
WEYL’S LAW IN THE THEORY OF AUTOMORPHIC FORMS

WERNER MÜLLER

Abstract. For a compact Riemannian manifold, Weyl’s law describes the asymptotic
behavior of the counting function of the eigenvalues of the associated Laplace operator.
In this paper we discuss Weyl’s law in the context of automorphic forms. The underlying
manifolds are locally symmetric spaces of finite volume. In the non-compact case Weyl’s
law is closely related to the problem of existence of cusp forms.

1. Introduction

LetM be a smooth, compact Riemannian manifold of dimension n with smooth boundary
∂M (which may be empty). Let

∆ = − div ◦ grad = d∗d

be the Laplace-Beltrami operator associated with the metric g of M . We consider the
Dirichlet eigenvalue problem

(1.1) ∆φ = λφ, φ
∣

∣

∂M
= 0.

As is well known, (1.1) has a discrete set of solutions

0 ≤ λ0 ≤ λ1 ≤ · · · → ∞
whose only accumulation point is at infinity and each eigenvalue occurs with finite mul-
tiplicity. The corresponding eigenfunctions φi can be chosen such that {φi}i∈N0

is an
orthonormal basis of L2(M). A fundamental problem in analysis on manifolds is to study
the distribution of the eigenvalues of ∆ and their relation to the geometric and topological
structure of the underlying manifold. One of the first results in this context is Weyl’s law
for the asymptotic behavior of the eigenvalue counting function. For λ ≥ 0 let

N(λ) = #
{

j :
√

λj ≤ λ
}

be the counting function of the eigenvalues of
√

∆, where eigenvalues are counted with
multiplicities. Denote by Γ(s) the Gamma function. Then the Weyl law states

(1.2) N(λ) =
vol(M)

(4π)n/2Γ
(

n
2

+ 1
)λn + o(λn), λ→ ∞.
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This was first proved by Weyl [We1] for a bounded domain Ω ⊂ R3. Written in a slightly
different form it is known in physics as the Rayleigh-Jeans law. Raleigh [Ra] derived it
for a cube. Garding [Ga] proved Weyl’s law for a general elliptic operator on a domain in
Rn. For a closed Riemannian manifold (1.2) was proved by Minakshisundaram and Pleijel
[MP].

Formula (1.2) does not say very much about the finer structure of the eigenvalue distri-
bution. The basic question is the estimation of the remainder term

R(λ) := N(λ) − vol(M)

(4π)n/2Γ
(

n
2

+ 1
)λn.

That this is a deep problem shows the following example. Consider the flat 2-dimensional
torus T = R2/(2πZ)2. Then the eigenvalues of the flat Laplacian are λm,n := m2 + n2,
m,n ∈ Z and the counting function equals

N(λ) = #
{

(m,n) ∈ Z2 :
√
m2 + n2 ≤ λ

}

.

Thus N(λ) is the number of lattice points in the circle of radius λ. An elementary packing
argument, attributed to Gauss, gives

N(λ) = πλ2 +O (λ) ,

and the circle problem is to find the best exponent µ such that

N(λ) = πλ2 +Oε

(

λµ+ε
)

, ∀ε > 0.

The conjecture of Hardy is µ = 1/2. The first nontrivial result is due to Sierpinski who
showed that one can take µ = 2/3. Currently the best known result is µ = 131/208 ≈ 0.629
which is due to Huxley. Levitan [Le] has shown that for a domain in Rn the remainder
term is of order O(λn−1).

For a closed Riemannian manifold, Avakumović [Av] proved the Weyl estimate with
optimal remainder term:

(1.3) N(λ) =
vol(M)

(4π)n/2Γ
(

n
2

+ 1
)λn +O(λn−1), λ→ ∞.

This result was extended to more general, and higher order operators by Hörmander [Ho].
As shown by Avakumović the bound O(λn−1) of the remainder term is optimal for the
sphere. On the other hand, under certain assumption on the geodesic flow, the estimate
can be slightly improved. Let S∗M be the unit cotangent bundle and let Φt be the geodesic
flow. Suppose that the set of (x, ξ) ∈ S∗M such that Φt has a contact of infinite order
with the identity at (x, ξ) for some t 6= 0, has measure zero in S∗M . Then Duistermaat
and Guillemin [DG] proved that the remainder term satisfies R(λ) = o(λn−1). This is a
slight improvement over (1.3).

In [We3] Weyl formulated a conjecture which claims the existence of a second term in
the asymptotic expansion for a bounded domain Ω ⊂ R3, namely he predicted that

N(λ) =
vol(Ω)

6π2
λ3 − vol(∂Ω)

16π
λ2 + o(λ2).
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This was proved for manifolds with boundary under a certain condition on the periodic
billiard trajectories, by Ivrii [Iv] and Melrose [Me].

The purpose of this paper is to discuss Weyl’s law in the context of locally symmetric
spaces Γ\S of finite volume and non-compact type. Here S = G/K is a Riemannian
symmetric space, where G is a real semi-simple Lie group of non-compact type, and K a
maximal compact subgroup of G. Moreover Γ is a lattice in G, i.e., a discrete subgroup
of finite covolume. Of particular interest are arithmetic subgroups such as the principal
congruence subgroup Γ(N) of SL(2,Z) of level N ∈ N. Spectral theory of the Laplacian
on arithmetic quotients Γ\S is intimately related with the theory of automorphic forms.
In fact, for a symmetric space S it is more natural and important to consider not only
the Laplacian, but the whole algebra D(S) of G-invariant differential operators on S.
It is known that D(S) is a finitely generated commutative algebra [He]. Therefore, it
makes sense to study the joint spectral decomposition of D(S). Square integrable joint
eigenfunctions of D(S) are examples of automorphic forms. Among them are the cusp
forms which satisfy additional decay conditions. Cusps forms are the building blocks of
the theory of automorphic forms and, according to deep and far-reaching conjectures of
Langlands [La2], are expected to provide important relations between harmonic analysis
and number theory.

Let G = NAK be the Iwasawa decomposition of G and let a be the Lie algebra of A. If
Γ\S is compact, the spectrum of D(S) in L2(Γ\S) is a discrete subset of the complexifica-
tion a

∗
C

of a
∗. It has been studied by Duistermaat, Kolk, and Varadarajan in [DKV]. The

method is based on the Selberg trace formula. The results are more refined statements
about the distribution of the spectrum than just the Weyl law. For example, one gets
estimations for the distribution of the tempered and the complementary spectrum. We
will review briefly these results in section 2.

If Γ\S is non-compact, which is the case for many important arithmetic groups, the
Laplacian has a large continuous spectrum which can be described in terms of Eisenstein
series [La1]. Therefore, it is not obvious that the Laplacian has any eigenvalue λ > 0, and
an important problem in the theory of automorphic forms is the existence and construction
of cusp forms for a given lattice Γ. This is were the Weyl law comes into play. Let H be
the upper half-plane. Recall that SL(2,R) acts on H by fractional linear transformations.
Using his trace formula [Se2], Selberg established the following version of Weyl’s law for
an arbitrary lattice Γ in SL(2,R)

(1.4) NΓ(λ) +MΓ(λ) ∼ Area(Γ\H)

4π
λ2, λ→ ∞

[Se2, p. 668]. Here NΓ(λ) is the counting function of the eigenvalues and MΓ(λ) is the
winding number of the determinant φ(1/2 + ir) of the scattering matrix which is given by
the constant Fourier coefficients of the Eisenstein series (see section 4). In general, the two
functions on the left can not be estimated separately. However, for congruence groups like
Γ(N), the meromorphic function φ(s) can be expressed in terms of well-known functions
of analytic number theory. In this case, it is possible to show that the growth of MΓ(λ)
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is of lower order which implies Weyl’s law for the counting function of the eigenvalues
[Se2, p.668]. Especially it follows that Maass cusp forms exist in abundance for congruence
groups. On the other hand, there are indications [PS1], [PS2] that the existence of many
cusp forms may be restricted to arithmetic groups. This will be discussed in detail in
section 4.

