
1. The wave equation

The wave equation is an important tool to study the relation between spectral theory
and geometry on manifolds.

Let U ⊂ R
n be an open set and let

∆ =

n
∑

j=1

∂2

∂x2j

be the Euclidean Laplace operator. Then the wave equation on U is the following differ-
ential equation.

(

∂2

∂t2
−∆

)

u(x, t) = f(x, t),

u(x, t) = 0, x ∈ ∂U, t > 0.

u(x, 0) =u0(x),
∂u

∂t
(x, 0) = u1(x).

Here f, u0 and u1 are given functions.

6.1. The wave equation on Rn.

To understand the behavior of the solution of the wave equation we consider first the
wave equation on the real line.

On R we consider the following equation
(

∂2

∂t2
− ∂2

∂x2

)

u(x, t) = 0,

u(x, 0) = g(x),
∂u

∂t
(x, 0) = h(x),

where g, h ∈ C2(R).

The first equation can be factored as follows
(

∂

∂t
+

∂

∂x

)(

∂

∂t
− ∂

∂x

)

u = 0.

Put

v(x, t) : =

(

∂

∂t
− ∂

∂x

)

u(x, t).

Then we get
∂

∂t
v(x, t) +

∂

∂x
v(x, t) = 0, x ∈ R, t > 0.

1
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This is a transport equation with constant coefficients. To solve this equation, we apply
the Fourier transform with respect to x. Let

v̂(ξ, t) : =

∫

R

e−iξxv(x, t)dx.

Then we have
d

dt
v̂(ξ, t) + iξv̂(ξ, t) = 0.

The solution is given by

v̂(ξ, t) = e−itξv̂(ξ, 0).

Hence we have

v(x, t) = v(x− t, 0).

Let a(x) = v(x, 0). Then we get

∂

∂t
u(x, t)− ∂

∂x
u(x, t) = a(x− t), x ∈ R, t > 0.

this is a non-homogeneous transport equation. It can be solved by a similar method. The
result is

u(x, t) =

∫ t

0

a(x+ (t− s)− s) ds+ u(x+ t, 0)

=
1

2

∫ x+t

x−t

a(y) dy + u(x+ t, 0).

If we use the inatrial conditions

u(x, 0) = g(x) and ut(x, 0) = h(x),

we get

a(x) = v(x, 0) = ut(x, 0)− ux(x, 0)

= h(x)− g′(x)

Inserting this formula for a in the above equation, we obtain the following final form for
the solution

u(x, t) =
1

2
[g(x+ t) + g(x− t)] +

1

2

∫ x+t

x−t

h(y)dy , x ∈ R, t > 0.(6.1)

From this expression for the solution one can derive the following theorem.

Theorem 6.1. Assume that g ∈ C2(R), h ∈ C1(R), and define u(x, t) by (6.1). Then the
following holds

1) u ∈ C2(R× [0,∞]).

2)

(

∂2

∂t2
− ∂2

∂x2

)

u(x, t) = 0 in R× R+
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3)

lim
(x,t)→(x0,0)

t>0

u(x, t) = g(x0)

lim
(x,t)→(x0,0)

t>0

ut(x, t) = h(x0)

Assume that supp g, supph ⊂ (r−, r). Then it follows from (6.1) that supp u ⊂ (−r −
t, r + t). This means that the wave equation on R has finite propagation speed. Similar
formulars hold for all n ≥ 1. Namely consider on Rn the wave equation.

(

∂2

∂t2
−∆

)

u(x, t) = 0, u(x, 0) = g(x), ut(x, 0) = h(x).

Let n ≥ 3 be odd. Let m = (n + 1)/2, g ∈ Cm+1(Rn) and h ∈ Cm(Rn). Let γn =
1 · 3 · 5 · · · (n− 2). Then the unique solution of the wave equation is given by

u(x, t) =
1

γn

[

∂

∂t

(

1

t

∂

∂t

)
n−3

2
(

tn−2

∫

∂B(x,t)

g dS

)

+

(

1

t

∂

∂t

)
n−3

2
(

tn−2

∫

∂B(x,t)

hds

)]

.

This formula also shows that the wave equation satisfies finite propagation speed.

6.2. Energy methods.

Energy methods are an important tool to establish finite propagation speed for the wave
equation. We illustrate this for the Laplace operator. For x0 ∈ Rn, t0 > 0, let

C =

{

(x, t) : 0 ≤ t ≤ t0, ‖ x− x0 ‖≤ t0 − t

}

.

