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Abstract. Let G be a reductive algebraic group over Q and Γ ⊂ G(Q) an arithmetic
subgroup. Let K∞ ⊂ G(R) be a maximal compact subgroup. We study the asymptotic
behavior of the counting functions of the cuspidal and residual spectrum, respectively, of
the regular representation of G(R) in L2(Γ\G(R)) of a fixed K∞-type σ. A conjecture,
which is due to Sarnak, states that the counting function of the cuspidal spectrum of
type σ satisfies Weyl’s law and the residual spectrum is of lower order growth. Using the
Arthur trace formula we reduce the conjecture to a problem about L-functions occurring
in the constant terms of Eisenstein series. If G satisfies property (L), introduced by Finis
and Lapid, we establish the conjecture. This includes classical groups over a number field.
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1. Introduction

Let G be a connected semisimple algebraic group over Q and Γ ⊂ G(Q) an arithmetic
subgroup, which we assume to be torsion free. A basic problem in the theory of automorphic
forms is the study of the spectral resolution of the regular representation RΓ of G(R)
in L2(Γ\G(R)). Of particular importance is the determination of the structure of the
discrete spectrum. Let L2

dis(Γ\G(R)) be the discrete part of L2(Γ\G(R)), i.e., the closure
of the span of all irreducible subrepresentations of RΓ. Denote by RΓ,dis the corresponding
restriction of RΓ. Denote by Πdis(G(R)) the set of isomorphism classes of irreducible unitary
representations of G(R), which occur in RΓ. By definition we have

(1.1) RΓ,dis =
⊕̂

π∈Πdis(G(R))
mΓ(π)π,

where

mΓ(π) = dim HomG(R)(π,RΓ) = dim HomG(R)(π,RΓ,dis)

is the multiplicity with which π occurs in RΓ. Apart from special cases, as for example
discrete series representations, one cannot hope to describe the multiplicity function mΓ

on Π(G(R)) explicitly. Therefor it is feasible to study asymptotic questions such as the
limit multiplicity problem [FLM2] and the Weyl law, which is the subject of this article.

To begin with we recall that the discrete spectrum decomposes into the cuspidal and the
residual spectrum. Let K∞ be a maximal compact subgroup of G(R). Let Z(gC) be the
center of the universal enveloping algebra of the complexification of the Lie algebra g of
G(R). Recall that a cusp form for Γ is a smooth and right K∞-finite function φ : Γ\G(R)→
C which is a simultaneous eigenfunction of Z(gC) and which satisfies

(1.2)

∫
Γ∩NP (R)\NP (R)

φ(nx)dn = 0

for all unipotent radicals NP of proper rational parabolic subgroups P of G. By Langlands’
theory of Eisenstein series [La1], cusp forms are the building blocks of the spectral reso-
lution. We note that each cusp form φ ∈ C∞(Γ\G(R)) is rapidly decreasing on Γ\G(R)
and hence square integrable. Let L2

cus(Γ\G(R)) be the closure of the linear span of all
cusp forms. The restriction of the regular representation RΓ to L2

cus(Γ\G(R)) decomposes
discretely and L2

cus(Γ\G(R)) is a subspace of L2
dis(Γ\G(R)). Denote by L2

res(Γ\G(R)) the
orthogonal complement of L2

cus(Γ\G(R)) in L2
dis(Γ\G(R)). This is the residual subspace.

Let (σ, Vσ) be an irreducible unitary representation of K∞. Set

(1.3) L2(Γ\G(R), σ) := (L2(Γ\G(R))⊗ Vσ)K∞ .

Define the subspaces L2
dis(Γ\G(R), σ), L2

cus(Γ\G(R), σ) and L2
res(Γ\G(R), σ) in a similar

way. Then L2
cus(Γ\G(R), σ) is the space of cusp forms with fixed K∞-type σ. Let X̃ :=

G(R)/K∞ be the Riemannian symmetric space associated to G(R) and X = Γ\X̃ the
corresponding locally symmetric space. Since we assume that Γ is torsion free, X is a
manifold. Let Eσ → Γ\X be the locally homogeneous vector bundle associated to σ
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and let L2(X,Eσ) be the space of square integrable sections of Eσ. There is a canonical
isomorphism

(1.4) L2(Γ\G(R), σ) ∼= L2(X,Eσ).

Let ΩG(R) ∈ Z(gC) be the Casimir element of G(R). Then −ΩG(R) ⊗ Id induces a self-
adjoint operator ∆σ in the Hilbert space L2(Γ\G(R), σ) which is bounded from below.
With respect to the isomorphism (1.4) we have

(1.5) ∆σ = (∇σ)∗∇σ − λσ Id,

where∇σ is the canonical invariant connection in Eσ and λσ denotes the Casimir eigenvalue
of σ. In particular, if σ0 is the trivial representation, then L2(Γ\G(R), σ0) ∼= L2(X) and
∆σ0 equals the Laplacian ∆ on X.

The restriction of ∆σ to the subspace L2
dis(Γ\G(R), σ) has pure point spectrum consisting

of eigenvalues λ0(σ) < λ1(σ) < · · · of finite multiplicities. Let E(λi(σ)) be the eigenspace
corresponding to λi(σ). Then we define the eigenvalue counting function NΓ,dis(λ, σ), λ ≥ 0,
by

(1.6) NΓ,dis(λ, σ) =
∑

λi(σ)≤λ

dim E(λi(σ)).

The counting functions NΓ,cus(λ, σ) and NΓ,res(λ, σ) of the cuspidal and residual spectrum
are defined by considering the restriction of ∆σ to the cuspidal and residual subspace,
respectively. The main goal is to determine the asymptotic behavior of the counting
functions as λ → ∞. If X is compact, the Weyl law holds. Recall that for a compact
Riemannian manifold X of dimension n, the Weyl law states that the number NX(λ) of
eigenvalues λi ≤ λ, counted with multiplicity, of the Laplace operator ∆ of X satisfies

(1.7) NX(λ) =
vol(X)

(4π)nΓ(n
2

+ 1)
λn/2 + o(λ(n/2)

as λ → ∞. A standard method to prove (1.7) is the heat equation method. Using the
wave equation, one gets a more precise version with an estimation of the remainder term:

(1.8) NX(λ) =
vol(X)

(4π)nΓ(n
2

+ 1)
λn/2 +O(λ(n−1)/2)

as λ→∞. This is due to Avakumovic [Av] and Hörmander. Without further assumptions
on the Riemannian manifold, the remainder term is optimal [Av]. More generally, one
can consider the Bochner-Laplace operator ∆E for a Hermitian vector bundle E → X with
Hermitian connection. There is a similar formula (1.7) for the eigenvalue counting function
NX(λ,E) of ∆E. The only difference is the rank of E which appears on the right hand
side in the leading coefficient.

For non-uniform lattices Γ the self-adjoint operator ∆σ has a large continuous spectrum
so that alomost all eigenvalues of ∆σ will be embedded in the continuous spectrum which
makes it very difficult to study them. A number of results are known for the spherical
cuspidal spectrum. The first results concerning the growth of the cuspidal spectrum are
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due to Selberg [Se1]. He proved that for every congruence subgroup Γ ⊂ SL(2,Z), the
counting function of the cuspidal spectrum satisfies Weyl’s law, i.e., one has

(1.9) NΓ(λ) =
vol(Γ\H2)

4π
λ2 − 2m

π
λ log λ+O(λ),

as λ→∞. This shows that for congruence subgroups eigenvalues exist in abundance. On
the other hand, based on their work on the dissolution of cusp forms under deformation
of lattices, Phillips and Sarnak [Sa2] conjectured that except for the Teichmüller space
of the once punctured torus, the point spectrum of the Laplacian on Γ\H2 for a generic
non-uniform lattice Γ in SL(2,R) is finite and is contained in [0, 1/4). In the more general
context of manifolds with cusps Colin de Verdère [CV] has shown that under a generic
compactly supported conformal deformation of the metric of a non-compact hyperbolic
surface of finite area all eigenvalues λ ≥ 1/4 are dissolved.

If rank(G) > 1, the situation is very different. By the results of Margulis, we have rigidity
of irreducible lattices and irreducible lattices are arithmetic. One expects that arithmetic
groups have a large discrete spectrum. The following conjecture is due to Sarnak [Sa1].

Conjecture 1.1. Let Γ ⊂ G(Q) be a congruence subgroup. Then for every ν ∈ Π(K∞),
NΓ,cus(λ; ν) satisfies Weyl’s law and NΓ,res(λ; ν) is of lower order growth.

There are some general results concerning the conjecture. Let G be a connected real
semisimple Lie group, K a maximal compact subgroup of G, and Γ ⊂ G a torsion free
lattice. Let n = dimG/K. Donnelly [Do, Theorem 9.1] has established the following upper
bound for the cuspidal spectrum

(1.10) lim sup
λ→∞

NΓ,cus(λ; ν)

λn/2
≤ dim(ν) vol(Γ\G/K)

(4π)n/2Γ(n
2

+ 1)
,

which holds for every ν ∈ Π(K). Concerning the residual spectrum, it was proved in [Mu1,
Theorem 0.1] that for a general lattice one has

(1.11) NΓ,res(λ; ν)� 1 + λ2n.

However, this is not the optimal bound that one expects. In general, one would expect that
the residual spectrum is of order O(λn/2) and for arithmetic groups of order O(λ(n−1)/2) as
λ→∞.

Conjecture (1.1) has been verified in a number of cases. Most of the results are obtained
for the spherical spectrum. The first result in higher rank is due to S.D. Miller [Mil] who
established the Weyl law for spherical cusp forms for Γ = SL(3,Z). The author [Mu3]
proved it for a principal congruence subgroup Γ ⊂ SL(n,Z). The method of proof follows
Selberg’s approach and uses the trace formula. Then Lindenstrauss and Venkatesh [LV]
proved the Weyl law for spherical cusps forms in great generality, namely for congruence
subgroups Γ ⊂ G(R), where G is a split adjoint semisimple group over Q. The method
is different. It uses Hecke operators to eliminate the contribution of Eisenstein series. For
congruence subgroups of SL(n,Z), E. Lapid and W. Müller [LM] established the Weyl law
for the cuspidal spectrum with an estimation of the remainder term. The order of the
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remainder term is O(λ(d−1)/2(log λ)max(n,3)) where d = dim SL(n,R)/ SO(n). The method
is also based on the Arthur trace formula as in [Mu3]. However, the argument is simplified
and strengthened, which corresponds to the use of the wave equation in the derivation
of the Weyl law for a compact Riemannian manifold. Recently T. Finis and E. Lapid
[FL2] estimated the remainder term for the cuspidal spectrum of a locally symmetric
space X = Γ\G(R)/K∞, where G is a simply connected, simple Chevalley group and Γ a
congruence subgroup of G(Z). The method also uses Hecke operators as in [LV], but in a
slightly different way. The estimation they obtain is O(λd−δ), where d = dimX and δ > 0
some constant which is not further specified. In [FM], T. Finis and J. Matz included Hecke
operators. They studied the asymptotic behavior of the traces of Hecke operators for the
spherical discrete spectrum.

For the non-spherical case, the Weyl law was proved in [Mu3] for a principal congruence
subgroup of SL(n,Z). Recently, A. Maiti [Ma] has generalized the approach of Linden-
strauss and Venkatesh [LV] to establish the Weyl law for cusp forms and arbitrary K∞-
types. As in [LV], the method works for a semi-simple, split, adjoint linear algebraic group
over Q. It provides no results for the residual spectrum.

Concerning the residual spectrum, there is the general upper bound (1.11), which, how-
ever, is not the expected optimal one. For rank(G) = 1, the residual spectrum is known
to be finite. For GL(n) the residual spectrum has been determined by Mœglin and Wald-
spurger [MW]. This has been used in [Mu3, Proposition 3.6] to prove that in this case the
residual spectrum is of lower order growth.,

The main goal of the present paper is to prove Conjecture (1.1) for a certain class of
reductive groups including classical groups over a number field. We use the Arthur trace
formula to reduce the proof of the conjecture to a problem about automorphic L-functions
occurring in the constant terms of Eisenstein series. This problem can be dealt with if
the reductive group G satisfies property (L), which was introduced by Finis and Lapid in
[FL1, Definition 3.4]. Let G be a reductive group over Q. As usual, let G(R)1 denote the
intersection of the kernels of the homorphisms |χ| : G(R)→ R>0, where χ ranges over the
Q-rational characters of G. Then our main result is the following theorem. vvv

Theorem 1.2. Let G0 be a connected reductive algebraic group over a number field F
which satisfies property (L). Let G = ResF/Q(G0/F ). Let K∞ ⊂ G(R)1 be a maximal
compact subgroup and let n = dimG(R)1/K∞. Let Γ ⊂ G(Q) be a torsion free congruence
subgroup. Then for every ν ∈ Π(K∞) we have

(1.12) NΓ,cus(λ; ν) ∼ dim(ν)vol(Γ\G(R)1/K∞)

(4π)n/2Γ(n
2

+ 1)
λn/2, λ→∞.

and

(1.13) NΓ,res(λ; ν)� 1 + λ(n−1)/2, λ > 0.

Thus in order to establish the Weyl law and the estimation of the residual spectrum for
every K∞-type, we are reduced to the verification that G0 satisfies property (L). For GL(n)



6 WERNER MÜLLER

the relevant L-functions are the Rankin-Selberg L-functions, which are known to satisfy
the pertinent properties. Using Arthur’s work on functoriality from classical groups to
GL(n), T. Finis and E. Lapid [FL1, Theorem 3.11] proved that quasi-split classical groups
over a number field F satisfy property (L). Moreover, they also proved that inner forms of
GL(n) and the exceptional group G2 over a number field F satisfy property (L). In fact,
one expects that property (L) holds for all reductive groups. Currently, we only know
[FL1, Theorem 3.11]. Together with Theorem 1.2 this leads to the following corollary.

Corollary 1.3. Let F be a number field and let G0 be one of the following groups over F :

(1) GL(n) and its inner forms.
(2) Quasi-split classical groups.
(3) The exceptional group G2.

Let G = ResF/Q(G0/F ). Let Γ ⊂ G(Q) be a congruence subgroup and ν ∈ Π(K∞). Then
(1.12) and (1.13) hold.

Our approach to prove Theorem 1.2 is a generalization of the heat equation method to
the non-compact setting. The basic tool is the Arthur trace formula. This requires to pass
to the adelic setting. We will work with reductive groups over a number field F . However,
for the rest of the introduction we will assume that F = Q. So let G be a connected
reductive group defined over Q. Let A be the ring of adeles of Q. Let G(A)1 := ∩χ ker |χ|,
where χ runs over the rational characters of G. Denote by TG the split component of the
center of G and let AG be the component of the identity of TG(R). Then

G(A) = AG ×G(A)1.

We replace Γ\G(R)1 by the adelic quotient AGG(Q)\G(A)/Kf = G(Q)\G(A)1/Kf , where
Kf ⊂ G(Af ) is an open compact subgroup. Let Π(G(A)) (resp. Π(G(A)1)) be the set
of equivalence classes of irreducible unitary representations of G(A) (resp. G(A)1). We
identify a representation of G(A)1 with a representation of G(A), which is trivial on AG.
Let L2

dis(AGG(Q)\G(A)) be the closure of the span of all irreducible subrepresentations of
the regular representation R of G(A) in L2(AGG(Q)\G(A)). Denote by Πdis(G(A)) the
subspace of all π ∈ Π(G(A)) which are equivalent to a subrepresentation of the regular
representation of G(A) in L2(AGG(Q)\G(A)). Note that this is a countable set. Denote
by Rdis the restriction of R to L2

dis(AGG(Q)\G(A)). Then

(1.14) Rdis
∼=
⊕̂

π∈Πdis(G(A))
m(π)π,

where

(1.15) m(π) = dim Hom(π, L2(AGG(Q)\G(A))

is the multiplicity with which π occurs in L2(AGG(Q)\G(A)). Any π ∈ Π(G(A)) can be
written as π = π∞ ⊗ πf , where π∞ and πf are irreducible unitary representations of G(R)
and G(Af ), respectively. Let Hπ∞ and Hπf denote the Hilbert space of the representation
π∞ and πf , respectively. Let Kf ⊂ G(Af ) be an open compact subgroup. Denote by
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HKf
πf the subspace of Kf -invariant vectors in Hπf . Let G(R)1 = G(A)1 ∩ G(R). Given

π ∈ Π(G(A)), denote by λπ∞ the Casimir eigenvalue of the restriction of π∞ to G(R)1. Let
ν ∈ Π(K∞). Then we define the adelic counting function of the discrete spectrum by

(1.16) N
Kf ,ν
dis (λ) :=

∑
π∈Πdis(G(A))
−λπ∞≤λ

m(π) dim(HKf
πf ) dim(Hπ∞ ⊗ Vν)K∞ .

