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The theory of automorphic forms has a (relatively) long history dating back to the time
of H. Poincaré and F. Klein. Poincaré named them Fuschsian functions. Since then the
concept of automorphic forms has been changed considerably and the theory has undergone
a tremendous development. Today it is one of the central research areas in mathematics
with links to many different fields in mathematics including representation theory, number
theory, PDE’s, algebraic geometry and differential geometry

The modern theory of auomorphic forms is a repsonse to many different impulses and
influences. But so far, the most powerful techniques are the issue, direct or indirect, of the
introduction of spectral theory into the subject by Maass and then Selberg.



2 INTRODUCTION



Chapter 1

General set up and basic facts

1.1 Preliminaries

Let G be a connected real semi-simple Lie group with finite center. Assume that G is of
non-compact type. This means that G has no compact factors. Fix a maximal compact
subgroup K of G. Let g and k denote the Lie algebras of G and K, respectively. Let

B(X, Y ) = Tr(ad(X) ◦ ad(Y ))

be the Cartan-Killing form of g. Since g is semi-simple, B is a non-degenerate bilinear
form on g. Let

g = p ⊕ k

be the Cartan decomposition w.r.t. B. Then B|p×p is positive definite and B|k×k negative
definite. Let a ⊂ p be a maximal abelian subspace. Let A ⊂ G be the connected subgroup
with Lie algebra a. Let

G = NAK

be the corresponding Cartan decompostion. Recall that N is a nilpotent Lie group. Let
M = ZK(A) be the centralizer of A in K. Put

P0 = MAN.

Then P0 is a minimal parabolic subgroup of G.

Example. Let G = SL(n,R) and K = SO(n). Then P0 is group of upper triangular
matrices.

1.2 Symmetric spaces

Let G and K be as above. Then
S = G/K

3
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a smooth C∞-manifold which is diffeomorphic to Rn. Given g ∈ G, we denote by Lg : S →
S the diffeomorphism defined by

Lg(g1K) = gg1K, g1K ∈ S.

Let x0 = eK and let Tx0
S be the tangent space at x0. There is a canonical isomorphism

Tx0
S ∼= g/k ∼= p.

Using this isomorphism, the restriction of the Killing form B to p defines an inner product
〈·, ·〉xo

in Tx0
S. Then 〈·, ·〉xo

satisfies

〈Ad(k)t1,Ad(k)t2〉xo
= 〈t1, t2〉x0

, k ∈ K, t1, t2 ∈ Tx0
S. (1.2.1)

Let x = gK ∈ S. Define an inner product in the tangent space TxS by

〈t1, t2〉x := 〈dLg−1(t1), dLg−1(t2)〉x0
, t1, t2 ∈ TxS.

By (1.2.1) the right hand side is independent of the chosen representative of the coset gK.
In this way we get Riemannian metric ds2 on S, which is G-invariant. This means that G
acts on S by isometries. Then (S, ds2) is a complete Riemannian manifold. The geodesic
reflection about any x ∈ S is a global isometry. So (S, ds2) is global Riemannian symmetric
space. The rank rk(S)of S is defined as the dimension the maximal flat subspace of S. It
equals dim a.

Examples.

1) Let G = SL(2,R) and K = SO(2). G acts on the upper half-plane

H = {z ∈ C : Im(z) > 0}
by fractional linear transformations. The action action is transitive and the stabilzer
of i ∈ H is K = SO(2). This is a maximal compact subgroup and

H ∼= G/K = SL(2,R)/ SO(2).

The invariant metric on H defined by the Killing form is the Poinncaré metric

ds2 =
dx2 + dy2

y2
, z = x+ iy.

2) Let
Hn = {(x1, ..., xn+1) ∈ Rn+1 : x2

1 − (x2
2 + · · ·x2

n+1) = 1, x1 > 0}
be the hyperbolic n-space with Riemannian metric given by the restriction of

ds2 = dx2
1 − (dx2

2 + · · ·dx2
n+1)

to Hn. Then SO0(n, 1) acts transitively on Hn. The stabilizer of the point (1, 0, ..., 0)
is SO(n). This is a maximal compact subgroup of SO0(n, 1) and

Hn ∼= SO0(n, 1)/ SO(n).
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3) Let
S = {Y ∈ Mat(n,R) : Y > 0, det Y = 1}

be the space of positive definite symmetric n × n-matrices with determinant 1.
SL(n,R) acts on S by

g · Y := gtY g, Y ∈ S, g ∈ SL(n,R),

and the stabilizer of the identity matrix I is SO(n). Thus

S ∼= SL(n,R)/ SO(n).

The invariant metric Riemannian metric on S is given by

ds2 = Tr
(
Y −1(dY )Y −1dY

)
.

The rank of S is n− 1.

A differential operator D : C∞(S) → C∞(S) is called invariant, if it commutes with the
left action Lg of G on C∞(S), i.e.,

D ◦ Lg = Lg ◦D, for all g ∈ G,

where (Lgf)(x) = f(g−1x), f ∈ C∞(S). Let

∆ = − div ◦ grad

be the Laplacian with respect to the invariant metric on S. Then ∆ is an invariant
differential operator on S.

Let D(S) be the ring of invariant differential operators on S. The structure of D(S) is
described by the following theorem of Harish-Cahndra. Let aC = a ⊗ C be the complexifi-
cation of the Lie algebra a and let S(aC)W be the subspace of W -invariant elements in the
symmetric algebra S(aC) over aC. Then we have [HC1, Theorem 1, p. 260]

Theorem 1.2.1. There is a canonical isomorphism

γ : D(S) ∼= S(aC)W .

It follows that D(S) is a commutative, finitely generated algebra. The minimal number of
generators of D(S) equals r = rank(S).

Given λ ∈ a∗
C, we extend it to an algebra homorphism λ : S(aC) → C. By Theorem 1.2.1

we get a homorphism χλ : D(S) → C, which is defined by

χλ(D) = λ(γ(D)), D ∈ D(S).

Using γ(D) ∈ S(aC)W , it follows that χλ satisfies

χwλ = χλ for w ∈W.

The converse is also true. If χλ1
= χλ2

, then there exists w ∈ W such that wλ1 = λ2.
Futhermore, we have [Kn, Chapt. VIII, Proposition 8.21]
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Lemma 1.2.2. Every homorphism from D(S) into C is of the form χλ for some λ ∈ a∗
C.

Thus we get

D̂(S) ∼= a∗
C/W. (1.2.2)

1.3 Discrete subgroups

A lattice Γ in G is a discrete subgroup of G such that vol(Γ\G) < ∞, where the volume
is taken with respect to any Haar measure on G. Let Γ ⊂ G be lattice in G. Then Γ acts
properly discontinuously on S. Let

XΓ := Γ\S = Γ\G/K.

Then XΓ is a locally symmetric space. Let F ⊂ S be a fundamental domain of Γ. Then

vol(XΓ) :=

∫

F

dµ <∞,

where dµ is the volume form attached to the metric ds2. So XΓ is a locally symmetric space
of finite volume. If Γ is torsion free, then XΓ is a smooth manifold. Since the Riemannian
metric ds2 on S is G-invariant, it induces a canonical Riemannian metric ds2

Γ on XΓ. The
volume of XΓ with respect to this metric is finite.

Examples.

1) For N ∈ N let
Γ(N) = {γ ∈ SL(2,Z) : γ ≡ I mod N} . (1.3.1)

This is the principal congruence subgroup of SL(2,Z) of level N . Especially Γ(1) =
SL(2,Z) is the modular group. The standard fundamental domain F (1) of Γ(1) is
given by

F (1) = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1/2} .
It has finite area. In fact, using hyperbolic geometry one has

Area(Γ(1)\H) =
π

3
.

Let
X(N) = Γ(N)\H.

If N ≥ 3, then Γ(N) is torsion free. Then X(N) is a hyperbolic surface of finite area.

2) The hyperbolic 3-space is given by

H3 = SL(2,C)/SU(2).

The Picard modular group Γ = SL(2,Z[i]) is a lattice in SL(2,C).
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3) SL(n,Z) and congruence subgroups of SL(n,Z) are lattices in SL(n,R).

Of particular importance are arithmetic subgroups. Let G be a connected linear semi-
simple albegraic group defined over Q and let G = G(R) be the group of real points of
G. Let G ⊂ GL(n) be an embedding defined over Q. A subgroup Γ ⊂ G(Q) is called
arithmetic if it is commensurable with G ∩ GL(n,Z).

1.4 Automorphic forms

Let G be a subgroup of finte index in the group of real points of a connected semi-simple
algebraic group G defined over R. By definition, there exists N ∈ N such that G ⊂
SL(N,R), and it is closed. Let ‖ g ‖ be the Hilbert-Schmidt norm of g ∈ SL(N,R). Thus

‖ g ‖2= tr(gt · g) =
∑

i,j

g2
ij .

A function f ∈ C(G) is said to be of moderate growth or slowly increasing, if there exist
m ∈ N and C > 0 such that

|f(g)| ≤ C ‖ g ‖m, g ∈ G. (1.4.1)

Let νm be the semi-norm on C(G) defined by

νm(f) = sup
{
|f(g)|· ‖ g ‖−m : g ∈ G

}
.

Then f is moderate growth, if and only if there exists m ∈ N such that νm(f) <∞.

f ∈ C∞(G) is called right K-finite, if the set of right translates {R(k)f : k ∈ K} spans a
finite-dimensional subspace. Furthermore, f is called Z(g)-finite, if there exists an ideal of
finite co-dimension in Z(g) which annihilates f .

Let Γ ⊂ G be a lattice.

Definition 1.4.1. A function f ∈ C∞(G) is an automorphic form for Γ if it satisfies the
following conditions:

(A1) f(γg) = f(g) for all γ ∈ Γ and g ∈ G.

(A2) f is right K-finite.

(A3) f is Z(g)-finite.

(A4) f is of moderate growth.

An automorphic form f is called cusp form, if it also satisfies
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A5) For all proper Γ-cuspidal parabolic subgroups P of G one has
∫

(Γ∩NP )\NP

f(nx) dn = 0.

We denote the space of automorphic forms for Γ by A(Γ) and the subsapce of cusp forms
by Acus(Γ). Cusp forms have the following important property [HC2, Chapt. I, §4, Lemma
12].

Theorem 1.4.2. Let f ∈ C∞(G) be a cusp form. Then f is rapidely decreasing on every
Siegel domain S.

In particular, a cusp form is bounded. Since Γ\G has finite volume, it follows that
Acus(Γ) ⊂ L2(Γ\G). Let L2

cus(Γ\G) be the closure of Acus(Γ) in L2(Γ\G).

A special type of an automorphic form is a Maass form. A Maass form for Γ is a smooth
function f on S which satisfies:

1) f(γx) = f(x) for all γ ∈ Γ and x ∈ S.

2) There exists λ ∈ a∗
C such that Df = χλ(D)f for all D ∈ D(S).

3) f is of moderate growth.

Examples.

1. Classical automorphic forms. Let G = SL(2,R) and K = SO(2). For g ∈ G and
z ∈ H we define the automorphie factor by

j(g, z) = cz + d, g =

(
a b
c d

)
.

Let Γ ⊂ G be a lattice. Let m ∈ N. An automorphic form of weight m on H is a function
f : H → C such that

1) f is holomorphic on H.

2) f(γ(z)) = j(γ, z)mf(z) for all γ ∈ Γ.

3) f is regular in all cusps of Γ\H.

Let f̃ be the function on G defined by

f̃(g) = j(g, i)−mf(g(i)), g ∈ G.

Then f̃ ∈ C∞(G). It follows from 2) that f̃ is left Γ-invariant and it satisfies

f̃(gk) = χm(k)f̃(g), k ∈ K, g ∈ g,
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where χm : K → C∗ is the character defined by χm(k(θ)) = e−imθ for a rotation k(θ) of
angle θ. Thus f̃ satisfies (A2). 1) implies that f̃ is an eigenfunction of the Casimir operator
Ω ∈ Z(g). Since Z(g) = C[Ω], f̃ satisfies (A3). For (A4) suppose that ∞ is a cusp ∞.
Then Γ contains a translation z 7→ z + p for some p ∈ N. Since f is invariant under this
translation, f admits a Fourier expansion w.r.t to x of the form

f(z) =
∑

n∈Z

an exp

(
2πinz

p

)
.

The regularity condition 3) means that an = 0 for n < 0. This implies that on the “Siegel
set”

St = {z ∈ H : |Re(z)| ≤ c, Im(z) > t} ,

where c, t > 0, we have |f(z)| ≪ ym. This implies that f̃ is of moderate growth. Thus f̃
is an automorphic form for Γ.