Theorem 6.2. (Finite propagation speed).

Assume that u(x, 0) = ut(x, 0) ≡ 0 on B(x0, t0). Then u ≡ 0 in C.

Proof. Define the energy of the solution by

(6.2) e(t) =
1

2

∫

B(x0,t0−t)

(

ut(x, t)
2+ ‖ ∇u(x, t) ‖2

)

dx, 0 ≤ t ≤ t0.
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Then we have
d

dt
e(t) =

∫

B(x0,t0−t)

(ututt + 〈∇u,∇ut〉)dx

− 1

2

∫

∂B(x0,t0−t)

(u2t + |∇u|2)ds

=

∫

B(x0,t0−t)

ut(utt −∆u)dx

+

∫

∂B(x0,t0−t)

∂u

∂ν
ut ds−

1

2

∫

∂B(x0,t0−t)

1

2

(

u2t ‖ ∇u ‖2
)

dS.

=

∫

∂B(x0,t0−t)

(

∂u

∂ν
ut −

1

2
u2t −

1

2
‖ ∇u ‖2

)

dS.

Now note that
∣

∣

∣

∂u

∂ν
ut

∣

∣

∣
≤ |ut|· ‖ ∇u ‖≤ 1

2
|ut|2 +

1

2
‖ ∇u ‖2 .

This implies that
d

dt
e(t) ≤ 0.

Thus e(t) ≤ e(0) = 0 for 0 ≤ t ≤ t0. By (6.2) it follows that ut ≡ 0 and ∇u ≡ 0 in C.
This implies that u ≡ c and therefore, u = 0. �

6.3. Gradient and divergence. As preparation for the study of the wave equation on
manifolds we recall some facts about the dicergence and the gradient on a Riemannian
manifold.

Let X be a Riemannian manifold. Let f ∈ C∞(X). Then the gradient grad f ∈ C∞(TX)
of f is defined by

〈grad f(p), Yp〉 = Y (f)(p) = df(Y )(p)

for all Y ∈ C∞(TY ). Let

∇ : C∞(TX) → C∞(T xX ⊗ TX)

be the Levi-Civita connection associated to the Riemannian metric of X . Let Y ∈
C∞(TX). The divergence div Y of the vector field Y is defined by

div Y (p) = Tr(ξ ∈ TpX 7−→ ∆ξY ∈ TpX).

In local coordinates grad f and ÷Y can described as follows. Let x1, ..., xn be local coor-
dinates. Let

g =
n
∑

i,j=1

gijdxi ⊗ dxj

be the Riemannian metric in these coordinates. Furthermore, let

(gkl) = (gij)
−1, ḡ = det(gij).
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and

Y =

n
∑

j=1

fj
∂

∂xj
.

Then we have

grad f =
n
∑

k=1

n
∑

l=1

(

gkl
∂f

∂xl

)

∂

∂xk

and

div Y =
1√
ḡ

n
∑

j=1

∂

∂xj

(

√
ḡfj

)

Lemma 6.3. For all f ∈ C∞(X) and Y ∈ C∞(TX) we have (grad f, Y ) = −(f, div Y ).

Proof. Using a partition of unity, the proof can be reduced to the case where supp f is
contained in a coordinate chart U . Then

(grad f, Y ) =

∫

U

n
∑

j=1

n
∑

k=1

n
∑

l=1

(

gkl
∂f

∂xl

)

gkjfj
√
ḡdx =

∫

U

n
∑

j=1

∂f

∂xj
fj
√
ḡdx

= −
∫

U

f
1√
ḡ

n
∑

j=1

∂

∂xj

(

fj
√
ḡ

)

√
ḡdx = −

∫

U

f div Y dµ(x)

= −(f, div Y ).

�

The Riemannian metric defines an isomorphism.

φ : TX ∼= T ⋆X.

It induces an isomorphism

φ : C∞(TX) ∼= Λ1(X).

Lemma 6.4. (1) For all f ∈ C∞(X) we have

φ(grad f) = df.

(2) For all Y ∈ C∞(TX) we have

− div(Y ) = d⋆(φ(Y )).
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6.4. Symmetric hyperbolic systems. Let X be a Riemannian manifold and E → X a
Hermitian vector bundle over X . Denote by (·, ·) the inner product in C∞

c (E) induced by
the Riemannian metric and the fibre metric in E. Let

D : C∞(E) → C∞(E)

be an elliptic differential operator of order 1. Assume that D is formally self-adjoint.