In the same way we define the counting functions N
Kf ,ν
cus (λ) and N

Kf ,ν
res (λ) of the cuspidal

and residual spectrum, respectively. The adelic version of Theorem 1.2 is then

Theorem 1.4. Let G0 be a connected reductive algebraic group over a number field F .
Assume that G0 satisfies property (L). Let G = ResF/Q(G0) be the group that is obtained
from G0 by restriction of scalars. Let K∞ be a maximal compact subgroup of G(R)1. Let
d := dim(G(R)1/K∞). Let Kf ⊂ G(Af ) be an open compact subgroup and let ν ∈ Π(K∞).
Then we have

(1.17) NKf ,ν
cus (λ) =

dim(ν) vol(AGG(Q)\G(A)/Kf )

(4π)d/2Γ(d
2

+ 1)
λd/2 + o(λd/2), λ→∞,

and

(1.18) NKf ,ν
res (λ)� (1 + λ(n−1)/2), λ > 0.

To deduce Theorem 1.2 from the adelic version, we recall that there exist finitely many
congruence subgroups Γi ⊂ G(Q), i = 1, ...,m, such that

(1.19) AGG(Q)\G(A)/Kf =
m⊔
i=1

Γi\G(R)1.

(see sect. 3). Denote by NΓi,cus(λ, ν) the counting function for the cuspidal spectrum
L2(Γi\G(R)1)⊗ Vν)K∞ . Then it follows that

(1.20) NKf ,ν
cus (λ) =

m∑
i=1

NΓi,cus(λ, ν).

This is used to derive Theorem 1.2 from Theorem 1.4.

To prove Theorem 1.4 we start with the estimation of the residual counting function,
which is needed to establish the Weyl law. For this purpose we use Langlands’ description
of the residual spectrum in terms of iterated residues of Eisenstein series [La1, Ch. 7],
[MW, V.3.13]. Using the Maass-Selberg relations, the problem is finally reduced to the
estimation of the number of real poles of the normalizing factors of intertwining operators,
which appear in the constant terms of Eisenstein series. To obtain the appropriate bounds,
we need that G satisfies property (L) which was introduced by Finis and Lapid [FL1,
Definition 3.4]. In this way we get (1.18).

To prove the Weyl law, we use the Arthur trace formula. We will work with groups
over a number field F . However, in order to explain the method we will simply assume
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that F = Q. We proceed as in [Mu3]. We choose test functions φνt ∈ C∞c (G(A)1), t > 0,
which at the infinite place are obtained from the heat kernel Hν

t of the Bochner-Laplace

operator ∆̃ν on the symmetric space X̃ = G(R)1/K∞ and which at the finite places is
given by the normalized characteristic function of Kf (see (8.11) for the precise definition).
Then we insert φνt into the spectral side Jspec of the trace formula and study the asymptotic
behavior of Jspec(φ

ν
t ) as t→ 0. The spectral side is a sum of distributions Jspec,M associated

to conjugacy classes of Levi subgroups M of G. For M = G we have

(1.21) Jspec,G(φνt ) =
∑

π∈Πdis(G(A))

m(π)etλπ∞ dim(HKf
πf ) dim(Hπ∞ ⊗ Vν)K∞ ,

which is the contribution of the discrete spectrum to the spectral side. ForM 6= G, the main
ingredients of the distributions Jspec,M are logarithmic derivatives of intertwining operators.
The intertwining operators can be normalized by certain meromorphic functions. Then the
logarithmic derivatives of the intertwining operators are expressed in terms of logarithmic
derivatives of the normalizing factors and logarithmic derivatives of the local normalized
intertwining operators. In fact, we only need to control integrals of logarithmic derivatives
which simplifies the problem. To deal with the integrals of logarithmic derivatives of the
normalizing factors, we use property (TWN+) [FL1, Definition 3.3]. By [FL1, Proposition
3.8], property (TWN+) is a consequence of property (L) [FL1, Definition 3.4], which we
assume to be satisfied by G. To deal with the local intertwining operators, we follow
essentially the approach used in [FLM2]. The final result is Theorem 8.5, which states
that if G satisfies property (L), then

(1.22) Jspec(φ
ν
t ) = Jspec,G(φνt ) +O(t−(d−1)/2)

as t→ 0.

Next we come to the geometric side Jgeom(φνt ). Its asymptotic behavior as t → 0 has
been determined in [MM2, Theorem 1.1]. We will briefly recall the main steps of the proof
and determine the leading coefficient. By the trace formula we have Jspec(φ

ν
t ) = Jgeom(φνt ),

which together with (1.21) and (1.22) leads to∑
π∈Πdis(G(A))

m(π) dim(HKf
πf ) dim (Hπ∞ ⊗ Vν)

K∞ etλπ∞

=
dim(ν) vol(X(Kf ))

(4π)d/2
t−d/2 +O(t−(d−1)/2)

(1.23)

as t→ 0. Applying Karamata’s theorem, we obtain the adelic Weyl law (1.17).

2. Preliminaries

We will mostly use the notation of [FLM1]. Let G be a reductive algebraic group defined
over a number field F . We fix a minimal parabolic subgroup P0 of G defined over F and
a Levi decomposition P0 = M0U0, both defined over F . Let T0 be the F -split component
of the center of M0. Let F be the set of parabolic subgroups of G which contain M0 and
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are defined over F . Let L be the set of subgroups of G which contain M0 and are Levi
components of groups in F . For any P ∈ F we write

P = MPNP ,

where NP is the unipotent radical of P and MP belongs to L.

Let M ∈ L. Denote by TM the F -split component of the center of M . Put TP = TMP
.

With our previous notation, we have T0 = TM0 . Let L ∈ L and assume that L contains
M . Then L is a reductive group defined over F and M is a Levi subgroup of L. We shall
denote the set of Levi subgroups of L which contain M by LL(M). We also write FL(M)
for the set of parabolic subgroups of L, defined over F , which contain M , and PL(M) for
the set of groups in FL(M) for which M is a Levi component. Each of these three sets is
finite. If L = G, we shall usually denote these sets by L(M), F(M) and P(M).

Let W0 = NG(F )(T0)/M0 be the Weyl group of (G, T0), where NG(F )(H) denotes the
normalizer of H in G(F ). For any s ∈ W0 we choose a representative ws ∈ G(F ). Note
that W0 acts on L by sM = wsMw−1

s . For M ∈ L let W (M) = NG(F )(M)/M , which can
be identified with a subgroup of W0.

Let X(M)F be the group of characters of M which are defined over F . Put

(2.1) aM := Hom(X(M)F ,R).

This is a real vector space whose dimension equals that of TM . Its dual space is

a∗M = X(M)F ⊗ R.
We shall write,

(2.2) aP = aMP
and a0 = aM0 .

For any L ∈ L(M) we identify a∗L with a subspace of a∗M . We denote by aLM the annihilator
of a∗L in aM . Then r = dim aG0 is the semisimple rank of G. We set

(2.3) L1(M) = {L ∈ L(M) : dim aLM = 1}
and

(2.4) F1(M) =
⋃

L∈L1(M)

P(L).

Let ΣP ⊂ a∗P be the set of reduced roots of TP on the Lie algebra nP of NP . Let ∆P

be the subset of simple roots of P , which is a basis for (aGP )∗. Denote by ΣM the set of
reduced roots of TM on the Lie algebra of G. For any α ∈ ΣM we denote by α∨ ∈ aM the
corresponding co–root. Let P1 and P2 be parabolic subgroups with P1 ⊂ P2. Then a∗P2

is
embedded into a∗P1

, while aP2 is a natural quotient vector space of aP1 . The group MP2 ∩P1

is a parabolic subgroup of MP2 . Let ∆P2
P1

denote the set of simple roots of (MP2 ∩ P1, TP1).

It is a subset of ∆P1 . For a parabolic subgroup P with P0 ⊂ P we write ∆P
0 := ∆P

P0
.

Let A be the ring of adeles of F , Af the ring of finite adeles and F∞ = F ⊗Q R. We fix a
maximal compact subgroup K =

∏
vKv = K∞ ·Kf of G(A) = G(F∞) ·G(Af ). We assume
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that the maximal compact subgroup K ⊂ G(A) is admissible with respect to M0 [Ar6, §
1]. Let HM : M(A)→ aM be the homomorphism given by

(2.5) e〈χ,HM (m)〉 = |χ(m)|A =
∏
v

|χ(mv)|v

for any χ ∈ X(M)F and denote by M(A)1 ⊂M(A) the kernel of HM .

Let G1 = ResF/Q(G) be the group over Q obtained from G by restriction of scalars [We].
Similar for any M ∈ L let M1 := ResF/Q(M). Let TM1 be the Q-split component of the
center of M1. For M ∈ L let AM denote the connected component of the identity of TM1(R),
which is viewed as a subgroup of TM(AF ) via the diagonal embedding of R into F∞. Note
that it follows from the properties of the restriction of scalars that M1(AQ)1 ∼= M(AF )1.
Thus we have

M(AF ) = AM ×M(AF )1.

Let L2
disc(AMM(F )\M(A)) be the discrete part of L2(AMM(F )\M(A)), i.e., the closure

of the sum of all irreducible subrepresentations of the regular representation of M(A).
We denote by Πdisc(M(A)) the countable set of equivalence classes of irreducible uni-
tary representations of M(A) which occur in the decomposition of the discrete subspace
L2

disc(AMM(F )\M(A)) into irreducible representations. Let L2
cus(AMM(F )\M(A)) be the

subspace of cusp forms. Denote by Πcus(M(A)) the set of equivalence classes of irreducible
unitary representations of M(A) which occur in the decomposition of the space of cusp
forms L2

cus(AMM(F )\M(A)) into irreducible representations.

Let g and k denote the Lie algebras of G(F∞) and K∞, respectively. Let θ be the Cartan
involution of G(F∞) with respect to K∞. It induces a Cartan decomposition g = p⊕ k. We
fix an invariant bi-linear form B on g which is positive definite on p and negative definite
on k. This choice defines a Casimir operator Ω on G(F∞), and we denote the Casimir
eigenvalue of any π ∈ Π(G(F∞)) by λπ. Similarly, we obtain a Casimir operator ΩK∞ on
K∞ and write λτ for the Casimir eigenvalue of a representation τ ∈ Π(K∞) (cf. [BG, §
2.3]). The form B induces a Euclidean scalar product (X, Y ) = −B(X, θ(Y )) on g and all
its subspaces. For τ ∈ Π(K∞) we define ‖τ‖ as in [CD, § 2.2]. Note that the restriction of
the scalar product (·, ·) on g to a0 gives a0 the structure of a Euclidean space. In particular,
this fixes Haar measures on the spaces aLM and their duals (aLM)∗. We follow Arthur in the
corresponding normalization of Haar measures on the groups M(A) ([Ar1, § 1]).

Let H be a topological group. We will denote by Π(H) the set of equivalence classes of
irreducible unitary representations of H.

Next we introduce the space C(G(A)1) of Schwartz functions. For any compact open
subgroup Kf of G(Af ) the space G(A)1/Kf is the countable disjoint union of copies of
G(F∞)1 = G(F∞) ∩ G(A)1 and therefore, it is a differentiable manifold. Any element
X ∈ U(g1

∞) of the universal enveloping algebra of the Lie algebra g1
∞ of G(F∞)1 defines

a left invariant differential operator f 7→ f ∗ X on G(A)1/Kf . Let C(G(A)1;Kf ) be the
space of smooth right Kf -invariant functions on G(A)1 which belong, together with all
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their derivatives, to L1(G(A)1). The space C(G(A)1;Kf ) becomes a Fréchet space under
the seminorms

‖f ∗X‖L1(G(A)1), X ∈ U(g1
∞).

Denote by C(G(A)1) the union of the spaces C(G(A)1;Kf ) as Kf varies over the compact
open subgroups of G(Af ) and endow C(G(A)1) with the inductive limit topology.

3. Arithmetic manifolds

In this section we introduce the adelic description of the locally symmetric spaces we will
work with. We also explain the relation to the usual set up.

Let G be a reductive algebraic group over a number field F . Fix a faithful F -rational
representation ρ : G→ GL(V ) and an OF -lattice Λ in the representation space V such that

the stabilizer of Λ̂ := ÔF ⊗ Λ ⊂ Af ⊗ V in G(Af ) is the group Kf . Since the maximal
compact subgroups of GL(Af ⊗ V ) are precisely the stabilizers of lattices, it is easy to see
that such a lattice exists. For any non-zero ideal n of OF , let

K(n) = KG(n) = {g ∈ G(Af ) : ρ(g)v ≡ v ( mod nΛ̂), v ∈ Λ̂}

be the principal congruence subgroup of level n. Note that K(n) is a factorizable normal
subgroup of Kf . Moreover, the groups K(n) form a neighborhood base of the identity
element in G(Af ), i.e., every compact open subgroup Kf ⊂ G(Af ) contains a K(n) for
some ideal n. We denote by N(n) := [oF : n] the ideal norm of n.

A subgroup Γ ⊂ G(F ) is a congruence subgroup if it contains a a finite-index subgroup of
the form Γ(n) := G(F ) ∩K(n) for some ideal n. This definition of a congruence subgroup
is independent of the choice of a faithful representation, i.e., it is intrinsic to the F -group
G. Let Kf ⊂ G(Af ) be a compact open subgroup. Then there exists an ideal n of OF such
that K(n) ⊂ Kf . Let ΓKf := G(F ) ∩ Kf . Then Γ(n) ⊂ ΓKf is a finite index subgroup.
Thus ΓKf is a congruence subgroup of G(F ).

By [Bo1, § 5.6] the double coset spaceG(F )\G(A)/G(F∞)Kf is finite. Let x1 = 1, x2, . . . , xl
be a set of representatives in G(Af ) of the double cosets. Then the groups

(3.1) Γi :=
(
G(F∞)× xiKfx

−1
i

)
∩G(F ), 1 ≤ i ≤ l,

are arithmetic subgroups of G(F∞) and the action of G(F∞) on the space of double cosets
AGG(F )\G(A)/Kf induces the following decomposition into G(F∞)-orbits:

(3.2) AGG(F )\G(A)/Kf
∼=

l⊔
i=1

(
Γi\G(F∞)1

)
,

where G(F∞)1 = G(F∞)/AG. Given a function f on G(A), let fi be the function on G(F∞)
which is defined by g 7→ f(xi · g), g ∈ G(F∞). Then the map f 7→ (fi)

l
i=1 yields an
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isomorphism of G(F∞)-modules

(3.3) L2(AGG(F )\G(A))Kf ∼=
l⊕

i=1

L2(Γi\G(F∞)1)

[BJ, 4.3]. We note that, in general, l > 1. However, if G is semisimple, simply con-
nected, and without any F -simple factors H for which H(F∞) is compact, then by strong
approximation we have

G(F )\G(A)/Kf
∼= Γ\G(F∞),

where Γ = (G(F∞)×Kf )∩G(F ). In particular this is the case for G = SL(n). Since (3.3)
is an isomorphism of G(F∞)-modules, it holds also for the discrete spectrum, i.e., we have
an isomorphism of G(F∞)-modules

(3.4) L2
dis(AGG(F )\G(A))Kf ∼=

l⊕
i=1

L2
dis(Γi\G(F∞)1).

Let P ∈ L with Levi decomposition P = M nN . Let f ∈ L2(AGG(F )\G(A)) correspond
to (fi)

l
i=1 ∈ ⊕li=1L

2(Γi\G(F∞)1) as above. As explained in [BJ, Sect. 4.4], f is a cusp
function if and only if each fi, i = 1, ..., l, is a cusp function. Hence (3.3) induces an
isomorphism

(3.5) L2
cus(AGG(F )\G(A))Kf ∼=

l⊕
i=1

L2
cus(Γi\G(F∞)1)

of G(F∞)-modules. Since L2
res(·) is the orthogonal complement of L2

cus(·) in L2(·), it follows
from (3.4) and (3.5), that we also have an isomorphism of G(F∞)-modules

(3.6) L2
res(AGG(F )\G(A))Kf ∼=

l⊕
i=1

L2
res(Γi\G(F∞)1).

Given τ ∈ Π(G(F∞)), let m(τ) be the multiplicity with which the representation τ occurs
in L2

dis(AGG(F )\G(A))Kf . Then

(3.7) m(τ) =
∑

π∈Πdis(G(A))
τ=π∞

m(π) dim(HKf
π′f

),

where π = π∞ ⊗ πf . Similarly, let mΓi(τ) be the multiplicity with which τ occurs in
L2

dis(Γi\G(F∞)1). Since (3.4) is an isomorphism of G(F∞)1-modules, it follows that

(3.8)
∑

π∈Πdis(G(A))
π∞=τ

m(π) dim(HKf
π′f

) =
l∑

j=1

mΓj(τ).

Let K∞ ⊂ G(F∞)1 be a maximal compact subgroup. Let

(3.9) X̃ := G(F∞)1/K∞
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be the associated global Riemannian symmetric space. Given an open compact subgroup
Kf ⊂ G(Af ), we define the arithmetic manifold X(Kf ) by

(3.10) X(Kf ) := G(F )\(X̃ ×G(Af )/Kf ).

By (3.2) we have

(3.11) X(Kf ) =
l⊔

i=1

(
Γi\X̃

)
,

where each component Γi\X̃ is a locally symmetric space. We will assume that Kf is neat.
Then X(Kf ) is a locally symmetric manifold of finite volume.