In section 5 we discuss the general case of a non-compact arithmetic quotient Γ\S. There
has been some recent progress with the spectral problems discussed above. Lindenstrauss
and Venkatesh [LV] established Weyl’s law without remainder term for congruence sub-
groups of a split adjoint semi-simple group G. In [Mu3] this had been proved for congruence
subgroups of SL(n) and for the Bochner-Laplace operator acting in sections of a locally
homogeneous vector bundle over Sn = SL(n,R)/ SO(n). For congruence subgroups of
G = SL(n), an estimation of the remainder term in Weyl’s law has been established by E.
Lapid and the author in [LM]. Using the approach of [DKV] combined with the Arthur
trace formula, the results of [DKV] have been extended in [LM] to the cuspidal spectrum
of D(Sn).

2. Compact locally symmetric spaces

In this section we review Hörmanders method of the derivation of Weyl’s law with re-
mainder term for the Laplacian ∆ of a closed Riemannian manifold M of dimension n.
Then we will discuss the results of [DKV] concerning spectral asymptotics for compact
locally symmetric manifolds.

The method of Hörmander [Ho] to estimate the remainder term is based on the study of

the kernel of e−it
√

∆. The main point is the construction of a good approximate fundamental
solution to the wave equation by means of the theory of Fourier integral operators and the
analysis of the singularities of its trace

Tr e−it
√

∆ =
∑

j

e−it
√

λj ,

which is well-defined as a distribution. The analysis of Hörmander of the “big” singularity

of Tr e−it
√

∆ at t = 0 leads to the following key result [DG, (2.16)]. Let µj :=
√

λj,
j ∈ N. There exist cj ∈ R, j = 0, ..., n− 1, and ε > 0 such that for every h ∈ S(R) with

supp ĥ ⊂ [−ε, ε] and ĥ ≡ 1 in a neighborhood of 0 one has

(2.1)
∑

j

h(µ− µj) ∼ (2π)−n
n−1
∑

k=0

ckµ
n−1−k, µ→ ∞,

and rapidly decreasing as µ→ −∞. The constants ck are of the form

ck =

∫

M

ωk,
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where the ωk’s are real valued smooth densities on M canonically associated to the Rie-
mannian metric of M . Especially

c0 = vol(S∗M), c1 = (1 − n)

∫

S∗M

sub ∆,

where S∗M is the unit co-tangent bundle, and sub ∆ denotes the subprincipal symbol of
∆. Consideration of the top term in (2.1) leads to the basic estimates for the eigenvalues.

If M = Γ\G/K is a locally symmetric manifold, the Selberg trace formula can be used
to replace (2.1) by an exact formula [DKV]. Actually, if the rank of M is bigger than
1, the spectrum is multidimensional. Then the Selberg trace formula gives more refined
information.

As example, we consider a compact hyperbolic surface M = Γ\H, where Γ ⊂ PSL(2,R)
is a discrete, torsion-free, co-compact subgroup. Let ∆ be the hyperbolic Laplace operator
which is given by

(2.2) ∆ = −y2

(

∂2

∂x2
+

∂2

∂y2

)

, z = x + iy.

Write the eigenvalues λj of ∆ as

λj =
1

4
+ r2

j ,

where rj ∈ C and arg(rj) ∈ {0, π/2}. Let h be an analytic function in a strip | Im(z)| ≤
1
2

+ δ, δ > 0, such that

(2.3) h(z) = h(−z), |h(z)| ≤ C(1 + |z|)−2−δ.

Let

g(u) =
1

2π

∫

R

h(r)eirudr.

Given γ ∈ Γ denote by {γ}Γ its Γ-conjugacy class. Since Γ is co-compact, each γ 6= e is
hyperbolic. Each hyperbolic element γ is the power of a primitive hyperbolic element γ0.
A hyperbolic conjugacy class determines a closed geodesic τγ of Γ\H. Let l(γ) denote the
length of τγ . Then the Selberg trace formula [Se1] is the following identity:

(2.4)

∞
∑

j=0

h(rj) =
Area(Γ\H)

4π

∫

R

h(r)r tanh(πr) dr +
∑

{γ}Γ 6=e

l(γ0)

2 sinh
(

l(γ)
2

)g(l(γ)).

Now let g ∈ C∞
c (R) and h(z) =

∫

R
g(r)e−irz dr. Then h is entire and rapidly decreasing in

each strip | Im(z)| ≤ c, c > 0. Let t ∈ R and set

ht(z) = h(t− z) + h(t + z).
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Then ht is entire and satisfies (2.3). Note that ĥt(r) = e−itrg(r)+eitrg(−r). We symmetrize
the spectrum by r−j := −rj, j ∈ N. Then by (2.4) we get

∞
∑

j=−∞
h(t− rj) =

Area(Γ\H)

2π

∫

R

h(t− r)r tanh(πr) dr

+
∑

{γ}Γ 6=e

l(γ0)

2 sinh
(

l(γ)
2

)

(

e−itl(γ)g(l(γ)) + eitl(γ)g(−l(γ))
)

.

(2.5)

Let ε > 0 be such that l(γ) > ε for all hyperbolic conjugacy classes {γ}Γ. The following
lemma is an immediate consequence of (2.5).

Lemma 2.1. Let g ∈ C∞
c (R) such that supp g ⊂ (−ε, ε). Let h(z) =

∫

R
g(r)e−irz dr. Then

for all t ∈ R we have

(2.6)
∞

∑

j=−∞
h(t− rj) =

Area(Γ\H)

2π

∫

R

h(t− r)r tanh(πr) dr.

Changing variables in the integral on the right and using that

tanh(π(r + t)) = 1 − 2e−2π(r+t)

1 + e−2π(r+t)
= −1 +

2e2π(r+t)

1 + e2π(r+t)
,

we obtain the following asymptotic expansion
∞

∑

j=−∞
h(t− rj) =

Area(Γ\H)

2π

(

|t|
∫

R

h(r) dr − sign t

∫

R

h(r)r dr

)

+O
(

e−2π|t|) ,(2.7)

as |t| → ∞. If h is even, the second term vanishes and the asymptotic expansion is related
to (2.1). The asymptotic expansion (2.7) can be used to derive estimates for the number
of eigenvalues near a given point µ ∈ R.

Lemma 2.2. For every a > 0 there exists C > 0 such that

#{j : |rj − µ| ≤ a} ≤ C(1 + |µ|)
for all µ ∈ R.

Proof. We proceed as in the proof of Lemma 2.3 in [DG]. As shown in the proof, there

exists h ∈ S(R) such that h ≥ 0, h > 0 on [−a, a], ĥ(0) = 1, and supp ĥ is contained in any
prescribed neighborhood of 0. Now observe that there are only finitely many eigenvalues
λj = 1/4 + r2

j with rj /∈ R. Therefore it suffices to consider rj ∈ R. Let µ ∈ R. By (2.7)
we get

#{j : |rj − µ| ≤ a, rj ∈ R} · min{h(u) : |u| ≤ a} ≤
∑

rj∈R

h(µ− rj) ≤ C(1 + |µ|).

�

This lemma is the basis of the following auxiliary results.
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Lemma 2.3. For every h as above there exists C > 0 such that

(2.8)
∑

|rj |≤λ

∣

∣

∣

∣

∫

R−[−λ,λ]

h(t− rj) dt

∣

∣

∣

∣

≤ Cλ,
∑

|rj |>λ

∣

∣

∣

∣

∫ λ

−λ

h(t− rj) dt

∣

∣

∣

∣

≤ Cλ,

for all λ ≥ 1.