Example: The basic example is the Dirac operator D : C∞(S) → C∞(S) on a spin
manifold.

Let π : T ⋆X → X the cotangent bundle. Let

σD : π∗E → π∗E

be the principal symbol of D. We recall its definition. Let x ∈ X , ξ ∈ T ∗

xX , and e ∈ Ex.
We choose f ∈ C∞(X) with

f(x) = 0, df(x) = ξ,

and ϕ ∈ C∞(E) with ϕ(x) = e. Then

σD(x, ξ)(e) = D(Fϕ)(x).

Lemma 6.5. For any f ∈ C∞(X) and ϕ ∈ C∞(E) we have

(6.3) D(fϕ) = σD(df)(ϕ) + fdϕ.

Note that
σD(x, ξ)

t = −σd(x, ξ).
Definition 6.6. For Ω ⊂ X let

c(Ω) : = sup

{

‖ σD(x, ξ) ‖ : ξ ∈ T ⋆
x , ‖ ξ ‖, x ∈ Ω

}

.

c(Ω) is called the propagation speed of D on Ω.

Now we consider the wave equation

(6.4)
∂u

∂t
= iDu, u(x, 0) = u0(x),

where u0 ∈ C∞(E).

Proposition 6.7. Let x0 ∈ X and suppose that Br(x0) is a geodesic coordinate system.
Let c : = c(Br(x0)). Let u ∈ C∞([−T, T ], C∞(E)) be a solution of

∂u

∂t
= iDu.

Then we have
‖ u(t) ‖Br−ct(x0)≤‖ u(0) ‖Br(x0)

for 0 ≤ t < r/c.
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Proof. We define a smooth vector field Yt on X by

Yt(f)(x) = −i〈u(x, t), σD(dfx, x)(u(x, t))〉x
Let f ∈ C∞

c (X). Then by Lemma 6.4 we have
∫

X

div Yt(x)f̄(x)dx = (div Yt, f) = −(Yt, grad f) = −Yt(f).

By definition of Yt(f) and (6.3) we get
∫

X

div Yt(x)f̄(x)dx = i
(

u(t), D(fu(t))− fDu(t)
)

= i
(

Du(t), fu(t)
)

− i
(

u(t), fDu(t)
)

= i

∫

X

(

〈du(x, t), u(x, t)〉x − 〈u(x, t), Du(x, t)〉x
)

f̄(x)dx.

Since this equality holds for every f ∈ C∞

c (X), it follows that

(6.5) div Yt(x) = i〈Du(x, t), u(x, t)〉x − i〈u(x, t), Du(x, t)〉x.
Now

d

dt

∫

Br−ct(x0)

‖ u(x, t) ‖2 dx

=

∫

Br−ct(x0)

(

〈 ∂

∂t
u(x, t), u(x, t)

〉

x
+
〈

u(x, t),
∂

∂t
u(x, t)

〉

x

)

dx

− c

∫

∂Br−ct(x0)

‖ u(x, t) ‖2x dS(x)

= i

∫

Br−ct(x0)

(

〈

Du(x, t), u(x, t)
〉

x
−
〈

u(x, t), Du(x, t)
〉

x

)

dx

− c

∫

∂Br−ct(x0)

‖ u(x, t) ‖2x dS(x).

For the last equality we used that u(x, t) satisfies the wave equation (6.6). Using (6.5) and
the divergence theorem it follows that

d

dt

∫

Br−ct(x0)

‖ u(x, t) ‖2x dx =

∫

Br−ct(x0)

div Yt(x) · u(x, t)dx

− c

∫

∂Br−ct(x0)

‖ u(x, t) ‖2x dS(x)

=

∫

∂Br−ct(x0)

〈Yt(x), ν(x)〉xdS(x)

− c

∫

∂Br−ct(x0)

‖ u(x, t) ‖2x dS(x),
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where ν(x) denotes the exterior unit normal vector field. Now observe that by the definition
of c = c(Br(x0))

|〈Yt(x), ν(x)〉x| = |〈u(x, t), σD(ν(x), x)(u(x, t))〉x| ≤ c ‖ u(x, t) ‖2 .
This implies that

d

dt

∫

Br−ct(x0)

‖u(x, t)‖2xdx ≤ 0.

