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Abstract. In this paper we study the regularized analytic torsion of finite volume hyper-
bolic manifolds. We consider sequences of coverings Xi of a fixed hyperbolic orbifold X0.
Our main result is that for certain sequences of coverings and strongly acyclic flat bun-
dles, the analytic torsion divided by the index of the covering, converges to the L2-torsion.
Our results apply to certain sequences of arithmetic groups, in particular to sequences of
principal congruence subgroups of SO0(d, 1)(Z) and to sequences of principal congruence
subgroups or Hecke subgroups of Bianchi groups.

1. Introduction

The aim of this paper is to extend the results of Bergeron and Venkatesh [BV] on the
asymptotic equality of analytic and L2-torsion for strongly acyclic representations from the
compact to the finite volume case.

Therefore, we shall first recall the results of Bergeron and Venkatesh about the compact
case. Let G be a semisimple Lie group of non-compact type. Let K be a maximal compact

subgroup of G and let X̃ = G/K be the associated Riemannian symmetric space endowed
with a G-invariant metric. Let Γ ⊂ G be a co-compact discrete subgroup. For simplicity

we assume that Γ is torsion free. Let X := Γ\X̃ . Then X is a compact locally symmetric
manifold of non-positive curvature. Let τ be an irreducible finite dimensional complex
representation of G. Let Eτ → X be the flat vector bundle associated to the restriction
of τ to Γ. By [MtM], Eτ can be equipped with a canonical Hermitian fibre metric, called
admissible, which is unique up to scaling. Let ∆P (τ) be the Laplace operator on Eτ -valued
p-forms with respect to the metric on X and in Eτ . Let ζp(s; τ) be the zeta function of
∆p(τ) (see [Sh]). Then the analytic torsion TX(τ) ∈ R+ is defined by

(1.1) TX(τ) := exp

(
1

2

d∑

p=1

(−1)pp
d

ds
ζp(s; τ)

∣∣
s=0

)
.
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On the other hand there is the L2-torsion T
(2)
X (τ) (see [Lo]). Since the heat kernels on X̃

are G-invariant, one has

(1.2) log T
(2)
X (τ) = vol(X)t

(2)

X̃
(τ),

where t
(2)

X̃
(τ) is a constant that depends only on X̃ and τ . It is an interesting problem

to see if the L2-torsion can be approximated by the torsion of finite coverings Xi → X .
This problem has been studied by Bergeron and Venkatesh [BV] under a certain non-
degeneracy condition on τ . Representations which satisfy this condition are called strongly
acyclic. One of the main results of [BV] is as follows. Let Xi → X , i ∈ N, be a sequence of
finite coverings of X . Let τ be strongly acyclic. Let inj(Xi) denote the injectivety radius
of Xi and assume that inj(Xi) → ∞ as i→ ∞. Then by [BV, Theorem 4.5] one has

(1.3) lim
i→∞

log TXi
(τ)

vol(Xi)
= t

(2)

X̃
(τ).

If rkC(G) − rkC(K) = 1, one can show that t
(2)

X̃
(τ) 6= 0. Using the equality of analytic

torsion and Reidemeister torsion [Mu2], Bergeron and Venkatesh [BV] used this result to
study the growth of torsion in the cohomology of cocompact arithmetic groups. Further-
more, recently P. Scholze [Sch] has shown the existence of Galois representations associated
with mod p cohomology of locally symmetric spaces for GLn over a totally real or CM field.
This makes it desirable to extend these results in various directions. Especially, one would
like to extend (1.3) to the finite volume case. However, due to the presence of the contin-
uous spectrum of the Laplace operators in the non-compact case, one encounters serious
technical difficulties in attempting to generalize (1.3) to the finite volume case. In [Ra1]
J. Raimbault has dealt with finite volume hyperbolic 3-manifolds. In [Ra2] he applied
this to study the growth of torsion in the cohomology for certain sequences of congruence
subgroups of Bianchi groups. His result generalized the exponential growth of torsion, ob-
tained in [Pf2] for local systems induced from the even symmetric powers of the standard
representation of SL2(C), to all strongly acyclic local systems and furthermore they implied
that the limit of the normalized torsion size exists. The main purpose of the present paper
is to extend (1.3) to hyperbolic manifolds of finite volume and arbitrary dimension.

So from now on we let G = Spin(d, 1), K = Spin(d) or G = SO0(d, 1) and K = SO(d) for

d > 1. Then K is a maximal compact subgroup of G. Let X̃ = G/K. Choose an invariant

Riemannian metric on X̃. If the metric is suitably normalized, X̃ is isometric to the d-
dimensional hyperbolic space Hd. Let Γ ⊂ G be a torsion free lattice, i.e., Γ is a discrete,

torsion free subgroup with vol(Γ\G) < ∞. Let X = Γ\X̃ . Then X is an oriented d-
dimensional hyperbolic manifold of finite volume. Let τ be an irreducible finite dimensional
complex representation of G and let Eτ → X be the flat vector bundle associated to τ as
above, endowed with an admissible Hermitian fibre metric. The first problem is to define
the analytic torsion if X is non-compact, which is the case we are interested in. Then the
Laplace operator ∆p(τ) has a non-empty continuous spectrum and hence, the zeta function
ζp(s; τ) can not be defined in the usual way. It requires an additional regularization. We
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use the method introduced in [MP2]. One uses an appropriate height function to truncate
X at sufficiently high level Y > Y0 to get a compact submanifold X(Y ) ⊂ X with boundary
∂X(Y ). Let Kp,τ(t, x, y) be the kernel of the heat operator exp(−t∆p(τ)). Then it follows
that there exists α(t) ∈ R such that

∫
X(Y )

trKp,τ(x, x, t) dx − α(t) log Y has a limit as

Y → ∞. Then we put

(1.4) Trreg
(
e−t∆p(τ)

)
:= lim

Y→∞

(∫

X(Y )

trKp,τ (t, x, x) dx− α(t) log Y

)
.