Let ν ∈ Π(K∞). Let Ẽν → X̃ be the homogeneous vector bundle associated to ν. Denote

by C∞(X̃, Ẽν) the space of smooth sections of Ẽν . Let

C∞(G(F∞)1, ν) := {f : G(F∞)1 → Vν : f ∈ C∞, f(gk) =ν(k−1)f(g),

∀g ∈ G(F∞)1, ∀k ∈ K∞}.

(3.12)

Let L2(G(F∞)1, ν) be the corresponding L2-space. There is a canonical isomorphism

(3.13) Ã : C∞(X̃, Ẽν) ∼= C∞(G(F∞)1, ν),

(see [Mia, p. 4]). Ã extends to an isometry of the corresponding L2-spaces.

Over each component of X(Kf ), Ẽσ induces a locally homogeneous Hermitian vector

bundle Ei,σ → Γi\X̃. Let

Eσ :=
l⊔

i=1

Ei,σ.

Then Eσ is a vector bundle over X(Kf ) which is locally homogeneous. Let L2(X(Kf ), Eσ)
be the space of square integrable sections of Eσ.

4. Eisenstein series and intertwining operators

In this section we recall some basic facts about Eisenstein series and intertwining opera-
tors, which are the main ingredients of the spectral side of the Arthur trace formula.

Let M ∈ L and P ∈ P(M) with P = M n NP . Recall that we denote by ΣP ⊂ a∗P the
set of reduced roots of TM on the Lie algebra nP of NP . Let ∆P be the subset of simple
roots of P , which is a basis for (aGP )∗. Write a∗P,+ for the closure of the Weyl chamber of
P , i.e.

a∗P,+ = {λ ∈ a∗M : 〈λ, α∨〉 ≥ 0 for all α ∈ ΣP} = {λ ∈ a∗M : 〈λ, α∨〉 ≥ 0 for all α ∈ ∆P}.
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Denote by δP the modulus function of P (A). Let Ā2(P ) be the Hilbert space completion
of

{φ ∈ C∞(M(F )UP (A)\G(A)) : δ
− 1

2
P φ(·x) ∈ L2

disc(AMM(F )\M(A)), ∀x ∈ G(A)}

with respect to the inner product

(φ1, φ2) =

∫
AMM(F )NP (A)\G(A)

φ1(g)φ2(g) dg.

Let α ∈ ΣM . We say that two parabolic subgroups P,Q ∈ P(M) are adjacent along
α, and write P |αQ, if ΣP ∩ −ΣQ = {α}. Alternatively, P and Q are adjacent if the
group 〈P,Q〉 generated by P and Q belongs to F1(M) (see (2.4) for its definition). Any
R ∈ F1(M) is of the form 〈P,Q〉, where P,Q are the elements of P(M) contained in R.
We have P |αQ with α∨ ∈ Σ∨P ∩ aRM . Interchanging P and Q changes α to −α.

For any P ∈ P(M) let HP : G(A)→ aP be the extension of HM to a left NP (A)-and right
K-invariant map. Denote by A2(P ) the dense subspace of Ā2(P ) consisting of its K- and
Z-finite vectors, where Z is the center of the universal enveloping algebra of g ⊗ C. That

is, A2(P ) is the space of automorphic forms φ on NP (A)M(F )\G(A) such that δ
− 1

2
P φ(·k)

is a square-integrable automorphic form on AMM(F )\M(A) for all k ∈ K. Let ρ(P, λ),
λ ∈ a∗M,C, be the induced representation of G(A) on Ā2(P ) given by

(ρ(P, λ, y)φ)(x) = φ(xy)e〈λ,HP (xy)−HP (x)〉.

It is isomorphic to the induced representation

Ind
G(A)
P (A)

(
L2

disc(AMM(F )\M(A))⊗ e〈λ,HM (·)〉) .
For φ ∈ A2(P ) and λ ∈ a∗P,C, the associated Eisenstein series is defined by

(4.1) E(g, φ, λ) :=
∑

γ∈P (F )\G(F )

φ(γg)e(λ+ρp)(HP (γg)).

The series converges absolutely and locally uniformly in g and λ for Re(λ) sufficiently
regular in the positive Weyl chamber of a∗P ([MW, II.1.5]. By Langlands [La1] the Eisenstein
series can be continued analytically to a meromorphic function of λ ∈ a∗P,C. Its singularities
lie along hypersurfaces defined by root equations.

Let M,M1 ∈ L. Let W (aM , aM1) be the set of isomorphisms from aM onto aM1 obtained
by restricting elements in W0, the Weyl group of (G, T0), to aM . Each s ∈ W (aM , aM1) has
a representative ws in G(F ). Given s ∈ W (aM , aM1), P ∈ P(M) and P1 ∈ P(M1), let

(4.2) MP1|P (s, λ) : A2(P )→ A2(P1), λ ∈ a∗M,C,
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be the standard intertwining operator [Ar9, § 1], which is the meromorphic continuation
in λ of the integral

[MP1|P (s, λ)φ](x)

=

∫
NP1

(A)∩wsNP (A)w−1
s \NP1

(A)

φ(w−1
s nx)e(λ+ρP )(HP (w−1

s nx))e−(sλ+ρP1
)(HP1

(x)) dn,
(4.3)

for φ ∈ A2(P ), x ∈ G(A). Let M = M1. Then for Q,P ∈ P(M) and 1 ∈ W (aM) the
identity element, we put

(4.4) MQ|P (λ) := MQ|P (1, λ).

Recall that L2
dis(AMM(F )\M(A)) decomposes as the completed direct sum of its π-

isotopic components for π ∈ Πdis(M(A)). We have a corresponding decomposition of Ā2(P )
as a direct sum of Hilbert spaces ⊕̂π∈Πdis(M(A))Ā2

π(P ) and the corresponding algebraic sum
decomposition

(4.5) A2(P ) =
⊕

π∈Πdis(M(A))

A2
π(P ).

We further decompose A2
π(P ) according to the action of K∞ into isotypic subspaces

(4.6) A2
π(P ) =

⊕
ν∈Π(K∞)

A2
π(P )ν .

Furthermore, for an open compact subgroup Kf ⊂ G(Af ) let A2
π(P )Kf be the subspace of

Kf -invariant functions in A2
π(P ) and for ν ∈ Π(K∞) we let A2

π(P )Kf ,ν be the ν-isotypic
subspace of A2

π(P )Kf .

Given π ∈ Πdis(M(A)), let (Ind
G(A)
P (A)(π),HP (π)) be the induced representation. Let H0

P (π)

be the subspace of HP (π), consisting of all φ ∈ HP (π) which are right K-finite and right
Z(gC)-finite. There is a canonical isomorphism of G(Af )× (gC,K∞)-modules

(4.7) jP : Hom(π, L2(AMM(F )\M(A)))⊗H0
P (π)→ A2

π(P ).

If we fix a unitary structure on π and endow Hom(π, L2(AMM(F )\M(A))) with the inner
product (A,B) = B∗A (which is a scalar operator on the space of π), the isomorphism jP
becomes an isometry. Let

(4.8) MQ|P (π, λ) := MQ|P (λ)|A2
π(P )

be the restriction of MQ|P (λ) to the subspace A2
π(P ). Suppose that P |αQ. The operator

MQ|P (π, z) := MQ|P (π, z$), where $ ∈ a?M is such that 〈$,α∨〉 = 1, admits a normal-
ization by a global factor nα(π, z) which is a meromorphic function in z ∈ C. We may
write

(4.9) MQ|P (π, z) ◦ jP = nα(π, z) · jQ ◦ (Id⊗RQ|P (π, z))

where RQ|P (π, z) = ⊗vRQ|P (πv, z) is the product of the locally defined normalized in-
tertwining operators and π = ⊗vπv [Ar9, § 6], (cf. [Mu2, (2.17)]). In many cases, the
normalizing factors can be expressed in terms automorphic L-functions [Sh1], [Sh2].
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For any P,Q ∈ P(M) there exists a sequence of parabolic subgroups P0, ..., Pk and roots
α1, ..., αk ∈ ΣM such that P = P0, Q = Pk, and Pi−1|αiPi for i = 1, ..., k. By the product
rule for intertwining operators we have

(4.10) MQ|P (π, λ) = MPk|Pk−1
(π, λ) ◦MPk−1|Pk−2

(π, λ) ◦ · · · ◦MP1|P0(π, λ).

Thus the study of the operators MQ|P (π, λ) is reduced to the case where Q,P ∈ P(M) are
adjacent along some root α ∈ ΣM . Let

(4.11) nQ|P (π, λ) :=
∏

α∈ΣP∩ΣQ̄

nα(π, λ(α∨))

The product is a meromorphic function of λ ∈ a∗M,C. Then MQ|P (π, λ) is normalized by
nQ|P (π, λ), i.e.,

(4.12) MQ|P (π, λ) ◦ jP = nQ|P (π, λ) · jQ ◦ (Id⊗RQ|P (π, λ)).

Recall that π = ⊗vπv, where πv ∈ Π(M(Fv)). If HP (πv) is the Hilbert space of the induced

representation Ind
G(Fv)
P (Fv)(πv), then one has

HP (π) ∼=
⊗
v

HP (πv)

and, with respect to this isomorphism, it follows that RQ|P (π, λ) is the product of the
corresponding local normalized intertwining operators

(4.13) RQ|P (π, λ) = ⊗vRQ|P (πv, λ)

[Ar4], [Ar9, § 6], [Mu2, § 2].

5. Normalizing factors

In this section we consider the global normalizing factors of intertwining operators. The
goal is to estimate the number of singular hyperplanes of normalizing factors which intersect
a given compact set. The normalizing factors can be expressed in terms of L-functions. To
begin with we recall some basic facts about L-functions. As above, we assume that G is a
reductive group over a number field F . Recall that AG = TG1(R)0, where TG1 is the Q-split
part of the connected component of the center of G1 = ResF/Q(G), viewed as a subgroup
of TG1(AQ) and hence of G(AF ).

Recall that we denote by Πdis(G(A)) the set of equivalence classes of automorphic repre-
sentations of G(A) which occur in the discrete spectrum of L2(AGG(F )\G(A)). For any
π = ⊗vπv ∈ Πdis(G(A)) let S(π) be the finite set of places of F containing all archimedean
places and such that for each finite place v ∈ S(π) at least one of the following conditions
holds:

(1) v is archimedean.
(2) F/Q is ramified at v.
(3) G is ramified at v, i.e., either G is not quasi-split over Fv or G does not split over

an unramified extension of Fv.
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(4) For every hyperspecial maximal compact subgroup Kv of G(Fv), πv does not have
a nonzero vector which is invariant under Kv.

Let S∞ denote the set of archimedean places of F and let Sf (π) denote the set of non-
archimedean places in S(π). Thus S(π) = S∞∪Sf (π). For any v ∈ Sf (π) let qv denote the
order of the residue field of Fv. Let SQ,f (π) be the set of rational primes which lie below
the primes in Sf (π). Also set SQ(π) := {∞} ∪ SQ,f (π}.

Let WF be the Weil group of F and let LG be the Langlands L-group of G [Bo2]. Let
r : LG→ GL(N,C) be a continuous and WF -semisimple N -dimensional complex represen-
tation of LG. For any π ∈ Πdis(G(A)) and any place v of F with v 6∈ S(π) let tπv ∈L G be
the Hecke-Frobenius parameter of πv. Then the local L-function Lv(s, π, r) is defined by

(5.1) Lv(s, π, r) := det
(
Id−r(tπv)q−sv

)−1
.

Since π is unitary, the |r(tπv)| are bounded by qcv, where c depends only on G and r, [Bo2],
[La2]. Therefore, for S ⊃ S(π) the partial L-function

(5.2) LS(s, π, r) :=
∏
v 6∈S

Lv(s, π, r)

converges absolutely and uniformly on compact subsets of Re(s) > c+ 1. One of the goals
of the Langlands program is to show that each of these L-functions admits a meromorphic
extension to the entire complex plane and satisfies a functional equation. This is far
from being proved. In [FL1, Definition 2.1], Finis and Lapid formulated a precise version
of the expected functional equation. According to this definition, (G, r) has property
(FE), if for any π ∈ Πdis(G(AF ) the partial L-function LS(π)(s, π, r) admits a meromorphic
continuation to C with a functional equation of the form

(5.3) LS(π)(s, π, r) =

 ∏
p∈SQ(π)

γp(s, π, r))

LS(π)(1− s, π, r∨),

where for each p ∈ SQ,f (π), γp(s, π, r) = Rp(p
−s) for some rational function Rp and

(5.4) γ∞(s, π, r) = C∞

m∏
i=1

ΓR(1− s+ α∨i )

ΓR(s+ αi)

for certain parameters α1, ..., αm, α
∨
1 , ..., α

∨
m ∈ C and a constant C∞. By [FL1, Lemma 2.2]

the parameters α∨1 , ..., α
∨
m are determined by α1, ..., αm. Moreover, the integer m is uniquely

determined. The parameters α1, ..., αm are said to be reduced, if αi + αj is not a negative
odd integer for any 1 ≤ i, j ≤ m. By [FL1, Lemma 2.2] one may choose the parameters
α1, ..., αm to be reduced. Assuming that this is satisfied, Finis and Lapid introduce the
reduced L-factor at the Archimedean place by

(5.5) Lred
∞ (s, π, r) :=

m∏
i=1

ΓR(s+ αi).
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Now let p ∈ SQ,f (π). Then by [FL1, (2.7)], γp(s, π, r) can be written in a unique way as

(5.6) γp(s, π, r) = cpp
( 1

2
−s)ep(π,r)Pp(p

−s)/P̄p(p
s−1),

where cp ∈ C∗, ep(π, r) ∈ Z, and Pp is a polynomial with Pp(0) = 1 such that no zeros α
and β of Pp satisfy αβ̄ = p−1. Then Finis and Lapid define the reduced L-factor at p by

(5.7) Lred
p (s, π, r) := Pp(p

−s)−1, p ∈ SQ,f (π),

and introduce the reduced completed L-function by

(5.8) Lred(s, π, r) :=
( ∏
p∈SQ(π)

Lred
p (s, π, r)

)
LS(π)(s, π, r).

There is also a corresponding reduced epsilon factor εred(s, π, r), which is defined by

(5.9) εred(s, π, r) = c∞
∏

p∈SQ,f (π)

cpp
( 1

2
−s)ep(π,r) = n(π, r)

1
2
−s

∏
p∈SQ(π)

cp,

where

(5.10) n(π, r) =
∏

p∈SQ,f (π)

pep(π,r).

Then the functional equation (5.3) becomes

(5.11) Lred(s, π, r) = εred(s, π, r)Lred(1− s, π, r∨).
In [FL1, Definition 2.4] a stronger version of property (FE) is introduced. The pair (G, r)
is said to satisfy property (FE+), if it satisfies (FE) and in addition some uniformity
conditions for γ∞ and Pp are fulfilled. For the precise statement see [FL1, Definition 2.4].

The normalizing factors are described in [FL1, Sect. 3]. To recall the description, we
need to introduce some notation. Let M ∈ L and α ∈ ΣM . Let M̃α be the Levi subgroup
of M of co-rank one, defined in [FL1, p. 254], together with the map psc : M̃ sc

α → M̃α,
which is also defined in [FL1, p. 254]. Furthermore, let Uα be the unipotent subgroup of
G corresponding to α. Thus the eigenvalues of TM acting on the Lie algebra of Uα are
positive integer multiples of α. The adjoint action of LM on Lie(LUα) factors through the
composed homomorphism LM →L M̃α. The contragredient of the adjoint representation
of LM̃α on Lie(LUα) is decomposed as ⊕lj=1rj into irreducible representations rj.

By T. Finis and E. Lapid [FL1, Definition 3.4], G satisfies property (L), if for any standard
Levi subgroup M , any α ∈ ΣM , and any irreducible constituent r = rj as above, the pair

(M̃α, r) satisfies properties (FE+) [FL1, Definition 2.4] and the conductor condition (CC)
[FL1, Definition 2.9].

Assume that G satisfies property (L). Then one can describe the normalizing factors in
terms of L-functions. Let π ∈ Πdis(M(A)) and let nα(π, s) be the normalizing factor as in
(4.9). First note that nα(π, s) satisfies the functional equation

(5.12) nα(π, s)nα(π,−s̄) = 1.
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Next recall that for Re(s)� 0, nα(π, s) factorizes as

(5.13) nα(π, s) =
∏
v

nα,v(πv, s).

By [FL1, Lemma 2.13] there exist σ ∈ Πdis(M̃α(A)) and a character χ of M̃α(A), which is
trivial on M̃α(F )psc(M̃ sc

α ), such that σχ is a subrepresentation of π|M̃α(A). Let

(5.14) m(σ, s) :=
l∏

j=1

εred(1, σ, rj)L
red(js, σ, rj)

Lred(js+ 1, σ, rj)
.

Then at the end of the proof of Proposition 3.8 in [FL1, p. 259] it has been shown that
there exists C > 0 such that

(5.15) nα(π, s) = C ·m(σ, s) ·
l∏

j=1

∏
p∈SQ(σ)

Lred
p (js+ 1, σ, rj)

Lred
p (js, σ, rj)

∏
v∈S(σ)

nα,v(π, s).