2. Maass forms.

Let ∆ be the Laplace operator on the upper half-plane H w.r.t. the Poincaré metric. It is
given by

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
, z = x+ iy. (1.4.2)

Since rank(H) = 1, it follows that D(H) = C[∆]. Then a Maass form for Γ(1) is a smooth
function f on H, which satisfies

1) f(γ(z)) = f(z), γ ∈ Γ(1).

2) There exists λ ∈ C such that ∆f = λf .

3) There exists N ∈ N such that |f(x+ iy)| ≪ yN for y ≥ 1.

Furthermore f is a cusp form, if

∫ 1

0

f(x+ iy) dx = 0 for y > 0.

Let f ∈ L2(Γ(1)\H) and assume that ∆f = λf . Since ∆ is an essentially self-adjoint
operator in L2, it follows that λ ≥ 0. For Γ(1) it is known that any non-zero eigenvalue λ
satisfies λ > 1/4. Write λ = 1

4
+ r2, r > 0. Since f is invariant under z 7→ z + 1, it has a

Fourier expansion of the form

f(x+ iy) =
∑

n 6=0

an
√
yKir(2π|n|y)e2πnx,
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where Kν(y) is the modified Bessel function which may be defined by

Kν(y) =

∫ ∞

0

e−y cosh(t) cosh(νt) dt.

In particular, f is a cusp form. Furthermore, it is known that Kν satisfies Kν(y) ≪ e−cy

for some c > 0 and y ≥ 1. Hence we get |f(x+ iy)| ≪ e−cy, y ≥ 1. This shows that every
square integrable eigenfunction of ∆ is a Maass form.

Another example of a Maass form is the non-holomorphic Eisenstein series. Let Γ = Γ(1)
and let Γ∞ denote the stabilizer of ∞. Then the Eisenstein series attached to the cusp ∞
is defined by

E(z, s) =
∑

γ∈Γ∞\Γ

Im (γ(z))s =
∑

(m,n)=1

ys

|mz + n|2s
, Re(s) > 1. (1.4.3)

By definition, E(·, s) is invariant under Γ(1). Furthermore, it follows from (1.4.2) that
∆ys = s(1−s)ys. Since ∆ commutes with the action of Γ(1), it follows that the Eisenstein
series satisfies

∆zE(z, s) = s(1 − s)E(z, s).

Using (2.3.3), it is easy to verify that E(z, s) is of moderate growth. Thus it is a Maass
form which is not square integrable.

1.5 Geometric interpretation of automorphic forms

Let σ : K → GL(V ) be a finite-dimensional complex representation.

1.6 Spectral decomposition

Let S = G/K be Riemannian symmetric space and D(S) the algebra of invariant differen-
tial operators of S. Let Γ ⊂ G be a lattice. Assume that Γ is torsion free. Let f ∈ C∞(Γ\S)
be a Maass cusp form for Γ. Then f is a square integrable joint eigenfunction of D(S).
Therefore the study of Maass automorphic forms is intimately connected with the study
of the spectral resolution of the algebra D(S) acting in L2(Γ\S).

Langlands’ theory of Eisenstein series [La1] provides a decomposition

L2(Γ\S) = L2
dis(Γ\S) ⊕ L2

ac(Γ\S),

where L2
dis(Γ\S) and L2

ac(Γ\S) are the subspaces conrresponding to the point spectrum
and the absolutely continuous spectrum, respectively. L2

ac(Γ\S) is described in terms of
Eisenstein series and

L2
dis(Γ\S) =

⊕

i∈I

Cfi,
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where {fi}i∈I is an orthonormal basis of Ldis(Γ\S) consisting of joint eigenfunctions of
D(S). Each fi, i ∈ I, is a square integrable Maass automorphic form. The space of cusp
forms L2

cus(Γ\S) is contained in L2
dis(Γ\S). Let L2

res(Γ\S) be the orthogonal complement of
L2

cus(Γ\S) in L2
dis(Γ\S). This is the so called residual subspace corresponding to the residual

spectrum. By Langlands [La1], L2
res(Γ\S) is spanned by iterated residues of Eisenstein

series. Thus we have the following decomposition of the point spectrum

L2
dis(Γ\S) = L2

cus(Γ\S) ⊕ L2
res(Γ\S).

By Langlands [La1], the cusp forms are the building blocks of the spectral resolution. Recall
that by (1.2.2) each joint eigenfunction f of D(S) determines a character χλ : D(S) → C,
where λ ∈ a∗

C/W . Given λ ∈ a∗
C, let

E(λ) =
{
f ∈ L2(Γ\S) ∩ C∞(Γ\S) : Df = χλ(D)f, for allD ∈ D(S)

}
.

Let m(λ) = dim E(λ). Then the discrete spectrum of D(S) is defined as

Λdis(Γ) = {λ ∈ a∗
C/W : m(λ) > 0} .

Then we get an orthogonal decomposition

L2
dis(Γ\S) =

⊕

λ∈Λdis(Γ)

E(λ).

Similarly we define the cuspidal spectrum Λcus(Γ) and the residual spectrum Λres(Γ) by
replacing L2(Γ\S) by L2

cus(Γ\S) and L2
res(Γ\S), respectively. Thus we have orthogonal

decompositions

L2
cus(Γ\S) =

⊕

λ∈Λcus(Γ)

Ecus(λ), and L2
res(Γ\S) =

⊕

λ∈Λres(Γ)

Eres(λ).

If we choose a fundamental domain for W in a∗
C, we may regard the spectra as subsets of

a∗
C.

If rank(S) = 1, then D(S) = C[∆]. Then the problem is reduced to the study of the
spectral resolution of the Laplace oeprator ∆ in L2(Γ\S). This case will be discussed in
more detail in the next chapter. If rank(S) > 1, then the spectra are multidimensional.
Nevertheless, the spectral decomposition of the Laplace operator alone plays a central
role. This is so because the closure of the Laplace operator in L2 is self-adjoint. If E is a
finite-dimensional eigenspace of ∆, we get a representation of D(S) in E by a commutative
algebra of normal operators. So this algebra can be diagonalized.

More generally, we may consider vector valued automorphic forms. Let Ẽσ → S = G/K
be a homogeneous vector bundle associated to a finite-dimensional representation of K.
Let Eσ = Γ\Ẽσ be the associated locally homogeneous vector bundle over Γ\S. The center
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Z(g) of the universal envoloping algebra of gC acts in L2(Γ\S,Eσ) and we may study its
spectral resolution.

The representation theoretic viewpoint leads to a unified treatment. Consider the right
regular representation R of G in L2(Γ\G),which is defined by

(R(g)f)(g′) = f(g′g), f ∈ L2(Γ\G), g ∈ G.

This is a unitary representation and we may decompose it into irreducible representations
of G. Let Ĝ be the set of equivalence classes of irreducible unitary representations of
G, equipped with the Fell topology. Again by Langlands [La1] there is an orthogonal
decomposition into two invariant subspaces of R:

L2(Γ\G) = L2
dis(Γ\G) ⊕ L2

ac(Γ\G),

where L2
dis(Γ\G) is the closure of the span of all irreducible subrepresentations of R. Let

Rdis denote the restrictions of R to L2
dis(Γ\G). Then

Rdis =
⊕

π∈Ĝ

mΓ(π)π,

with finite multiplicities mΓ(π).

1.7 Basic problems

Here are some of the basic questions related to the spectral decomposition.

1) Existence of cusp forms and the asymptotic distribution of the spectrum (Weyl’s
law).

2) Location of the spectrum (Ramanujan - Selberg conjectures, Arthur conjectures).

3) Description of the residual spectrum.

4) Bahavior of the joint eigenfunctions as the eigenvalues of the Laplacian tend to ∞.
(semiclassical limit).

5) Size of eigenfunctions, equidistribution of mass.

6) Langlands functoriality principle (relation between spectra for different groups).

Why study these problems?

There is a number of reasons why one wants to study these problems.
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1. Automorphic L-functions - Langlands program.

This is the most important reason to study the spectral decomposition. Let G be a reduc-
tive algebraic group over Q (or a number field F). Let LG be the Langlands dual group. For
each cuspidal automorphic representation π of G(A) and each finite-dimensional represen-
tation of LG one can form an L-function L(s, π, ρ). All L-functions from arithmetic (Artin,
Hasse-Weil zeta function) are expected to be special cases of automorphic L-functions.

Example: Let Γ = SL(2,Z) and F ⊂ H the standard fundamental domain. Let f ∈
C∞(H) be a square integrable Γ-automorphic form with eigenvalue λ = 1/4 + r2, r ≥ 0,
i.e., f satisfies

f(γz) = f(z), γ ∈ Γ, ∆f = (1/4 + r2)f,

∫

F

|f(z)|2dA(z) <∞.

In addition assume that f is symmetric w.r.t. to the reflection x+ iy 7→ −x+ iy.

Since f satisfies f(z + 1) = f(z) it admits the following Fourier expansion w.r.t. to x:

f(x+ iy) =

∞∑

n=1

any
1/2Kir(2πny) cos(2πnx),

where

Kν(y) =

∫ ∞

0

e−y cosh t cosh(νt) dt

is the modified Bessel function. Let

L(s, f) :=
∞∑

n=1

an

ns
, Re(s) > 1.

The modularity of f implies that L(s, f) admits a meromorphic extension to C, and satisfies
a functional equation. Let

Λ(s, f) = π−sΓ

(
s+ ir

2

)
Γ

(
s− ir

2

)
L(s, f).

Then the functional equation is Λ(s) = Λ(1 − s).

• L(s, f) is an example of an automorphic L-function.

• This construction can be generalized to automorphic forms w.r.t. other semisimple
(or reductive) groups.
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Basic problem: Establish analytic continuation and functional equation in the general
case

Langlands’ functoriallity principle: Provides relation between auotmorphic forms on
different groups by relating the corresponding L-functions.

Basic conjecture: All L-functions occurring in number theory and algebraic geometry
are automorphic L-functions.

• Leads to deep connections between harmonic analysis and number theory.

Example. A. Wiles, proof of the Shimura-Taniyama conjecture: The L-function of
an elliptic curve is automorphic.

Langlands program: This theorem holds in much greater generality. There is a conjec-
tured correspondence

{
irreducible n− dim.
repr′s of Gal(Q/Q)

}
→

{
automorphic forms

of GL(n)

}

2. Mathematical physics. If the curvature of S is strictly negative, then the geodesic
flow on X = Γ\S is known to be chaotic. The Laplacian is the Hamiltonian of the
quantization of this Hamiltonian system. So it is a model for questions from “Quantum
chaos”. This is the only known such mechanical system for which some of the basic
questions of quantum chaos can be answered.

• Γ\H surfaces negative curvature, geodesic flow is ergodic.

• Γ\H models for quantun chaos

• Lp-estimates for eigenfunctions, “random wave conjecture”

• “Quantum unique ergodicity”

Let X(N) = Γ(N)\H. Let ∆φj = λjφj, {φj}j∈N an orthonormal basis of L2
pp(X(N)).

Existence: see Theorem 5.

L∞-conjecture: Fix K ⊂ X(N) compact. For ε > 0

‖ φj|K ‖∞≪ε λ
ε
j, j ∈ N.

• Implies Lindeloef hypothesis for ζ(s), and also for L(s, φj).
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Seger, Sogge: L∞ bounds on general compact surfaces.

‖ φj ‖∞≪ λ
1/4
j .

Theorem 1.7.1. Let φj on X(N).

‖ φj ‖∞≪ λ
5/24
j .

Let
µj = |φj(z)|2 dA(z).

µj is a probability measure on X(N).

Quantum unique ergodicity conjecture:

µj →
1

Area(X(N))
dA(z), j → ∞.

The existence of infinitely many L2 eigenfunctions of ∆ on X(N) is essential for
these conjectures.

• One of the basic tools to study the above problems is the trace formula of Selberg
and Arthur.
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Chapter 2

Spectral decomposition I. The rank
one case.

In this chapter we summarize the basic facts about the spectral decomposition for the
group SL(2,R). The case of an arbitrary group G of real rank one is analogous.

2.1 Hyperbolic surfaces of finite area

Let G = SL(2,R) and K = SO(2). Then H = G/K. Let Γ ⊂ G be a discrete subgroup
of finite co-volume. Let F ⊂ H be a fundamental domain for Γ. If Γ is torsion free, then
XΓ = Γ\H is a hyperbolic surface of finite area. It has the following structure. There is a
decomposition

XΓ = M ∪ Y1 ∪ · · · ∪ Ym, (2.1.1)

where M is a compact surface with boundary and

Yi
∼= [ai,∞) × S1, i = 1, ..., m, ai > 0.

The metric on Yk is given by

dx2
k + dy2

k

y2
k

, (yk, xk) ∈ [ak,∞) × S1.