As pointed out in [MP2, Remark 5.4], the regularized trace is not uniquely defined. It
depends on the choice of truncation parameters on the manifold X . However, if a locally

symmetric space X0 = Γ0\X̃ of finite volume is given and if truncation parameters on
X0 are fixed, then every locally symmetric manifold X which is a finite covering of X0 is
canonically equipped with truncation parameters: One simply pulls back the truncation on
X0 to a truncation on X via the covering map. This will be explained in detail in section
6 of the present paper.

We remark that we do not assume that the group Γ0 is torsion-free. In fact, the typical
example for Γ0 in the arithmetic case will be Γ0 = SO0(d, 1)(Z) or Γ0 = SL2(OD), where
OD is the ring of integers of an imaginary quadratic number field Q(

√
−D), D ∈ N being

square-free. Then Γ will denote, for example, a principal congruence subgroup. However,
we assume that Γ is not only a torsion-free lattice but also that Γ satisfies the following
condition: For each Γ-cuspidal parabolic subgroup P ′ of G one has

(1.5) Γ ∩ P ′ = Γ ∩NP ′ ,

where NP ′ denotes the nilpotent radical of P ′. This condition holds naturally, for example,
for all principal congruence subgroups of sufficiently high level.

Let θ be the Cartan involution of G with respect to our choice of K. Let τθ = τ ◦ θ. If
τ 6∼= τθ, it can be shown that Trreg

(
e−t∆p(τ)

)
is exponentially decreasing as t → ∞ and

admits an asymptotic expansion as t→ 0. Therefore, the regularized zeta function ζp(s; τ)
of ∆p(τ) can be defined as in the compact case by

(1.6) ζp(s; τ) :=
1

Γ(s)

∫ ∞

0

Trreg
(
e−t∆p(τ)

)
ts−1 dt.

The integral converges absolutely and uniformly on compact subsets of the half-plane
Re(s) > d/2 and admits a meromorphic extension to the whole complex plane. The zeta
function is regular at s = 0. So in analogy with the compact case, the analytic torsion
TX(τ) ∈ R+ can be defined by the same formula (1.1).

In even dimensions, TX(τ) is rather trivial (see [MP2]). So we assume that d = 2n + 1,
n ∈ N. To formulate our main result, we need to introduce some notation. We let Γ0 be a

fixed lattice in G and we let X0 := Γ0\X̃ . We let Γi, i ∈ N be a sequence of finite index
torsion-free subgroups of Γ0. Then following Raimbault [Ra1], in definition 8.2 we define
the condition on the sequence Γi to be cusp-uniform. This condition is, roughly spoken,
a condition on the shape of the 2n-tori which form the cross-sections of the cusps of the
manifolds Xi := Γi\X̃ . For more details, we refer to section 8. We let ℓ(Γi) be the length of
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the shortest closed geodesic on Xi. We assume that truncation parameters on the orbifold
X0 are fixed and for each i and τ with τ 6= τθ we define the analytic torsion with respect
to the induced truncation parameters on Xi as above. Then our main result can be stated
as the following theorem.

Theorem 1.1. Let Γ0 be a lattice in G. Let Γi, i ∈ N be a sequence of finite-index subgroups
of Γ0 which is cusp-uniform. Assume that for i ≥ 1 the group Γi is torsion free and satisfies
(1.5). Let PΓi

= {Pi,j, j = 1, . . . , κ(Γi)} be a set of representatives of Γi-conjugacy classes
of Γi-cuspidal parabolic subgroups of G and let NPi,j

denote the nilpotent radical of Pi,j.
Assume that limi→∞ ℓ(Γi) = ∞ and that

lim
i→∞

1

[Γ0 : Γi]

(
κ(Γi) +

κ(Γi)∑

j=1

log[Γ0 ∩NPi,j
: Γi ∩NPi,j

]
)
= 0.(1.7)

Then for Xi := Γi\X̃ and every τ with τ 6= τθ one has

lim
i→∞

log TXi
(τ)

[Γ0 : Γi]
= t

(2)

X̃
(τ) vol(X0).

We remark that the condition (1.7) is independent of the choice of PΓi
. Furthermore,

one immediately sees that it is satisfied, for example, if

lim
i→∞

κ(Γi) log[Γ0 : Γi]

[Γ0 : Γi]
= 0.(1.8)

For hyperbolic 3-manifolds, Theorem 1.1 was proved by J. Raimbault [Ra1] under addi-
tional assumptions on the intertwining operators. We emphasize that we don’t need this
assumption.

For sequences of cusp uniform normal subgroups Γi of Γ0 which exhaust Γ0, the as-
sumption (1.7) is easily verified and we have the following theorem for the case of normal
subgroups.

Theorem 1.2. Let Γ0 be a lattice in G and let Γi, i ∈ N, be a sequence of finite-index
normal subgroups which is cusp uniform and such that each Γi, i ≥ 1, is torsion-free and
satisfies (1.5). If limi→∞[Γ0 : Γi] = ∞ and if each γ0 ∈ Γ0 − {1} only belongs to finitely
many Γi, then for each τ with τ 6= τθ one has

lim
i→∞

log TXi
(τ)

[Γ : Γi]
= t

(2)

X̃
(τ) vol(X0).(1.9)

In particular, if under the same assumptions Γi is a tower of normal subgroups, i.e. Γi+1 ⊂
Γi for each i and ∩iΓi = {1}, then (1.9) holds.