Proof. Since h is rapidly decreasing, there exists C > 0 such that |h(t)| ≤ C(1 + |t|)−4,
t ∈ R. Let [λ] be the largest integer ≤ λ. Then we get

∑

|rj |≤λ

∣

∣

∣

∣

∫ ∞

λ

h(t− rj) dt

∣

∣

∣

∣

≤
∑

|rj |≤λ

∫ ∞

λ−rj

|h(t)| dt ≤ C
∑

|rj |≤λ

1

(1 + λ− rj)3

=

[λ]−1
∑

k=−[λ]

∑

k≤rj≤k+1

1

(1 + λ− rj)3
≤

[λ]−1
∑

k=−[λ]

#{j : |rj − k| ≤ 1}
(λ− k)3

,

and by Lemma 2.2 the right hand side is bounded by Cλ for λ ≥ 1. Similarly we get

∑

|rj |≤λ

∣

∣

∣

∣

∫ −λ

−∞
h(t− rj) dt

∣

∣

∣

∣

≤ C2λ.

The second series can be treated in the same way. �

Lemma 2.4. Let h be as in Lemma 2.1 and such that ĥ(0) = 1. Then

(2.9)

∫ λ

−λ

∞
∑

j=−∞
h(t− rj) dt =

Area(Γ\H)

2π
λ2 +O(λ)

as λ→ ∞.

Proof. To prove the lemma, we integrate (2.6) and determine the asymptotic behavior of
the integral on the right. Let p(r) be a continuous function on R such that |p(r)| ≤ C(1+|r|)
and p(r) = p(−r). Changing the order of integration and using that

∫

R
h(t−r) dt = ĥ(0) =

1, we get
∫ λ

−λ

∫

R

h(t− r)p(r) dr dt =

∫ λ

−λ

p(r) dr −
∫ λ

−λ

(
∫

R−[−λ,λ]

h(t− r) dt

)

p(r) dr

+

∫

R−[−λ,λ]

(
∫ λ

−λ

h(t− r) dt

)

p(r) dr.

Let C1 > 0 be such that |h(r)| ≤ C1(1 + |r|)−3, r ∈ R. Then the the second and the third
integral can be estimated by C(1 + λ). Thus we get

(2.10)

∫ λ

−λ

∫

R

h(t− r)p(r) dr dt =

∫ λ

−λ

p(r) dr +O(λ), λ→ ∞.
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If we apply (2.10) to p(r) = r tanh(πr), we obtain

(2.11)

∫ λ

−λ

∫

R

h(t− r)r tanh(πr) dr dt = λ2 +O(λ).

This proves the lemma. �

We are now ready to prove Weyl’s law. We choose h such that ĥ has sufficiently small
support and ĥ(0) = 1. Then

∫ λ

−λ

∞
∑

j=−∞
h(t− rj) dt =

∑

|rj |≤λ

∫

R

h(t− rj) dt−
∑

|rj |≤λ

∫

R−[−λ,λ]

h(t− rj) dt

+
∑

|rj |>λ

∫ λ

−λ

h(t− rj) dt.

Using that
∫

R
h(t− r) dt = ĥ(0) = 1, we get

2NΓ(λ) =

∫ λ

−λ

∑

j

h(t− rj) dt+
∑

|rj |≤λ

∫

R−[−λ,λ]

h(t− rj) dt

−
∑

|rj |>λ

∫ λ

−λ

h(t− rj) dt.

By Lemmas 2.3 and 2.4 we obtain

(2.12) NΓ(λ) =
Area(Γ\H)

4π
λ2 +O(λ).

We turn now to an arbitrary Riemannian symmetric space S = G/K of non-compact type
and we review the main results of [DKV]. The group of motions G of S is a semi-simple
Lie group of non-compact type with finite center and K is a maximal compact subgroup
of G. The Laplacian ∆ of S is a G-invariant differential operator on S, i.e., ∆ commutes
with the left translations Lg, g ∈ G. Besides of ∆ we need to consider the ring D(S) of
all invariant differential operators on S. It is well-known that D(S) is commutative and
finitely generated. Its structure can be described as follows. Let G = NAK be the Iwasawa
decomposition of G, W the Weyl group of (G,A) and a be the Lie algebra of A. Let S(aC)
be the symmetric algebra of the complexification aC = a ⊗ C of a and let S(aC)W be the
subspace of Weyl group invariants in S(aC). Then by a theorem of Harish-Chandra [He,
Ch. X, Theorem 6.15] there is a canonical isomorphism

(2.13) µ : D(S) ∼= S(aC)W .

This shows that D(S) is commutative. The minimal number of generators equals the rank
of S which is dim a [He, Ch.X, §6.3]. Let λ ∈ a

∗
C
. Then by (2.13), λ determines an character

χλ : D(S) → C
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and χλ = χλ′ if and only if λ and λ′ are in the same W -orbit. Since S(aC) is integral over
S(aC)W [He, Ch. X, Lemma 6.9], each character of D(S) is of the form χλ for some λ ∈ a

∗
C
.

Thus the characters of D(S) are parametrized by a
∗
C
/W .

Let Γ ⊂ G be a discrete, torsion-free, co-compact subgroup of G. Then Γ acts properly
discontinuously on S without fixed points and the quotient M = Γ\S is a locally symmetric
manifold which is equipped with the metric induced from the invariant metric of S. Then
each D ∈ D(S) descends to a differential operator

D : C∞(Γ\S) → C∞(Γ\S).

Let E ⊂ C∞(Γ\S) be an eigenspace of the Laplace operator. Then E is a finite-dimensional
vector space which is invariant under D ∈ D(S). For each D ∈ D(S), the formal adjoint
D∗ of D also belongs to D(S). Thus we get a representation

ρ : D(S) → End(E)

by commuting normal operators. Therefore, E decomposes into the direct sum of joint
eigenspaces of D(S). Given λ ∈ a

∗
C
/W , let

E(λ) = {ϕ ∈ C∞(Γ\S) : Dϕ = χλ(D)ϕ, D ∈ D(S)}.

Let m(λ) = dim E(λ). Then the spectrum Λ(Γ) of Γ\S is defined to be

Λ(Γ) = {λ ∈ a
∗
C
/W : m(λ) > 0},

and we get an orthogonal direct sum decomposition

L2(Γ\S) =
⊕

λ∈Λ(Γ)

E(λ).

If we pick a fundamental domain for W , we may regard Λ(Γ) as a subset of a
∗
C
. If

rank(S) > 1, then Λ(Γ) is multidimensional. Again the distribution of Λ(Γ) is studied
using the Selberg trace formula [Se1]. To describe it we need to introduce some notation.
Let C∞

c (G//K) be the subspace of all f ∈ C∞
c (G) which are K-bi-invariant. Let

A : C∞
c (G//K) → C∞

c (A)W

be the Abel transform which is defined by

A(f)(a) = δ(a)1/2

∫

N

f(an) dn, a ∈ A,

where δ is the modulus function of the minimal parabolic subgroup P = NA. Given
h ∈ C∞

c (A)W , let

ĥ(λ) =

∫

A

h(a)e〈λ,H(a)〉 da.
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Let β(iλ), λ ∈ a
∗, be the Plancherel density. Then the Selberg trace formula is the following

identity

∑

λ∈Λ(Γ)

m(λ)ĥ(λ) =
vol(Γ\G)

|W |

∫

a
∗

ĥ(λ)β(iλ) dλ

+
∑

[γ]Γ 6=e

vol(Γγ\Gγ)

∫

Gγ\G
A−1(h)(x−1γx) dγx̄.