2.2 The hyperbolic Laplace operator

Then H = G/K. Let Γ ⊂ G be a discrete subgroup of finte co-volume. Let F ⊂ H be a
fundamental domain for Γ. Let

C∞(Γ\H) = {f ∈ C∞(H) : f(γ(z)) = f(z), γ ∈ Γ} ,

17
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By C∞
c (Γ\H) we denote the subspace of all f ∈ C∞(Γ\H) such that supp f ∩F is compact.

If Γ is torsion free, then XΓ = Γ\H is a hyperbolic surface of finte area. Then C∞
c (Γ\H) is

the space of smooth functions on XΓ and C∞
c (Γ\H) the subspace of compactly supported

smooth functions on XΓ. For f1, f2 ∈ C∞
c (Γ\H) let

〈f1, f2〉 =

∫

F

f1(z)f2(z)
dx dy

y2
,

and let L2(Γ\H) be the completion of C∞
c (Γ\H) with respect to this inner product. Simi-

larly, let

‖ df ‖2=

∫

F

df ∧ ∗df =

∫

F

‖ df(z) ‖2 dx dy

y2
.

Let ∆ = d∗d be the Laplacian of H w.r.t. the Poincaré metric. Recall that

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
, z = x+ iy. (2.2.1)

It commutes with the action of G on H. Therefore it descends to an operator in C∞(Γ\H).
Then ∆, regarded as linear operator

∆: C∞
c (Γ\H) → L2(Γ\H),

is a symmetric, non-negative operator L2, i.e., it satisfies

〈∆f1, f2〉 = 〈f1,∆f2〉, f1, f2 ∈ C∞
c (Γ\H),

and
〈∆f, f〉 ≥ 0, f ∈ C∞

c (Γ\H).

If Γ is torsion free, XΓ is complete Riemannian manifold. It follows that ∆ is essentailly self-
adjoint [Ch]. This means that the closure ∆̄ of ∆ in L2(XΓ) is a self-adjoint operator. This
is also true for an arbitrary lattice. Therefore we can talk about the spectral decomposition
of ∆̄. The following basic result about the spectrum of ∆̄ is due to Roelcke [Roe].

Proposition 2.2.1. The spectrum of ∆̄ is the union of a pure point spectrum σpp(∆̄) and
an absolutely continuous spectrum σac(∆̄).
1) The pure point spectrum consists of eigenvalues 0 = λ0 < λ1 ≤ · · · of finite multiplicities
with no finite points of accumulation.
2) The absolutely continuous spectrum equals [1/4,∞) with multiplicity equal to the number
of cusps of Γ\H.

Of particular interest is the point spectrum. The eigenfunctions corresponding to the
eigenvalues λi are Maass forms. Let {fi}i∈I be an orthonormal system of eigenfunctions
with eigenvalues λi. Put

L2
dis(Γ\H) =

⊕

i

Cfi.
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If Γ\H is non-compact, then the continuous spectrum of ∆̄ equals [1/4,∞). Then the only
obvious eigenvalue of ∆ is λ = 0. The existence of eigenvalues 6= 0 is by no means obvious
- see section ?.

Let L2
ac(Γ\H) be the orthogonal complement of L2

dis(Γ\H). This is the absolutely continu-
ous subspace. It can be explicitely described in terms of Eisenstein series.

2.3 Eisenstein series

Let a1, ..., am ∈ R ∪ {∞} be representatives of the Γ-conjugacy classes of parabolic fixed
points of Γ. The ai’s are called cusps. For each ai let Γai

be the stabilizer of ai in Γ.
Choose σi ∈ SL(2,R) such that

σi(∞) = ai, σ−1
i Γai

σi =

{(
1 n
0 1

)
: n ∈ Z

}
. (2.3.1)

Then the Eisenstein series Ei(z, s) associated to the cusp ai is defined as

Ei(z, s) =
∑

γ∈Γai
\Γ

Im(σ−1
i γz)s, Re(s) > 1. (2.3.2)

The series converges absolutely and uniformly on compact subsets of the half-plane Re(s) >
1 and it satisfies the following properties.

1) Ei(γz, s) = Ei(z, s) for all γ ∈ Γ.

2) As a function of s, Ei(z, s) admits a meromorphic continuation to C which is regular
on the line Re(s) = 1/2.

3) Ei(z, s) is a smooth function of z and satisfies ∆zEi(z, s) = s(1 − s)Ei(z, s).

As example consider the modular group Γ(1) which has a single cusp ∞. The Eisenstein
series attached to ∞ is the well-known series

E(z, s) =
∑

(m,n)∈Z2

(m,n)=1

ys

|mz + n|2s
. (2.3.3)

In the general case, the Eisenstein series were first studied by Selberg [Se1].

• The important property of the Eisenstein series is the existence of the meromorphic
continuation to s ∈ C and the functional equations satisfied by the Eisenstein series.

For the Eisenstein series (2.3.3) this is a classical result of analytic number theory. In this
case one can use the Mellin transform and the Poisson summation formula to establish the
analytic continuation and the functional equation. There exist different methods to deal
with the general case. One of them is geometric scattering theory.
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2.4 Fourier expansion of Eisenstein series

Let σi, i = 1, ..., m, be defined by (2.3.1). Let f ∈ C(Γ\H). Put fi(z) = f(σi(z)). Then
it follows from the definition of σi that fi satisfies fi(z + 1) = fi(z). Therefore it can be
expanded in a Fourier series with respect to x. This is the Fourier expansion of f at the
cusp al.

The Fourier expansion of Ek(z, s) at al has the following form:

Ek(σl(z), s) = δkly
s + Ckl(s)y

1−s +
∑

n 6=0

ϕkl(n, s)
√
yKs−1/2(2π|n|y)e2πnx

with certain meromorphic functions Ckl(s) and ϕkl(n, s) [Iw, Theorem 3.4]. Using that
Kν(y) ≪ e−cy as y → ∞, it follows that

Ek(σl(z), s) = δkly
s + Ckl(s)y

1−s +O
(
e−c1y

)
(2.4.1)

as y → ∞. Put
C(s) = (Ckl(s))

m
k,l=1 . (2.4.2)

This is the so called scattering matrix. As we will see later, its analytic properties are
important for the existence of cusp forms. For a general group Γ there is very little we
can say about C(s). On the hand, for the principle cingruence subgroup Γ(N) the entries
of C(s) can be expressed in terms of known functions from analytic number theory. For
SL(2,Z) the scattering matric is just a function c(s) which is given by

c(s) =
√
π
Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
, (2.4.3)

where Γ(s) is the Gamma function and ζ(s) is the Riemann zeta-function [Iw, (3.24)].
For Γ(N) the entries of C(s) have been computed by Huxley [Hu]. In particular, the
determinant is given by

detC(s) = (−1)lA1−2s

(
Γ(1 − s)

Γ(s)

)k ∏

χ

L(2 − 2s, χ̄)

L(2s, χ)
, (2.4.4)

where k, l ∈ Z, A > 0, the product runs over Dirichlet characters χ to some modulus
dividing N and L(s, χ) is the Dirichlet L-function with character χ.

2.5 Analytic continuation of Eisenstein series

To simplify notation, we assume that Γ\H has a single cusp. An example is the modular
group SL(2,Z). Then Γ\H has a decomposition of the form

Γ\H = M ∪ Y,
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where M is a compact surface with boundary and Y = [b,∞) × S1. In this case there
is a single Eisenstein series E(z, s). There exists different approaches to achieve the ana-
lytic continuation of Eisenstein series [Se2], [Co], [Mu1]. The latter two are based on the
following result.

Lemma 2.5.1. For Re(s) > 1/2, s 6= s̄, E(z, s) is the unique solution of the equation
∆u(s) = s(1 − s)u(s) such that for (y, x) ∈ Y we have

u((y, x), s) = ys + ψ((y, x), s), where ψ(s) ∈ L2(Y ). (2.5.1)

Proof. Let u1(s) and u2(s) be any two solutions such that (2.5.1) holds. Put v(s) = u1(s)−
u2(s). Then v(s) is a square integrable eigenfunction of ∆ with eigenvalue λ = s(1−s) 6∈ R.
Since ∆̄ is self-adjoint, it follows that v(s) = 0.

Let f ∈ C∞(R) such that f(u) = 1 for u ≥ b+ 2, and f(u) = 0 for u ≤ b.

Set
ϕ(z, s) = f(y)ys and ψ(s) = (∆ − s(1 − s))(ϕ(s)).

Then ψ(·, s) ∈ C∞
c (Γ\H), and the Lemma implies that

E(z, s) = f(y)ys − (∆ − s(1 − s))−1(ψ(s))(z) (2.5.2)

for Re(s) > 1/2, s 6= s̄. The analytic continuation of E(z, s) will follow from the analytic
continuation of the resolvent. Let L2

cpt(Γ\H) the subspace of all f ∈ L2(Γ\H) with compact
support. Let H2

loc(Γ\H) be the space of distributions on Γ\H which are locally in the
Sobolev space H2. Then we have [Mu1]

Theorem 2.5.2. The resolvent R(s) = (∆ − s(1 − s))−1, defined for Re(s) > 1/2, s 6= s̄,
extends to a meromorphic family of bounded operators

R(s) : L2
cpt(X) → H2

loc(X)

with poles of finite rank.

Since ψ(s) ∈ L2
cpt(Γ\H) for all s ∈ C, the theorem can be applied to the right hand side of

(2.5.2) and yields the analytic continuation of E(z, s). This method worsk equally well for
a group Γ with several cusps.

A similar approach has been used by Colin de Verdiere [Co]. It this based on the cut-off
Laplacian of Lax and Phillips. Let H1(Γ\H) be the completion of C∞

c (Γ\H) with respect
to the norm

‖ f ‖2
H1:=‖ f ‖2 + ‖ df ‖2 .
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For a > b+ 3 let

H1
a(Γ\H) =

{
f ∈ H1(Γ\H) :

∫

S1

f(y, x) dx = 0 for y ≥ a

}
.

Let qa : H1
a(Γ\H) → R be the quadratic form defined by

qa(f) :=‖ df ‖2, f ∈ H1
a(Γ\H).

This is closed quadratic form and therefore there exists a unique self-adjoint operator ∆a

which represents qa. This is the cut-off Laplacian. The important point about ∆a is the
following result.

Lemma 2.5.3. ∆a has pure point spectrum and Ra(s) = (∆a−s(1−s))−1 is a meromorphic
function of s ∈ C, with values in the bounded operators on L2(Γ\H).

If follows from the description of the domain of ∆a and the definition of ψ(s) that ψ(s) ∈
dom(∆a). Put

F (z, s) = f(y)ys − (∆a − s(1 − s))−1(ψ(s))(z), s ∈ C. (2.5.3)

By Lemma 2.5.3, F (z, s) is a meromorphic function in s ∈ C. Moreover, it is smooth
outside {a} × S1. Let

F0(y, s) =

∫

S1

F ((y, x), s) dx, y ∈ [b,∞).

Then it follows from the definition that F0 has the following form

F0(y, s) =

{
A(s)ys +B(s)y1−s, b ≤ y ≤ a;

ys, y > a.

Let χa denote the characteristic function of [a,∞) × S1 in Γ\H. Put

F̃ (z, s) = F (z, s) − χa(y
s − (A(s)ys +B(s)y1−s)).

Then F̃ (z, s) is smooth and satisfies ∆F̃ (z, s) = s(1 − s)F̃ (z, s). Moreover F̃ (z, s) −
χa(A(s)ys +B(s)y1−s) is square integrable. Hence by Lemma 2.5.1 we get

E(z, s) = A(s)−1F̃ (z, s), Re(s) > 1/2, s 6= s̄.

Now the right hand side provides the analytic continuation of the Esienstein series. This
method works in genral. Then A(s) and B(s) become m × m -matrices. It follows that
the scattering matrix C(s) is given by

C(s) = B(s) · A(s)−1.

Moreover, it follows from the analytic continuation that the scattering matrix and the
Eisenstein series satisfy the following functional equations:

C(s)C(1 − s) = Id,

Ek(z, s) =
m∑

j=1

Ckl(s)El(z, 1 − s).
(2.5.4)
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2.6 The spectral thoerem

Let Γ be non-compact lattice. Let m be the number of cusps of Γ\H. The Eisenstein series
Ek(z, s), k = 1, ..., m, are holomorphic on Re(s) = 1/2. For each k, k = 1, ..., m, we define
the Eisenstein transform

Ek : C∞
c (R+) → L2(Γ\H)

by

Ek(f)(z) =
1

4π

∫ ∞

0

f(r)Ek(z, 1/2 + ir) dr.

The fact that Ek(f) is square integrable follows from (2.4.1).