We shall now give applications of our main results to the case of arithmetic groups.
Firstly let Γ0 := SO0(d, 1)(Z). Then Γ0 is a lattice in SO0(d, 1). For q ∈ N let Γ(q) be
the principal congruence subgroup of level q (see section 10). Using a result of Deitmar
and Hoffmann [DH], it follows that the family of principal congruence subgroups is cusp
uniform (see Lemma 10.1). Thus, Theorem 1.2 implies the following corollary.
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Corollary 1.3. For any finite-dimensional irreducible representation τ of SO0(d, 1) with
τ 6= τθ the principal congruence subgroups Γ(q), q ≥ 3, of Γ0 := SO0(d, 1)(Z) satisfy

lim
q→∞

log TXq
(τ)

[Γ : Γ(q)]
= t

(2)

X̃
(τ) vol(X0),

where Xq := Γ(q)\Hd and X0 := Γ0\Hd.

Secondly, we give some specific applications in the 3-dimensional case. There is a natural
isomorphism Spin(3, 1) ∼= SL2(C). If ρ is the standard-representation of SL2(C) on C2, then
the finite-dimensional irreducible representations of SL2(C) are given as Symm ρ⊗Symn ρ,
m,n ∈ N. Here Symk denotes the k-th symmetric power and ρ denotes the complex-
conjugate representation of ρ. One has (Symm ρ ⊗ Symn ρ)θ = Symn ρ ⊗ Symm ρ. For
D ∈ N square-free let OD be the ring of integers of the imaginary quadratic number field
Q(

√
−D) and let Γ(D) := SL2(OD). Then Γ(D) is a lattice in SL2(C). If a is a non-zero

ideal in OD, let Γ(a) be the associated principal congruence subgroup of level a (see section
11). Then Theorem 1.2 implies the following corollary.

Corollary 1.4. If ai is a sequence of non-zero ideals in OD such that each N(ai) is
sufficiently large and such that limi→∞N(ai) = ∞, then for any representation τ =
Symn ρ⊗ Symm ρ̄ with m 6= n and for XD := Γ(D)\H3 and Xi := Γ(ai)\H3 one has

lim
i→∞

log TXi
(τ)

[Γ(D) : Γ(ai)]
= t

(2)

X̃
(τ) vol(XD).(1.10)

Finally, due to their arithmetic significance, in the 3-dimensional case we also want
to treat Hecke subgroups of the Bianchi groups. These groups do not fall directly in the
framework of our two main theorems, since their systole does not necessarily tend to infinity
if their index in the Bianchi groups does. However, a slight modification of the proof of our
main results will also give the corresponding statement for these groups. More precisely,
for a non-zero ideal a of OD let Γ0(a) be the corresponding Hecke subgroup. Actually,
since these groups are not torsion-free, we have to take a fixed torsion-free subgroup Γ′ of
Γ(D) of finite index which satisfies assumption (1.5), for example a principal congruence
subgroup of sufficiently high level, and consider the intersections Γ′

0(a) := Γ0(a)∩Γ′. Then
we have the following theorem:

Theorem 1.5. If ai is a sequence of non-zero ideals in OD such that limi→∞N(ai) = ∞,
then for any representation τ = Symn ρ ⊗ Symm ρ̄ with m 6= n and for XD := Γ(D)\H3,
X ′

i := Γ′
0(ai)\H3 one has

lim
i→∞

log TX′
i
(τ)

[Γ(D) : Γ′
0(ai)]

= t
(2)

X̃
(τ) vol(XD).(1.11)

We shall now outline our method to prove our main results. Let d = 2n + 1. We
assume that the representation τ is not invariant under the Cartan involution. To indicate
the dependence of the heat operator, the regularized trace and other quantities on the



6 WERNER MÜLLER AND JONATHAN PFAFF

covering Xi, we use the subscript Xi. Let

(1.12) KXi
(t, τ) :=

1

2

d∑

p=1

(−1)ppTrreg;Xi

(
e−t∆Xi,p

(τ)
)
.

As observed above, KXi
(t, τ) is exponentially decreasing as t → ∞ and admits an as-

ymptotic expansion as t → 0. Thus the analytic torsion TXi
(τ) ∈ R+ can be defined

by

(1.13) log TXi
(τ) =

d

ds

(
1

Γ(s)

∫ ∞

0

KXi
(t, τ)ts−1 dt

) ∣∣∣∣
s=0

.

The integral converges for Re(s) > d/2 and its value at s = 0 is defined by analytic
continuation. For T > 0 write

(1.14) log TXi
(τ) =

d

ds

(
1

Γ(s)

∫ T

0

KXi
(t, τ)ts−1 dt

) ∣∣∣∣
s=0

+

∫ ∞

T

KXi
(t, τ)t−1 dt.