(2.14)

This is still not the final form of the Selberg trace formula. The distributions

(2.15) Jγ(f) = vol(Γγ\Gγ)

∫

Gγ\G
f(x−1γx) dγx̄, f ∈ C∞

c (G),

are invariant distribution an G and can be computed using Harish-Chandra’s Fourier in-
version formula. This brings (2.14) into a form which is similar to (2.4). For the present
purpose, however, it suffices to work with (2.14). Since for γ 6= e, the conjugacy class of
γ in G is closed and does not intersect K, there exists an open neighborhood V of 1 in
A satisfying V = V −1, V is invariant under W , and Jγ(A−1(h)) = 0 for all h ∈ C∞

c (V )
[DKV, Propostion 3.8]. Thus we get

(2.16)
∑

λ∈Λ(Γ)

m(λ)ĥ(λ) =
vol(Γ\G)

|W |

∫

a
∗

ĥ(λ)β(iλ) dλ

for all h ∈ C∞
c (V ). One can now proceed as in the case of the upper half-plane. The

basic step is again to estimate the number of λ ∈ Λ(Γ) lying in a ball of radius r around a
variable point µ ∈ ia∗. This can be achieved by inserting appropriate test functions h into
(2.16) [DKV, section 7]. Let

Λtemp(Γ) = Λ(Γ) ∩ ia∗, Λcomp(Γ) = Λ(Γ) \ Λtemp(Γ)

be the tempered and complementary spectrum, respectively. Given an open bounded
subset Ω of a

∗ and t > 0, let

(2.17) tΩ := {tµ : µ ∈ Ω}.
One of the main results of [DKV] is the following asymptotic formula for the distribution
of the tempered spectrum [DKV, Theorem 8.8]

(2.18)
∑

λ∈Λtemp(Γ)∩(itΩ)

m(λ) =
vol(Γ\G)

|W |

∫

itΩ

β(iλ) dλ+O(tn−1), t→ ∞,

Note that the leading term is of order O(tn). The growth of the complementary spectrum
is of lower order. Let Bt(0) ⊂ a

∗
C

be the ball of radius t > 0 around 0. There exists C > 0
such that for all t ≥ 1

(2.19)
∑

λ∈Λcomp(Γ)∩Bt(0)

m(λ) ≤ Ctn−2
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[DKV, Theorem 8.3]. The estimations (2.18) and (2.19) contain more information about
the distribution of Λ(Γ) then just the Weyl law. Indeed, the eigenvalue of ∆ corresponding
to λ ∈ Λtemp(Γ) equals ‖ λ ‖2 + ‖ ρ ‖2. So if we choose Ω in (2.18) to be the unit ball,
then (2.18) together with (2.19) reduces to Weyl’s law for Γ\S.

We note that (2.18) and (2.19) can also be rephrased in terms of representation theory.
Let R be the right regular representation of G in L2(Γ\G) defined by

(R(g1)f)(g2) = f(g2g1), f ∈ L2(Γ\G), g1, g2 ∈ G.

Let Ĝ be the unitary dual of G, i.e., the set of equivalence classes of irreducible unitary
representations of G. Since Γ\G is compact, it is well known that R decomposes into direct

sum of irreducible unitary representations of G. Given π ∈ Ĝ, let m(π) be the multiplicity
with which π occurs in R. Let Hπ denote the Hilbert space in which π acts. Then

L2(Γ\G) ∼=
⊕

π∈Ĝ

m(λ)Hπ.

Now observe that L2(Γ\S) = L2(Γ\G)K. Let HK
π denote the subspace of K-fixed vectors

in Hπ. Then

L2(Γ\S) ∼=
⊕

π∈Ĝ

m(λ)HK
π .

Note that dimHK
π ≤ 1. Let Ĝ(1) ⊂ Ĝ be the subset of all π with HK

π 6= {0}. This is the

spherical dual. Given π ∈ Ĝ, let λπ be the infinitesimal character of π. If π ∈ Ĝ(1), then

λπ ∈ a
∗
C
/W . Moreover π ∈ Ĝ(1) is tempered, if π is unitarily induced from the minimal

parabolic subgroup P = NA. In this case we have λπ ∈ ia∗/W . So (2.18) can be rewritten
as

(2.20)
∑

π∈Ĝ(1)
λπ∈itΩ

m(π) =
vol(Γ\G)

|W |

∫

itΩ

β(λ) dλ+O(tn−1), t→ ∞.

3. Automorphic forms

The theory of automorphic forms is concerned with harmonic analysis on locally sym-
metric spaces Γ\S of finite volume. Of particular interest are arithmetic groups Γ. This
means that we consider a connected semi-simple algebraic group G defined over Q such that
G = G(R) and Γ is a subgroup of G(Q) which is commensurable with G(Z), where G(Z) is
defined with respect to some embedding G ⊂ GL(m). The standard example is G = SL(n)
and Γ(N) ⊂ SL(n,Z) the principal congruence subgroup of level N . A basic feature of
arithmetic groups is that the quotient Γ\S has finite volume [BH]. Moreover in many
important cases it is non-compact. A typical example for that is Γ(N)\ SL(n,R)/ SO(n).

In this section we discuss only the case of the upper half-plane H and we consider con-
gruence subgroups of SL(2,Z). For N ≥ 1 the principal congruence subgroup Γ(N) of level
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N is defined as

Γ(N) =
{

γ ∈ SL(2,Z) : γ ≡ Id mod N
}

.

A congruence subgroup Γ of SL(2,Z) is a subgroup for which there exists N ∈ N such that
Γ contains Γ(N). An example of a congruence subgroup is the Hecke group

Γ0(N) =

{(

a b
c d

)

∈ SL(2,Z) : c ≡ 0 mod N

}

.

If Γ is torsion free, the quotient Γ\H is a finite area, non-compact, hyperbolic surface. It
has a decomposition

(3.1) Γ\H = M0 ∪ Y1 ∪ · · · ∪ Ym,

into the union of a compact surface with boundary M0 and a finite number of ends Yi
∼=

[a,∞)×S1 which are equipped with the Poincaré metric. In general, Γ\H may have a finite
number of quotient singularities. The quotient Γ(N)\H is the modular surface X(N).

Let ∆ be the hyperbolic Laplacian (2.2). A Maass automorphic form is a smooth function
f : H → C which satisfies

a) f(γz) = f(z), γ ∈ Γ.
b) There exists λ ∈ C such that ∆f = λf .
c) f is slowly increasing.

Here the last condition means that there exist C > 0 and N ∈ N such that the restriction
fi of f to Yi satisfies

|fi(y, x)| ≤ CyN , y ≥ a, i = 1, ..., m.

Examples are the Eisenstein series. Let a1, ..., am ∈ R ∪ {∞} be representatives of the
Γ-conjugacy classes of parabolic fixed points of Γ. The ai’s are called cusps. For each ai

let Γai
be the stabilizer of ai in Γ. Choose σi ∈ SL(2,R) such that

σi(∞) = ai, σ−1
i Γai

σi =

{(

1 n
0 1

)

: n ∈ Z

}

.

Then the Eisenstein series Ei(z, s) associated to the cusp ai is defined as

(3.2) Ei(z, s) =
∑

γ∈Γai
\Γ

Im(σ−1
i γz)s, Re(s) > 1.

The series converges absolutely and uniformly on compact subsets of the half-plane Re(s) >
1 and it satisfies the following properties.

1) Ei(γz, s) = Ei(z, s) for all γ ∈ Γ.
2) As a function of s, Ei(z, s) admits a meromorphic continuation to C which is regular

on the line Re(s) = 1/2.
3) Ei(z, s) is a smooth function of z and satisfies ∆zEi(z, s) = s(1 − s)Ei(z, s).
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As example consider the modular group Γ(1) which has a single cusp ∞. The Eisenstein
series attached to ∞ is the well-known series

E(z, s) =
∑

(m,n)∈Z2

(m,n)=1

ys

|mz + n|2s
.