Proposition 2.6.1. For f1, f2 ∈ C∞
c (Γ\H) and k, l = 1, ..., m we have

〈Ekf1, Elf2〉 =
1

2π
〈f1, f2〉.

The proof follows from the inner product formula for truncated Eisenstein series. By Propo-
sition 2.6.1, the Eisenstein transform extends to an isometry L2(R+, dr

2π
) into L2(Γ\H).

Define

E :
m⊕

k=1

L2(R+,
dr

2π
) → L2(Γ\H)

by

E(f1, ..., fm) =

m∑

k=1

Ek(fk).

Recall that L2
ac(Γ\H) is defined as the orthogona complement in L2(Γ\H) to L2

dis(Γ\H) -
the subspace spanned by the eigenfunctions.

Proposition 2.6.2. E is an isometry of ⊕m
k=1L

2(R+, dr
2π

) onto L2
ac(Γ\H).

The adjoint map

E∗ : L2(Γ\H) →
m⊕

k=1

L2(R+,
dr

2π
)

is given by
E∗(ϕ)(r) = (〈ϕ,E1(·, 1/2 + ir)〉, ..., 〈ϕ,Em(·, 1/2 + ir)〉) .

Pac = E ◦ E∗ is the orthogonal projection of L2(Γ\H) onto L2
ac(Γ\H).

Theorem 2.6.3. Let {fi}i∈I be an orthonormal basis of L2
dis(Γ\H) consisting of eigenfunc-

tions of ∆. Let ϕ ∈ C∞
c (Γ\H). Then ϕ has the following spectral expansion

ϕ(z) =
∑

i∈I

〈ϕ, fi〉 +
m∑

k=1

1

4π

∫

R

〈ϕ,Ek(·, 1/2 + ir)〉Ek(z, 1/2 + ir) dr.

It converges in the C∞-topology.
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Chapter 3

Spectral decomposition II. The
higher rank case.

The theory of Eisenstein series is the basic tool to study the spectral resolution of the
regular representation. For a general resuctive group, the theory of Eisenstein series has
been developed by Langlands [La1]. By the fundamental results of Margulis, irreducible
lattices in higher rank groups are arithmetic. Therefore, it is convenient to pass to the
adelic framework.

3.1 Eisenstein series

Let G be a reducive algebraic group which is defined over Q. More generally, we may
consider G defined over a number field F . All parabolic subgroups of G will be assumed
to be defined over Q. Let P0 be a fixed minimal parabolic subgroup, and let M0 be a fixed
Levi component of P0, defined over Q. If P is a standard parabolic subgroup of G, we
shall write NP for the unipotent radical of P and MP for the Levi component of P which
contains M0. Let X(M)Q be the obelian group of maps from M to GL1 defined over Q.
If m ∈ M(A) and χ ∈ X(M)Q, the value of χ at m,mχ is an idèle, so it has an absolute
value. Define a map HM from M(A) to the real vector space

aP = Hom(X(M)Q,R) (3.1.1)

by

e<χ,HM (x)> = |mχ|, χ ∈ X(M)Q, m ∈M(A).

Let AP be the split component of the center of M , and let ZM be the connected component
of 1 in AP (R). Then M(A) is the direct product of the kernel of HM and ZM . Finally, let
K =

∏
v Kv be a maximal compact subgroup of G(A), admissible relative to M0.

25
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If G = GLn, we can take

P0 =







⋆ · · · ⋆

0
. . .

...
⋆







, M0 =







⋆ 0

. . .

0 ⋆








P =







g1 ⋆

. . .

0 gr


 : gi ∈ GLni




, M =







g1 0

. . .

0 gr


 : gi ∈ GLni




,

where n = n1 + · · ·+ nr. Then X(M)Q is the group of maps

χν



m1 0

. . .

0 mr


 =

r∏

i=1

(det mi)
νi,

where ν = (ν1, ...νr) ranges over Zr. The space aP is isomorphic to Rr and

〈χν , HM(m)〉 =

r∑

i=1

νi log | detmi|, ν ∈ Zr.

Finally, we can take

K = On(R) ×
∏

p

GLn(Zp).

If x is an element in G(A), we can write

x = nmk, n ∈ N(A), m ∈M(A), k ∈ K.

Define
HP (x) = HM(m).

If ρ = ρP ∈ a⋆
P is the half sum (with multiplicities) of the roots of (P,AP ) then

δ(p) = e2ρ(HP (p)), p ∈ P (A),

is the modular function of P (A). Finally let ∆P ⊂ X(M)Q ⊂ a∗
P be the simple roots of

(P,AP ). Every α ∈ ∆P is the restriction to aP of a unique simple root β in ∆P0
. Let α∨

be the projection of the co-root β∨ onto aP .

Let RM,dis be the subrepresentation of the regular representation of M(A) on the Hilbert
space L2(ZM · M(Q)\M(A)) that decomposes discretely. It acts on a closed invariant
subspace L2

dis(ZM ·M(Q)\M(A)) of L2(ZM ·M(Q)\M(A)).

If δ is any representation of M(A) and λ belongs to a⋆
P,C, set

δλ(m) = δ(m)eλ(HM (m)), m ∈M(A).
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Then RM,dis,λ is a representation of M(A) ∼= P (A)/N(A) which we can lift to P (A). Let

IP (λ) = Ind
G(A)
P (A)(RM,dis,λ

)

be the induced representation. It acts on the Hilbert space of complex valued functions φ
on N(A)ZMM(Q)\M(A) such that

(i) the function m 7→ φ(mx), m ∈ M(A), belongs to L2
dis(ZMM(Q)\M(A)) for each

x ∈ G(A).

(ii) ||φ||2 =
∫

K

∫
ZMM(Q)\M(A)

|φ(mk)|2dm dk <∞.

If λ is purely imaginary, IP (λ) is unitary.

There are intertwining operators between these induced representations. Let W be the
restricted Weyl group of G. It acts on A0 = AP0

and also on a = aP0
. If P and P ′ are

standard parabolic subgroups, aP and aP ′ are both contained in a0. Let W (aP , aP ′) be the
set of distinct isomorphisms from aP onto a′

P , obtained by restricting elements in W to aP .
The groups P and P ′ are said to be associated if W (aP , aP ′) is not empty.

If G = GLn, W is isomorphic to the symmetric group Sn, by



λ1 0

. . .

0 λn


 7→



λσ(1) 0

. . .

0 λσ(n)


 , σ ∈ Sn.

The groups P and P ′ are associated if and only if the corresponding partitions are such
that r = r′ and (n′

1, ..., n
′
r) = (nτ(r)) for some τ ∈ Sr.

For each s ∈ W (aP , aP ′) let ws be a representative of s in the normalizer of A0 in G(Q).
Define

(M(s, λ)φ)(x) =

∫

N ′(A)∩wsN(A)w−1
s \N(A)

φ(w−1
s nx)e(λ+ρ)(HP (w−1

s nx))e−(sλ+ρ′)(HP ′ (x)) dn,

for φ ∈ HP , λ ∈ a∗
P,C and ρ′ = ρP ′. Let H0

P ⊂ HP be the subspace of functions which are
right K-finite and Z(mP )-finite. This is a dense subspace of HP .

Lemma 3.1.1. Let φ ∈ H0
P and λ ∈ a⋆

P,C with

(Re(λ) − ρ)(α∨) > 0, α ∈ ∆P .

Then the integral defining M(s, λ)φ converges absolutely. For λ in this range, M(s, λ) is
an analytic function with values in Hom(H0

P ,H0
P ), which intertwines IP (λ) and IP ′(sλ).
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Next define
E(x, φ, λ) =

∑

γ∈P (Q)\G(Q)

φ(γx)e(λ+ρ)(HP (γx))

for φ ∈ HP , x ∈ G(A) and λ ∈ a∗
P,C.

Lemma 3.1.2. If φ ∈ H0
P and

(Re(λ) − ρ)(αv) > 0, α ∈ ∆P ,

then the series converges absolutely. It defines an analytic function in this range.

(see [La1]).

We can now state the fundamental theorem of Eisenstein series.

Theorem 3.1.3. (a) Suppose that φ ∈ H0
P . Then E(x, φ, λ) and M(s, λ)φ can be analyt-

ically contiued as meromorphic functions to λ ∈ a∗
P,C. On ia⋆

P , E(x, φ, λ) is regular and
M(s, λ) is unitary. If t ∈W (aP ′, aP ′′) the following functional equations hold:

(i) E(x,M(s, λ)φ, sλ) = E(s, φ, λ)

(ii) M(ts, λ)φ = M(t, sλ)M(s, λ)φ,

(b) Let P be an equivalence class of associated standard parabolic subgroups. Let L̂P be the
set of collections {FP : P ∈ P} of measurable functions

FP : ia∗
P → HP

such that

(i) FP ′(sλ) = M(s, λ)FP (λ), s ∈W (aP , a
′
P ).

(ii) ‖ F ‖2=
P∈P

∑ ∫
ia∗

P

‖ FP (λ) ‖2 dλ <∞.

Then the map which sends F to the function

∑

P∈P

∫

ia∗
P

E (x, FP (λ), λ) dλ,

defined for F in a certain dense subspace of L̂P , extends to a unitary map from L̂P onto
a closed G(A)-invariant subspace L2

P(G(Q)\G(A)) of L2(G(Q)\G(A)). Moreover there is
an orthogonal decomposition

L2(G(Q)\G(A)) = ⊕
P
L2
P(G(Q)\G(A)).
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The proof of this theorem is given in [La1, Chapt. 7].

The theorem implies that the regular representation of G(A) on L2(G(Q)\G(A)) decom-
poses as the direct integral over all (P, λ), where P is a standard parabolic subgroup and
λ belongs to the positive chamber in ia⋆

P , of the representations IP (λ).

These representations were obtained by induction from the discrete spectrum of M(A).
The discrete spectrum of G(A) corresponds to the case that P = G.
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Chapter 4

The Selberg trace formula

4.1 Uniform lattices

Let G be a connected real semi-simple Lie group with finite center of non-compact type
and let Γ ⊂ G be uniform lattice. Let RΓ be the right regular representation of G in
L2(Γ\G). Then we have the following result of Gelfand, Graev, and Piateski-Shapiro.

Theorem 4.1.1. RΓ decomposes discretely:

RΓ =
⊕

π∈Ĝ

mΓ(π)π.

Let f ∈ C∞
c (G). Define

RΓ(f) =

∫

G

f(g)RΓ(g) dg.

Then RΓ(f) is an integral operator

(RΓ(f)ϕ)(g) =

∫

Γ\G

Kf (g, g
′) dg′, ϕ ∈ L2(Γ\G)

with kernel
K(g, g′) =

∑

γ∈Γ

f(g−1γg′).

Since Γ\G is compact, RΓ(f) is a trace class operator and

TrRΓ(f) =

∫

Γ\G

K(g, g) dg =

∫

Γ\G

∑

γ∈Γ

f(g−1γg) dg.

• break the sum over γ into conjugacy classes {γ} of Γ.

31
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Let Γγ and Gγ be the centralizer of γ in Γ and G, respectively. The contribution of a
conjugacy class {γ} is

∫

Γγ\G

f(g−1γg) dġ = vol(Γγ\Gγ)I(γ, f),

where I(γ, f) is the orbital integral

I(γ, f) =

∫

Gγ\G

f(g−1γg) dġ, f ∈ C∞
c (G).

Thus we get

TrRΓ(f) =
∑

{γ}

vol(Γγ\Gγ)I(γ, f).

For π ∈ Ĝ let

Θπ(f) = Tr π(f), f ∈ C∞
c (G),

be the character of π. By the result of Gelfand, Graev, and Piatetski-Shapiro, we get

TrRΓ(f) =
∑

π∈ bG

mΓ(π)Θπ(f).

Comparing the two expressions, we obtain

Trace formula (1. version):

∑

π∈ bG

mΓ(π)Θπ(f) =
∑

{γ}

vol(Γγ\Gγ)I(γ, f).

spectral side = geometric side

(4.1.1)

• I(γ, f) and Tr π(f) are invariant distributions on G, i.e., invarinat under f → f g,
where f g(g′) = f(g−1g′g).

• Fourier inversion formula can be used to express I(γ, f) in terms of characters.

To make the trace formula useful, one has to understand the distributions I(γ, f) and
Tr π(f) and to express them in differential geometric terms. This is possible if G has split
rank 1.
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4.2 The rank one case

Let G = KAN be the Iwasawa decomposition of G. We assume that rankR(G) = 1. This
means that dimA = 1. Let M be the centralizer of A in K. Put P = MAN . This is
the standard parabolic subgroup of G. Since G has split rank 1, every proper parabolic
subgroup of G is conjugate to P . Let α be the unique simple root of (g, a). Let H ∈ a be
such that α(H) = 1. Then a = RH . For t ∈ R we set at = exp(tH) and log at = t.