We use this formula to estimate the number of poles of nα(π, s). First we consider the two
finite products. For this purpose we need to estimate the cardinality of S(σ) and SQ(σ).
Recall that the level of σ is defined as level(σ) = N(n), where n is the largest ideal of OF
such that σK(n)∩M̃α 6= 0. We obviously have

|S(σ)|, |SQ(σ)| ≤ C(1 + log level(σ))

for some constant C > 0 which is independent of σ. Furthermore, recall that by [FL1, Sec.
2.3], level(π; psc) is defined as level(π; psc) = N(n), where n is the largest ideal in OF such

that πK(n)∩psc(M̃sc
α ) 6= 0.

By [FL1, Lemma 2.13] there exists N1 ∈ N, which depends only on psc and G, such that
for every π ∈ Πdis(M(A)) the corresponding representation σ ∈ Πdis(M̃α(A)) is such that
level(σ) divides N1 level(π; psc). Thus there exists C > 0 such that

(5.16) |SQ(σ)|, |S(σ)| ≤ C log level(π; psc)

for all π and σ which are related as above.

Now consider the last product on the right hand side of (5.15). Let v ∈ Sf (σ). By
[FL1, p. 255, (1)], nα,v(π, s) is a rational function in X = q−sv , whose degree is bounded in
terms of G only and which is regular and non-zero at X = 0. Hence the poles of nα,v(π, s)
form a finite union of arithmetic progressions with imaginary difference and the number of
progressions is bounded by a constant that depends only on G.

If v ∈ S∞(σ), then by [FL1, p. 255, (2)] we have

(5.17) nα,v(π, s) = cv

Nv∏
i=1

ΓR(jis+ αi)

ΓR(jis+ αi + 1)
,

where cv 6= 0, α1, ..., αNv ∈ C and the integers Nv ≥ 1 and ji ≥ 1, i = 1, ..., Nv are bounded
in terms of G only. Recall that Γ(z) has no zeros and the poles are simple and occur at
the negative integers. Let R > 0. It follow that the number of poles of nα,v(π, s) in a fixed



20 WERNER MÜLLER

half-strip | Im(s)| ≤ R, Re(s) ≥ −R is bounded by a constant independent of π. Thus by
(5.16) it follows that for every R > 0 there exists C1 > 0, which is independent of π, such
that the number of poles in the half-strip | Im(s)| ≤ R, Re(s) ≥ −R, counted with their
order, of the last product is bounded by C1 log level(π; psc).

Next we deal with the product over SQ(σ), Let p ∈ SQ,f (σ). By (5.7), there exist a
polynomial Pp(x;σ, rj) such that Lred

p (s, σ, rj) = Pp(p
−s;σ, rj)

−1. By definition, (G, rj)
satisfies property (FE+) [FL1, Definition 2.4]. By (2) of this definition, the degree of
Pp(x;σ, rj) is bounded in terms of (G, rj) only. Thus the poles of Lp(s, σ, rj) form a finite
union of arithmetic progressions with imaginary difference and the number of progressions
is bounded by a constant that depends only on (G, rj). Hence for every R > 0 there exists
C > 0, which depends only on (G, rj), such that the number of poles of Lp(s, σ, rj) in the
strip | Im(s)| ≤ R is bounded by C. For p = ∞ we use (5.5). By [FL1, Definition 2.4,
(3)], there exists β ∈ R which depends only on (G, rj) such that the reduced parameters
αi satisfy Re(αi) ≥ −β, i = 1, ..., l, and γ∞(s, σ, rj) has no zeros in Re(s) > β. So it
follows as above, that the number of poles of Lred

p (js + 1, σ, rj)/L
red
p (js, σ, rj) in the half-

strip | Im(s)| ≤ R, Re(s) ≥ −R, counted with their order, is bounded by a constant
independent of π. Using (5.16) it follows that for each R > 0 there exists C2 > 0 such that
the number of poles of the product over SQ(σ), counted with their order, in the half-strip
| Im(s)| ≤ R, Re(s) ≥ −R, is bounded by C2 log level(π; psc).

So it remains to consider m(σ, s). Let r := rj for some j and let

(5.18) Λ(s, σ, r) := n(σ, r)s/2Lred(s, σ, r),

where n(σ, r) is defined by (5.10) Then, using functional equation (5.11) and the definition
of the epsilon factor by (5.9), it follows that Λ(s, σ, r) satisfies

(5.19) Λ(s, σ, r) = εred(
1

2
, σ, r)Λ(1− s̄, σ, r).

By (5.9) and (5.18) we get

(5.20)
Λ(s, σ, r)

Λ(−s̄, σ, r)
=
εred(1, σ, r)Lred(s, σ, r)

Lred(s+ 1, σ, r)
.

Thus by the definition (5.14) it follows that

(5.21) m(σ, s) =
l∏

j=1

Λ(js, σ, rj)

Λ(−js̄, σ, rj)
.

As explained in the proof of [FL1, Proposition 2.6], Λ(s, σ, r) is the quotient of two holo-
morphic functions of order one. Therefore Λ(s, σ, r) admits a Hadamard factorization

(5.22) Λ(s, σ, r) = ea+bssn(0)
∏
ρ6=0

[
(1− s/ρ)es/ρ

]n(ρ)
,

where a, b ∈ C, the product ranges over the zeros and poles of Λ(s) different from 0, and
n(ρ) is the order of the function Λ(s) at s = ρ. In the poof of [FL1, Proposition 2.6] it
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was shown that the conditions of property (FE+), [FL1, Definition 2.4], together with the
functional equation (5.19) imply that there exists A ≥ 1, depending only on G and r, such
that all zeros and poles of Λ(s, σ, r) lie in the strip 1−A ≤ Re(s) ≤ A. Moreover, by [FL1,
(2.12)] we have for T ≥ 0

(5.23)
∑

ρ : | Im(ρ)−T |<2

|n(ρ)| � log n(σ, r) +
∑

p∈SQ,f (σ)

log p+ log c∞(σ, r) + log(1 + |T |) + 1,

where c∞(π, r) is the archimedean conductor defined by [FL1, (2.6)] and n(σ, r) the finite
conductor (5.10). Since we assume that G satisfies property (L), (M̃α, rj) satisfies property
(CC). Let Λ(π∞; psc) be defined by [FL1, (2.18)]. Then by [FL1, (2.14), (2.15)] and [FL1,
Lemma 2.13] we obtain

(5.24)
∑

ρ : | Im(ρ)−T |<2

|n(ρ)| � log(|T |+ 2) + log level(π; psc) + log Λ(π∞; psc).

We combine (5.24) with the results above concerning the other factors occurring in (5.15).
Note that by the functional equation (5.12), the poles of nα(π, s) are contained in a strip
|Re(s)| ≤ C for some C > 0. We can summarize our results as follows. Denote by Σα(π)
the poles of nα(π, s). Given ρ ∈ Σα(π), denote by n(ρ) its order. Then combined with
the results above concerning the other factors occurring in (5.15), we obtain the following
proposition.

Proposition 5.1. Assume that G satisfies property (L). Let M ∈ L, π ∈ Πdis(M(A)), and
α ∈ ΣM . Let Σα(π) be the set of poles of nα(π, s) and for any ρ ∈ Σα(π) denote by n(ρ)
the order of the pole ρ. Then for every R > 0 there exist C > 0 such that

(5.25)
∑

ρ∈Σα(π),| Im(ρ)|<R

|n(ρ)| ≤ C(1 + log level(π; psc) + log Λ(π∞; psc)).

Let π ∈ Πdis(M(A)). Let WP (π∞) be the set of minimal K∞-types of Ind
G(R)
P (R)(π∞). Then

WP (π∞) is a non empty finite subset of Π(K∞). Let λπ∞ be the Casimir eigenvalue of π∞
and for each τ ∈ Π(K∞), let λτ be the Casimir eigenvalue of τ . Put

(5.26) Λπ∞ := min
τ∈WP (π∞)

√
λ2
π∞ + λ2

τ .

Then by [FLM2, (10)] one has

(5.27) Λ(π∞; psc)�G 1 + Λ2
π∞ .

Let Kf be an open compact subgroup of G(Af ). Put

(5.28) Π(M(A);Kf ) := {π ∈ Π(M(A) : π
Kf∩M(Af )

f 6= 0}.

Furthermore, given ν ∈ Π(K∞), let

(5.29) Π(M(A);Kf , ν) = {π ∈ Π(M(A);Kf ) : [Ind
G(R)
P (R)(π∞)|K∞ : ν] > 0}
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and put

(5.30) Πdis(M(A);Kf , ν) = Πdis(M(A)) ∩ Π(M(A);Kf , ν).

Now recall the definition of level(π; psc) [FL1, Sec. 2.3]. It follows that there exists C > 0
such that all for π ∈ Π(M(A);Kf ) we have level(π; psc) ≤ C. Furthermore, by (5.26) there
exists C1 > 0 such that for all π ∈ Π(M(A);Kf , ν) one has Λ2

π∞ ≤ C1(1 + λ2
π∞), and it

follows from (5.27) that in this case Λ(π∞; psc)�G (1 + λ2
π∞). In this way we get

Corollary 5.2. Assume that G satisfies property (L). Let Kf be an open compact subgroup
of G(Af ) and ν ∈ Π(K∞). Let M ∈ L and α ∈ ΣM . Let the notation be as above. For
every R > 0 there exist C > 0 such that

(5.31)
∑

ρ∈Σα(π),| Im(ρ)|<R

|n(ρ)| ≤ C(1 + log(1 + λ2
π∞))

for all π ∈ Πdis(M(A);Kf , ν).

6. Logarithmic derivatives of local intertwining operators

In this section we prove some auxiliary results for local intertwining operators. To begin
with we recall some facts concerning local intertwining operators and normalizing factors.
Let M ∈ L and P,Q ∈ P(M). Let v be a place of F . If v is finite, let Kv be an open
compact subgroup of G(Fv) and if v ∈ S∞, let Kv be a maximal compact subgroup of
G(Fv). Let πv ∈ Π(M(Fv)). Given λ ∈ a∗M,C, let (IGP (πv, λ),HP (πv)) denote the induced

representation. Let H0
P (πv) ⊂ HP (πv) be the subspace of Kv-finite functions. Let

JQ|P (πv, λ) : H0
P (πv)→ H0

Q(πv)

be the local intertwining operator between the induced representations IGP (πv, λ) and
IGQ (πv, λ) [Sh1]. It is proved in [Ar4], [CLL, Lecture 15] that there exist scalar valued
meromorphic functions rQ|P (πv, λ) of λ ∈ a∗P,C such that the normalized intertwining oper-
ators

(6.1) RQ|P (πv, λ) = rQ|P (πv, λ)−1JQ|P (πv, λ)

satisfy the conditions (R1)− (R8) of Theorem 2.1 of [Ar4]. We recall some facts about the
local normalizing factors. First assume that v is a finite valuation of F with qv ∈ N the
cardinality of the residue field of Fv. Furthermore assume that dim(aM/aG) = 1 and πv is
square integrable. Let P ∈ P(M) and let α be the unique simple root of (P, TM). Then
Langlands [CLL, Lecture 15] has shown that there exists a rational function VP (πv, z) of
one variable such that

(6.2) rP |P (πv, λ) = VP (πv, q
−λ(α̃)
v ),

where α̃ ∈ aM is uniquely determined by α. For the construction of VP see also [Mu2, Sect.
3]. In this reference, only the case Qv has been discussed. However, the case Fv can be
dealt with in exactly the same way. We need the following lemma.
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Lemma 6.1. Let M ∈ L be such that dim(aM/aG) = 1. There exists C > 0 such that for
all P ∈ P(M) and all π ∈ Π(M(Fv)) the number of zeros of the rational function VP (π, z)
is less than or equal to C.

For the proof see [MM2, Lemma 10.1]. Again, the proof has been carried out for Qv. It
extends to Fv without any changes.

The main goal of this section is to estimate the logarithmic derivatives of the normalized
intertwining operators RQ|P (π, λ). For G = GL(n) such estimates were derived in [MS,
Proposition 0.2]. The proof depends on a weak version of the Ramanujan conjecture,
which is not available in general. Therefore we will establish only an integrated version of
it, which however, is sufficient for our purpose. For π ∈ Πdis(M(A)) denote by HP (π) the
Hilbert space of the induced representation IGP (π, λ). Furthermore, for an open compact
subgroup Kf ⊂ G(Af ) and ν ∈ Π(K∞), denote by HP (π)Kf the subspace of vectors, which
are invariant under Kf and let HP (π)Kf ,ν denote the ν-isotypical subspace of HP (π)Kf .
Let P,Q ∈ P(M) be adjacent parabolic subgroups. Then RQ|P (π, λ) depends on a single
variable s ∈ C and we will write

R′Q|P (π, s0) :=
d

ds
RQ|P (π, s)

∣∣
s=s0

for any regular s0 ∈ C.

Proposition 6.2. Let M ∈ L, and let P,Q ∈ P(M) be adjacent parabolic subgroups. Let
Kf ⊂ G(Af ) be an open compact subgroup and let ν ∈ Π(K∞). Then there exists C > 0
such that

(6.3)

∫
R

∥∥∥RQ|P (π, iu)−1R′Q|P (π, iu)
∣∣
HP (π)

Kf ,ν

∥∥∥e−tu2

du ≤ Ct−1/2

for all 0 < t ≤ 1 and π ∈ Πdis(M(A)) with HP (π)Kf ,ν 6= 0.

Proof. We may assume that Kf is factorisable, i.e., Kf =
∏

vKv. Let S be the finite set
of finite places such that Kv is not hyperspecial. Since P and Q are adjacent, by standard
properties of normalized intertwining operators [Ar4, Theorem 2.1] we may assume that P
is a maximal parabolic subgroup and Q = P , the opposite parabolic subgroup to P . By
[Ar4, Theorem 2.1, (R8)], RP |P (πv, s)

Kv is independent of s if v is finite and v /∈ S. Thus
we have

RP |P (π, s)−1R′
P |P (π, s)

∣∣
HP (π)

Kf ,ν = RP |P (π∞, s)
−1R′

P |P (π∞, s)
∣∣
HP (π∞)ν

+
∑
v∈S

RP |P (πv, s)
−1R′

P |P (πv, s)
∣∣
HP (πv)Kv

(6.4)

This reduces our problem to the operators at the local places. We distinguish between the
archimedean and the non-archimedean case.
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Case 1: v <∞. Define Av : C→ End(HP (πv)
Kv) by

Av(q
−s
v ) := RP |P (πv, s)

∣∣
HP (πv)Kv

.

This is a meromorphic function with values in the space of endomorphisms of a finite
dimensional vector space. It has the following properties. By the unitarity of RP |P (πv, iu),

u ∈ R, it follows that Av(z) is holomorphic for z ∈ S1 and satisfies ‖Av(z)‖ ≤ 1, |z| = 1.
By [Ar4, Theorem 2.1], the matrix coefficients of Av(z) are rational functions. Recall that
the operators RP |P (πv, iu) are unitary. As in [FLM2, (14)] we get

∫
R

∥∥∥RP |P (πv, iu)−1R′
P |P (πv, iu)

∣∣
HP (πv)Kv

∥∥∥e−tu2

du =

∫
R

∥∥∥∥R′P |P (πv, iu)
∣∣∣
HP (πv)Kv

∥∥∥∥ e−tu2

du

≤ 2
∞∑
n=0

exp

(
−t 4π2n2

(log qv)2

)∫ 2π
log qv

0

∥∥∥∥R′P |P (πv, iu)
∣∣∣
HP (πv)Kv

∥∥∥∥ du
≤ 2

(
1 +

∫ ∞
0

exp

(
−t 4π2x2

(log qv)2

)
dx

)∫ 2π
log qv

0

∥∥∥∥R′P |P (πv, iu)
∣∣∣
HP (πv)Kv

∥∥∥∥ du
=

(
2 +

log qv
π
· t−1/2

)∫
S1

‖A′v(z)‖ |dz|.

(6.5)

As explained above, Av satisfies the assumptions of [FLM2, Corollary 5.18]. Denote by
z1, ..., zm ∈ C \ S1 be the poles of Av(z). Then (z − z1) · · · (z − zm)Av(z) is a polynomial
of degree n with coefficients in End(HP (πv)

Kv) and by [FLM2, Corollary 5.18] we get

(6.6) ‖A′v(z)‖ ≤ max

max(n−m, 0) +
∑

j : |zj |>1

|zj|2 − 1

|zj − z|2
,
∑

j : |zj |<1

1− |zj|2

|zj − z|2

 , z ∈ S1.

Now observe that
1

2π

∫
S1

1− |z0|2

|z − z0|2
|dz| = 1.

z0 ∈ C, |z0| < 1. This follows from the fact that the integrant is the Poisson kernel and
so the integral is the unique harmonic function on the unit disc which is equal to 1 on the
boundary. This is the constant function 1. Hence by (6.6) we get

(6.7)

∫
S1

‖A′v(z)‖ |dz| ≤ 2πmax(m,n).