In the general case, the Eisenstein series were first studied by Selberg [Se1]. The Eisenstein
series are closely related with the study of the spectral resolution of ∆. Regarded as
unbounded operator

∆: C∞
c (Γ\H) → L2(Γ\H),

∆ is essentially self-adjoint [Roe]. Let ∆̄ be the unique self-adjoint extension of ∆. The
important new feature due to the non-compactness of Γ\H is that ∆̄ has a large continuous
spectrum which is governed by the Eisenstein series. The following basic result is due to
Roelcke [Roe].

Proposition 3.1. The spectrum of ∆̄ is the union of a pure point spectrum σpp(∆̄) and
an absolutely continuous spectrum σac(∆̄).
1) The pure point spectrum consists of eigenvalues 0 = λ0 < λ1 ≤ · · · of finite multiplicities
with no finite points of accumulation.
2) The absolutely continuous spectrum equals [1/4,∞) with multiplicity equal to the number
of cusps of Γ\H.

Of particular interest are the eigenfunctions of ∆̄. They are Maass automorphic forms.
This can be seen by studying the Fourier expansion of an eigenfunction in the cusps. As
an example consider f ∈ C∞(Γ0(N)\H) which satisfies

∆f = λf, f(z) = f(−z̄),
∫

Γ0(N)\H

|f(z)|2 dA(z) <∞.

Assume that λ = 1/4 + r2, r ∈ R. Then f(x + iy) admits a Fourier expansion w.r.t. x of
the form

(3.3) f(x+ iy) =

∞
∑

n=1

a(n)
√
yKir(2πny) cos(2πnx),

where Kν(y) is the modified Bessel function which may be defined by

Kν(y) =

∫ ∞

0

e−y cosh t cosh(νt) dt

and it satisfies

K ′′
ν (y) +

1

y
K ′

ν(y) +

(

1 − ν2

y2

)

Kν(y) = 0.

Now note that Kν(y) = O(e−cy) as y → ∞. This implies that f is rapidly decreasing in
the cusp ∞. A similar Fourier expansion holds in the other cusps. This implies that f
is rapidly decreasing in all cusps and therefore, it is a Maass automorphic form. In fact,
since the zero Fourier coefficients vanish in all cusps, f is a Maass cusp form. In general,
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the space of cusp forms L2
cus(Γ\H) is defined as the subspace of all f ∈ L2(Γ\H) such that

for almost all y ∈ R+:
∫ 1

0

f(σk(x+ iy)) dx = 0, k = 1, ..., m.

This is an invariant subspace of ∆̄ and the restriction of ∆̄ to L2
cus(Γ\H) has pure point

spectrum, i.e., L2
cus(Γ\H) is the span of square integrable eigenfunctions of ∆. Let L2

res(Γ\H)
be the orthogonal complement of L2

cus(Γ\H) in L2(Γ\H). Thus

L2
pp(Γ\H) = L2

cus(Γ\H) ⊕ L2
res(Γ\H).

The subspace L2
res(Γ\H) can be described as follows. The poles of the Eisenstein series

Ei(z, s) in the half-plane Re(s) > 1/2 are all simple and are contained in the interval
(1/2, 1]. Let s0 ∈ (1/2, 1] be a pole of Ei(z, s) and put

ψ = Ress=s0
Ei(z, s).

Then ψ is a square integrable eigenfunction of ∆ with eigenvalue λ = s0(1 − s0). The
set of all such residues of the Eisenstein series Ei(z, s), i = 1, ..., m, spans L2

res(Γ\H).
This is a finite-dimensional space which is called the residual subspace. The corresponding
eigenvalues form the residual spectrum of ∆̄. So we are left with the cuspidal eigenfunctions
or Maass cusp forms. Cusp forms are the building blocks of the theory of automorphic
forms. They play an important role in number theory. To illustrate this consider an even
Maass cusp form f for Γ(1) with eigenvalue λ = 1/4 + r2, r ∈ R. Let a(n), n ∈ N, be the
Fourier coefficients of f given by (3.3). Put

L(s, f) =
∞

∑

n=1

a(n)

ns
, Re(s) > 1.

This Dirichlet series converges absolutely and uniformly in the half-plane Re(s) > 1. Let

(3.4) Λ(s, f) = π−sΓ

(

s+ ir

2

)

Γ

(

s− ir

2

)

L(s, f).

Then the modularity of f implies that Λ(s, f) has an analytic continuation to the whole
complex plane and satisfies the functional equation

Λ(s, f) = Λ(1 − s, f)

[Bu, Proposition 1.9.1]. Under additional assumptions on f , the Dirichlet series L(s, f) is
also an Euler product. This is related to the arithmetic nature of the groups Γ(N). The
surfaces X(N) carry a family of algebraically defined operators Tn, the so called Hecke
operators, which for (n,N) = 1 are defined by

Tnf(z) =
1√
n

∑

ad=n
b mod d

f

(

az + b

d

)

.
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These are closely related to the cosets of the finite index subgroups
(

n 0
0 1

)

Γ(N)

(

n 0
0 1

)−1

∩ Γ(N)

of Γ(N). Each Tn defines a linear transformation of L2(X(N)). The Tn, n ∈ N, are a
commuting family of normal operators which also commute with ∆. Therefore, each Tn

leaves the eigenspaces of ∆ invariant. So we may assume that f is a common eigenfunction
of ∆ and Tn, n ∈ N:

∆f = (1/4 + r2)f, Tnf = λ(n)f.

If f 6= 0, then a(1) 6= 0. So we can normalize f such that a(1) = 1. Then it follows that
a(n) = λ(n) and the Fourier coefficients satisfy the following multiplicative relations

a(m)a(n) =
∑

d|(m,n)

a
(mn

d2

)

.

This implies that L(s, f) is an Euler product

(3.5) L(s, f) =
∞

∑

n=1

a(n)n−s =
∏

p

(

1 − a(p)p−s + p−2s
)−1

,

which converges for Re(s) > 1. L(s, f) is the basic example of an automorphic L-function.
It is convenient to write this Euler product in a different way. Introduce roots αp, βp by

αpβp = 1, αp + βp = a(p).

Let

Ap =

(

αp 0
0 βp

)

.

Then

L(s, f) =
∏

p

det
(

Id−App
−s

)−1
.

Now let ρ : GL(2,C) → GL(N,C) be a representation. Then we can form a new Euler
product by

L(s, f, ρ) =
∏

p

det
(

Id−ρ(Ap)p
−s

)−1
,

which converges in some half-plane. It is part of the general conjectures of Langlands
[La2] that each of these Euler products admits a meromorphic extension to C and satisfies
a functional equation. The construction of Euler products for Maass cusp forms can be
extended to other groups G, in particular to cusp forms on GL(n). It is also conjectured
that L(s, f, ρ) is an automorphic L-function of an automorphic form on some GL(n). This
is part of the functoriality principle of Langlands. Furthermore, all L-functions that occur
in number theory and algebraic geometry are expected to be automorphic L-functions. This
is one of the main reasons for the interest in the study of cusp forms. Other applications
are discussed in [Sa1].
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4. The Weyl law and existence of cusp forms

Since Γ(N)\H is not compact, it is not clear that there exist any eigenvalues λ > 0.
By Proposition 3.1 the continuous spectrum of ∆̄ equals [1/4,∞). Thus all eigenvalues
λ ≥ 1/4 are embedded in the continuous spectrum. It is well-known in mathematical
physics, that embedded eigenvalues are unstable under perturbations and therefore, are
difficult to study.

One of the basic tools to study the cuspidal spectrum is the Selberg trace formula [Se2].
The new terms in the trace formula, which are due to the non-compactness of Γ\H arise
from the parabolic conjugacy classes in Γ and the Eisenstein series. The contribution of
the Eisenstein series is given by their zeroth Fourier coefficients of the Fourier expansion
in the cusps. The zeroth Fourier coefficient of the Eisenstein series Ek(z, s) in the cusp al

is given by
∫ 1

0

Ek(σl(x+ iy), s) dx = ys + Ckl(s)y
1−s,

where Ckl(s) is a meromorphic function of s ∈ C. Put

C(s) := (Ckl(s))
m
k,l=1 .