For (σ, Vσ) ∈ M̂ and λ ∈ R let πσ,λ be the unitarily induced representation from P to G
acting in the Hilbert space Hσ of measurable functions f : K → Vσ which satisfy

f(km) = σ(m)−1f(k), ‖ f ‖2=

∫

K

‖ f(k) ‖2 dk <∞.

If f ∈ Hσ let fλ(k exp(tH)n) = e−(iλ+ρ)tf(k), k ∈ K, t ∈ R, n ∈ N . Then

(πσ,λ(g)f)(k) = fλ(g
−1k).

Let Θσ,λ denote the character of πσ,λ.

If γ ∈ Γ, γ 6= e, then there exists g ∈ G such that gγg−1 ∈MA+. Thus there are mγ ∈M
and aγ ∈ A+ such that gγg−1 = mγaγ. By [Wa, Lemma 6.6], aγ depends only on γ and
mγ is determined by γ up to conjugacy in M . Let

l(γ) = log aγ.

Then l(γ) is the length of the unique closed geodesic of Γ\S determined by {γ}Γ. Futher-
more, by the above remark

D(γ) := e−l(γ)ρ
∣∣ det (Ad(mγaγ)|n − Id)

∣∣ (4.2.1)

is well defined. Let
u(γ) = vol(Gmγaγ

/A).

Let h ∈ C∞
c (G) be K-finite. Then by [Wa, pp. 177-178] (correcting a misprint) we have

∫

Gγ\G

h(gγg−1) dġ =
1

2π

1

u(γ)D(γ)

∑

σ∈cM

tr σ(γ)

∫

R

Θσ,λ(h) · e−il(γ)λ dλ. (4.2.2)

Since h is K-finite, Θσ,λ(h) 6= 0 only for finitely many σ. Thus the sum over σ ∈ M̂ is
finite. The volume factors in (4.1.1) are computed as follows. Since G has rank one, Γγ is
infinite cyclic [DKV, Proposition 5.16]. Thus there is γ0 ∈ Γγ such that γ0 generates Γγ

and γ = γ
n(γ)
0 for some integer n(γ) ≥ 1. Then

vol(Γγ\Gγ)

u(γ)
= l(γ0). (4.2.3)

Inserting (4.2.2) and (4.2.3) into (4.1.1), we get the following form of the trace formula in
the rank one case.
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Proposition 4.2.1. Let f ∈ C∞
c (G). Then

∑

π∈ bG

mΓ(π)Θπ(f) = vol(Γ\S)f(e)

+
∑

{γ}Γ 6=e

1

2π

l(γ0)

D(γ)

∑

σ∈cM

tr σ(γ)

∫

R

Θσ,λ(f) · e−il(γ)λ dλ.
(4.2.4)

The right hand side is still not in an explicite form. First of all we can use the Plancherel
formula [Kn] to express f(e) in terms of charaters. In this way we are reduced to the

computation of the characters Θπ, π ∈ Ĝ, evaluated on f .

We consider this problem in the special case of a bi-K-invariant function. To this end we
recall some facts about the spherical Fourier transform. [He1]. Let

C∞
c (G//K) = {f ∈ C∞

c (G) : f(k1gk2) = f(g), k1, k2 ∈ K}

be the space of smooth, bi-K-invariant functions on G. Let φλ, λ ∈ a∗
C, be the spherical

function given by Harish-Chandra’s formula

φλ(g) =

∫

K

e〈λ+ρ,H(gk)〉 dk. (4.2.5)

Let P(a∗
C) be the topological algebra of Paley-Wiener functions on a∗

C (with the usual
product). Recall that

P(a∗
C) =

⋃

R>0

PR(a∗
C),

with the inductive limit topology where PR(a∗
C) is the Frechet space of entire functions f

on a∗
C such that for every N ∈ N there exists CN > 0 such that

|f(λ)| ≤ CN(1 + ‖λ‖)−NeR‖Re λ‖, λ ∈ a∗
C.

Let P(a∗
C)W be the subalgebra of W -invariant Paley-Wiener functions on a∗

C. Then the
Harich-Chandra transform

(Hf)(λ) =

∫

G

f(g)φλ(g) dg, f ∈ C∞
c (G//K), λ ∈ a∗

C, (4.2.6)

defines an isomorphism of topological algebras

H : C∞
c (G//K) → P(a∗

C)W .

Put f̃(λ) = H(f)(λ). In inverse spherical transform is given by

f(g) =
1

|W |

∫

a∗
f̃(λ)φ−λ(g)β(λ) dλ, (4.2.7)
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where β(λ) = |c(λ)c(ρ)−1|−2 is the Plancherel measure on a∗ and the c-function is given by
the Gindikin-Karpelevic formula [He1].

Let f ∈ C∞
c (G//K). Then it follows that Θπ(f) = 0, unless Hπ contains a non-zero

K-invariant vector. Let HK
π be the subspace of Hπ of v ∈ Hπ such that π(k)v = v for all

k ∈ K. Then dimHK
π ≤ 1 and by Froebnius reciprocity it follows that HK

σ,λ 6= 0, only if
σ = 1 (the trivial representation). Denote π1,λ by πλ. Let v ∈ HK

λ , ‖ v ‖= 1. Then it
follows that

Θλ(f) = Tr πλ(f) =

∫

G

〈πλ(g)v, v〉 f(g) dg.

Moreover
φλ(g) = 〈πλ(g)v, v〉

is the spherical function. Thus we get

Θλ(f) =

∫

G

φλ(g)f(g) dg = H(f)(λ), λ ∈ R. (4.2.8)

Put h(λ) = H(f)(λ). Using (4.2.7) to express f(e) in terms of H(f) and (4.2.8), the right
hand side of (4.2.4)becomes

vol(Γ\S)

∫

R

h(λ)β(λ) dλ+
∑

{γ}Γ 6=e

l(γ0)

D(γ)
ĥ(ℓ(γ)).

To describe the left hand side, we observe that

L2(Γ\G)K = L2(Γ\S).

Let
Ĝ(1) =

{
π ∈ Ĝ : HK

π = 1
}

Then we get
L2(Γ\S) = ⊕π∈ bG(1)mΓ(π)HK

π .

Let Ω ∈ Z(g) be the Casimir element. By Schur’s lemma Ω acts in the subspace of smooth

vectors H∞
π of Hπ by a scalar µπ. Let π ∈ Ĝ(1) and v ∈ HK

π . Then v ∈ H∞
π and Ωv = µπv.

Assume that m(π) > 0. Then v corresponds to a function ϕ ∈ C∞(Γ\S) and by Kuga’s
lemma we have ∆ϕ = −λπϕ. Finally note that

µπλ
= λ2 + |ρ|2.

The same is true for the complementary spectrum. Summarizing we obtain

Theorem 4.2.2. Let 0 = λ0 < λ1 < λ2 < · · · be the spectrum of ∆. Let m(λj) be the

multiplicity of λj. Let h ∈ S(R) be even and such that ĥ ∈ C∞
c (R). Then

∞∑

j=0

h

(√
λj − |ρ|2

)
= vol(Γ\S)

∫

R

h(λ)β(λ) dλ+
∑

{γ}Γ 6=e

l(γ0)

D(γ)
ĥ(ℓ(γ)). (4.2.9)
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Now let us specialize to G = SL(2,R), K = SO(2). Write the eigenvalues of ∆ as

λj =
1

4
+ r2

j , rj ∈ R ∪ i[−1/2, 1/2].

The Plancherel measure is given by β(λ) = r tanh(πr). Then Theorem 4.2.2 gives

Selberg’s trace formula (K-invariant form):

∑

j

m(λj)h(rj) =
Area(Γ\H)

2π

∫

R

h(r)r tanh(πr) dr +
∑

{γ}Γ 6=e

ℓ(γ0)

sinh(ℓ(γ)/2)
ĥ(ℓ(γ)).

4.3 Non-uniform lattices

We now assume that Γ\G is a non-uniform lattice. This means that Γ\G non-compact,
but vol(Γ\G) <∞. Then the major differences to the co-compact case are

• RΓ does not decompose discretely.

• RΓ(f) is not trace class

Langlands’s theory of Eisenstein series provides a decomposition into invariant subspaces

L2(Γ\G) = L2
dis(Γ\G) ⊕ L2

ac(Γ\G),

where L2
dis(Γ\G) is the maximal invariant subspace, in which RΓ decomposes discretely.

Let Rdis
Γ and Rac

Γ denote the right regular representation of G in L2
dis(Γ\G) and L2

ac(Γ\G),
respectively. Then

Rdis

Γ =
⊕̂

π∈ bG
mΓ(π)π

with finite multiplicities mΓ(π). The absolutely continuous subspace is described in terms
of Eisenstein series. Let L2

cus(Γ\G) be the closed subspace of L2(Γ\G) which is spaned by
cusp forms. Then L2

cus(Γ\G) is contained in L2
dis(Γ\G) and we have decomposition

L2
dis(Γ\G) = L2

cus(Γ\G) ⊕ L2
res(Γ\G),

where L2
res(Γ\G) the residual subspace which according to Langlands [La1] is spanned by

iterated residues of Eisenstein series.

The fist result we need is that the integral operator RΓ(f) is trace class in L2
dis(Γ\G).

Let C1(G) be Harish-Chandra’s Schwartz space of integrable rapidely decreasing functions
on G (see [Mu3, Section 1] for the definition). For f ∈ C1(G). Since f ∈ L1(G), we can
define

Rdis
Γ (f) =

∫

G

f(g)Rdis
Γ (g) dg.

The first main result is
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Theorem 4.3.1. For every f ∈ C1(G), the operator Rdis
Γ (f) is a trace class operator.

For K-finite functions f ∈ C1(G) this was proved in [Mu2]. The extension to the general
case was proved by Ji [Ji] and the author [Mu3], independently. The proof of Theorem
4.3.1 follows from the estimation of the eigenvalue counting function for Bochner-Laplace
operatorson the locally symmetric space Γ\S. Let σ : K → GL(Vσ) be an irreducible
unitary representation of K. Let

Ẽσ = (G× Vσ)/K → G/K

be the associated homogeneous vextor bundle and let Eσ = Γ\Ẽσ be the corresponding
locally homogeneous vector bundle over Γ\S. Let ∇σ be the push-down of the connection
on the homogeneous vector bundle Ẽσ. Let

∆σ = (∇σ)∗∇σ

be the Bochner-Laplace operator. This is a second order elliptic differential operator acting
in C∞(Γ\S,Eσ). Regarded as operator

∆σ : C∞
c (Γ\S,Eσ) → L2(Γ\S,Eσ)

it is essentially self-adjoint and nonnegative. Let ∆̄σ be the unique self-adjoint extension
of ∆σ and let

0 ≤ λ1 < λ2 < · · ·
be the eigenvalues of ∆̄σ. Let m(λj) be the multiplicity of λj. Let

Ndis

Γ (λ, σ) =
∑

λj≤λ

m(λj).

be the counting function of eigenvalues. The following theorem was proved in [Mu2].

Theorem 4.3.2. Let d = dimS. There exists C > 0 such that

Ndis
Γ (λ, σ) ≤ C(1 + λ)2d, λ ≥ 0. (4.3.1)

Now observe that

L2
dis(Γ\S,Eσ) ∼= (L2

dis(Γ\G) ⊗ Vσ)K =
⊕̂

π∈ bG
mΓ(π)(Hπ ⊗ Vσ)K .

For π ∈ Ĝ denote by λπ the eigenvalue of the Casimir operator acting in H∞
π . Then

Theorem 4.3.2 implies that there exists N ∈ N such that
∑

π∈ bG

mΓ(π) dim(Hπ ⊗ Vσ)
K(1 + λ)−N <∞.

This estimation implies Theorem 4.3.1 for all K-finite f ∈ C1(G). To prove it in general
one needs to control the dependence on σ of the constant C in Theorem 4.3.2. The refined
estimation is proved in [Mu3, Theorem 0.2].

The exponent 2d in 4.3.1 is not optimal. One expects it to be d/2. This is supported by
the following result of Donnelly [Do].
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Theorem 4.3.3. Let d = dimS. Let N cus
Γ (λ, σ) the counting function for the cuspidal

spectrum of ∆̄σ. Then

lim sup
λ→∞

N cus
Γ (λ, σ)

λd/2
≤ dim(Vσ) vol(Γ\S)

(4π)d/2Γ(d/2 + 1)
.