Next we estimate m and n. First consider m. Let JP |P (πv, s) be the usual intertwining
operator so that

RP |P (πv, s) = rP |P (πv, s)
−1JP |P (πv, s),

where rP |P (πv, s) is the normalizing factor [Ar4]. By [Sh1, Theorem 2.2.2] there exists a

polynomial p(z) with p(0) = 1 whose degree is bounded independently of πv, such that
p(q−sv )JP |P (πv, s) is holomorphic on C. To deal with the normalizing factor we use (6.2)
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together with Lemma 6.1 to count the number of poles of rP |P (πv, s)
−1. This leads to a

bound for m which depends only on G. To estimate n we fix an open compact subgroup Kv

of G(Fv). Our goal is now to estimate the order at∞ of any matrix coefficient of RP |P (πv, s)

regarded as a function of z = q−sv . Write πv as Langlands quotient πv = JMR (δv, µ) where
R is a parabolic subgroup of M , δv a square integrable representation of MR(Fv) and
µ ∈ (a∗R/a

∗
M)C with Re(µ) in the chamber attached to R. Then by [Ar4, p. 30] we have

RP |P (πv, s) = RP (R)|P (R)(δv, s+ µ)

with respect to the identifications described in [Ar4, p. 30]. Here s is identified with a
point in (a∗R/a

∗
G)C with respect to the canonical embedding a∗M ⊂ a∗G. Using again the

factorization of normalized intertwining operators we reduce the problem to the case of a
square-integrable representation δv. Moreover δv has to satisfy [IGP (δv, s)

∣∣
Kv

: 1] ≥ 1. By

[Si, Lemma 1] we have

(6.8) [IGP (δv, s)
∣∣
Kv

: 1] ≥ 1⇔ [δv
∣∣
Kv∩M(Fv)

: 1] ≥ 1

Let Π2(M(Fv)) be the space of square-integrable representations of M(Fv). This space
has a manifold structure [HC1], [Si]. By [HC1, Theorem 10] the set of square-integrable
representations Π2(M(Fv), Kv) of M(Fv) with [δv

∣∣
Kv∩M(Fv)

: 1] ≥ 1 is a compact subset of

Π2(M(Fv)). Under the canonical action of iaM , the set Π2(M(Fv), Kv) decomposes into a
finite number of orbits. For µ ∈ iaM and δv ∈ Π2(M(Fv), Kv), let (δv)µ ∈ Π2(M(Fv), Kv)
be the result of the canonical action. Then it follows that

RP |P ((δv)µ, λ) = RP |P (δv, λ+ µ).

In this way our problem is finally reduced to the consideration of the matrix coefficients of
RP |P (πv, s)

∣∣
Kv

for a finite number of representations πv. This implies that n is bounded by

a constant which is independent of πv. Together with (6.7) it follows that for each finite
place v of F and each open compact subgroup Kv of G(Fv) there exists Cv > 0 such that

(6.9)

∫
R

∥∥∥RP |P (πv, iu)−1R′
P |P (πv, iu)

∣∣
HP (πv)Kv

∥∥∥e−tu2

du ≤ Cvt
−1/2

for all 0 < t ≤ 1 and πv ∈ Π(M(Fv)) with IGP (πv)
∣∣
HP (πv)Kv

6= 0.

Case 2: v =∞. To begin with we need a modification of [FLM2, Lemma 5.19].

Lemma 6.3. Let zj ∈ C \ iR, j = 1, ...,m, and let b(z) = (z − z1) · · · (z − zm). Suppose
that A : C \ {z1, ..., zm} → V is such that ‖A(z)‖ ≤ 1 for all z ∈ iR and b(z)A(z) is a
polynomial in z ∈ C (necessarily of degree ≤ m) with coefficients in V . Then∫

R
‖A′(iu)‖e−tu2

du ≤ 2πm

for all 0 ≤ t.
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Proof. For any w ∈ C, let φw(z) := z+w̄
z−w , and set

φ>(z) =
∑

j:Re(zj)>0

φzj(z), φ<(z) =
∑

j:Re(zj)<0

φzj(z).

Applying [BE, Theorem 4], it follows that

(6.10) ‖A′(z)‖ ≤ max{|φ′>(z)|, |φ′<(z)|} ≤ |φ′>(z)|+ |φ′<(z)|, z ∈ iR.

Now observe that for w = x+ iy ∈ C \ iR, one has |φ′w(z)| = 2|x|
|z−w|2 = 2|x|

x2+(u−y)2 for z = iu,

u ∈ R. So we get∫
R
|φ′w(iu)|e−tu2

du ≤
∫
R

2|x|
x2 + (u− y)2

du =
2

|x|

∫
R

1

1 + ( u
|x| −

y
|x|)

2
du

= 2

∫
R

1

1 + (u− y
|x|)

2
du = 2

∫
R

du

1 + u2
= 2π.

Together with (6.10) the lemma follows. �

As above let M ∈ L with dim(aM/aG) = 1 and P ∈ P(M). Let π∞ ∈ Π(M(F∞))
and ν ∈ Π(K∞). As explained in [MS, Appendix], there exist w1, ..., wr ∈ C and m ∈ N
such that the poles of RP |P (π∞, s)

∣∣
HP (π∞)ν

are contained in ∪rj=1{wj − k : k = 1, ...,m}.
Moreover, by [MS, Proposition A.2] there exists c > 0 which depends only on G, such that

(6.11) r ≤ c, m ≤ c(1 + ‖ν‖).
Let A : C→ HP (π∞)ν be defined by

A(z) := RP |P (π∞, z)
∣∣
HP (π∞)ν

and let b(z) =
∏r

j=1

∏m
k=1(z − wj + k). Then it follows from (R6) of [Ar4, Theorem 2.1]

that b(z)A(z) is a polynomial function. Moreover, by unitarity of RP |P (π∞, it), t ∈ R, we

have ‖A(it)‖ = 1. Thus A(z) satisfies the assumptions of [FLM2, Lemma 5.19]. Thus by
Lemma 6.3 and (6.11) we get∫

R

∥∥∥RP |P (π∞, iu)−1R′
P |P (π∞, iu)

∣∣
HP (π∞)ν

∥∥∥e−tu2

du =

∫
R
‖A′(iu)‖e−tu2

du

≤ 2πr ·m ≤ 2πc2(1 + ‖ν‖).
(6.12)

Combining (6.4), (6.9) and (6.12), the proposition follows.

Remark 6.4. For G = GLn it is proved in [MS, Proposition 0.2] that the corresponding
bounds hold for the derivatives of the local intertwining operators itself. This follows from
a weak version of the Ramanujan conjecture, which implies that the poles of the local inter-
twining operators are uniformly bounded away from the imaginary axis. For the integrated
derivatives the distance of the poles from the imaginary axis does not matter.

�
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7. The residual spectrum

The goal of this section is to estimate the growth of the counting function of the residual
spectrum. To this end we recall the construction of the residual spectrum. By Langlands
[La1, Ch. 7], [MW, V.3.13], L2

res(G(F )\G(A)1) is spanned by iterated residues of cuspidal
Eisenstein series. Let us briefly recall this construction.

Let P = M nN be a F -rational parabolic subgroup of G. If α ∈ ΣP , denote by α∨ the
co-root associated to α. Given α ∈ ΣP and c ∈ R, we set

H(α, c) := {Λ ∈ a∗C : Λ(α∨) = c}.

An affine subspace H ⊂ a∗C is called admissible, if H is the intersection of such hyperplanes.
Suppose that H1 ⊃ H2 are two admissible affine subspaces of a∗C and H2 is of co-dimension
one in H1. Let Φ(Λ) be a meromorphic function on H1 whose singularities lie along
hyperplanes which are admissible as subspaces of a∗C. Choose a real unit vector Λ0 in H1

which is normal to H2. Let δ > 0 be such that Φ(Λ + zΛ0) has no singularities in the
punctured disc 0 < |z| < 2δ. Then we can define a meromorphic function ResH2 Φ on H2

by

ResH2 Φ(Λ) :=
δ

2πi

∫ 1

0

Φ(Λ + δe2πiϑΛ0)d(e2πiϑ),

The singularities of ResH2 Φ lie on the intersections with H2 of the singular hyperplanes of
Φ different from H2. Now consider a complete flag

a∗C = Hp ⊃ Hp−1 ⊃ · · · ⊃ H1 ⊃ H0 = {Λ0}

of affine admissible subspaces of a∗C and let Λi ∈ Hi be a real unit vector which is normal
to Hi−1, i = 1, . . . , p. We call F = {Hi,Λi} an admissible flag. Let Φ be a meromorphic
function on a∗C whose singularities lie along admissible hyperplanes of a∗C. Then we define
Φi inductively by

Φp = Φ, Φi = ResHi Φi+1, i = 0, . . . , p− 1.

Set

ResF Φ := Φ0.

This is the iterated residue of Φ at Λ0.

Now let A2
cus(P ) the subspace of functions φ ∈ A2(P ) such that for almost all x ∈ G(A),

the function φx(m) := φ(mx) on M(F )\M(A)1 lies in the space L2
cus(M(F )\M(A)1). For

π ∈ Πcus(M(A)1) let A2
cus,π(P ) be the subspace of functions φ ∈ A2

cus(P ) such that each

of the functions φx lies in the subspace L2
cus,π(M(F )\M(A)1) (isotypical subspace). Let

φ ∈ A2
cus(P ). As shown by Langlands [La1, §7], the singularities of the Eisenstein series

E(φ, λ) lie along hyperplanes of a∗C which are defined by equations of the form Λ(α∨) = w,
w ∈ C, α ∈ ΣP . Let H(αi, ci), i = 0, . . . , p− 1, be a set of singular hyperplanes of E(φ, λ)
with ∩iH(αi, ci) = {Λ0}. Set Hi := ∩j≥iH(αj, cj), i = 0, . . . , p− 1, and HP = a∗C. Choose
real unit vectors Λi ∈ Hi normal to Hi−1. Then F := {Hi,Λi} is an admissible flag.
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Furthermore, let ϕ ∈ C∞c (a) and let ϕ̂(Λ) be its Fourier transform. It is holomorphic on
a∗C. Put

ψ := ResF
[
E(φ,Λ)ϕ̂(Λ)

]
.

Note that ψ depends only on the derivatives of ϕ̂ at Λ0. Let C(a∗) be the positive cone in
a∗ spanned by the simple roots of (P,A). If Λ0 ∈ C(a∗) then ψ is square integrable. Let
ΩM ∈ Z(mC) be the Casimir element of M(F∞). Assume that ΩMφ = µφ. Then it follows
that

(7.1) Ωψ = (‖Λ0‖2 − ‖ρP‖2 + µ)ψ.

[HC2, p. 29]. Moreover ‖Λ0‖ ≤ ‖ρP‖. As shown by Langlands [La1, Theorem 7.2],
[MW, V.3.13], L2

res(G(F )\G(A)1) is spanned by all such ψ, where P runs over the standard
parabolic subgroups of G, π over Πcus(MP (A)1) and φ over a basis of A2

cus,π(P ). For all
details concerning the description of the discrete and residual spectrum see [MW, Theorem
V.3.13, p. 221], and [MW, Corollary, p. 224]. Moreover, the question of positivity is dealt
with by [MW, Corollary VI.1.6 (d), p. 255].

Let Kf be an open compact subgroup of G(Af ). Let L2
res(AGG(F )\G(A))Kf be the

subspace of Kf -invariant functions of L2
res(AGG(F )\G(A)). Moreover, for ν ∈ Π(K∞)

let L2
res(AGG(F )\G(A))Kf ,ν be the ν-isotypical subspace of L2

res(AGG(F )\G(A))Kf . Then
L2

res(AGG(F )\G(A))Kf ,ν is spanned by residues as above, where for a given pair (P, π), φ
runs over a basis of A2

cus,π(P )Kf ,σ. Recall that A2
cus,π(P )Kf ,σ is finite dimensional. So the

estimation of the counting function of the residual spectrum is reduced to the following
problems:

(1) Estimation of dimA2
cus,π(P )Kf ,σ in terms of π, Kf , and σ.

(2) For a given cuspidal Eisenstein series E(φ,Λ), φ ∈ A2
cus,π(P ), we need to estimate

the number of its singular hyperplanes, counted to multiplicity, which are real and
intersect a given compact set containing the origin.

We start with (1). Let π ∈ Πcus(M(A)), π = π∞ ⊗ πf . Let HP (π∞) (resp. HP (πf )) be

the Hilbert space of the induced representation Ind
G(F∞)
P (F∞)(π∞) (resp. Ind

G(Af )

P (Af )). Denote

by HP (π∞)σ the σ-isotypical subspace of HP (π∞) and by HP (πf )
Kf the subspace of Kf -

invariant vectors of HP (πf ). Let m(π) denote the multiplicity with which π ∈ Πcus(M(A))
occurs in L2

cus(AGM(F )\M(A)). Then by (4.7) we obtain

(7.2) dimA2
π(P )Kf ,σ = m(π) dim(HP (πf )

Kf ) dim(HP (π∞)σ).

Using Frobenius reciprocity [Kn, p. 208] we get

[Ind
G(F∞)
P (F∞)(π∞)|K∞ : σ] =

∑
τ∈Π(KM,∞)

[π∞|KM,∞ : τ ] · [σ|KM,∞ : τ ].

For τ ∈ Π(KM,∞) let Hπ∞(τ) denote the τ -isotypical subspace of Hπ∞ . Then we obtain

(7.3) dim(HP (π∞)σ) ≤ dim(σ)
∑

τ∈Π(KM,∞)

dim(Hπ∞(τ)) · [σ|KM,∞ : τ ].
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Next we consider πf = ⊗v<∞πv. Replacing Kf by a subgroup of finite index, if necessary,
we can assume that Kf =

∏
v<∞Kv. For any v <∞, denote by HP (πv) the Hilbert space

of the induced representation Ind
G(Fv)
P (Fv)(πv). Let HP (πv)

Kv be the subspace of Kv-invariant

vectors. Then dimHP (πv)
Kv = 1 for almost all v and

HP (πf )
Kf ∼=

⊗
v<∞

HP (πv)
Kv .

Ind
G(Fv)
P (Fv)(πv)

Kv =
(

Ind
G(Ov)
P (Ov)(πv)

)Kv
↪→

⊕
G(Ov)/Kv

IndKvKv∩P (πv)
Kv

∼=
⊕

G(Ov)/Kv

πKv∩Pv .

(7.4)

Let KM,f = Kf ∩M(Af ). For σ ∈ Π(K∞) let

FM(σ) := {τ ∈ Π(KM,∞) : [σ|KM,∞ : τ ] > 0}.
Combining (7.2) - (7.4), it follows that there exists C > 0, which depends on σ, such that

(7.5) dimA2
π(P )Kf ,σ ≤ Cm(π) dim(HKM,f

πf )
∑

τ∈F(σ)

dim(Hπ∞(τ)).

In order to deal with (2), we use the inner product formula for truncated cuspidal Eisenstein
series proved by Langlands [La3, Sect. 9], [Ar2, Lemma 4.2]. We recall the formula. Let
T ∈ a+

0 be sufficiently regular. For φ ∈ A2
cus(P ) let ΛTE(g, φ, λ) be the truncated Eisenstein

series [Ar2, Sect. 1]. Let φ ∈ A2
cus(P ) and φ′ ∈ A2

cus(P
′). Then we have the following inner

product formula∫
G(F )\G(A)1

ΛTE(g, φ, λ)ΛTE(g, φ′, λ′)dg

=
∑
Q

∑
s

∑
s′

vol(aGQ/Z(∆∨Q))
e(sλ+s′λ′)(T )∏

α∈∆Q
(sλ+ s′λ̄′)(α∨)

(MQ|P (s, λ)φ,MQ|P ′(s
′, λ′)φ′),

(7.6)

where Q runs over all standard parabolic subgroups, s ∈ W (aP , aQ), and s′ ∈ W (aP ′ , aQ),
as meromorphic functions of λ ∈ a∗P,C and λ′ ∈ a∗P ′,C [Ar5, Prop. 15.3], [Ar2, Lemma
4.2]. It follows from the inner product formula that in order to settle (2), it suffices to
estimate the corresponding number of singular hyperplanes of the intertwining operators
MQ|P (s, λ)|A2

cus,π(P ) for π ∈ Πcus(M(A)). To deal with this problem, we reduce it to the case

of MQ|P (λ)|A2
cus,π(P ), Q,P ∈ P(M), π ∈ Πcus(M(A)). Let M,M1 ∈ L and let P ∈ P(M),

P1 ∈ P(M1). Suppose that P and P1 are associated and let t ∈ W (aM , aM1). Let wt ∈ G(F )
be a representative of t. Then M1 := wtMw−1

t and tP = wtPw
−1
t is a parabolic subgroup

which belongs to P(M1). The restriction of t to aM ⊂ a0 defines an element in W (aM , atM).
Let

t : A2(P )→ A2(tP )
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be the linear operator defined by (tφ)(x) = φ(w−1
t x), x ∈ G(A). By [Ar3, Lemma 1.1]

there exists T0 ∈ a0 such that

HP0(w−1
t ) = T0 − t−1T0.