This is the so called scattering matrix. Let

φ(s) := detC(s).

Let the notation be as in (2.4) and assume that Γ has no torsion. Then the trace formula
is the following identity.

∑

j

h(rj) =
Area(Γ\H)

4π

∫

R

h(r)r tanh(πr) dr +
∑

{γ}Γ

l(γ0)

2 sinh
(

l(γ)
2

)g(l(γ))

+
1

4π

∫ ∞

−∞
h(r)

φ′

φ
(1/2 + ir) dr − 1

4
φ(1/2)h(0)

− m

2π

∫ ∞

−∞
h(r)

Γ′

Γ
(1 + ir)dr +

m

4
h(0) −m ln 2 g(0).

(4.1)

The trace formula holds for every discrete subgroup Γ ⊂ SL(2,R) with finite coarea. In
analogy to the counting function of the eigenvalues we introduce the winding number

MΓ(λ) = − 1

4π

∫ λ

−λ

φ′

φ
(1/2 + ir) dr

which measures the continuous spectrum. Using the cut-off Laplacian of Lax-Phillips [CV]
one can deduce the following elementary bounds

(4.2) NΓ(λ) � λ2, MΓ(λ) � λ2, λ ≥ 1.

These bounds imply that the trace formula (4.1) holds for a larger class of functions.
In particular, it can be applied to the heat kernel kt(u). Its spherical Fourier transform
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equals ht(r) = e−t(1/4+r2), t > 0. If we insert ht into the trace formula we get the following
asymptotic expansion as t→ 0.

∑

j

e−tλj − 1

4π

∫

R

e−t(1/4+r2)φ
′

φ
(1/2 + ir) dr

=
Area(Γ\H)

4πt
+
a log t√

t
+

b√
t

+O(1)

(4.3)

for certain constants a, b ∈ R. Using [Se2, (8.8), (8.9)] it follows that the winding number
MΓ(λ) is monotonic increasing for r � 0. Therefore we can apply a Tauberian theorem to
(4.3) and we get the Weyl law (1.4).

In general, we cannot estimate separately the counting function and the winding number.
For congruence subgroups, however, the entries of the scattering matrix can be expressed
in terms of well-known analytic functions. For Γ(N) the determinant of the scattering
matrix φ(s) has been computed by Huxley [Hu]. It has the form

(4.4) φ(s) = (−1)lA1−2s

(

Γ(1 − s)

Γ(s)

)k
∏

χ

L(2 − 2s, χ̄)

L(2s, χ)
,

where k, l ∈ Z, A > 0, the product runs over Dirichlet characters χ to some modulus
dividing N and L(s, χ) is the Dirichlet L-function with character χ. Especially for Γ(1)
we have

(4.5) φ(s) =
√
π
Γ(s− 1/2)ζ(2s− 1)

Γ(s)ζ(2s)
,

where ζ(s) denotes the Riemann zeta function.

Using Stirling’s approximation formula to estimate the logarithmic derivative of the
Gamma function and standard estimations for the logarithmic derivative of Dirichlet L-
functions on the line Re(s) = 1 [Pr, Theormem 7.1], we get

(4.6)
φ′

φ
(1/2 + ir) = O(log(4 + |r|)), |r| → ∞.

This implies that

(4.7) MΓ(N)(λ) � λ logλ.

Together with (1.4) we obtain Weyl’s law for the point spectrum

(4.8) NΓ(N)(λ) ∼ Area(X(N))

4π
λ2, λ→ ∞,

which is due to Selberg [Se2, p.668]. A similar formula holds for other congruence groups
such as Γ0(N). In particular, (4.8) implies that for congruence groups Γ there exist infin-
itely many linearly independent Maass cusp forms.
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A proof of the Weyl law (4.8) which avoids the use of the constant terms of the Eisenstein
series has recently been given by Lindenstrauss and Venkatesh [LV]. Their approach is
based on the construction of convolution operators with purely cuspidal image.

Neither of these methods give good estimates of the remainder term. One approach to
obtain estimates of the remainder term is based on the Selberg zeta function

ZΓ(s) =
∏

{γ}Γ

∞
∏

k=0

(

1 − e−(s+k)`(γ)
)

, Re(s) > 1,

where the outer product runs over the primitive hyperbolic conjugacy classes in Γ and `(γ)
is the length of the closed geodesic associated to {γ}Γ. The infinite product converges
absolutely in the indicated half-plane and admits an analytic continuation to the whole
complex plane. If λ = 1/4 + r2, r ∈ R∪ i(1/2, 1], is an eigenvalue of ∆, then s0 = 1/2 + ir
is a zero of ZΓ(s). Using this fact and standard methods of analytic number theory one
can derive the following strong form of the Weyl law [Hj, Theorem 2.28], [Ve, Theorem
7.3].

Theorem 4.1. Let m be the number of cusps of Γ\H. There exists c > 0 such that

NΓ(λ) +MΓ(λ) =
Area(Γ\H)

4π
λ2 − m

π
λ logλ+ cλ+O

(

λ(log λ)−1
)

as λ→ ∞.

Together with (4.7) we obtain Weyl’s law with remainder term.

Theorem 4.2. For every N ∈ N we have

NΓ(N)(λ) =
Area(X(N))

4π
λ2 +O(λ logλ)

as λ→ ∞.

The use of the Selberg zeta function to estimate the remainder term is limited to rank one
cases. However, the remainder term can also be estimated by Hörmander’s method using
the trace formula as in the compact case. We describe the main steps. Let ε > 0 such that
`(γ) > ε for all hyperbolic conjugacy classes {γ}Γ(N). Choose g ∈ C∞

c (R) to be even and
such that supp g ⊂ (−ε, ε). Let h(z) =

∫

R
g(r)e−irz dr. Then the hyperbolic contribution

in the trace formula (4.1) drops out. We symmetrize the spectrum by r−j = −rj, j ∈ N.
Then for each t ∈ R we have

∑

j

h(t− rj) =
Area(X(N))

2π

∫

R

h(t− r)r tanh(πr) dr

+
1

2π

∫ ∞

−∞
h(t− r)

φ′

φ
(1/2 + ir) dr − 1

2
φ(1/2)h(t)

− m

π

∫ ∞

−∞
h(t− r)

Γ′

Γ
(1 + ir)dr +

m

2
h(t) − 2m ln 2 g(0).

(4.9)
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Now we need to estimate the behavior of the terms on the right hand side as |t| → ∞.
The first integral has been already considered in (2.7). It is of order O(|t|). To deal with
the second integral we use (4.6). This implies

(4.10)

∫

R

h(t− r)
φ′

φ
(1/2 + ir) dr = O(log(|t|)), |t| → ∞.

Using Stirling’s formula we get
∫

R

h(t− r)
Γ′

Γ
(1 + ir) dr = O(log(|t|)), |t| → ∞.

The remaining terms are bounded. Combining these estimations, we get
∑

j

h(t− rj) = O(|t|), |t| → ∞.

Therefore, Lemma 2.2 holds also in the present case. It remains to establish the analog of
Lemma 2.4. Using (2.10) and (4.6) we get

(4.11)

∫ λ

−λ

∫

R

h(t− r)
φ′

φ
(1/2 + it) dr dt = O(λ logλ).

Similarly, using Stirling’s formula and (2.10), we obtain

(4.12)

∫ λ

−λ

∫

R

h(t− r)
Γ′

Γ
(1 + it) dr dt = O(λ logλ).