The main issue of [Mu2] was to estimate the growth of the residual spectrum. Let N res
Γ (λ, σ)

be the counting function of the residual spectrum. Then we have

N res

Γ (λ, σ) ≤ C(1 + λ)2d, λ ≥ 0. (4.3.2)

The proof is based on the following methods and results:

1) The description of the the residual eigenfunctions as iterated residues of Eisenstein
series [La1].

2) Donnelly’s result [Do] applied to the cuspidal spectrum for Levi components of proper
Γ-cuspidal parabolic subgroups.

3) Extension of Colin de Verdier’s method [Co] for the analytic continuation of cuspidal
Eisenstein series attached to maximal parabolic subgroups.

Moeglin and Waldspurger [MW] gave a precise description of the residual spectrum for
GL(n). Using these results and Donnelly’s estimation of th cuspidal spectrum, one gets

Theorem 4.3.4. Let G = SL(n,R) and Γ ⊂ SL(n,Z) a congruence subgroup. Then we
have

N res

Γ (λ, σ) ≤ C(1 + λ)d/2−1, λ ≥ 0.

One expects that this holds in general.

Conjecture 1. Let S = G/K, Γ ⊂ G a lattice and σ ∈ K̂. Let d = dimS. There exists
C > 0 such that

N res

Γ (λ, σ) ≤ C(1 + λ)d/2−1, λ ≥ 0.

Let f ∈ C1(G). By Theorem 4.3.1 it follows as in the co-compact case that

TrRdis

Γ (f) =
∑

π∈ bG

mΓ(π)Θπ(f).

Now Rdis
Γ (f) is an integral operator with kernel Kd(g, g

′) and a pre-trace formula is

∑

π∈ bG

mΓ(π)Θπ(f) =

∫

Γ\G

Kd(g, g) dg. (4.3.3)
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Let Kc(g, g
′) be the kernel of Rac

Γ (f). For simplicity assume that f ∈ C∞
c (G) is K-finite.

Using the spectral resolution, Kc(g, g
′) it can be described in terms of Eisenstein series.

Then
Kd(g, g

′) = K(g, g′) −Kc(g, g
′)

and we get ∑

π∈ bG

mΓ(π)Θπ(f) =

∫

Γ\G

(K(g, g)−Kc(g, g)) dg. (4.3.4)

The main goal of the trace formula is to compute the right hand side. For higher rank
groups this is not possible within this framework. An appropriate replacement is the Arthur
trace formula.

4.4 The rank one case II: non-uniform lattices

If rank(G) = 1 there is a generalization of the Selberg trace formula to non-uniform lattices.
For simplicity we consider the case G = SL(2,R) and we assume that f is bi-K-invariant,
where K = SO(2). Then we are dealing with the trace formula for a hyperbolic surface
X = Γ\H of finite area with m cusps and RΓ(f) equals h(∆), where h is the spherical
Fourier transform of f . Let K(z, z′) be the kernel of the integral operator h

(
(∆ − 1/4)1/2

)
.

It is given by

K(z, z′) =
∑

γ∈Γ

f(g−1γg′),

where z = gK, z′ = g′K. Since f is bi-K-invariant, the right hand side is independent of
the choice of the representatives of the cosets. Let Ek(z, s), k = 1, ..., m, be the Eisenstein
series attached to the cusps of Γ\H. By Proposition 2.6.2 it follows that the continuous
partKc(z, z

′) of the kernel K(z, z′) is given by

Kc(z, z
′) =

1

2π

m∑

k=1

∫

R

h(r)Ek(z, 1/2 + ir)Ek(z
′, 1/2 − ir) dr. (4.4.1)

The surface X has the form (2.1.1). Let T > max{a1, ..., am}. Let

XT = M ∪ ([a1, T ] × S1) ∪ · · · ∪ ([am, T ] × S1)

be the surface obtained from X by truncating the cusps at level T . Then

λj = 1/4 + r2
j , rj ∈ R ∪ i[−1/2, 1/2], j ∈ I,

be the eigenvalues of ∆. Then the pre-trace formula (4.3.4) gives

∑

j

h(rj) =

∫

X

(K(z, z) −Kc(z, z)) dz = lim
T→∞

{∫

XT

K(z, z) dz −
∫

XT

Kc(z, z) dz

}
.
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By (4.4.1) we get
∫

XT

Kc(z, z) dz =
1

2π

m∑

k=1

∫

R

h(r)

(∫

XT

|Ek(z, 1/2 + ir)|2 dz
)
dr. (4.4.2)

Let ΛT be the trucation operator. The truncated Eisenstein ΛTEk(z, s) are square inte-
grable and

∫

XT

|Ek(z, 1/2 + ir)|2 dz =‖ ΛTEk(z, 1/2 + ir) ‖2 +O
(
e−cT

)

as T → ∞. The L2 norm of the truncated Eisenstein series is given in terms of the constant
term. The integral

∫
XT

K(z, z) dz can be computed as in the compact case. Each conjugacy
class of Γ makes a contribution. The difference to the compact case is that we have now
also parabolic conjugacy classes to deal with.

Let C(s) be the scattering matrix(2.4.2). Put

φ(s) = detC(s).

Then we get the following Selberg trace formula (see [Se2]):

Theorem 4.4.1. Let h ∈ S(R) be even with ĥ ∈ C∞
c (R). Then

∑

j

h(rj)−
1

4π

∫ ∞

−∞

h(r)
φ′

φ
(1/2 + ir) dr +

1

4
Tr(Id−C(1/2))h(0)

=
Area(Γ\H)

4π

∫

R

h(r)r tanh(πr) dr

+
∑

{R}

∑

0<l<n

1

m sin
(

πl
n

)
∫

R

h(r)e−
πl
n

r

1 + e−2πr
dr

+
∑

{γ}

∞∑

k=1

ℓ(γ)

ekℓ(γ)/2 − e−kℓ(γ)/2
ĥ(kℓ(γ))

− m

2π

∫ ∞

−∞

h(r)
Γ′

Γ
(1 + ir)dr +

m

4
h(0) −m ln 2 ĥ(0).

(4.4.3)

Here {R} runs over the primitive elliptic classes, and n = n(R) is the order of the primitive
elliptic class R. Similarly {γ} runs over the primitive hyperbolic conjugacy classes.

Remark 4.4.2. The main new ingredient in the trace formula is the integral involving the
logarithmic derivative of the determinant of the scattering matrix. It is due to the presence
of the continuous spectrum.

Remark 4.4.3. The contribution of the parabolic conjugacy classes to the trace formula is
the integral m

2π

∫ ∞

−∞
h(r)Γ′

Γ
(1 + ir)dr.

Remark 4.4.4. The Selberg trace formula can be extended to lattices of rank one. This
includes, for example, Hilbert modular groups.



Chapter 5

The Arthur trace formula

The trace formula has become a central tool in the modern theory of automorphic forms.
Arthur, driven by Langlands’ functoriality conjectures, developed the trace formula an
arbirtrary reductive group over a number field F .

Let G be a connected reductive algebraic group over Q. Let A be the ring of adels of
Q. Let X(G)Q denote the group of characters of G defined over Q. Let G(A)1 be the
intersection of the kernels of the maps

x ∈ G(A) 7→ |ξ(x)|, ξ ∈ X(G)Q.

Then G(Q) is contained inG(A)1. The noninvariant trace formula of Arthur is an identity

∑

χ∈X

Jχ(f) =
∑

o∈O

Jo(f), f ∈ G(A)1, (5.0.1)

between distributions on G(A)1. The left hand side is the spectral expansion Jspec(f) and
the rigt hand side the (coarse) geometric expansion Jgeom(f) of the trace formula. The
distributions Jχ are defined in terms of truncated Eisenstein series. They are parametrized
by the set X of Weyl group orbits of pairs (MB, πB), where M is the Levi component of a
standard parabolic subgroup B and πB is an irreducible cuspidal automorphic representa-
tion of MB(A)1. The distributions Jo are parametrized by semisimple conjugacy classes in
G(Q) and are closely related to weighted orbital integrals on G(A)1.

5.1 The spectral expansion

The distributions Jχ are derived from the constant terms of Eisenstein series and generalize
the integral

1

4π

∫

R

ĥ(r)
φ′

φ
(1/2 + ir) dr,
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which appears in the Selberg trace formula for Γ ⊂ SL(2,R).

To describe the geometric expansion in more detail, we need to recall some notation from
[A3], [A4]. We shall fix a minimal parabolic subgroup P0 of G and a Levi component M0

of P0, defined over Q. A parabolic subgroup will mean a parabolic subgroup of G, defined
over Q, which contains P0. Suppose that P is such a subgroup. We shall write NP for the
unipotent radical of P , and MP for the unique Levi component of P which contains M0.
If M ⊂ L are Levi subgroups, we denote the set of Levi subgroups of L which contain M
by LL(M). Furthermore, let FL(M) denote the set of parabolic subgroups of L defined
over Q which contain M , and let PL(M) be the set of groups in FL(M) for which M is a
Levi component. If L = G, we shall denote these sets by L(M), F(M) and P(M). Write
L = L(M0). Suppose that P ∈ FL(M). Then

P = NPMP .

Let

aP = Hom(X(MP )Q,R).

Denote by A2(P ) the space of square integrable automorphic forms onNP (A)MP (Q)\G(A).
This is the space of smooth functions

φ : NP (A)MP (Q)\G(A) → C

which satisfy the following conditions:

i) The span of the set of functions

x 7→ (zφ)(xk), x ∈ G(A),

indexed by k ∈ K and z ∈ Z(gC), is finite dimensional.

ii)

‖ φ ‖2=

∫

K

∫

MP (Q)\MP (A)1
|φ(mk)|2 dm dk <∞.

Let M ∈ L and P,Q ∈ P(M). Let A2(P ) and A2(Q) be the corresponding spaces of
automorphic functions. For s ∈W (aP ) let

MQ|P (s, λ) : A2(P ) → A2(Q), λ ∈ a∗
P,C,

be the intertwining operator. Set

MQ|P (λ) := MQ|P (1, λ).
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Generalized logarithmic derivatives of MQ|P (λ) are the main ingredients of the spectral
side. For M ∈ L, L ∈ L(M), P ∈ P(M) let

ML(P, λ) =

lim
Λ→0


 ∑

Q1∈P(L)

vol(aG
Q1
/Z(∆∨

Q1
))MQ|P (λ)−1 MQ|P (λ+ Λ)∏

α∈∆Q1

Λ(α∨)


 ,

where λ and Λ are constrained to lie in ia∗
L, and for each Q1 ∈ P(L), Q is a group in

P(MP ) which is contained in Q1. It follows from Arthur’s theory of (G,M)-families [A3],
[A4] that the limit exists. Then ML(P, λ) is an unbounded operator which acts on the

Hilbert space A2
(P ). For π ∈ Π(M(A)1) let A2

π(P ) be the subspace of A2(P ) determined

by π. Let ρπ(P, λ) be the induced representation of G(A) in A2

π(P ). Let WL(aM)reg be
the set of elements s ∈ W (aM) such that {H ∈ aM | sH = H} = aL. Let C1(G(A)1) be
Harisch-Chandra’s Schwartz space of integrable, rapidly decreasing functions on G(A)1.
For any function f ∈ C1(G(A)1) and s ∈WL(aM)reg set

JL
M,P (f, s) =

∑

π∈Πdis(M(A)1)

∫

ia∗
L

/ia∗
G

tr(ML(P, λ)MP |P (s, 0)ρπ(P, λ, f)) dλ. (5.1.1)

Concerning the convergence of the integral-sum, the following result is proved in [FLM1,
Teorem 1], [FLM2, Corollary 2].

Theorem 5.1.1. For every f ∈ C1(G(A)1), the integral-series (5.1.1) is absolutely conver-
gent with respect to the trace norm.

For G = GL(n) this theorem was proved in [MS]. The statement of the theorem means

the following. Let ‖ · ‖π,1 denote the trace norm in A2

π(P ). Then

∑

π∈Πdis(M(A)1)

∫

ia∗
L

/ia∗
G

‖ ML(P, λ)MP |P (s, 0)ρπ(P, λ, f) ‖π,1 dλ <∞.

For M ∈ L and s ∈WL(aM)reg set

aM,s = |P(M)|−1|WM
0 ||W0|−1| det(s− 1)aL

M
|−1.

Then for any f in C1(G(A)1), the spectral side Jspec(f) of the Arthur trace formula is given
by

Jspec(f) =
∑

M∈L

∑

L∈L(M)

∑

P∈P(M)

∑

s∈W L(aM )reg

aM,sJ
L
M,P (f, s). (5.1.2)

Note that all sums in this expression are finite.

To illustrate the theorem, we discuss two special cases. For M = G and s = 1 we have

JG
G,G(f, 1) = TrRdis

Γ (f).
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The fact that Rdis
Γ (f) is trace class was proved in [Mu5].