Then by [Ar9, (1.5)] one has

(7.7) MP1|P (s, λ)t−1 = MP1|tP (st−1, tλ)e(λ+ρP )(T0−t−1T0)

for s ∈ W (aM , aM1). Thus as far as the singular hyperplanes of MP1|P (s, λ) are concerned,
we can assume that P1 and P have the same Levi component M , that is P, P1 ∈ P(M).
Let t ∈ W (aM). By the functional equation [Ar9, (1.2)] we have

(7.8) MP1|P (t, λ) = MP1|tP (1, tλ)MtP |P (t, λ).

Using (7.7) with s = t, we get

MtP |P (t, λ) = MtP |tP (1, tλ)te(λ+ρP )(T0−t−1T0).

Since MtP |tP (1, λ) = Id, it follows that

(7.9) MP1|P (t, λ) = MP1|tP (1, tλ)te(λ+ρP )(T0−t−1T0).

Thus we are reduced to the consideration of the singular hyperplanes of the intertwining
operators MQ|P (λ) = MQ|P (1, λ). Given π ∈ Πcus(MP (A)), an open compact subgroup
Kf ⊂ G(Af ) and σ ∈ Π(K∞), we need to estimate the singular hyperplanes, counted to
multiplicity, of MQ|P (π, λ)Kf ,σ, which are real and intersect a fixed compact set. By (4.12)
the problem is reduces to the consideration of the normalizing factors nQ|P (π, λ) and the
normalized intertwining operators RQ|P (π, λ) restricted to A2

cus,π(P )Kf ,σ.

To begin with we consider the normalized intertwining operators (4.13). Let v be a place
of F . For πv ∈ Π(G(Fv)) let

JQ|P (πv, λ) : H0
P (πv)→ H0

Q(πv), λ ∈ a∗Q,C,

be the local intertwining operator and

(7.10) RQ|P (πv, λ) := nQ|P (πv, λ)−1JQ|P (πv, λ).

the local normalized intertwining operator. The operators RQ|P (πv, λ) satisfy properties
(R1), ..., (R8) of [Ar4, Theorem 2.1]. Let π = ⊗vπv ∈ Πdis(G(A)). There exists a finite set
of places S(π) of F , containing the Archimedean places, such that for all v 6∈ S, G/Fv and
πv are unramified. For v 6∈ S(π), let Kv be hyperspecial and assume that φv ∈ HP (πv)

Kv .
Then by (R8) we have

RQ|P (πv, λ)φv = φv, s 6∈ S(π).

Hence the product (4.13) runs only over v ∈ S(π) and therefore, it is well defined for
all λ ∈ a∗M,C. So it suffices to consider the local intertwining operators RQ|P (πv, λ). Let

P0, ..., Pk ∈ P(M) and α1, ..., αk ∈ ΣM such that P = P0, Q = Pk and Pi−1

∣∣αiPi for
i = 1, ..., k. By [Ar4, (R2)] we get

(7.11) RQ|P (πv, λ) = RPk|Pk−1
(πv, λ) ◦RRk−1|Pk−2

(πv, λ) ◦ · · · ◦RP1|P0(πv, λ).
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Hence we can assume that Q,P ∈ P(M) are adjacent along some root α ∈ ΣM . Then
RQ|P (πv, λ) depends only on λ(α∨). First consider the case v <∞. Let qv be the order of

the residue field of Fv. By (R6), RQ|P (πv, λ) is a rational function of q
−λ(α∨)
v . Furthermore,

by [Sh1, Theorem 2.2.2] there exists a polynomial Qv(πv, s) with Qv(πv, 0) = 1, such that

Qv(πv, q
−λ(α∨)
v )JQ|P (πv, λ)

is a holomorphic and non-zero function of λ ∈ a∗M,C. Moreover, the degree of the polynomial
Qv is independent of πv ∈ Π(M(Fv)) By (7.10) it follows that

nQ|P (πv, λ)Qv(πv, q
−λ(α∨)
v )RQ|P (πv, λ)

is holomorphic on a∗M,C. The normalizing factors nQ|P (πv, λ) satisfy properties similar
to the corresponding properties (R1), ..., (R8) satisfied by the local intertwining operators
[Ar4, Theorem 2.1]. In particular, there exists a rational function nα(πv, s) such that

nQ|P (πv, λ) = nα(πv, q
−λ(α∨)
v ).

Now observe that for every R > 0 and z ∈ C the number of solutions of q−sv = z in the
disc |s| ≤ R is bounded by 1+(2π)−1 log(qv)R. Hence it suffices to estimate the number of
zeros of nα(πv, s) and Qv(πv, s), respectively. As mentioned above, the degree of Qv(π, s)
is bounded independently of π ∈ Π(M(Fv)). The rational function nα(πv, s) has been
described in [Mu2, (3.6)]. It follows from [Mu2, Lemma 3.1] and [Mu2, (3.6)] that there
exists C > 0 such that for all M ∈ L(M0) and all square integrable π ∈ Π(M(Fv)) the
number of poles and zeros of nα(π, s) is less than C. Now let π be tempered. It is known
that π is an irreducible constituent of an induced representation IndMR (σ), where MR is an
admissible Levi subgroup of M and σ ∈ Π(MR(Fv)) is square integrable modulo AR. Then
by [Ar4, (2.2)] we are reduced to the square integrable case. In general, π is a Langlands
quotient of an induced representation IndMR (σ, µ), where MR is an admissible Levi subgroup
of M , σ ∈ Πtemp(MR(Fv)), and µ is point in the chamber of a∗R/a

∗
M . Now we use [Ar4,

(2.3)] to reduce to the tempered case, which proves that there exists C > 0 such that the
number of poles and zeros of nα(π, s) is less than C for all π ∈ Π(M(Fv)).

The case v ∈ S∞ has been already treated in section 6. See (6.11) and the text above
(6.11).

Now we can summarize our results. Using (4.11), we obtain the following proposition.

Proposition 7.1. Let M ∈ L(M0). Let Kf ⊂ G(Af ) be an open compact subgroup and
σ ∈ Π(K∞). For every R > 0 there exists C > 0 such that for all Q,P ∈ P(M) and
π ∈ Π(M(A)) the number of singular hyperplanes of RQ|P (π, λ)

∣∣
A2
π(P )

Kf ,σ , which intersects

the ball of radius R in a∗M,C, is bounded by C.

Next we consider the global normalizing factors. By (4.11), nQ|P (π, λ) is the product
of the normalizing factors nα(π, λ(α∨)), α ∈ ΣP ∩ ΣQ̄. Thus our problem is reduced to
the estimation of the number of real poles, counted to multiplicity, of the meromorphic
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function nα(π, s). Let ΣR
α(π) be the set of real poles of nα(π, s). Let π ∈ Πdis(M(A);Kf , σ).

Then it follows from Corollary 5.2 that there exists C > 0

(7.12)
∑

ρ∈ΣR
α(π)

n(ρ) ≤ C(1 + log(1 + λ2
π∞)).

Now we can summarize our results as follows. For arbitrary Q,P ∈ P(M), the global
normalizing factor nQ|P (π, λ) is the product of the functions nα(π, λ(α∨)), α ∈ ΣP ∩ ΣQ̄

(4.11). Note that #ΣP ≤ dim nP . Let dP := dim nP . Then it follows from (7.12) and
Proposition (7.1) that there exists C > 0 such for every π ∈ Πcus(M(A);Kf , σ) and every
φ ∈ A2

cus,π(P ) the number of singular hyperplanes of the Eisenstein series E(φ, λ), counted
with multiplicity, which are real and intersect the ball {λ ∈ a∗M,C : ‖λ‖ ≤ ‖ρP‖} is bounded
by

(7.13) C(1 + log(1 + λ2
π∞))dP ,

Now recall from the beginning of this section that the residual spectrum is spanned by iter-
ated residues of Eisenstein series E(φ, λ) with respect to complete flags of affine admissible
subspaces of a∗M,C. For λ ≥ 0 let

Πcus(M(A);λ) := {π ∈ Πcus(M(A)) : − λπ∞ ≤ λ}.
We note that there exists C ∈ R such that C ≤ −λπ∞ for all π ∈ Πdis(M(A)). Using (7.1)
and (7.5), it follows that there exist C0, C1 > 0 such that

NKf ,σ
res (λ) ≤ C1

∑
P⊃P0

(1 + log(1 + λ2))dP

·
∑

τ∈FMP (σ)

∑
π∈Πcus(MP (A);λ+C0)

m(π) dim(HKMP ,f
πf ) dim(Hπ∞(τ)).

(7.14)

For a given P let M = MP . As in (3.2) there exist finitely many lattices ΓM,i ⊂ M(F∞),
i = 1, ..., k, such that

(7.15) AMM(F )\M(A)/KM,f
∼=

k⊔
i=1

(ΓM,i\M(F∞)1).

Thus we get an isomorphism of M(F∞)-modules

(7.16) L2
cus(AMM(F )\M(A))KM,f ∼=

k⊕
i=1

L2
cus(ΓM,i\M(F∞)1).

And hence for τ ∈ Π(KM,∞) we get

(7.17) L2
cus(AMM(F )\M(A))KM,f ,τ ∼=

k⊕
i=1

L2
cus(ΓM,i\(M(F∞)1 ⊗ Vτ )KM,∞ .

Let X̃M = AM\M(F∞)/KM,∞. Let Eτ,i → ΓM,i\X̃M be the locally homogeneous vector

bundle associated to τ . Let N
ΓM,i
cus (λ; τ) be the eigenvalues counting function for the Casimir
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operator acting in L2
cus(ΓM,i\X̃M , Eτ,i). It follows from (7.17) that

(7.18)
∑

π∈Πcus(M(A);λ)

m(π) dim(HKM,f
πf ) dim(Hπ∞(τ)) =

k∑
i=1

NΓM,i
cus (λ; τ).

Let mM := dim X̃M . Then by [Do, Theorem 9.1] we get

(7.19) NΓM,i
cus (λ; τ)� 1 + λmM/2.

Thus by (7.18) it follows that there exists C > 0 such that

(7.20)
∑

τ∈FM (σ)

∑
π∈Πcus(M(A);λ+C0)

m(π) dim(HKM,f
πf ) dim(Hπ∞(τ)) ≤ C(1 + λmM/2).

Let n := dim X̃ and m0(G) := max{mMP
: P 6= G}. Note that dP ≤ r for all P . Then by

(7.14) and (7.20) we obtain

(7.21) NKf ,σ
res (λ) ≤ C(1 + log(1 + λ2))n(1 + λm0(G)/2).

Now observe that X̃ ∼= X̃M ×AM ×NP (F∞) [Bo3, Sect. 4.2, (3)]. Hence mM ≤ n− 2, and
therefore m0(G) ≤ n− 2. Thus we get

(7.22) NKf ,σ
res (λ) ≤ C(1 + λ(n−1)/2), λ ≥ 0,

where C > 0 depends on Kf and σ. This completes the proof of the second statement of
Theorem 1.4.

Next we wish to extend this result to any Levi subgroup L ∈ L(M). Recall that for any
pair of elements Q ∈ P(L) and R ∈ PL(M) there exists a unique P ∈ P(M) such that
P ⊂ Q and P ∩L = R. Then P is denoted by Q(R). Let R,R′ ∈ PL(M), π ∈ Πdis(M(A)),
and Q ∈ P(L). Then for any k ∈ K and φ ∈ A2

π(Q(R)), the function φk on M(A), which
is defined by φk(m) := φ(mk), m ∈M(A), belongs to A2

π(R), and one has

(7.23) (MQ(R′)|Q(R)(π, λ)φ)k = MR′|R(π, λ)φk)

[Ar9, (1.3)]. Furthermore, the normalizing factors satisfy

(7.24) nQ(R′)|Q(R)(π, λ) = nR′|R(π, λ)

[Ar4, Sect. 2]. Thus the considerations above continue to hold for each standard Levi
subgroup L of G. For M ∈ L(M0) and σ ∈ Π(K∞) let σM := σ|K∞∩M(F∞). Denote

by N
KM,f ,σM
M,res (λ) the counting function of the residual spectrum for M with respect to

(KM,f , σM). Let m0(M) := max{mMR
: R ∈ PM , R 6= M}. Then, summarizing our

results, we get

(7.25) N
KM,f ,σM
M,res (λ) ≤ C(1 + log(1 + λ2))rMλm0(M)/2

for λ ≥ 0. As above it follows that m0(M) ≤ dim X̃M − 2, and we obtain the following
proposition.
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Proposition 7.2. Assume that G satisfies condition (L). Let Kf be an open compact

subgroup of G(Af ) and σ ∈ Π(K∞). Let M ∈ L and mM := dim X̃M . Then there exists
C > 0 such that

(7.26) N
KM,f ,σM
M,res (λ) ≤ C(1 + λ(mM−1)/2)

for λ ≥ 0.

8. The spectral side of the trace formula

In this section we apply the spectral side of the (non-invariant) trace formula of Arthur
[Ar1], [Ar2], to the heat kernel. The goal is to prove that the leading term of the asymptotic
expansion as t → 0 is given by the trace of the heat operator, restricted to the point
spectrum.

To begin with we briefly recall the structure of the spectral side. Let L ⊃ M be Levi
subgroups in L, P ∈ P(M), and let m = dim aGL be the co-rank of L in G. Denote by
BP,L the set of m-tuples β = (β∨1 , . . . , β

∨
m) of elements of Σ∨P whose projections to aL form

a basis for aGL . For any β = (β∨1 , . . . , β
∨
m) ∈ BP,L let vol(β) be the co-volume in aGL of the

lattice spanned by β and let

ΞL(β) = {(Q1, . . . , Qm) ∈ F1(M)m : β∨i ∈ aQiM , i = 1, . . . ,m}
= {〈P1, P

′
1〉, . . . , 〈Pm, P ′m〉) : Pi|βiP ′i , i = 1, . . . ,m}.

Given Q,P ∈ P(M), let MQ|P (λ) : A2(P )→ A2(Q), λ ∈ a∗M,C, be the intertwining operator
defined by (4.4).

For any smooth function f on a∗M and µ ∈ a∗M denote by Dµf the directional derivative
of f along µ ∈ a∗M . For a pair P1|αP2 of adjacent parabolic subgroups in P(M) write

(8.1) δP1|P2(λ) = MP2|P1(λ)D$MP1|P2(λ) : A2(P1)→ A2(P2),

where $ ∈ a∗M is such that 〈$,α∨〉 = 1. 1 Equivalently, writing MP1|P2(λ) = Φ(〈λ, α∨〉)
for a meromorphic function Φ of a single complex variable, we have

δP1|P2(λ) = Φ(〈λ, α∨〉)−1Φ′(〈λ, α∨〉).

Recall that for P,Q ∈ P(M), 〈P,Q〉 denotes the group generated by P and Q. For any
m-tuple X = (Q1, . . . , Qm) ∈ ΞL(β) with Qi = 〈Pi, P ′i 〉, Pi|βiP ′i , denote by ∆X (P, λ) the
expression
(8.2)

vol(β)

m!
MP ′1|P (λ)−1δP1|P ′1(λ)MP ′1|P ′2(λ) · · · δPm−1|P ′m−1

(λ)MP ′m−1|P ′m(λ)δPm|P ′m(λ)MP ′m|P (λ).

1Note that this definition differs slightly from the definition of δP1|P2
in [FLM1].
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Recall the (purely combinatorial) map XL : BP,L → F1(M)m with the property that
XL(β) ∈ ΞL(β) for all β ∈ BP,L as defined in [FLM1, pp. 179–180].2

For any s ∈ W (M) let Ls be the smallest Levi subgroup in L(M) containing ws. We
recall that aLs = {H ∈ aM | sH = H}. Set

ιs = |det(s− 1)aLsM
|−1.

For P ∈ F(M0) and s ∈ W (MP ) let M(P, s) : A2(P ) → A2(P ) be as in [Ar3, p. 1309].
M(P, s) is a unitary operator which commutes with the operators ρ(P, λ, h) for λ ∈ ia∗Ls .
Finally, we can state the refined spectral expansion.

Theorem 8.1 ([FLM1]). For any h ∈ C∞c (G(A)1) the spectral side of Arthur’s trace
formula is given by

(8.3) Jspec(h) =
∑
[M ]

Jspec,M(h),

M ranging over the conjugacy classes of Levi subgroups of G (represented by members of
L), where

(8.4) Jspec,M(h) =
1

|W (M)|
∑

s∈W (M)

ιs
∑

β∈BP,Ls

∫
i(aGLs )∗

tr(∆XLs (β)(P, λ)M(P, s)ρ(P, λ, h)) dλ

with P ∈ P(M) arbitrary. The operators are of trace class and the integrals are absolutely
convergent with respect to the trace norm and define distributions on C(G(A)1).

Now we apply the trace formula to the heat kernel. We recall its definition. For details
see [MM1, § 3]. Recall that the underlying symmetric space is

X̃ = G(F∞)1/K∞,

where G(F∞)1 = G(A)1 ∩G(F∞). Note that G(F∞)1 is semisimple and

(8.5) G(F∞) = G(F∞)1 · AG.

