \colon \Lambda^*(X) \to \Lambda^*(X).$$

Then D is formally self-adjoint. To determine its principal symbol, fix $p \in X, \xi \in T_p^*X$ and $v \in \Lambda^*T_p^*X$. Let $f \in C^{\infty}(X)$ and $\varphi \in \Lambda^*(X)$ be such that $f(p) = 0, df_p = \xi$ and $\varphi(p) = v$. Then we have

$$\sigma_d(p,\xi)v = D(f\varphi)(p) = (d+d^*)(f\varphi)(p) = df_p \wedge \varphi(p) - *(df \wedge *\varphi)(p)$$
$$= \xi \wedge v - i_{\xi}(v),$$

where $i_{\xi} \colon \Lambda^* T_p^* X \to \Lambda^* T_p^* X$ denotes interior multiplication by ξ . This implies that

$$\| \sigma_D(x,\xi) \| = \| \xi \|.$$

Hence we have c(x) = 1, i.e. D has unite propagation speed. By Theorem 6.14 it follows that for all $n \in \mathbb{N}$, the operator

$$(d+d^*)^n \colon \Lambda^*_c(X) \to L^2 \Lambda^*(X)$$

is essentially self-adjoint. Now recall that the laplace operator Δ is given by

$$\Delta = (d + d^*)^2.$$

Thus it follows that for all $n \in \mathbb{N}$,

$$\Delta^n \colon \Lambda^*_c(X) \to L^2 \Lambda^*(X)$$

is essentially self-adjoint. The Laplace operator preserves $\Lambda^p(X)$ for every p. Therefore

$$\Delta^n \colon \Lambda^p_c(X) \to L^2 \Lambda^p(X)$$

is essentially self-adjoint for all p = 0, ..., n.

Next we consider a complex manifold equipped with a Hermitian metric, so that X, equipped with the associated Riemannian metric is complete. Let $E \to X$ be a holomorphic Hermitian vector bundle over X. Then we define the space of (p,q)-forms with values in E as the space of C^{∞} -sections of $\Lambda^p T^{*(1.0)}(X) \otimes \Lambda^q T^{*(0,1)}(X) \otimes E$. The operator

$$\bar{\partial} \colon \Lambda^{p,q}(X,E) \to \Lambda^{p,q+1}(X,E)$$

is uniquely defined by demanding that

$$\bar{\partial}(\omega\otimes\varphi)=(\bar{\partial}\omega)\otimes\varphi$$

for every $\omega \in \Lambda^{p,q}(X)$ and every **holomorphic** section of *E*. In this way we get the Dolbeault complex

$$\cdots \xrightarrow{\bar{\partial}} \Lambda^{p,q}(X,E) \xrightarrow{\bar{\partial}} \Lambda^{p,q+1}(X,E) \longrightarrow \cdots$$

Let $D = (\bar{\partial} + \bar{\partial}^*)$. Then we have

$$\sigma_D(x,\xi)(\omega\otimes\varphi) = (\pi(\xi)\wedge\omega - i_{\pi(\xi)}(\omega))\otimes\varphi$$

where $\pi: T_x^*X \otimes \mathbb{C} \to T_x^{*(0,1)}X$ is the canonical projection. It follows that

$$\| \sigma_D(X,\xi) \| = \| \pi(\xi) \|$$

and hence, $c(x) = 1/\sqrt{2}$. By Theorem 6.14,

$$(\bar{\partial} + \bar{\partial}^*)^n \colon \Lambda^{p,*}_c(X, E) \to L^2 \Lambda^{p,*}(X, E)$$

is essentially self-adjoint for all p and all $n \in \mathbb{N}$.

References

- [Ch] Chernoff, Paul R. Essential self-adjointness of powers of generators of hyperbolic equations. J. Functional Analysis 12 (1973), 401-414.
- [Ev] Evans, Lawrence C., *Partial differential equations*. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.