Thus we obtain
‖u(t)‖Br−ct(x0) ≤ ‖u(0)‖Br

(x0),

which concludes the proof. �

Let c = c(Br(x0)) and let

C = {(t, x) : t ≥ 0, d(x, x0) ≤ r − ct}
Corollary 6.8. Let u ∈ C∞([−T, T ], C∞(E)) be a solution of the equation

∂u

∂t
= iDu

on C. Suppose that u(0) = 0 on Br(x0). Then u = 0 on C.

Let U = Br(x0) ⊂ X be a normal coordinate chart and let

φ : E|U ∼= U × C
N

be a trivialization of E|U . Let D|U be restriction of D to C∞(U,E|U). Then
∂

∂t
u = iD|U(u), u(0, x) = u0(x)

is a hyperbolic system of order 1 in Rn. The usual theory for such systems implies existence
of solutions with smooth initial conditions. In this way we get

Proposition 6.9. For every x0 ∈ X there exists r > 0 such that for u0 ∈ C∞(Br(x0, E))
there exists a unique solution of

∂u

∂t
= iD(u), u(0, x) = u0(x)

on
C0 = {(x, t) : t ≥ 0, d(x, s0) ≤ r − ct},

where c = c(Br(x0)).

The next proposition extends the above result to a larger region.

Proposition 6.10. Let S = BR(x0) be a compact ball in X. Let c : c(S) and

C0 = {(x, t) : t ≥ 0, d(x, x0) ≤ r − ct}
Let u0 ∈ C∞(S,E). Then there is in C0 a unique smooth solution of the equation

∂u

∂t
= iD(u), u(0) = u0.



9

Proof. Since S is compact, there exists r > 0 such for all y ∈ S the injectivity radius
i(y) ≥ r. Thus for all y ∈ S, Br(y) is a normal coordinate chart. It follows from Proposition
(6.9) that for all y ∈ BR−r(x0) and u0 ∈ C∞(Br(y), E), the wave equation

∂u

∂t
= iD(u), u(0) = u0,

has a unique C∞-solution on the truncated cone

Cy = {(x, t) : d(x, y) ≤ r − ct, 0 ≤ t ≤ r/2c}.
By uniqueness, solutions agree on Cy∩Cz. Therefore, we obtain a solution on the truncated
cone

{(x, t) : d(x, x0) ≤ R− ct, 0 ≤ t ≤ r/2c}.
The solution u at time t = r/2c serves as initial condition on B(x0, R− r/2). If we repeat
the above argument, we get a solution on the truncated cone

{(x, t) : d(x, x0) ≤ R− ct, r/2c ≤ t ≤ r/c}
and therefore, a solution on

{(x, t) : d(x, x0) ≤ R− ct, 0 ≤ t ≤ r/c}.
After a finite number of steps, we obtain a smooth solution on the cone with base S. �

Let x0 ∈ X . Put
c(r) : = c(Br(x0)), r > 0.

Theorem 6.11. Let X be a complete Riemannian manifold. Suppose that
∫

∞

0

dr

c(r)
= ∞.

1) Uniqueness: Suppose that u ∈ C∞(X,E) is a solution of

∂u

∂t
= iDu

on [0, T ]×X with u(0) = 0. Then u ≡ 0.
2) Existence: Let u0 ∈ C∞(X,E). Then the wave equation

(6.6)
∂u

∂t
= iDu , u(0) = u0,

has a unique solution on R×X. Moreover, for fixed t, u(·, t) has compact support.

Proof. We first establish uniqueness. Let R > 0. Put SR = BR(x0). We shall show that
u(T ) vanishes on SR. Of course, we also have that u(T ′) vanishes for T ′ < T . Let

tR = c(R + 1)−1, R > 0.

By Proposition (6.10), the wave equation (6.6) on

{(x, t) : d(x, x0) ≤ R− c(R + 1)t, 0 ≤ t ≤ tR}
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with initial condition u0 ∈ C∞(SR+1, E) has a unique solution. Hence u(T ) on SR is
determined by u(T − tR) on SR+1. By the same argument u(T − tR) is determined by
u(T−tR−tR+1) on SR+2. Since the sets SR are compact, this may be continued indefinitely.
Now we have

(6.7)

∞
∑

n=0

tR+n = ∞,

because c(R) is monoton and
∫

∞

1

dr

c(r)
= ∞

by assumption. Hence there exists N ∈ N such that

T ′ : = tR + tR+1 + · · ·+ tR+N < T

and T ′ + tR+N+1 > T . From our considerations above follows that u(T )|SR
is determined

by u(T − T ′)|SR+N
. Let

ε = (R +N + 1)(T − T ′).