Now we study the behaviour as i→ ∞ of the terms on the right hand side. We start with
the second term. Our assumption about τ implies that the spectrum of the Laplacians
∆Xi,p, i ∈ N, have a uniform positive lower bound. Using the definition (6.12) of the
regularized trace, it follows that there exist constants Ci, c > 0 such that for t ≥ 10 we
have

|KXi
(t, τ)| ≤ Cie

−ct

The problem is to estimate Ci. In Proposition 7.2, we will show that there exists a constant
C such that for each i and each t ≥ 10 one has an estimation

|Trreg;Xi

(
e−t∆Xi,p

(τ)
)
| ≤ Ce−ct

(
Trreg;Xi

(
e−∆Xi,p

(τ)
)
+ vol(Xi)

)
(1.15)

for each p = 1, . . . , d. This estimate is easy to prove in the compact case and one does not
need the term vol(Xi) here. More precisely, if Xi is compact and if λ1(i) ≤ λ2(i) ≤ · · · are
the eigenvalues of ∆Xi,p(τ), counted with multiplicity, then for t ≥ 2 we have

Tr
(
e−t∆Xi,p

(τ)
)
=

∞∑

j=1

e−tλj(i) ≤ e−tλ1(i)/2
∞∑

j=1

e−λj(i) = e−tλ1(i)/2 Tr
(
e−∆Xi,p

(τ)
)
,

and the assumption on τ implies that there is c > 0 such that λ1(i) ≥ c for all i ∈ N.
In the non-compact case, the proof of equation (1.15) is more difficult since one also

has to deal with the contribution of the continuous spectrum to the regularized trace,
which is given by the logarithmic derivative of certain intertwining operators. The key
ingredient of our approach to treat the terms involving the intertwining operators is the
factorization of the determinant of the intertwining operators, which we will study carefully
under coverings in section 4. Our main result is Theorem 4.6.

To estimate Trreg;Xi

(
e−∆Xi,p

)
we use that the regularized trace of the heat operator,

up to a minor term, is equal to the spectral side of the Selberg trace formula applied to
the heat operator (see [MP2]). Then we apply the Selberg trace formula to express the

regularized trace through the geometric side of the trace formula. More precisely, let Ẽτ
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be the homogeneous vector bundle over X̃ = G/K associated to τ |K and let ∆̃p(τ) be the

Laplacian on Ẽτ -valued p-forms on X̃ . The heat operator e−t∆̃p(τ) is a convolution operator

with kernel H
νp(τ)
t : G→ End(Λpp∗ ⊗ Vτ ). Let h

νp(τ)
t (g) = trH

νp(τ)
t (g), g ∈ G. Then by the

trace formula we get

(1.16) Trreg;Xi

(
e−t∆Xi,p

(τ)
)
= IX1(h

τ,p
t ) +HX1(h

τ,p
t ) + T ′

X1
(hτ,pt ) + SX1(h

τ,p
t ),

where IXi
, HXi

, T ′
Xi
, and SXi

are distributions on G associated to the identity, the hy-
perbolic and the parabolic conjugacy classes of Γi, respectively. The distributions are
described in section 8. For example, the identity contribution is given by

IXi
(hτ,pt ) = vol(Xi)h

τ,p
t (1).

Now we put t = 1 and estimate each term on the right hand side of (1.16). In this way we
can conclude that there exist C, c > 0 such that for t ≥ 10 and all i ∈ N we have

|KXi
(t, τ)| ≤ C(vol(Xi) + κ(Xi) + α(Xi))e

−ct,

where α(Xi) is defined in terms of the lattices associated to the cross sections of the cusps
of Xi (see (8.11)). Using the assumptions of Theorem 1.1, we finally get that there exist
C, c > 0 such that

(1.17)
1

vol(Xi)

∣∣∣∣
∫ ∞

T

KXi
(t, τ)t−1 dt

∣∣∣∣ ≤ Ce−cT

for all i ∈ N.
To deal with the first term on the right hand side of (1.14), put

(1.18) kτt :=
1

2

d∑

p=1

(−1)pphτ,pt .

Then by (1.12) and (1.16) we get

(1.19) KXi
(t, τ) = IX1(k

τ
t ) +HX1(k

τ
t ) + T ′

X1
(kτt ) + SX1(k

τ
t ).

Now we take the partial Mellin transform of each term on the right hand side, take its
derivative at s = 0, and study its behaviour as i→ ∞. For the contribution of the identity

we get vol(Xi)(t
(2)

X̃
(τ) + O(e−cT )). Using the assumptions of Theorem 1.1, it follows that

the other terms, divided by [Γ0 : Γi], converge to 0. Thus we get

(1.20) lim
i→∞

1

[Γ0 : Γi]

d

ds

(
1

Γ(s)

∫ T

0

KXi
(t, τ)ts−1 dt

) ∣∣∣∣
s=0

= vol(X0)(t
(2)

X̃
(τ) +O(e−cT )).

Combining (1.20), (1.14) and (1.17), and using that T > 0 is arbitrary, Theorem 1.1 follows.
Theorem 1.2 is a simple consequence of Theorem 1.1. For the corollaries we only need

to verify that the assumptions of the main theorems are satisfied.

The paper is organized as follows. In section 2 we fix some notation and collect some
basic facts. In section 3 we recall some facts about Eisenstein series and intertwining
operators. Section 4 deals with the factorization of the determinant of the C-matrix.
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The main result is Theorem 4.6. In section 5 we consider Bochner-Laplace operators and
establish some properties of their spectrum. In section 6 we introduce the regularized trace
of the heat operator using the truncated heat kernel and express it in terms of spectral
data of the corresponding Laplace operator. Section 7 deals with the estimation of the
regularized trace of the heat operator for large time. The bound obtained in Proposition
7.2 involves the regularized trace of the heat operator at time t = 1. In section 8 we use the
geometric side of the trace formula to study this term in detail. Of particular importance
are the constants obtained from the contribution of the parabolic conjugacy classes which
we need to estimate uniformly with respect to the covering. In section 9 we prove our main
theorems. In the final sections 10 and 11 we apply our results to derive the corollaries.

Acknowledgement. We would like to thank Tobias Finis for several very helpful expla-
nations concerning the Hecke subgroups of the Bianchi groups. In particular, Proposition
11.2 and its proof are due to Tobias Finis.