The integral of the remaining terms is of order O(λ). Thus we obtain

(4.13)

∫ λ

−λ

∞
∑

j=−∞
h(t− rj) dt =

Area(X(N))

2π
λ2 +O(λ logλ)

as λ→ ∞. Now we proceed in exactly the same way as in the compact case. Using Lemma
2.3 and (4.13), Theorem 4.2 follows. 2

The Weyl law shows that for congruence groups Maass cusp forms exist in abundance.
In general very little is known. Let Γ be any discrete, co-finite subgroup of SL(2,R). Then
by Donnelly [Do] the following general bound is known

lim sup
λ→∞

N cus
Γ (λ)

λ
≤ Area(Γ\H)

4π
.

A group Γ for which the equality is attained is called essentially cuspidal by Sarnak [Sa2].
By (4.8), Γ(N) is essentially cuspidal. The study of the behavior of eigenvalues under
deformations of Γ, initiated Phillips and Sarnak [PS1], [PS2], supports the conjecture that
essential cuspidality may be limited to special arithmetic groups.

The consideration of the behavior of cuspidal eigenvalues under deformations was started
by Colin de Verdiere [CV] in the more general context of metric perturbations. One of his
main results [CV, Théorème 7] states that under a generic compactly supported conformal
perturbation of the hyperbolic metric of Γ\H all Maass cusp forms are dissolved. This
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means that each point sj = 1/2 + irj, rj ∈ R, such that λj = sj(1 − sj) is an eigenvalue
moves under the perturbation into the half-plane Re(s) < 1/2 and becomes a pole of the
scattering matrix C(s).

In the present context we are only interested in deformations such that the curvature
stays constant. Such deformations are given by curves in the Teichmüller space T (Γ) of
Γ. The space T (Γ) is known to be a finite-dimensional and therefore, it is by no means
clear that the results of [CV] will continue to hold for perturbations of this restricted type.
For Γ(N) this problem has been studied in [PS1], [PS2]. One of the main results is an
analog of Fermi’s golden rule which gives a sufficient condition for a cusp form of Γ(N) to
be dissolved under a deformation in T (Γ(N)). Based on these results, Sarnak made the
following conjecture [Sa2]:

Conjecture.

(a) The generic Γ in a given Teichmüller space of finite area hyperbolic surfaces is not
essentially cuspidal.

(b) Except for the Teichmüller space of the once punctured torus, the generic Γ has
only finitely many eigenvalues.

5. Higher rank

In this section we consider an arbitrary locally symmetric space Γ\S defined by an arith-
metic subgroup Γ ⊂ G(Q), where G is a semi-simple algebraic group over Q with finite
center, G = G(R) and S = G/K. The basic example will be G = SL(n) and Γ = Γ(N),
the principal congruence subgroup of SL(n,Z) of level N which consists of all γ ∈ SL(n,Z)
such that γ ≡ Id mod N .

Let ∆ be the Laplacian of Γ\S, and let ∆̄ be the closure of ∆ in L2. Then ∆̄ is a non-
negative self-adjoint operator in L2(Γ\S). The properties of its spectral resolution can be
derived from the known structure of the spectral resolution of the regular representation RΓ

of G on L2(Γ\G) [La1], [BG]. In this way we get the following generalization of Proposition
3.1.

Proposition 5.1. The spectrum of ∆̄ is the union of a point spectrum σpp(∆̄) and an
absolutely continuous spectrum σac(∆̄).
1) The point spectrum consists of eigenvalues 0 = λ0 < λ1 ≤ · · · of finite multiplicities
with no finite point of accumulation.
2) The absolutely continuous spectrum equals [b,∞) for some b > 0.

The theory of Eisenstein series [La1] provides a complete set of generalized eigenfunctions
for ∆. The corresponding wave packets span the absolutely continuous subspace L2

c(Γ\S).
This allows us to determine the constant b explicitly in terms of the root structure. The
statement about the point spectrum was proved in [BG, Theorem 5.5].

Let L2
dis(Γ\S) be the closure of the span of all eigenfunctions. It contains the subspace

of cusp forms L2
cus(Γ\S). We recall its definition. Let P ⊂ G be a parabolic subgroup
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defined over Q [Bo]. Let P = P(R). This is a cuspidal parabolic subgroup of G and all
cuspidal parabolic subgroups arise in this way. Let NP be the unipotent radical of P and
let NP = NP (R). Then NP ∩ Γ\NP is compact. A cusp form is a smooth function φ on
Γ\S which is a joint eigenfunction of the ring D(S) of invariant differential operators on
S, and which satisfies

(5.1)

∫

NP∩Γ\NP

φ(nx) dn = 0

for all cuspidal parabolic subgroups P 6= G. Each cusp form is rapidly decreasing and
hence square integrable. Let L2

cus(Γ\S) be the closure in L2(Γ\S) of the linear span of all
cusp forms. Then L2

cus(Γ\S) is an invariant subspace of ∆̄ which is contained in L2
dis(Γ\S).

Let L2
res(Γ\S) be the orthogonal complement of L2

cus(Γ\S) in L2
dis(Γ\S), i.e., we have an

orthogonal decomposition

L2
dis(Γ\S) = L2

cus(Γ\S) ⊕ L2
res(Γ\S).

It follows from Langlands’s theory of Eisenstein systems that L2
res(Γ\S) is spanned by

iterated residues of cuspidal Eisenstein series [La1, Chapter 7]. Therefore L2
res(Γ\S) is

called the residual subspace.

Let Ndis
Γ (λ), N cus

Γ (λ), and N res
Γ (λ) be the counting function of the eigenvalues with eigen-

functions belonging to the corresponding subspaces. The following general results about
the growth of the counting functions are known for any lattice Γ in a real semi-simple Lie
group. Let n = dimS. Donnelly [Do] has proved the following bound for the cuspidal
spectrum

(5.2) lim sup
λ→∞

N cus
Γ (λ)

λn
≤ vol(Γ\S)

(4π)n/2Γ
(

n
2

+ 1
) ,

where Γ(s) denotes the Gamma function. For the full discrete spectrum, we have at least
an upper bound for the growth of the counting function. The main result of [Mu2] states
that

(5.3) Ndis

Γ (λ) � (1 + λ4n).

This result implies that invariant integral operators are trace class on the discrete subspace
which is the starting point for the trace formula. The proof of (5.3) relies on the descrip-
tion of the residual subspace in terms of iterated residues of Eisenstein series. One actually
expects that the growth of the residual spectrum is of lower order than the cuspidal spec-
trum. For SL(n) the residual spectrum has been determined by Moeglin and Waldspurger
[MW]. Combined with (5.2) it follows that for G = SL(n) we have

(5.4) N res

Γ(N)(λ) � λd−1,

where d = dim SL(n,R)/ SO(n).

In [Sa2] Sarnak conjectured that if rank(G/K) > 1, each irreducible lattice Γ in G is
essentially cuspidal in the sense that Weyl’s law holds for N cus

Γ (λ), i.e., equality holds in
(5.2). This conjecture has now been established in quite generality. A. Reznikov proved it
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for congruence groups in a group G of real rank one, S. Miller [Mi] proved it for G = SL(3)
and Γ = SL(3,Z), the author [Mu3] established it for G = SL(n) and a congruence group
Γ. The method of [Mu3] is an extension of the heat equation method described in the
previous section for the case of the upper half-plane. More recently, Lindenstrauss and
Venkatesh [LV] proved the following result.

Theorem 5.2. Let G be a split adjoint semi-simple group over Q and let Γ ⊂ G(Q) be a
congruence subgroup. Let n = dimS. Then

N cus

Γ (λ) ∼ vol(Γ\S)

(4π)n/2Γ
(

n
2

+ 1
)λn, λ→ ∞.

The method is based on the construction of convolution operators with pure cuspidal
image. It avoids the delicate estimates of the contributions of the Eisenstein series to the
trace formula. This proves existence of many cusp forms for these groups.