Then it follows as above that u(T − T ′)|SR+N
is determined by u(0)|SR+N+ε′

. Note that
T −T ′ ≤ tR+N+1. But u(0) = 0. Hence u(T −T ′)|SR+N

= 0. This implies that u(T )|SR
= 0.

Next we establish existence. The argument is like the uniqueness proof run in reverse.
Let u0 ∈ C∞

c (X,E). Let R > 0 such that supp u0 ⊂ SR. Since X is complete, SR is
compact. By Proposition (6.10) there exists a C∞-solution of (6.6) in

C = {(x, t) : 0 ≤ t ≤ tR+2 , d(x, x0) ≤ R + 3− c(R + 3)t}
Moreover, it follows from the uniqueness part of Proposition (6.10) that the solution van-
ishes outside SR+1. So we can extend it by 0 to a global solution on X which exists for
time 0 ≤ t ≤ tR+2. Now we iterate this process. The solution at time t = tR+2 is supported
in SR+1. By the above argument, it extends to a solution for 0 ≤ t ≤ tR+2 + tR+3 with
support in SR+2. Using again (6.7), we can extend the solution to any time t and for fixed
t, u(t) has compact support. �

For each t define a map
Ut : C

∞

c (X,E) → C∞(X,E)

by
Ut(u0) = u(t),

where u is the unique solution of

∂u

∂t
= iDu, u(0) = u0.

Corollary 6.12. Under the assumptions of Theorem (6.11), {Ut} is a one-parameter
group. Moreover, if w ∈ C∞

c (X,E), we have

d

dt
(Ut(u0), w) = (iDUt(u0), w).
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Finally DUt(u0) = Ut(Du0).

Proof. Let u(t) : = Ut(u0). Then u(t) ∈ C∞(X,E) and

∂u

∂t
= iDu.

Since w ∈ C∞

c (X,E), we can differentiate unter the integral which gives

d

dt
(Ut(u0), w) =

(

∂u

∂t
, w

)

= (iDUt(u0), w)

Moreover, Us+t = Us ◦ Ut and DUt = UtD follows from uniqueness. �

Note that Ut is unitary. Indeed we have

d

dt
‖ u(t) ‖2 =

(du

dt
(t), u(t)

)

+
(

u(t),
du

dt
(t)
)

=
(

iDu(t), u(t)
)

+
(

u(t), iDu(t)
)

=
(

iDu(t), u(t)
)

−
(

iD(t), u(t)
)

= 0.

6.5. Essential self-adjointness. In this section we apply the results obtained in the
previous section to establish the essential self-adjointness of geometric operators.

We begin with an abstract result.

Lemma 6.13. Let T be a symmetric operator in a Hilbert space H with dense domain
D ⊂ H. Suppose that T (D) ⊆ D). Furthermore suppose that there is a one-parameter
group Ut of unitary operators on H such that

Ut(D) ⊆ D, Ut T = TUt on D
and

d

dt
Ut(u) = iTUt(u)

for u ∈ D. Then every power of T is essentially self-adoint.

Proof. Let n ∈ N and A : = T n. Then

A : D → H
is symmetric. To show that A is essentially self-adjoint, it suffices to verify that

(A± i Id)(D) = H
Let ψ ∈ H and suppose that

(

(A± i)(ϕ), ψ
)

= 0, ∀ϕ ∈ D.
Then it follows that ψ ∈ D(A∗) and

A∗ψ = ∓iψ.
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We consider the case where A∗ψ = iψ. For u ∈ D define

f(t) = (Ut(u), ψ), t ∈ R.

Since Ut is unitary, f(t) is bounded. Furthermore we have

dn

dtn
f(t) = (iT nUt(u), ψ) = (iAUt(u), ψ) = (inUt(u), A

∗ψ)

= −in+1(Ut(u), ψ) = −in+1f(t).

Thus f(t) satisfies the ordinary linear differential equation.

(6.8)
dnf

dtn
(t) = −in+1f(t).

Let αj, j = 1, ..., n, be the different roots of the equation

zn = −in+1.

Then eαjt, j = 1, ..., n, is a basis for the space of solutions of (6.8). Therefore f(t) can be
written as

f(t) =

n
∑

j=1

cje
αjt

for some constants cj ∈ C. Now observe that Re(αj) 6= 0 for j = 1, ..., n. Since f is
bounded this implies that f ≡ 0. Hence we get

(u, ψ) = f(0) = 0, u ∈ D.
Since D ⊂ H is dense, it follows that ψ = 0. The case A∗ψ = −iψ can be treated in the
same way. �

We can now state the main result about essential self-adjointness.