2. Preliminaries

We let d = 2n+1, n ∈ N and we let either G = SO0(d, 1), K = SO(d) or G = Spin(d, 1),

K = Spin(d). Then K is a maximal compact subgroup of G and if the quotient X̃ := G/K

is equipped with the G-invariant metric defined by (2.3), then X̃ is isometric to the d-
dimensional hyperbolic space. Let G = NAK be the Iwasawa decomposition of G as in
[MP2, section 2] and let M be the centralizer of A in K. Let g, n, a, k, m denote the Lie
algebras of G, N , A K and M . Fix a Cartan subalgebra b of m. Then

h := a⊕ b

is a Cartan subalgebra of g. We can identify gC ∼= so(d + 1,C). Let e1 ∈ a∗ be the
positive restricted root defining n. Then we fix e2, . . . , en+1 ∈ ib∗ such that the positive
roots ∆+(gC, hC) are chosen as in [Kn2, page 684-685] for the root system Dn+1. We let
∆+(gC, aC) be the set of roots of ∆

+(gC, hC) which do not vanish on aC. The positive roots
∆+(mC, bC) are chosen such that they are restrictions of elements from ∆+(gC, hC). For
j = 1, . . . , n+ 1 let

(2.1) ρj := n+ 1− j.

Then the half-sums of positive roots ρG and ρM , respectively, are given by

ρG :=
1

2

∑

α∈∆+(gC,hC)

α =
n+1∑

j=1

ρjej ; ρM :=
1

2

∑

α∈∆+(mC,bC)

α =
n+1∑

j=2

ρjej.(2.2)

Put

〈X, Y 〉θ := − 1

2(d− 1)
B(X, θ(Y )), X, Y ∈ g.(2.3)

Let Z
[
1
2

]j
be the set of all (k1, . . . , kj) ∈ Qj such that either all ki are integers or all ki are

half integers. Let Rep(G) denote the set of finite dimensional irreducible representations



9

τ of G. These are parametrized by their highest weights

(2.4) Λ(τ) = k1(τ)e1 + · · ·+ kn+1(τ)en+1; k1(τ) ≥ k2(τ) ≥ · · · ≥ kn(τ) ≥ |kn+1(τ)| ,
where (k1(τ), . . . , kn+1(τ)) belongs to Z

[
1
2

]n+1
if G = Spin(d, 1) and to Zn+1 if G =

SO0(d, 1). Moreover, the finite dimensional irreducible representations ν ∈ K̂ of K are
parametrized by their highest weights

(2.5) Λ(ν) = k2(ν)e2 + · · ·+ kn+1(ν)en+1; k2(ν) ≥ k3(ν) ≥ · · · ≥ kn(ν) ≥ kn+1(ν) ≥ 0,

where (k2(ν), . . . , kn+1(ν)) belongs to Z
[
1
2

]n
if G = Spin(d, 1) and to Zn if G = SO0(d, 1).

Finally, the finite dimensional irreducible representations σ ∈ M̂ of M are parametrized
by their highest weights

(2.6) Λ(σ) = k2(σ)e2 + · · ·+ kn+1(σ)en+1; k2(σ) ≥ k3(σ) ≥ · · · ≥ kn(σ) ≥ |kn+1(σ)| ,
where (k2(σ), . . . , kn+1(σ)) belongs to Z

[
1
2

]n
, if G = Spin(d, 1), and to Zn, if G = SO0(d, 1).

For ν ∈ K̂ and σ ∈ M̂ we denote by [ν : σ] the multiplicity of σ in the restriction of ν to
M .

Let Ω, ΩK and ΩM be the Casimir elements of G, K and M , respectively, with respect
to the inner product (2.3). Then by a standard computation one has

Ω = H2
1 − 2nH1 + ΩM mod nU(g).(2.7)

LetM ′ be the normalizer of A in K and letW (A) =M ′/M be the restricted Weyl-group.
It has order two and it acts on the finite-dimensional representations of M as follows. Let
w0 ∈ W (A) be the non-trivial element and let m0 ∈ M ′ be a representative of w0. Given

σ ∈ M̂ , the representation w0σ ∈ M̂ is defined by

w0σ(m) = σ(m0mm
−1
0 ), m ∈M.

Let Λ(σ) = k2(σ)e2 + · · · + kn+1(σ)en+1 be the highest weight of σ as in (2.6). Then the
highest weight Λ(w0σ) of w0σ is given by

(2.8) Λ(w0σ) = k2(σ)e2 + · · ·+ kn(σ)en − kn+1(σ)en+1.

Let P := NAM . We equip a with the norm induced from the restriction of the normal-
ized Killing form on g. Let H1 ∈ a be the unique vector which is of norm one and such that
the positive restricted root, implicit in the choice of N , is positive on H1. Let exp : a → A
be the exponential map. Every a ∈ A can be written as a = exp log a, where log a ∈ a is
unique. For t ∈ R, we let a(t) := exp (tH1). If g ∈ G, we define n(g) ∈ N , H(g) ∈ R and
κ(g) ∈ K by

g = n(g)a(H(g))κ(g).

Now let P ′ be any parabolic subgroup. Then there exists a kP ′ ∈ K such that P ′ =
NP ′AP ′MP ′ with NP ′ = kP ′Nk−1

P ′ , AP ′ = kP ′Ak−1
P ′ , MP ′ = kP ′Mk−1

P ′ . We choose a set of
kP ′’s, which will be fixed from now on. Let kP = 1. We let aP ′(t) := kP ′a(t)k−1

P ′ . If g ∈ G,
we define nP ′(g) ∈ NP ′, HP ′(g) ∈ R and κP ′(g) ∈ K by

g = nP ′(g)aP ′(HP ′(g))κP ′(g)(2.9)
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and we define an identification ιP ′ of (0,∞) with AP ′ by ιP ′(t) := aP ′(log(t)). For Y > 0, let
A0

P ′ [Y ] := ιP ′(Y,∞) and AP ′ [Y ] := ιP ′ [Y,∞). For g ∈ G as in (2.9) we let yP ′(g) := eHP ′ (g).