The next problem is to estimate the remainder term. For G = SL(n), this problem has
been studied by E. Lapid and the author in [LM]. Actually, we consider not only the
cuspidal spectrum of the Laplacian, but the cuspidal spectrum of the whole algebra of
invariant differential operators.

As D(S) preserves the space of cusp forms, we can proceed as in the compact case and
decompose L2

cus(Γ\S) into joint eigenspaces of D(S). Given λ ∈ a
∗
C
/W , let

Ecus(λ) =
{

ϕ ∈ L2
cus(Γ\S) : Dϕ = χλ(D)ϕ, D ∈ D(S)

}

be the associated eigenspace. Each eigenspace is finite-dimensional. Let m(λ) = Ecus(λ).
Define the cuspidal spectrum Λcus(Γ) to be

Λcus(Γ) = {λ ∈ a
∗
C/W : m(λ) > 0}.

Then we have an orthogonal direct sum decomposition

L2
cus(Γ\S) =

⊕

λ∈Λcus(Γ)

Ecus(λ).

Let the notation be as in (2.18) and (2.19). Then in [LM] we established the following
extension of main results of [DKV] to congruence quotients of S = SL(n,R)/ SO(n).

Theorem 5.3. Let d = dimS. Let Ω ⊂ a
∗ be a bounded domain with piecewise smooth

boundary. Then for N ≥ 3 we have

(5.5)
∑

λ∈Λcus(Γ(N)),λ∈itΩ

m(λ) =
vol(Γ(N)\S)

|W |

∫

tΩ

β(iλ) dλ+O
(

td−1(log t)max(n,3)
)

,

as t→ ∞, and

(5.6)
∑

λ∈Λcus(Γ(N))
λ∈Bt(0)\ia∗

m(λ) = O
(

td−2
)

, t→ ∞.
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If we apply (5.5) and (5.6) to the unit ball in a
∗, we get the following corollary.

Corollary 5.4. Let G = SL(n) and let Γ(N) be the principal congruence subgroup of
SL(n,Z) of level N . Let S = SL(n,R)/ SO(n) and d = dimS. Then for N ≥ 3 we have

N cus

Γ(N)(λ) =
vol(Γ(N)\S)

(4π)d/2Γ
(

d
2

+ 1
)λd +O

(

λd−1(logλ)max(n,3)
)

, λ→ ∞.

The condition N ≥ 3 is imposed for technical reasons. It guarantees that the principal
congruence subgroup Γ(N) is neat in the sense of Borel, and in particular, has no torsion.
This simplifies the analysis by eliminating the contributions of the non-unipotent conjugacy
classes in the trace formula.

Note that Λcus(Γ(N))∩ ia∗ is the cuspidal tempered spherical spectrum. The Ramanujan
conjecture [Sa3] for GL(n) at the Archimedean place states that

Λcus(Γ(N)) ⊂ ia∗

so that (5.6) is empty, if the Ramanujan conjecture is true. However, the Ramanujan
conjecture is far from being proved. Moreover, it is known to be false for other groups G

and (5.6) is what one can expect in general.

The method to prove Theorem 5.3 is an extension of the method of [DKV]. The Selberg
trace formula, which is one of the basic tools in [DKV], needs to be replaced by the Arthur
trace formula [A1], [A2]. This requires to change the framework and to work with the
adelic setting. It is also convenient to replace SL(n) by GL(n).

Again, one of the main issues is to estimate the terms in the trace formula which are
associated to Eisenstein series. Roughly speaking, these terms are a sum of integrals which
generalize the integral

∫ ∞

−∞
h(r)

φ′

φ
(1/2 + ir) dr

in (4.1). The sum is running over Levi components of parabolic subgroups and square
integrable automorphic forms on a given Levi component. The functions which generalize
φ(s) are obtained from the constant terms of Eisenstein series. In general, they are difficult
to describe. The main ingredients are logarithmic derivatives of automorphic L-functions
associated to automorphic forms on the Levi components. As example consider G = SL(3),
Γ = SL(3,Z), and a standard maximal parabolic subgroup P which has the form

P =

{(

m1 X
0 m2

)

∣

∣

∣
mi ∈ GL(ni,R), detm1 · detm2 = 1

}

,

with n1 +n2 = 3. Thus there are exactly two standard maximal parabolic subgroups. The
standard Levi component of P is

L =

{(

m1 0
0 m2

)

∣

∣

∣
mi ∈ GL(ni,R), detm1 · detm2 = 1

}

.

So L is isomorphic to GL(2,R). The Eisenstein series are associated to Maass cusp forms
on Γ(1)\H. The constant terms of the Eisenstein series are described in [Go, Proposition



24 WERNER MÜLLER

10.11.2]. Let f be a Maass cusp form for Γ(1) and let Λ(s, f) be the completed L-function
of f defined by (3.4). Then the relevant constant term of the Eisenstein series associated
to f is given by

Λ(s, f)

Λ(1 + s, f)
.

To proceed one needs a bound similar to (4.6). Assume that ∆f = (1/4 + r2)f . Using the
analytic properties of Λ(s, f) one can show that for T ≥ 1

(5.7)

∫ T

−T

Λ′

Λ
(1 + it, f) dt� T log(T + |r|).

This is the key result that is needed to deal with the contribution of the Eisenstein series
to the trace formula.

The example demonstrates a general feature of spectral theory on locally symmetric
spaces. Harmonic analysis on higher rank spaces requires the knowledge of the analytic
properties of automorphic L-functions attached to cusp forms on lower rank groups. For
GL(n), the corresponding L-functions are Rankin-Selberg convolutions L(s, φ1 × φ2) of
automorphic cusp forms on GL(ni), i = 1, 2, where n1 + n2 = n (cf. [Bu], [Go] for
their definition). The analytic properties of these L-functions are well understood so that
estimates similar to (5.7) can be established. For other groups G (except for some low
dimensional cases) our current knowledge of the analytic properties of the corresponding
L-functions is not sufficient to prove estimates like (5.7). Only partial results exist [CPS].
This is one of the main obstacles to extend Theorem 5.3 to other groups.
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[Ho] L. Hörmander, The spectral function of an elliptic operator. Acta Math. 121 (1968), 193–218.
[Hu] Huxley, M.: Scattering matrices for congruence subgroups. In: Modular forms, R. Rankin ed.,

Horwood, Chichester, 1984, pp. 141–156.
[Iv] V. Ivrii, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds

with boundary. Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 25–34.
[La1] R.P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Math.

544, Springer, Berlin-Heidelberg-New York, 1976.
[La2] R.P, Langlands, Problems in the theory of automorphic forms. Lectures in modern analysis and

applications, III, pp. 18–61. Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970.
[LM] E. Lapid, W. Müller, Spectral asymptotics for arithmetic quotients of the symmetric space of

positive-definite matrices, Preprint, 2007.
[Le] B.M. Levitan, On expansion in characteristic functions of the Laplace operator. Doklady Akad.

Nauk SSSR (N.S.) 90 (1953). 133–135.
[LV] E. Lindenstrauss, A. Venkatesh, Existence and Weyl’s law for spherical cusps forms, Geom. and

Funct. Analysis, to appear.
[Me] R.B. Melrose, Weyl’s conjecture for manifolds with concave boundary. Geometry of the Laplace

operator pp. 257–274, Proc. Sympos. Pure Math., 36, Amer. Math. Soc., Providence, R.I., 1980.
[Mi] S.D. Miller, On the existence and temperedness of cusp forms for SL3(Z). J. Reine Angew. Math.

533 (2001), 127–169.
[MP] S. Minakshisundaram, A. Pleijel, Some properties of the eigenfunctions of the Laplace-operator

on Riemannian manifolds. Canadian J. Math. 1 (1949), 242–256.

[MW] C. Moeglin et J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. scient. Éc. Norm. Sup., 4e
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