Theorem 6.14. Let X be a complete Riemannian manifold and E → X a Hermitian
vector bundle over X. Let

D : C∞(X,E) → C∞(X,E)

be an elliptic differential operator of order 1 which is formally self-adjoint. Assume that
∫

∞

1

dr

c(r)
= ∞.

Let T : C∞

c (X,E) → L2(X,E) be the operator which is defined by D. Then every power of
T is essentially self-adjoint.

Proof. Let

Ut : C
∞

c (X,E) → C∞

c (X,E)

be the 1-parameter group, defined by Corollary 6.12. For each t ∈ R we have

‖Ut(u)‖ = ‖u‖, u ∈ C∞

c (X,E).
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Indeed, for u, w ∈ C∞

c (X,E), we have

d

dt
(Ut(u), Ut(w)) = (iDUt(u), Ut(w)) + (Ut(u), iDUt(w))

((iD − iD)Ut(u), Ut(w)) = 0.

Hence Ut extends by continuity to a one-parameter family

Ut : L
2(X, e) → L2(X,E)

of unitary operators. The assumptions of Lemma 6.13 are satisfied. This implies the
theorem. �

6.6. Applications. Now we are ready to apply the results of the previous section to
geometric situations.

Let X be a complete Riemannian manifold. Let

D = d+ d∗ : Λ∗(X) → Λ∗(X).

Then D is formally self-adjoint. To determine its principal symbol, fix p ∈ X, ξ ∈ T ∗

pX and
v ∈ Λ∗T ∗

pX . Let f ∈ C∞(X) and ϕ ∈ Λ∗(X) be such that f(p) = 0, dfp = ξ and ϕ(p) = v.
Then we have

σd(p, ξ)v = D(fϕ)(p) = (d+ d∗)(fϕ)(p) = dfp ∧ ϕ(p)− ∗(df ∧ ∗ϕ)(p)
= ξ ∧ v − iξ(v),

where iξ : Λ
∗T ∗

pX → Λ∗T ∗

pX denotes interior multiplication by ξ. This implies that

‖ σD(x, ξ) ‖=‖ ξ ‖ .
Hence we have c(x) = 1, i.e. D has unite propagation speed. By Theorem 6.14 it follows
that for all n ∈ N, the operator

(d+ d∗)n : Λ∗

c(X) → L2Λ∗(X)

is essentially self-adjoint. Now recall that the laplace operator ∆ is given by

∆ = (d+ d∗)2.

Thus it follows that for all n ∈ N,

∆n : Λ∗

c(X) → L2Λ∗(X)

is essentially self-adjoint. The Laplace operator preserves Λp(X) for every p. Therefore

∆n : Λp
c(X) → L2Λp(X)

is essentially self-adjoint for all p = 0, ..., n.

Next we consider a complex manifold equipped with a Hermitian metric, so that X ,
equipped with the associated Riemannian metric is complete. Let E → X be a holomorphic
Hermitian vector bundle over X . Then we define the space of (p, q)-forms with values in
E as the space of C∞-sections of ΛpT ∗(1.0)(X)⊗ ΛqT ∗(0,1)(X)⊗ E. The operator

∂̄ : Λp,q(X,E) → Λp,q+1(X,E)
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is uniquely defined by demanding that

∂̄(ω ⊗ ϕ) = (∂̄ω)⊗ ϕ

for every ω ∈ Λp,q(X) and every holomorphic section of E. In this way we get the
Dolbeault complex

· · · ∂̄−→ Λp,q(X,E)
∂̄−→ Λp,q+1(X,E) −→ · · ·

Let D = (∂̄ + ∂̄∗). Then we have

σD(x, ξ)(ω ⊗ ϕ) = (π(ξ) ∧ ω − iπ(ξ)(ω))⊗ ϕ

where π : T ∗

xX ⊗ C → T
∗(0,1)
x X is the canonical projection. It follows that

‖ σD(X, ξ) ‖=‖ π(ξ) ‖
and hence, c(x) = 1/

√
2. By Theorem 6.14,

(∂̄ + ∂̄∗)n : Λp,∗
c (X,E) → L2Λp,∗(X,E)

is essentially self-adjoint for all p and all n ∈ N.
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