Let Γ be a discrete subgroup of G such that vol(Γ\G) < ∞. We do not assume at

the moment that Γ is torsion-free. Let X := Γ\X̃ . Let prX : G → X be the projection.
A parabolic subgroup P ′ of G is called a Γ-cuspidal parabolic subgroup if Γ ∩ NP ′ is a
lattice in NP ′. Let PΓ = {P1, . . . , Pκ(Γ)} be a set of representatives of Γ-conjugacy-classes
of Γ-cuspidal parabolic subgroups of G. Then for each P ′ ∈ PΓ one has

Γ ∩ P ′ = Γ ∩ (MP ′NP ′).(2.10)

The number

(2.11) κ(X) := κ(Γ) = #PΓ

is finite and equals the number of cusps of X . More precisely, for each Pi ∈ PΓ there exists
a YPi

> 0 and there exists a compact connected subset C = C(YP1, . . . , YPκ(Γ)
) of G such

that in the sense of a disjoint union one has

G = Γ · C ⊔
κ(X)⊔

i=1

Γ ·NPi
A0

Pi
[YPi

]K(2.12)

and such that

γ ·NPi
A0

Pi
[YPi

]K ∩NPi
A0

Pi
[YPi

]K 6= ∅ ⇔ γ ∈ Γ ∩ Pi.(2.13)

For each Pi ∈ PΓ let

(2.14) Y 0
Pi
(Γ) = inf{YPi

: YPi
∈ R+ satisfies (2.13)}.

Moreover, we define the height-function yΓ,Pi
on X by

(2.15) yΓ,Pi
(x) := sup{yPi

(g) : g ∈ G, prX(g) = x}.
By (2.12) and (2.13) the supremum is finite. For Y1, . . . , Yκ(X) ∈ (0,∞) we let

(2.16) X(P1, . . . , Pκ(X); Y1, . . . , Yκ(X)) := {x ∈ X : yΓ,Pi
(x) ≤ Yi, i = 1, . . . , κ(X)}.

If Y ∈ (0,∞), we write XPΓ
(Y ) or X(P1, . . . , Pκ(X); Y ) for X(P1, . . . , Pκ(X); Y, . . . , Y ), i.e.

XPΓ
(Y ) := X(P1, . . . , Pκ(X); Y ) := {x ∈ X : yΓ,Pi

(x) ≤ Y, i = 1, . . . , κ(X)}.(2.17)

For later purposes we now recall the interpretation of the semisimple elements in terms
of closed geodesics. For further details we refer, for example, to [Pf1, section 3]. We let Γs

denote the semisimple elements of Γ which are not G-conjugate to an element of K. By
C(Γ)s we denote the set of Γ-conjugacy classes of elements of Γs. Then for each γ ∈ Γs

there exists a unique geodesic c̃γ in X̃ which is stabilized by γ. If one lets

ℓ(γ) = inf
x∈X̃

d(x, γx),(2.18)

then ℓ(γ) > 0 and the infimum is attained exactly by the points in X̃ lying on c̃γ. Let
C(X) denote the set of closed geodesics of X . For γ ∈ Γs let cγ be the projection of the
segment of c̃γ from x0 to γx0, x0 a point on c̃γ, to X . Then one can show that cγ depends
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only on the Γ-conjugacy class of γ and that the assignment γ 7→ cγ induces a bijection
between C(Γ)s and C(X). For c ∈ C(X) let ℓ(c) denote its length. Then there exists a
constant CX such that for each R one can estimate

#{c ∈ C(X) : ℓ(c) ≤ R} ≤ CXe
2nR.(2.19)

In particular, if one sets

ℓ(Γ) := ℓ(X) := inf{ℓ(c) : c ∈ C(X)},(2.20)

then ℓ(Γ) > 0.
Measures are normalized as follows. We normalize the Haar-measure on K such that K

has volume 1. We fix an isometric identification of R2n with n with respect to the inner
product 〈·, ·〉θ. We give n the measure, induced from the Lebesgue measure under this
identification. Moreover, we identify n and N by the exponential map and we will denote
by dn the Haar measure on N , induced from the measure on n under this identification.
We normalize the Haar measure on G by setting

∫

G

f(g)dg =

∫

N

∫

R

∫

K

e−2ntf(na(t)k)dkdtdn.(2.21)

If P ′ is a parabolic subgroup of G, the measures on NP ′ and AP ′ will be the measures
induced from N and A via the conjugation with kP ′. Let f be integrable over Γ\G. Then
identifying f with a measurable function on G it follows from (2.21), (2.12) and (2.13) that
for every Y ≥ Y0 one has

∫

Γ\G
f(x)dx =

∫

C(Y )

f(g)dg +

κ(Γ)∑

i=1

∫

Γ∩NPi
\NPi

∫ ∞

log Y

∫

K

e−2ntf(nPi
aPi

(t)k)dnPi
dtdk(2.22)

For σ ∈ M̂ and λ ∈ C let πσ,λ be the principal series representation of G parametrized
as in [MP2, section 2.7]. In particular, the representations πσ,λ are unitary iff λ ∈ R. We

denote by Θσ,λ the global character of πσ,λ. For σ ∈ M̂ with highest weight Λ(σ) as in
(2.6) let σ(ΩM) be the Casimir eigenvalue of σ and let

c(σ) := σ(ΩM)− n2 =
n+1∑

j=2

(kj(σ) + ρj)
2 −

n+1∑

j=1

ρ2j ,(2.23)

where the second equality follows from a standard computation.