Given ν ∈ Π(K∞), let Ẽν → X̃ be the associated homogeneous vector bundle. Let

∆̃ν = (∇̃ν)∗∇̃ν be the Bochner-Laplace operator acting in the space C∞(X̃, Ẽν) of smooth

sections of Ẽν . This is a G(F∞)1-invariant second order elliptic differential operator. Since

X̃ is complete, ∆̃ν , regarded as operator in L2(X̃, Ẽν) with domain the smooth compactly
supported sections, is essentially self-adjoint [LaM, p. 155]. Its self-adjoint extension will

also be denoted by ∆̃ν . Let Ω ∈ Z(gC) and ΩK∞ ∈ Z(k) be the Casimir operators of g and
k, respectively, where the latter is defined with respect to the restriction of the normalized
Killing form of g to k. Then with respect to the isomorphism (3.13) we have

∆̃ν = −R(Ω) + ν(ΩK∞),(8.6)

2The map XL depends in fact on the additional choice of a vector µ ∈ (a∗M )m which does not lie in an

explicit finite set of hyperplanes. For our purposes, the precise definition of XL is immaterial.
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where R denotes the right regular representation of G(F∞) in C∞(G(F∞), ν) (see [Mia,
Proposition 1.1]).

Let e−t∆̃ν , t > 0, be the heat semigroup generated by ∆̃ν . It commutes with the action

of G(F∞)1. With respect to the isomorphism (3.13) we may regard e−t∆̃ν as a bounded
operator in L2(G(F∞)1, ν), which commutes with the action of G(F∞)1. Hence it is a
convolution operator, i.e., there exists a smooth map

(8.7) Hν
t : G(F∞)1 → End(Vν)

such that

(e−t∆̃νφ)(g) =

∫
G(F∞)1

Hν
t (g−1g′)(φ(g′)) dg′, φ ∈ L2(G(F∞)1, ν).

The kernel Hν
t satisfies

Hν
t (k−1gk′) = ν(k)−1 ◦Hν

t (g) ◦ ν(k′), ∀k, k′ ∈ K∞,∀g ∈ G(F∞)1.(8.8)

Moreover, proceeding as in the proof of [BM, Proposition 2.4] it follows that Hν
t belongs

to (C q(G(F∞)1) ⊗ End(Vν))
K∞×K∞ for all q > 0, where C q(G(F∞)1) is Harish-Chandra’s

Schwartz space of Lq-integrable rapidly decreasing functions on G(F∞)1. Put

(8.9) hνt (g) := trHν
t (g), g ∈ G(F∞)1.

Then hνt ∈ C q(G(F∞)1) for all q > 0. We extend hνt to a function on G(F∞) by

hνt (ag) = hνt (g), g ∈ G(F∞)1, a ∈ AG.

Let 1Kf : G(Af )→ C be the characteristic function of Kf . Put

(8.10) χKf :=
1Kf

vol(Kf )

and

(8.11) φνt (g) := hνt (g∞)χKf (gf )

for g = g∞ · gf ∈ G(A) = G(F∞) ·G(Af ). Now observe that all derivatives of φνt belong to
L1(G(A)1). Thus φνt belongs to C(G(A);Kf ) (see section 2 for its definition). By Theorem
8.1, Jspec is a distribution on C(G(A);Kf ). Thus we can insert φνt into the trace formula
and by Theorem 8.1 we get

(8.12) Jspec(φ
ν
t ) =

∑
[M ]

Jspec,M(φνt ),

where the sum ranges over the conjugacy classes of Levi subgroups of G and Jspec,M(φτ,pt )
is given by (8.4). To analyze these terms, we proceed as in [MM1, Section 13]. Recall that
the operator ∆X (P, λ), which appears in the formula (8.4), is defined by (8.2). Its defini-
tion involves the intertwining operators MQ|P (λ). If we replace MQ|P (λ) by its restriction
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MQ|P (π, λ) to A2
π(P ), we obtain the restriction ∆X (P, π, λ) of ∆X (P, λ) to A2

π(P ). Simi-
larly, let ρπ(P, λ) be the induced representation in Ā2

π(P ). Fix s ∈ W (M) and β ∈ BP,Ls .
Then for the integral on the right of (8.4) with h = φνt we get

(8.13)
∑

π∈Πdis(M(A))

∫
i(aGLs )∗

Tr
(

∆XLs (β)(P, π, λ)M(P, π, s)ρπ(P, λ, φνt )
)
dλ.

In order to deal with the integrand, we need the following result. Let π be a unitary
admissible representation of G(F∞). Let A : Hπ → Hπ be a bounded operator which is
an intertwining operator for π|K∞ . Then A ◦ π(hνt ) is a finite rank operator. Define an
operator Ã on Hπ ⊗ Vν by Ã := A⊗ Id. Then by [MM1, (9.13)] we have

(8.14) Tr(A ◦ π(hνt )) = et(π(Ω)−ν(ΩK∞ )) Tr
(
Ã|(Hπ⊗Vν)K∞

)
.

We will apply this to the induced representation ρπ(P, λ). Let m(π) denote the multiplicity
with which π occurs in the regular representation of M(A) in L2

dis(AMM(F )\M(A)). Then

(8.15) ρπ(P, λ) ∼= ⊕m(π)
i=1 Ind

G(A)
P (A)(π, λ).

Fix positive restricted roots of aP and let ρaP denote the corresponding half-sum of these
roots. For ξ ∈ Π(M(F∞)) and λ ∈ a∗P let

πξ,λ := Ind
G(F∞)
P (F∞)(ξ ⊗ e

iλ)

be the unitary induced representation. Let ξ(ΩM) be the Casimir eigenvalue of ξ. Define
a constant c(ξ) by

(8.16) c(ξ) := −〈ρaP , ρaP 〉+ ξ(ΩM).

Then for λ ∈ a∗P one has

(8.17) πξ,λ(Ω) = −‖λ‖2 + c(ξ)

(see [Kn, Theorem 8.22]). Denote by ∆̃XLs (β)(P, π, ν, λ) resp. M̃(P, π, ν, s) the extensions

of ∆̃XLs (β)(P, π, ν, λ) resp. M(P, π, ν, s) to operators on A2
π(P ) ⊗ Vν as above. Using the

definition of φνt , (8.15) and (8.14), it follows that (8.13) is equal to

∑
π∈Πdis(M(A))

etc(π∞)

·
∫
i(aGLs )∗

e−t‖λ‖
2

Tr
((

∆̃XLs (β)(P, π, ν, λ)M̃(P, π, ν, s)
)∣∣

(A2
π(P )

Kf⊗Vν)K∞

)
dλ.

(8.18)

Since M(P, π, s) is unitary, (8.18) can be estimated by

∑
π∈Πdis(M(A))

dim
(
A2
π(P )Kf ,ν

)
· etc(π∞)

∫
i(aGLs )∗

e−t‖λ‖
2‖∆̃XLs (β)(P, π, ν, λ)‖

1,A2
π(P )

Kf ,ν dλ.

(8.19)
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For π ∈ Π(M(A)) denote by λπ∞ the Casimir eigenvalue of the restriction of π∞ to M(F∞)1.
Given λ > 0, let

Πdis(M(A);λ) := {π ∈ Πdis(M(A)) : |λπ∞| ≤ λ}.
For the estimation of (8.19) we need the following auxiliary result.

Lemma 8.2. Let dM = dimM(F∞)1/KM
∞. For every open compact subgroup Kf ⊂ G(Af )

and every ν ∈ Π(K∞) there exists C > 0 such that

(8.20)
∑

π∈Πdis(M(A);λ)

dimA2
π(P )Kf ,ν ≤ C(1 + λdM/2)

for all λ ≥ 0.

Proof. By (7.5) it suffices to fix τ ∈ Π(KM,∞) and to estimate the sum∑
Πdis(M(A),λ)

m(π) dim(HKM,f
πf ) dim(Hπ∞(τ)).

To estimate the sum over Πcus(M(A), λ) we use [Mu3, Lemma 3.2], which holds for general
reductive groups. Thus we get

(8.21)
∑

π∈Πcus(M(A);λ)

dimA2
π(P )Kf ,ν ≤ C(1 + λdM/2).

Next observe that for any τ ∈ Π(KM,∞), by definition of the counting function we have∑
π∈Πres(M(A);λ)

m(π) dim(HKM,f
πf ) dim(Hπ∞(τ)) = N

KM,f ,τ
M,res (λ).

By Proposition 7.2 the right hand side is bounded by a constant C > 0 times 1+λ(dM−1)/2.
By (7.5) we get ∑

π∈Πres(M(A);λ)

A2
π(P )Kf ,ν ≤ C(1 + λ(dM−1)/2).

Together with (8.21) the lemma follows. �

Next we estimate the integral in (8.19). We use the notation introduced above. Let
β = (β∨1 , . . . , β

∨
m) and XLs(β) = (Q1, . . . , Qm) ∈ ΞLs(β) with Qi = 〈Pi, P ′i 〉, Pi|βiP ′i , i =

1, . . . ,m. Using the definition (8.2) of ∆XLs (β)(P, π, ν, λ), it follows that we can bound the
integral by a constant multiple of

(8.22) dim(ν)

∫
i(aGLs )∗

e−t‖λ‖
2
m∏
j=1

∥∥∥∥δPj |P ′j(λ)
∣∣∣
A2
π(P ′j)

Kf ,ν

∥∥∥∥ dλ,

where δPj |P ′j(λ) is defined by (8.1). We introduce new coordinates sj := 〈λ, β∨j 〉, j =

1, . . . ,m, on (aGLs,C)∗. Using (4.9) and (8.1), we can write

(8.23) δPi|P ′i (λ) =
n′βi(π, si)

nβi(π, si)
+ jP ′i ◦ (Id⊗RPi|P ′i (π, si)

−1R′Pi|P ′i (π, si)) ◦ j
−1
P ′i
.
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Now assume that G satisfies property (L). By [FL1, Prop. 3.8], G satisfies property
(TWN+) (tempered winding numbers, strong version). This means that for any proper
Levi subgroup M of G defined over Q, and any root α ∈ ΣM , and T ∈ R the following
estimate holds

(8.24)

∫ T+1

T

|n′α(π, it)|dt� log(|T |+ Λ(π∞; psc) + level(π; psc))

for all Πdis(M(A)). In the proof of Corollary 5.2 it was proved that there exists C > 0 such
that for all π ∈ Πdis(M(A);Kf , σ) one has

(8.25) level(π; psc) ≤ C, and Λ(π∞; psc) ≤ C(1 + λ2
π∞).

Hence we get

(8.26)

∫ T+1

T

|n′α(π, it)|dt� log(|T |+ 1 + λ2
π∞)

For all T ∈ R and π ∈ Πdis(M(A);Kf , σ).

Lemma 8.3. There exists C > 0 such that

(8.27)

∫
R

∣∣∣∣n′α(π, iλ)

nα(π, iλ)

∣∣∣∣ e−tλ2

dλ ≤ C(1 + log(1 + λ2
π∞))

1 + | log t|√
t

for all 0 < t ≤ 1 and π ∈ Πdis(M(A);Kf , σ).

Proof. By (5.12) it follows that |nα(π, iλ)| = 1 for λ ∈ R. Furthermore, by (8.26) we have

(8.28)

∫ λ

0

|n′α(π, iu)|du ≤ C|λ| log(|λ|+ 1 + λ2
π∞)

for λ ∈ R and π ∈ Πdis(M(A);Kf , σ). Hence, using integration by parts, the integral on
the left hand side of the claimed inequality equals

2t

∫
R

∫ λ

0

|n′α(π, iu)|duλe−tλ2

dλ.

By (8.28) we get∫
R
|n′α(π, iλ)|e−tλ2

dλ ≤ Ct

∫
R

log(|λ|+ 1 + λ2
π∞)λ2e−tλ

2

dλ

≤ C1(1 + log(1 + λ2
π∞))

1 + | log t|√
t

for all 0 < t ≤ 1 and π ∈ Πdis(M(A);Kf , σ). �

Let ls = dim(ALs/AG). Combining (8.23), Lemma 8.3 and Proposition 6.2 it follows that
there exists C > 0
(8.29)∫

i(aGLs )∗
e−t‖λ‖

2
m∏
i=1

∥∥∥∥δPi|P ′i (λ)
∣∣∣
A2
π(P ′i )

Kf ,ν

∥∥∥∥ dλ ≤ C(1 + | log t|)lst−ls/2
(
1 + log(1 + λ2

π∞)
)ls
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for all 0 < t ≤ 1 and π ∈ Πdis(M(A)) with A2
π(P )Kf ,ν . Now we can estimate (8.19). Note

that c(π∞) = λπ∞ − ‖ρaP ‖2. Using (8.29), it follows that (8.13) can be estimated by a
constant multiple of

(8.30) (1 + | log t|)lst−ls/2
∑

π∈Πdis(M(A))

dimA2
π(P )Kf ,ν

(
1 + log(1 + λ2

π∞)
)ls
etλπ∞ .

Let XM = M(F∞)1/KM,∞ and m = dimXM . Using Lemma 8.2 it follows that for every
ε > 0 there exists C > 0 such that the series is bounded by Ct−m/2−ε for 0 < t ≤ 1.
Together with (8.30) this yields the following proposition.

Proposition 8.4. Let M ∈ L. Let m = dimXM and l = maxs∈W (M) dim(ALs/AG). For
every ε > 0 there exists C > 0 such that

|Jspec,M(φνt )| ≤ Ct−(m+l)/2−ε

for all 0 < t ≤ 1.

Now we distinguish two cases. First assume that M = G. Then AM = AG. Let R1
dis be

the restriction of the regular representation R1 of G(A)1 in L2(G(F )\G(A)1) to the discrete
subspace. Then Jspec,G(φνt ) = Tr(R1

dis(φ
ν,1
t ). Let Rdis be the regular representation of G(A)

in L2(AGG(F )\G(A)). Then the operator Rdis(φ
ν
t ) is isomorphic to R1(φν,1t ). Thus

(8.31) Jspec,G(φν,1t ) = Tr(Rdis(φ
ν
t )).

Given π ∈ Πdis(G(A)), let m(π) denote the multiplicity with which π occurs in the regular
representation of G(A) in L2(AGG(F )\G(A)). Then, using Corollary 2.2 in [BM], we get

(8.32) Jspec,G(φν,1t ) =
∑

π∈Πdis(G(A),ξ0)

m(π) dim(HKf
πf ) dim(Hπ∞ ⊗ Vν)K∞etλπ∞ .

Now assume that M is a proper Levi subgroup. Let P = M nN . Let X̃ = G(F∞)1/K∞.
Then

X̃ ∼= XM × AM/AG ×N(F∞).

Since l = maxs∈W (M) dim(ALs/AG) ≤ dim(AM/AG), it follows that m + l ≤ dim X̃ − 1.
Thus using this together with Proposition 8.4, we get

Theorem 8.5. Suppose that G satisfies property (L). Let n = dim X̃. For every open
compact subgroup Kf of G(Af ) and every ν ∈ Π(K∞) the spectral side of the trace formula,

evaluated at φν,1t , satisfies

Jspec(φ
ν,1
t ) =

∑
π∈Πdis(G(A))

m(π) dim(HKf
πf ) dim(Hπ∞ ⊗ Vν)K∞etλπ∞

+O(t−(n−1)/2)

(8.33)

as t→ 0+.
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9. Geometric side of the trace formula

As before, G is a reductive group over a number field F . In this section we consider
the geometric side of the Arthur trace formula Jgeom evaluated at φνt and determine the
asymptotic behavior of Jgeom(φνt ) as t → 0. The geometric side Jgeom of the trace formula
was introduced in [Ar1]. See also [Ar5]. For f ∈ C∞c (G(A)1), Arthur has defined Jgeom(f)
as the value at a point T0 ∈ a0, specified in [Ar3, Lemma 1.1], of a polynomial JT (f)
on a0. By [FL3, Theorem 7.1], Jgeom(f) is absolutely convergent for all f ∈ C(G(A);Kf ).
Let φνt ∈ C(G(A);Kf ) be the function which is defined by (8.11). Then Jgeom(φνt ) is well
defined. In [MM2, (1.5)], the regularized trace of the heat operator e−t∆ν was defined as

Trreg

(
e−t∆ν

)
:= Jgeom(φνt ).

Then in [MM2, Theorem 1.1] an asymptotic expansion of Trreg

(
e−t∆ν

)
as t→ 0 has been

established. For our purpose we need to know the precise form of the term of order t−n/2,
where n = dimX. To this end we briefly recall the derivation of the asymptotic expansion.
The first step is to replace φνt by an appropriate compactly supported function φ̃νt with
support concentrated near the identity element. Such a function is constructed as follows.

Let d(·, ·) : X̃×X̃ −→ [0,∞) be the geodesic distance on X̃, and put r(g∞) = d(g∞x0, x0)
where x0 = K∞ ∈ X̃ is the base point. Let 0 < a < b be sufficiently small real numbers
and let β : R −→ [0,∞) be a smooth function supported in [−b, b] such that β(y) = 1 for
0 ≤ |y| ≤ a, and 0 ≤ β(y) ≤ 1 for |y| > a. Define

(9.1) ψνt (g∞) = β(r(g∞))hνt (g∞).

and

(9.2) φ̃νt (g) = ψνt (g∞)χKf (gf )

for g = g∞ · gf ∈ G(A) = G(F∞) ·G(Af ). Then φ̃νt ∈ C∞c (G(A)1) and ψνt ∈ C∞c (G(F∞)1).
By [MM1, Proposition 12.1] there is some c > 0 such that for every 0 < t ≤ 1 we have

(9.3)
∣∣∣Jgeom(φνt )− Jgeom(φ̃νt )

∣∣∣� e−c/t.