Next consider the case that L = M and dim aG
M = 1. Then P ∈ P(M) is a maximal

parabolic subgroup.Let P̄ denote the parabolic subgroup opposite to P . If α is the unique
root in ∆P , let ω̃ be the element in (aG

M)∗ such that ω̃(α∨) = 1, and set

λ = zω̃, z ∈ C.

The intertwining operator MP̄ |P (λ) may be regarded as a function of the complex variable
z. Then the following integral-series

∑

π∈Πdis(M(A)1)

∫

R

tr

(
MP̄ |P (ir, π)−1 d

dz
MP̄ |P (ir, π)ρ(P, ir, f)

)
dr (5.1.3)

is part of the spectral side. To study the convergence of this integral-series, we make use of
the factorization of the global intertwining operator. Let π = ⊗vπv, φ ∈ A2

π(P ), φ = ⊗vφv.
S a finite set of places, containing ∞, such that φv is fixed under G(Zp) for p 6∈ S. There
exist finite-dimensional representations r1, ..., rm of LM such that

MP |P (z, π)φ =
⊗

v∈S

MP |P (z, πv)φv ⊗
⊗

v/∈S

φ̃v ·
m∏

j=1

LS(jz, π, r̃j)

LS(1 + jz, π, r̃j)
, (5.1.4)

where
LS(s, π, r) =

∏

v/∈S

L(s, πv, rv), Re(s) ≫ 0,

is the partial automorphic L-function attached to π and r. Using (5.1.4), (5.1.2) can be
written as a finite sum of similar expressions, involving either logarithmic derivatives of
partial L-functions or logarithmic derivatives of local intertwining operators.

• This reduces the problem to the estimation of the number of zeros of LS(s, π, r̃j) in
a circle of radius T as T → ∞. One needs to control the constants, appearing in the
estimations, in terms of π.

Remark 5.1.2. (5.1.2) explicates Arthur’s fine spectral expansion which was previously only
known to be conditionally convergent.

5.2 The fine geometric expansion

In this section we describe the fine expansion of the geometric side of the trace formula.
The coarse o-expansion of Jgeo(f) is a sum of distributions

Jgeo(f) =
∑

o∈O

Jo(f), f ∈ C∞
c (G(A)1),
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which are parametrized by the set O of conjugacy classes of semisimple elements in G(Q).
The distributions Jo(f) is the value at T = 0 of the polynomial JT

o (f) defined in [A1].
The fine o-expansion of the spectral side [A10] expresses the distributions Jo(f) in terms
of weighted orbital integrals JM(γ, f).

Let S be a finite set of places of Q containing ∞. Set

QS =
∏

v∈S

Qv, and G(QS) =
∏

v∈S

G(Qv).

Let M ∈ L and γ ∈ M(QS). The general weighted orbital integrals JM(γ, f) defined in
[A11] are distributions on G(QS). If γ is such that Mγ = Gγ, then, as the name suggests,
JM(γ, f) is given by an integral of the form

JM(γ, f) =
∣∣D(γ)

∣∣1/2
∫

Gγ(QS)\G(QS)

f(x−1γx)vM(x) dx,

where D(γ) is the discriminant of γ [A11, p. 231] and vM(x) is the volume of the convex
hull of the set

{HP (x) : P ∈ P(M)}.

For general γ the definition is more complicated. In this case, JM(γ, f) is obtained as a
limit of a linear combination of integrals as above. For more details we refer to [A11].

Set

G(QS)1 = G(QS) ∩G(A)1.

Suppose that ω is a compact neighborhood of 1 in G(A)1. There is a finite set S of val-
uations of Q, which contains the Archimedean place, such that ω is the product of a
compact neighborhood of 1 in G(QS)1 with

∏
v/∈S Kv. Let S0

ω be the minimal such set. Let
C∞

ω (G(A)1) denote the space of functions in C∞
c (G(A)1) which are supported on ω. For

any finite set S ⊃ S0
ω set

C∞
ω (G(QS)1) = C∞

ω (G(A)1) ∩ C∞
c (G(QS)1).

Let us recall the notion of (M,S)-equivalence [A10, p.205]. For any γ ∈ M(Q) denote by
γs (resp. γu) the semisimple (resp. unipotent) Jordan component of γ. Then two elements
γ and γ′ in M(Q) are called (M,S)-equivalent if there exists δ ∈M(Q) with the following
two properties.

(i) γs is also the semisimple Jordan component of δ−1γ′δ.

(ii) γu and (δ−1γ′δ)u, regarded as unipotent elements in Mγs
(QS), are Mγs

(QS)-conju-
gate.



46 CHAPTER 5. THE ARTHUR TRACE FORMULA

Denote by (M(Q))M,S the set of (M,S)-equivalence classes in M(Q). Note that (M,S)-
equivalent elements γ and γ′ in M(Q) are, in particular, M(QS)-conjugate. Given γ ∈
M(Q), let

JM(γ, f), f ∈ C∞
c (G(QS)1),

be the weighted orbital integral associated to M and γ [A11]. We observe that JM(γ, f)
depends only on the M(QS)-orbit of γ. Then by Theorem 9.1 of [A10] there exists a finite
set Sω ⊃ S0

ω of valuations of Q such that for all S ⊃ Sω and any f ∈ C∞
ω (G(QS)1), we have

Jgeo(f) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈(M(Q))M,S

aM(S, γ)JM(γ, f). (5.2.1)

This is the fine o-expansion of the geometric side of the trace formula. The interior sum is
finite.

5.3 Problems related to the trace formula

In this section we list some problems connected with the trace formula, which need to be
solved in order to make the formula suitable for applications to spectral problems.

1. In the trace formula (4.4.3), the orbital integrals on the right hand side of (5.2.1) have
been replaced by their Fourier transform, which makes the formula more suitable for
applications. Therefore, an important problem in the higher rank case is to study
the Fourier inversion of the weighted orbital integrals. The constants aM(S, γ) are
also not known explicitely. It is important to study these constants.

2. By Theorem 5.1.1 the spectral side is absolutely convergent for all f ∈ C1(G(A)1).
On the hand, the geometric side is only known to converge for f ∈ C∞

c (G(A)1).



Chapter 6

Some applications of the trace
formula

A key issue in the work of Arthur is the comparison of trace formulas of two different
groups. Besides functoriality, the trace formula admits striking applications to the Lang-
lands correspondence and to the arithmetic of Shimura varieties. We are mainly interested
in the application of the trace formula to spectral problems.

6.1 Weyl’s law and the existence of cusp forms

Selberg used the trace formula to prove Weyl’s law for congrunce sugroups of SL(2,Z),
which shows that for such groups there exist cusp forms in abundance. In this section we
will recall some results about the Weyl law on compact Riemannian manifolds and then
discuss discuss it in the context of automorphic forms.

6.1.1 Compact Riemannian manifolds

Let M be a smooth, compact Riemannian manifold of dimension n with smooth boundary
∂M (which may be empty). Let

∆ = − div ◦ grad = d∗d

be the Laplace-Beltrami operator associated with the metric g of M . We consider the
Dirichlet eigenvalue problem

∆φ = λφ, φ
∣∣
∂M

= 0. (6.1.1)

As is well known, (6.1.1) has a discrete set of solutions

0 ≤ λ0 ≤ λ2 ≤ · · · → ∞
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whose only accumulation point is at infinity and each eigenvalue occurs with finite mul-
tiplicity. The corresponding eigenfunctions φi can be chosen such that {φi}i∈N0

is an
orthonormal basis of L2(M). A fundamental problem in analysis on manifolds is to study
the distribution of the eigenvalues of ∆ and their relation to the geometric and topological
structure of the underlying manifold. One of the first results in this context is Weyl’s law
for the asymptotic behavior of the eigenvalue counting function. For λ ≥ 0 let

N(λ) = #
{
j : λj ≤ λ2

}

be the counting function, where eigenvalues are counted with multiplicities. Then the Weyl
law states

N(λ) =
vol(M)

(4π)n/2Γ
(

n
2

+ 1
)λn + o(λn), λ→ ∞. (6.1.2)

This was first proved by Weyl [We1] for a bounded domain Ω ⊂ R3. Written in a slightly
different form it is known in physics as the Rayleigh-Jeans law. Raleigh [Ra] derived it for
a cube. Garding [Ga] proved Weyl’s law for a general elliptic operator on a domain in Rn.
For a closed Riemannian manifold (6.1.2) was proved by Minakshisundaram and Pleijel
[MP].

Formula (6.1.2) does not say very much about the finer structure of the eigenvalue distri-
bution. The basic question is the estimation of the remainder term

R(λ) := N(λ) − vol(M)

(4π)n/2Γ
(

n
2

+ 1
)λn.

That this is a deep problem shows the following example. Consider the flat 2-dimensional
torus T = R2/(2πZ)2. Then the eigenvalues of the flat Laplacian are λm,n := m2 + n2,
m,n ∈ Z and the counting function equals

N(λ) = #
{
(m,n) ∈ Z2 : m2 + n2 ≤ λ2

}
.

Thus N(λ) is the number of lattice points in the circle of radius λ. An elementary packing
argument, attributed to Gauss, gives

N(λ) = πλ2 +O (λ) ,

and the circle problem is to find the best exponent µ such that

N(λ) = πλ2 +Oε

(
λµ+ε

)
, ∀ε > 0.

The conjecture of Hardy is µ = 1/2. The first nontrivial result is due to Sierpinski who
showed that one can take µ = 2/3. Currently the best known result is µ = 131/208 ≈ 0.629
which is due to Huxley. Levitan [?] has shown that for a domain in Rn the remainder term
is of order O(λn−1).
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For a closed Riemannian manifold, Avakumović [Av] proved the Weyl estimate with opti-
mal remainder term:

N(λ) =
vol(M)

(4π)n/2Γ
(

n
2

+ 1
)λn +O(λn−1), λ→ ∞. (6.1.3)

This result was extended to more general, and higher order operators by Hörmander [Ho].
As shown by Avakumović the bound O(λn−1) of the remainder term is optimal for the
sphere. On the other hand, under certain assumption on the geodesic flow, the estimate
can be slightly improved. Let S∗M be the unit cotangent bundle and let Φt be the geodesic
flow. Suppose that the set of (x, ξ) ∈ S∗M such that Φt has a contact of infinite order
with the identity at (x, ξ) for some t 6= 0, has measure zero in S∗M . Then Duistermaat
and Guillemin [DG] proved that the remainder term satisfies R(λ) = o(λn−1). This is a
slight improvement over (6.1.3).

In [We3] Weyl formulated a conjecture which claims the existence of a second term in the
asymptotic expansion for a bounded domain Ω ⊂ R3, namely he predicted that

N(λ) =
vol(Ω)

6π2
λ3/2 − vol(∂Ω)

16π
λ+ o(λ).

This was proved for manifolds with boundary under a certain condition on the periodic
billiard trajectories, by Ivrii [Iv] and Melrose [Me].

6.1.2 Hyperbolic surfaces of finite area

Let Γ ⊂ SL(2,R) be a lattice such that Γ\ SL(2,R) is noncompact. Assume that Γ is
torsion free. Then X = Γ\H is noncompact, hyperbolic surface of finite area.

Since Γ\H is not compact, it is not clear that there exist any eigenvalues λ > 0. By
Proposition 2.2.1 the continuous spectrum of ∆̄ equals [1/4,∞). Thus all eigenvalues
λ ≥ 1/4 are embedded in the continuous spectrum. It is well-known in mathematical
physics, that embedded eigenvalues are unstable under perturbations and therefore, are
difficult to study.

One of the basic tools to study the cuspidal spectrum is the Selberg trace formula [Se2]. Let
0 = λ0 < λ1 ≤ · · · be the eigenvalues of ∆, C(s) scattering matrix, and φ(s) = detC(s).
Put

NΓ(λ) = #{j : λj ≤ λ2}, MΓ(λ) = − 1

4π

∫ λ

−λ

φ′

φ
(1/2 + ir) dr.

Using his trace formula [Se2], Selberg established the following version of Weyl’s law.

Theorem 6.1.1. As λ→ ∞, we have

NΓ(λ) +MΓ(λ) =
Area(Γ\H)

4π
λ2 +O(λ logλ). (6.1.4)
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Without an estimation of the remainder term, this theorem can be proved as follows. Using
the cut-off Laplacian of Lax-Phillips [CV] one can deduce the following elementary bounds

NΓ(λ) ≪ λ2, MΓ(λ) ≪ λ2, λ ≥ 1. (6.1.5)

These bounds imply that the the trace formula (4.4.3) holds for a larger class of functions.
In particular, it can be applied to the heat kernel kt(u). Its spherical Fourier transform
equals ht(r) = e−t(1/4+r2), t > 0. If we insert ht into the trace formula we get the following
asymptotic expansion as t→ 0.