3. Eisenstein series

In this section we recall the definition and some basic properties of the Eisenstein series.
Let Γ be a discrete subgroup ofG such that vol(Γ\G) is finite. Furthermore, for convenience
we assume in this section that Γ is torsion-free and that for each Γ-cuspidal parabolic
subgroup P ′ of G one has

Γ ∩ P ′ = Γ ∩NP ′ .(3.1)
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Let PΓ be a fixed set of representatives of Γ-conjugacy classes of Γ-cuspidal parabolic
subgroups of G. Let Pi ∈ PΓ. For σ ∈ M̂ we define a representation σPi

of MPi
by

(3.2) σPi
(mPi

) := σ(k−1
Pi
mPi

kPi
), mPi

∈ MPi
.

Now let ν ∈ K̂ and σP ∈ M̂ such that [ν : σ] 6= 0. Then we let EPi
(σ, ν) be the set of all

continuous functions Φ on G which are left-invariant under NPi
APi

such that for all x ∈ G
the function m 7→ ΦPi

(mx) belongs to L2(MPi
, σPi

), the σPi
-isotypical component of the

right regular representation of MPi
, and such that for all x ∈ G the function k 7→ ΦPi

(xk)
belongs to the ν-isotypical component of the right regular representation of K. The space
EPi

(σ, ν) is finite dimensional and in fact one has

dim(EPi
(σ, ν)) = dim(σ) dim(ν).(3.3)

We define an inner product on EPi
(σ, ν) as follows. Any element of EPi

(σ, ν) can be
identified canonically with a function on K. For Φ,Ψ ∈ EPi

(σ, ν) put

〈Φ,Ψ〉 := vol(Γ ∩NPi
\NPi

)

∫

K

Φ(k)Ψ̄(k)dk.(3.4)

Define the Hilbert space EPi
(σ) by

EPi
(σ) :=

⊕

ν∈K̂
[ν:σ] 6=0

EPi
(σ, ν).

For ΦPi
∈ EPi

(σ, ν) and λ ∈ C let

ΦPi,λ(g) := e(λ+n)(HPi
(x))ΦPi

(g).(3.5)

Let x ∈ Γ\G, x = Γg. Then the Eisenstein series E(ΦPi
: λ : x) is defined by

E(ΦPi
: λ : x) :=

∑

γ∈(Γ∩NPi
)\Γ

ΦPi,λ(γg).(3.6)

On Γ\G×{λ ∈ C : Re(λ) > n} the series (3.6) is absolutely and locally uniformly conver-
gent. As a function of λ, it has a meromorphic continuation to C with only finitely many
poles in the strip 0 < Re(λ) ≤ n which are located on (0, n] and it has no poles on the line

Re(λ) = 0. By (2.7), for σ ∈ M̂ with [ν : σ] 6= 0 and ΦPi
∈ E(σ, ν) one has

ΩΦPi,λ = (λ2 + c(σ))ΦPi,λ,(3.7)

where c(σ) is as in (2.23). Since Ω is G-invariant it follows that

ΩE(ΦPi
: λ : x) = (λ2 + c(σ))E(ΦPi

: λ : x).(3.8)

Let
E(σ, ν) :=

⊕

Pi∈PΓ

EPi
(σ, ν); E(σ) :=

⊕

Pi∈PΓ

EPi
(σ).

By (3.3) one has

dimE(σ, ν) = κ(Γ) dim(σ) dim(ν).(3.9)
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Let Pi, Pj ∈ PΓ and let σ ∈ M̂ . For ΦPi
∈ EPi

(σ, ν), i = 1, 2, and g ∈ G let

EPj
(ΦPi

: g : λ) :=
1

vol
(
Γ ∩NPj

\NPj

)
∫

Γ∩NPj
\NPj

E(ΦPi
: ng : λ)dn

be the constant term of E(ΦPi
: − : λ) along Pj . Then there exists a meromorphic function

CPi|Pj
(σ : ν : λ) : EPi

(σ, ν) −→ EPj
(w0σ, ν),

such that for Pi, Pj ∈ PΓ one has

EPj
(ΦPi

: g : λ) = δi,jΦPi,λ(g) + (CPi|Pj
(σ : ν : λ)ΦPi

)−λ(g).(3.10)

Now we let

CPi|Pj
(σPi

, λ) :=
⊕

ν∈K̂
[ν:σ] 6=0

CPi|Pj
(σ, ν, λ),

where σPi
is defined by (3.2). Furthermore, let

C(σ, λ) : E(σ) → E(w0σ); C(σ, ν, λ) : E(σ, ν) → E(w0σ, ν)

be the maps built from the maps CPi|Pj
(σ, λ), resp. CPi|Pj

(σ, ν, λ). Then one has

C(w0σ, λ)C(σ,−λ) = Id; C(σ, λ)∗ = C(w0σ, λ̄).(3.11)

Let σ ∈ M̂ and ν ∈ K̂. If σ = w0σ, let EPi
(σ, ν) := EPi

(σ, ν), E(σ, ν) := E(σ, ν),
C(σ : ν : s) := C(σ : ν : s). If σ 6= w0σ, let EPi

(σ, ν) := EPi
(σ, ν) ⊕ EPi

(w0σ, ν)
E(σ, ν) := E(σ, ν)⊕ E(w0σ, ν) and

(3.12) C(σ, ν, s) : E(σ, ν) → E(σ, ν); C(σ, ν, s) :=

(
0 C(w0σ, ν, s)

C(σ, ν, s) 0

)
.