We note that in [MM1, Sect. 12] we made the assumption that G = GL(n) or G = SL(n).
However, the proof of the proposition holds without any restriction on G. The next result
reduces the considerations to the unipotent contribution to the geometric side. Before we
state it, we recall the coarse geometric expansion of Arthur’s trace formula [Ar5, Sect. 10]:
Two elements γ1, γ2 ∈ G(F ) are called coarsely equivalent if their semisimple parts (in the
Jordan decomposition) are conjugate in G(F ). Then for any f ∈ C∞c (G(A)1) we have

Jgeom(f) =
∑
o

Jo(f),

where o runs over the coarse equivalence classes in G(F ), and the distribution Jo is sup-
ported in the set of all g ∈ G(A)1 whose semisimple part is conjugate in G(A) to some
semisimple element in o. If o 6= o′, the supports of Jo and Jo′ are disjoint. Note that the
set of unipotent elements in G(F ) constitute a single equivalence class ounip and we write
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Junip = Jounip
. Assume that Kf is neat. If the support of β is sufficiently small then by

[MM2, Prop. 3.1] we have

(9.4) Jgeom(φ̃νt ) = Junip(φ̃νt ).

By (9.3) and (9.4) the problem is reduced to the study of the asymptotic behavior of

Junip(φ̃νt ) as t↘ 0. For this purpose we use Arthur’s fine geometric expansion of Junip. In
order to state it we need to introduce some notation.

Let S be a finite set of places of F , which includes the archimedean places, such that
Kv = Kv for v 6∈ S. Let G(FS)1 = G(FS) ∩ G(A)1. Let M ∈ L. Following Arthur, we
introduce an equivalence relation on the set of unipotent elements in M(F ) that depends
on the set S: Two unipotent elements u, v ∈ M(F ) are (M,S)-equivalent if and only if u
and v are conjugate in M(FS). We denote the equivalence class of u by [u]S ⊆M(F ) and
let UMS denote the set of all such equivalence classes.

Note that two equivalent unipotent elements define the same unipotent conjugacy class in
M(FS), so we can view UMS also as the set of unipotent conjugacy classes in M(FS) which
have at least one F -rational representative, and we denote the corresponding conjugacy
class by [u]S as well.

Remark 9.1. (i) If T ⊆ S, then we get a well-defined map UMS 3 [u]S 7→ [u]T ∈ UMT .
(ii) If G = GL(n), the equivalence relation is independent of S and is the same as

conjugation in M(F ).

For [u]S ∈ UMS and fS ∈ C∞c (G(FS)1), Arthur associates a weighted orbital integral
JGM([u]S, fS) [Ar6] which is a distribution supported on the G(FS)-conjugacy class induced
from [u]S ⊆ M(FS). Let 1KS ∈ C∞c (G(AS)) be the characteristic function of KS, if
fS ∈ C∞c (G(FS)1). Put f = fS1KS ∈ C∞c (G(A)1). By [Ar7, Corollary 8.3] there exist
unique constants aM([u]S, S) ∈ C and conjugacy classes [u]S ∈ UMS , such that for all
fS ∈ C∞c (G(FS)1) we have

(9.5) Junip(f) =
∑
M∈L

∑
[u]S∈UMS

aM([u]S, S)JGM([u]S, fS).

In fact, Corollary 8.3 in [Ar7] is stated only for reductive groups over Q. However, at
the end of the article, Arthur explains that all results of the article hold equally well for
reductive groups over a number field F .

In general, there is not much known about the coefficients aM([u]S, S). However, for our
purpose we only need to know aG(1, S), which by [Ar7, Corollary 8.5] is given by

(9.6) aG(1, S) = vol(G(F )\G(A)1).

Write S = S∞ t S0. Then Kf = KS0K
S. Recall that by (9.2)

φ̃νt =
1

vol(Kf )
ψνt · 1KS0

· 1KS .
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Then by (9.5) we get

(9.7) Junip(φ̃νt ) =
∑
M∈L

∑
[u]S∈UMS

aM([u]S, S)

vol(Kf )
JGM([u]S, ψ

ν
t · 1KS0

).

Using (9.6), the term that corresponds to (G, 1) equals

(9.8)
vol(G(F )\G(A)1)

vol(Kf )
hνt (1).

To deal with the weighted orbital integrals in general, we use Arthur’s splitting formula
[Ar5, (18.7)], which we recall next. Let S be any finite set of places of F which not
necessarily contains the archimedean places. Let L ∈ L(M) and Q ∈ P(L). Given
fS ∈ G(FS) let

fS,Q(m) = δQ(m)1/2

∫
KS

∫
NQ(FS)

fS(k−1mnk) dn dk, m ∈ L.

Suppose that S = S1∪S2 with S1, S2 non-empty and disjoint, and that fS is the restriction
of a product fS1fS2 to G(FS)1 with fSj ∈ C∞(G(FSj)), j = 1, 2. Then the splitting formula
states that

(9.9) JGM([u]S, fS) =
∑

L1, L2∈L(M)

dGM(L1, L2)JL1
M ([u]S1 , fS1,Q1)JL2

M ([u]S2 , fS2,Q2),

where the notation is as follows: The dGM(L1, L2) ∈ R are certain constants which depend
only on M,L1, L2, G but not on S. In fact, dGM(L1, L2) is non-zero only if the natural
map aL1

M ⊕ aL2
M −→ aGM is an isomorphism. The Qj are arbitrary elements in P(Lj) and

[u]Sj ∈ UMSj is the image of [u]S under the canonical map UMS → UMSj . Finally, J
Lj
M ([u]Sj , ·)

denotes the Sj-adic distribution which is supported on the Lj(FSj)-conjugacy class which
is induced from [u]Sj ⊆M(FSj) and is defined as in [Ar6].

We apply the splitting formula to the weighted orbital integral on the right of (9.7) with
S1 = S∞ and S2 = S0. We obtain

(9.10) JGM([u]S, ψ
ν
t · 1KS0

) =
∑

L1, L2∈L(M)

dGM(L1, L2)JL1
M ([u]∞, ψ

ν
t,Q1

)JL2
M ([u]S0 ,1KS0

,Q2).

This is a finite sum with dGM(L1, L2) and JL2
M ([u]S0 ,1KS0

,Q2) independent of t. The as-

ymptotic expansion in t of weighted orbital integrals of the form JL1
M ([u]∞, ψ

ν
t,Q1

) has been
determined in [MM2, Prop. 7.2]. This Corollary has been proved for groups over Q. How-
ever, the proof can be easily extended to reductive groups over F , either by repeating the
arguments or using restriction of scalars,

We recall the proposition. Let M ∈ L, P1 = M1N1 ∈ F(M) and O ⊂M(F∞) a unipotent

conjugacy class in M(F∞). Let dO = dimOG(F∞)1
be the dimension of the unipotent orbit
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in G(F∞)1 induced from M(F∞), and let rM1
M = dim aM1

M . Then there exist constants
bij = bij(M,O) ∈ C, j ≥ 0, 0 ≤ i ≤ rM1

M , such that for 0 < t ≤ 1

(9.11) JM1
M (O, (ψνt )P1

) ∼ t−n/2+dGO/4
∞∑
j=0

r
M1
M∑
i=0

bijt
j/2(log t)i.

If Kf is neat, then dGO > 0 for O 6= 1. Combining (9.3)–(9.11) it follows that for every
ν ∈ Π(K∞) there exist ε > 0 such that

(9.12) Jgeom(φνt ) = vol(X(Kf ))h
ν
t (1) +O(t−n/2+ε)

for all 0 < t ≤ 1. By [Mu3, Lemma 2.3] we have

(9.13) hνt (1) =
dim(ν)

(4π)n/2
t−n/2 +O(t−(n−1)/2)

as t↘ 0. Together with (9.12) we obtain the following proposition.

Proposition 9.2. Let G be a reductive group over a number field F . Let Kf be an open
compact subgroup of G(A). Assume that Kf is neat. Then for every ν ∈ Π(K∞) there
exists ε > 0 such that we have

Jgeom(φνt ) =
dim(ν) vol(X(Kf ))

(4π)n/2
t−n/2 +O(t−n/2+ε)

for all 0 < t ≤ 1.

10. Proof of the main theorem

First we establish the adelic version of the Weyl law, which is Theorem 1.4. Let G0 be a
reductive algebraic group over a number field F and let G = ResF/Q(G0) be the reductive
group over Q which is obtained from G0 by restriction of scalars. We shall use the (non-
invariant) Arthur trace formula for reductive groups over F to deduce the Weyl law for
G0. Then we use the properties of the restriction of scalars to show that this is equivalent
to the Weyl law for G.

To begin with we recall that the coarse Arthur trace formula over F is the identity

Jspec(f) = Jgeom(f), f ∈ C(G(AF )1).

Applied to φνt we get the equality

Jspec(φ
ν
t ) = Jgeom(φνt ), t > 0.
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Assume that G0 satisfies property (L). Let K0,f be an open compact subgroup of G0(AF,f ).
We assume that K0,f is neat. Combining Theorem 8.5 and Proposition 9.2, we obtain

∑
π∈Πdis(G0(AF ))

m(π) dim(HK0,f
πf ) dim (Hπ∞ ⊗ Vν)

K∞ etλπ∞ =
dim(ν) vol(X(K0,f ))

(4π)n/2
t−n/2

+O(t−(n−1)/2)

(10.1)

as t↘ 0, where X(K0,f ) is defined by (3.10). Let N
K0,f ,ν
dis (λ) be the adelic counting function

defined by (1.16). Applying Karamata’s theorem [Fe, p. 446], we obtain

(10.2) N
K0,f ,ν
dis (λ) =

dim(ν) vol(X(K0,f ))

(4π)n/2Γ(n/2 + 1)
λn/2 + o(λn/2)

as λ→∞. By Proposition 7.2 we get

(10.3) NK0,f ,ν
cus (λ) =

dim(ν) vol(X(K0,f ))

(4π)n/2Γ(n/2 + 1)
λn/2 + o(λn/2).

This is the first part of the Weyl law for G0. The second part is the estimation of the
counting function of the residual spectrum which follows from Proposition 7.2 for M = G.

Next we show that Theorem 1.4 is compatible with the restriction of scalars. To begin
with we recall some facts about the Weil restriction of scalars [We], [Bo2]. By [We, Theorem
1.3.2] we have

(10.4) G(Qv) =
∏
w|v

G0(Fw).

for all places v of Q. In particular, we get

(10.5) G(AQ) = G0(AF ), G(R) = G0(F∞) =
∏
w∈S∞

G0(Fw), G(Q) = G0(F ).

Therefore we obtain a bijection of the automorphic representations of G0 with those of G.
Also the regular representation of G(AQ) on L2(G(Q)\G(AQ)) is equivalent to the regular
representation of G0(AF ) on L2(G0(F )\G0(AF )). Furthermore, by [Bo2, 5.2], the map
P0 7→ ResF/Q(P0) induces a bijection between parabolic subgroups of G0, defined over F ,
and parabolic subgroups of G, defined over Q, and (10.4) and (10.5) continue to hold for
F -parabolic subgroups of G0. Let P0 = MP0NP0 be a F -parabolic subgroup of G0 and

P = ResF/Q(P0). Let f ∈ L2(G(Q)\G(AQ)1) and f̃ ∈ L2(G0(F )\G0(AF )1) correspond to
each other. Then

(10.6)

∫
NP (Q)\NP (AQ)

f(nx)dn =

∫
NP0

(F )\NP0
(AF )

f̃(n0x)dn0.

Hence we get

L2
cus(G(Q)\G(AQ)1) ∼= L2

cus(G0(F )\G0(AF )1).
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The same holds for the residual spectrum. It follows that the counting functions for G and
G0 coincide. Thus (10.2) and (10.3) hold for the counting function of G = ResF/Q(G0).
This proves Theorem 1.4.

Next we deduce Theorem 1.2 from Theorem 1.4. To this end we express the counting
function in a different way. Let σ ∈ Π(K∞). Let L2(AGΓ\G(R)), σ) be defined as in
(1.3). Given π ∈ Π(G(R)) let mΓ(π) be the multiplicity with which π occurs in the regu-
lar representation RΓ in L2(AGΓ\G(R)). Let L2

dis(AGΓ\G(R)) the span of all irreducible
subrepresentations. Then

(10.7) (L2
dis(AGΓ\G(R))⊗ Vσ)K∞ =

⊕
π∈Π(G(R))

mΓ(π)(Hπ ⊗ Vσ)K∞ .

For τ ∈ Π(G(R)) let λτ be the Casimir eigenvalue of τ , i.e., the eigenvalue of RΓ(ΩG(R))
on Hτ . Then it follows that (Hτ ⊗ Vσ)K∞ is an eigenspace of ∆σ = −RΓ(ΩG(R)) with
eigenvalue −λτ . It follows that

(10.8) NΓ,dis(λ;σ) :=
∑

π∈Π(G(R))
−λπ≤λ

mΓ(π) dim(Hπ ⊗ Vσ)K∞ .

There are similar formulas for NΓ,cus(λ, σ) and NΓ,res(λ, σ)

Now we establish the relation between the adelic and real counting functions. Let Kf ⊂
G(Af ) be an open compact subgroup. Let Γi ⊂ G(Q), i = 1, ..., l, be determined by
(3.2). The relation between the classical and adelic counting functions is described by the
following lemma.

Lemma 10.1. Let σ ∈ Π(K∞). Then

N
Kf ,σ
dis (λ) =

l∑
i=1

NΓi,dis(λ, σ)

for λ ≥ 0. The same equality holds for the counting functions of the cuspidal and residual
spectrum.

Proof. Given τ ∈ Π(G(R)), let m(τ) be the multiplicity with which τ occurs in the regular
representation By (3.7) with respect to F = Q we have∑
τ∈Πdis(G(R))
−λτ≤λ

m(τ)(Hτ ⊗ Vν)K∞ =
∑

τ∈Πdis(G(R))
−λτ≤λ

∑
π∈Πdis(G(A))

π∞=τ

m(π) dim(HKf
πf ) dim(Hπ∞ ⊗ Vν)K∞

=
∑

π∈Πdis(G(A))
−λπ∞≤λ

m(π) dim(HKf
πf ) dim(Hπ∞ ⊗ Vν)K∞

= N
Kf ,σ
dis (λ).
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Combined with (3.8) it follows that

N
Kf ,σ
dis (λ) =

∑
τ∈Πdis(G(R))
−λτ≤λ

m(τ)(Hτ ⊗ Vν)K∞ =
l∑

i=1

∑
τ∈Π(G(R))
−λτ≤λ

mΓi(τ)(Hτ ⊗ Vν)K∞

=
l∑

i=1

NΓi,dis(λ, ν).

(10.9)

�

Let Kf and Γi, i = 1, ..., l, be as above. By Lemma 10.1 we have

(10.10) NKf ,ν
cus (λ) =

l∑
i=1

NΓi,cus(λ; ν).

Furthermore, by (3.2) we have

(10.11) vol(X(Kf )) = vol(AGG(Q)\G(A)/K∞Kf ) =
l∑

i=1

vol(Γi\X̃),

where X̃ = AG\G(R)/K∞. Thus by (10.2) we obtain

(10.12) lim
λ→∞

l∑
i=1

NΓi,cus(λ; ν)

λn/2
=

l∑
i=1

dim(ν) vol(Γi\X̃)

(4π)n/2Γ(n/2 + 1)
.

Now we argue as in [LV, Sect. 6.3] (1.10). By (1.10) we have

lim sup
λ→∞

NΓi,cus(λ; ν)

λn/2
≤ dim(ν) vol(Γi\X̃)

(4π)n/2Γ(n/2 + 1)

for i = 1, ..., l. Combined with (10.12) it follows that

(10.13) NΓi,cus(λ; ν) =
dim(ν) vol(Γi\X̃)

(4π)n/2Γ(n
2

+ 1)
λn/2 + o(λn/2)

for i = 1, ..., l.

Now let Γ ⊂ G(Q) be a congruence subgroup. By the definition of a congruence subgroup
(see sect. 3) there exists a compact open subgroup Kf ⊂ G(Q) such that Γ = Kf ∩G(Q).
Let Γi, i = 1, ..., l, be defined by (3.1). Then Γ = Γ1 and the first part of Theorem 1.2
follows from (10.13).

To establish the second part of Theorem 1.2, we observe that by Lemma 10.1 we have

(10.14) NKf ,ν
res (λ) =

l∑
i=1

NΓi,res(λ, ν)
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for λ ≥ 0. Since each summand on the right hand side is ≥ 0, and Γ = Γ1, (7.22) yields

(10.15) NΓ,res(λ, ν) ≤ C(1 + λ(n−1)/2), λ ≥ 0.

This completes the proof of Theorem 1.2.
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