∑

j

e−tλj − 1

4π

∫

R

e−t(1/4+r2)φ
′

φ
(1/2 + ir) dr

=
Area(Γ\H)

4πt
+
a log t√

t
+

b√
t

+O(1)

(6.1.6)

for certain constants a, b ∈ R. Using [Se2, (8.8), (8.9)] it follows that the winding number
MΓ(λ) is monotonic increasing for r ≫ 0. Therefore we can apply a Tauberian theorem to
(6.1.6) and we get the Weyl law.

A more sophisticated use of the trace formula gives an estimation of the remainder term
[Mu6]. The first step is to estimate the number of eigenvalues in an interval. This is
Hörmander’s method.

In general, NΓ(λ) and MΓ(λ) can not be separated and (6.1.5) gives no information about
the asymptotic bahavior of NΓ(λ). However, for the principal congruence subgroup Γ(N),
the entries of the scattering matrix can be expressed in terms of known functions of analytic
number theory. Huxley [Hu] has shown that for Γ(N) we have

φ(s) = (−1)lA1−2s

(
Γ(1 − s)

Γ(s)

)k ∏

χ

L(2 − 2s, χ̄)

L(2s, χ)
,

where k, l ∈ Z, A > 0, χ Dirichlet character mod k, k|N , L(s, χ) Dirichlet L-function with
character χ. Especially, for N = 1 we have

φ(s) =
√
π
Γ(s− 1/2)ζ(2s− 1)

Γ(s)ζ(2s)
,

where ζ(s) denotes the Riemann zeta function.

Thus for Γ(N) we get
∣∣∣∣
φ′

φ
(1/2 + ir)

∣∣∣∣ ≪ logk(|r| + 1), r ∈ R,

and therefore
MΓ(N)(λ) = O(λ logλ).

If we combine this estimation with (6.1.4), we get
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Theorem 6.1.2.

NΓ(N)(λ) =
Area(Γ(N)\H)

4π
λ2 +O(λ logλ), λ→ ∞.

Thus for Γ(N), L2-eigenfunctions of ∆ with eigenvalue λ ≥ 1/4 ( = Maass automorphic
cusp forms) exist in abundance. So far, no eigenfunction with eigenvalue λ > 0 for Γ(1) =
SL(2,Z) has been constructed explicitly.

6.1.3 Higher rank

In this section we consider an arbitrary locally symmetric space Γ\S defined by an arith-
metic subgroup Γ ⊂ G(Q), where G is a semi-simple algebraic group over Q with finite
center, G = G(R) and S = G/K. The basic example will be G = SL(n) and Γ = Γ(N),
the principal congruence subgroup of SL(n,Z) of level N which consists of all γ ∈ SL(n,Z)
such that γ ≡ Id mod N . Let ∆ be the Laplacian of Γ\S, and let ∆̄ be the closure of
∆ in L2. Then ∆̄ is a non-negative self-adjoint operator in L2(Γ\S). The properties of
its spectral resolution can be derived from the known structure of the spectral resolution
of the regular representation RΓ of G on L2(Γ\G) [La1], [BG]. In this way we get the
following generalization of Proposition 2.2.1.

Proposition 6.1.3. The spectrum of ∆̄ is the union of a point spectrum σpp(∆̄) and an
absolutely continuous spectrum σac(∆̄).
1) The point spectrum consists of eigenvalues 0 = λ0 < λ1 ≤ · · · of finite multiplicities
with no finite point of accumulation.
2) The absolutely continuous spectrum equals [b,∞) for some b > 0.

The theory of Eisenstein series [La1] provides a complete set of generalized eigenfunctions
for ∆. The corresponding wave packets span the absolutely continuous subspace L2

ac(Γ\S).
This allows us to determine the constant b explicitly in terms of the root structure. The
statement about the point spectrum was proved in [BG, Theorem 5.5].

Let N cus
Γ (λ) and N res

Γ (λ) be the counting function of the eigenvalues with eigenfunctions
belonging to the cuspidal and residual subspace, respectively.

In [Sa2] Sarnak made the following conjecture.

Conjecture. If rank(S) > 1, each irreducible lattice Γ in G is essentially cuspidal in the
sense that Weyl’s law holds for N cus

Γ (λ), i.e.,

N cus

Γ (λ) ∼ vol(Γ\S)

(4π)n/2Γ
(

n
2

+ 1
)λn

as λ→ ∞, where n = dimS.



52 CHAPTER 6. SOME APPLICATIONS OF THE TRACE FORMULA

This conjecture has now been established in quite generality. A. Reznikov proved it for
congruence groups in a group G of real rank one, S. Miller [Mi] proved it for G = SL(3)
and Γ = SL(3,Z), the author [Mu3] established it for G = SL(n) and a congruence group
Γ. The method of [Mu3] is an extension of the heat equation method described in the
previous section for the case of the upper half-plane. More recently, Lindenstrauss and
Venkatesh [LV] proved the following result.

Theorem 6.1.4. Let G be a split adjoint semi-simple group over Q and let Γ ⊂ G(Q) be
a congruence subgroup. Let n = dimS. Then

N cus

Γ (λ) ∼ vol(Γ\S)

(4π)n/2Γ
(

n
2

+ 1
)λn, λ→ ∞.

The method is based on the construction of convolution operators with pure cuspidal image.
It avoids the delicate estimates of the contributions of the Eisenstein series to the trace
formula. This proves existence of many cusp forms for these groups.

The next problem is to estimate the remainder term. For G = SL(n), this problem has
been studied by E. Lapid and the author in [LM]. Actually, we consider not only the
cuspidal spectrum of the Laplacian, but the cuspidal spectrum of the whole algebra of
invariant differential operators.

As D(S) preserves the space of cusp forms, we can proceed as in the compact case and
decompose L2

cus(Γ\S) into joint eigenspaces of D(S). Given λ ∈ a∗
C/W , let

Ecus(λ) =
{
ϕ ∈ L2

cus(Γ\S) : Dϕ = χλ(D)ϕ
}

be the associated eigenspace. Each eigenspace is finite-dimensional. Let m(λ) = Ecus(λ).
Define the cuspidal spectrum Λcus(Γ) to be

Λcus(Γ) = {λ ∈ a∗
C/W : m(λ) > 0}.

Then we have an orthogonal direct sum decomposition

L2
cus(Γ\S) =

⊕

λ∈Λcus(Γ)

Ecus(λ).

In [LM] we established the following extension of main results of [DKV] to congruence
quotients of S = SL(n,R)/ SO(n).

Theorem 6.1.5. Let d = dimS. Let Ω ⊂ a∗ be a bounded domain with piecewise smooth
boundary. Let β(λ) be the Plancherel measure. Then for N ≥ 3 we have

∑

λ∈Λcus(Γ(N)),λ∈itΩ

m(λ) =
vol(Γ(N)\S)

|W |

∫

tΩ

β(iλ) dλ+O
(
td−1(log t)max(n,3)

)
, (6.1.7)

as t→ ∞, and ∑

λ∈Λcus(Γ(N))
λ∈Bt(0)\ia∗

m(λ) = O
(
td−2

)
, t→ ∞. (6.1.8)



6.2. LIMIT MULTIPLICITIES 53

If we apply (6.1.7) and (6.1.8) to the unit ball in a∗, we get the following corollary.

Corollary 6.1.6. Let G = SL(n) and let Γ(N) be the principal congruence subgroup of
SL(n,Z) of level N . Let S = SL(n,R)/ SO(n) and d = dimS. Then for N ≥ 3 we have

N cus

Γ(N)(λ) =
vol(Γ(N)\S)

(4π)d/2Γ
(

d
2

+ 1
)λd +O

(
λd−1(log λ)max(n,3)

)
, λ→ ∞.

The condition N ≥ 3 is imposed for technical reasons. It guarantees that the principal
congruence subgroup Γ(N) is neat in the sense of Borel, and in particular, has no torsion.
This simplifies the analysis by eliminating the contributions of the non-unipotent conjugacy
classes in the trace formula.

Note that Λcus(Γ(N)) ∩ ia∗ is the cuspidal tempered spherical spectrum. The Ramanujan
conjecture [Sa3] for GL(n) at the Archimedean place states that

Λcus(Γ(N)) ⊂ ia∗

so that (6.1.8) is empty, if the Ramanujan conjecture is true. However, the Ramanujan
conjecture is far from being proved. Moreover, it is known to be false for other groups G
and (6.1.8) is what one can expect in general.

The method to prove Theorem 6.1.5 is an extension of the method of [DKV] combined
with Arthur’s trace formula.

6.2 Limit multiplicities

A problem which is closely related to the Weyl law is that of limit multiplicities. Let G be
a semisimple Lie group and Γ ⊂ G a lattice. Let

RΓ
cus =

⊕̂
π∈Ĝ

mcus(Γ, π)π

be the decomposition of the regular representation in the space of cups of cusp forms.
Define a measure on Ĝ by

µΓ,cus(S) =
1

vol(Γ\G)

∑

π∈S

mcus(Γ, π)

for any open, relatively compact subset S ⊂ Ĝ.

Conjecture. Let

Γ = Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γn ⊃ · · ·
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be a tower of normal subgroups of finite index with ∩∞
j=1Γj = {e}. Let µPL be the Plancherel

measure on Ĝ. Let S ⊂ Ĝ be an open, relatively compct subset which is regular for the
Plancherel measure (i.e. µPL(S̄) = µPL(S)). Then

lim
j→∞

µΓj ,cus(S) = µPL(S).

In the co-compact case, this conjecture has an affirmative answer by the work of De-George-
Wallach [GW1], [GW2], Delorme [De] and Sauvageot. The basic tool is the Selberg trace
formula for compact quotients.

In the non-compact case a partial result is known [Sv]. Namely

lim
j→∞

mcus(Γj, π)

vol(Γj\G)
= d(π),

where d(π) is the formal degree of π, which is 0, if π is not a dicrete series representation.
The proof does not use the trace formula. A weaker result was obtained by Clozel. The
proof is based on the trace formula.

The main tool to deal with the conjecture in the non-compact case is again the Arthur
trace formula. It seems to be possible to extend the methods developed in [Mu4] to deal
with the case of GL(n). The problem is to control for a congrunce subgroup Γ(N) of
SL(n,Z) the constants appearing in the estimations in terms of the level N .

6.3 Low lying zeros of L-functions

First we recall the density conjecture from [ILS]. Let F be a family of automorphic forms
(needs to be specified). To any f ∈ F there is an associated L-function

L(s, f) =
∞∑

n=1

λf(n)n−s.

Assume that the completed L-function Λ(s, f) = L∞(s, f)L(s, f) is entire and satisfies a
functional equation of the type

Λ(s, f) = εL(1 − s, f),

where ε = ±1. Also assume that the Riemann hypothesis holds for each L(s, f) with
f ∈ F . Denote the nontrivial zeros of L(s, f) by

ρf =
1

2
+ iγf .

Let cf denote the analytic conductor of f . Let φ ∈ S(R) be even and assume that φ̂ has
compact support. Define the density of low lying zeros by

D(f ;φ) =
∑

γf

φ (γf log cf ) .
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For Q ∈ R+ denote by F(Q) one of the following sets

{f ∈ F : cf = Q}, {f ∈ F : cf ≤ Q}

and consider the average

E(F(Q);φ) =
1

|F(Q)|
∑

f∈F(Q)

D(f ;φ).

Assume that F has plenty of independent forms so that |F(Q)| → ∞ as Q → ∞. Then
the problem is to understand the limit of E(F(Q);φ) as Q → ∞. By the Katz-Sarnak
philosophy there should exist a density W (F), which is explicitely given, such that

lim
Q→∞

E(F(Q), φ) =

∫

R

φ(x)W (F)(x) dx,

More precisly, W (F) should be one of 4 families according to the type of symmetry of the
family (unitary, symplectic, odd or even orthogonal). For details see [ILS, p. 57]. By the
results of Iwaniec, Luo, and Sarnak [ILS], families of modular forms for GL(2) obey the
expected laws (under the GRH).

In order to deal with families of automorphic forms of GL(N), we will need to know the
“Weyl law for Hecke operators”, i.e, something like

TrTn(F(Q)) = δn(F)|F(Q)|+O
(
|F(Q)|1−ε|nk

)
(6.3.1)

for some ε > 0 and k ∈ N. The δn(F), which could vanish for many n’s, governs the
distribution of low lying zeros in the family.

It is conceivable that the methods of [LM] can be extended to prove (6.3.1). This, however,
requires a better knowledge of the geometric side of the Arthur trace formula, in particular,
some progress on the problems mentioned in section 5.3.
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