Let Rσ (resp. Rw0σ) denote the right regular representation ofK on E(σ) (resp. E(w0σ)).
Then C(σ, s) is an intertwining operator between Rσ and Rw0σ. Thus if ν is a finite-

dimensional representation of K on Vν , we can define C̃(σ, ν, s) as the restriction of
(C(σ, s) ⊗ Id) to a map from (E(σ) ⊗ Vν)

K to (E(w0σ) ⊗ Vν)
K . For later purpose we

need the following Lemma.

Lemma 3.1. In the sense of meromorphic functions one has

Tr

(
C̃(σ, ν, s)−1 d

ds
C̃(σ, ν, s)

)
=

1

dim(ν)
Tr

(
C(σ, ν, s)−1 d

ds
C(σ, ν, s)

)

for each σ ∈ M̂ , ν ∈ K̂ with [ν : σ] 6= 0.

Proof. Let P1 be the projection form E(σ) to E(σ, ν) and let P2 be the projection from
(E(σ)⊗ Vν) to (E(σ)⊗ Vν)

K . Then using that ν̌ ∼= ν we have

P1 = dim(ν)

∫

K

χν(k)Rσ(k); P2 =

∫

K

Rσ(k)⊗ ν(k)dk,
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where χν is the character of ν. Thus one has

Tr

(
C̃(σ, ν, s)−1 d

ds
C̃(σ, ν, s)

)
= Tr

(
C(σ, s)−1 d

ds
C(σ, s)⊗ Id ◦P2

)

=Tr

(∫

K

C(σ, s)−1 d

ds
C(σ, s) ◦Rσ(k)⊗ ν(k)dk

)

=Tr

(∫

K

C(σ, s)−1 d

ds
C(σ, s) ◦ χν(k)Rσ(k)dk

)

=
1

dim(ν)
Tr

(
C(σ, s)−1 d

ds
C(σ, s) ◦ P1

)
=

1

dim(ν)
Tr

(
C(σ, ν, s)−1 d

ds
C(σ, ν, s)

)
,

which concludes the proof of the proposition. �

4. Factorization of the C-matrix

We let Γ be a discrete subgroup of G satisfying (3.1) and we keep the notations of
the previous section. By the results of Müller, in particular [Mu1, equation (6.8)], the
determinant of the matrix C(σ, ν, λ) factorizes into a product of an exponential factor and
an infinite Weierstrass product involving its zeroes and poles. For the case of a hyperbolic
surface, this factorization was first established by Selberg (see[Se, page 656]).

While the poles and zeroes of the C-matrices are easily seen to be independent of the
choice of PΓ, the exponential factor depends on PΓ or, equivalently, on the choice of
truncation parameters. This fact will become particularly crucial if one lets the manifold
X vary. In [Mu1], the manifold X and the set PΓ were fixed. Therefore, for the purposes
of the present article we have to go through the arguments of the paper [Mu1] which
led to equation (6.8) in this paper and to keep track of the precise choices of truncation
parameters.

Let RΓ be the right regular representation of G on L2(Γ\G). If ν is a finite dimensional
representation of K, let L2(Γ\G)ν denote the ν-isotypical component of the restriction of
RΓ to K. Let C∞

c (Γ\G)ν := C∞
c (Γ\G)∩L2(Γ\G)ν . Then it is easy to see that C∞

c (Γ\G)ν
is dense in L2(Γ\G)ν .

Now let ∆ν be the differential operator in C
∞(Γ\G)ν , which is induced by −RΓ(Ω). If we

regard it as an operator in L2(Γ\G)ν with domain C∞
c (Γ\G)ν , it is symmetric, essentially

selfadjoint and satisfies ∆ν ≥ −ν(ΩK), where ν(ΩK) ∈ R+ is the Casimir eigenvalue of ν.
This follows easily from the considerations in the next section 5. The closure of ∆ν will be
denoted by ∆ν . One has

σ(∆ν) ⊂ (−ν(ΩK),∞).(4.1)

We fix a smooth function φ on R with values in [0, 1] such that φ(t) = 0 for t ≤ 0 and
φ(t) = 1 for t ≥ 1. If Pi ∈ PΓ, then for Y ∈ (0,∞) we let

ψPi,Y (nPi
aPi

(t)k) := φ(t− log Y ), nPi
∈ NPi

, t ∈ R.
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Now let YPi
∈ (0,∞), i = 1, . . . , κ(Γ), such that YPi

≥ Y 0
Pi
(Γ), where Y 0

Pi
(Γ) is defined

by (2.14). For ΦPi
∈ E(σPi

, ν) we define a function θ(ΦPi
: YPi

: λ : x) on Γ\G by

θ(ΦPi
: YPi

: λ : x) :=
∑

γ∈Γ∩NPi
\Γ
ψPi,YPi

(γg)ΦPi,λ(γg); x = Γg.(4.2)

By (2.13) at most one summand in this sum can be non-zero . We let

H(ΦPi
: YPi

: λ : x) := (∆ν + c(σPi
) + λ2)θ(ΦPi

: YPi
: λ : x).

Then by (3.7) one has H(ΦPi
: YPi

: λ : x) ∈ C∞
c (Γ\G)ν. Moreover, the Eisenstein series

can be characterized by the following Proposition, which for dimX = 2 is due to Colin de
Verdière [CV].

Proposition 4.1. For Pi ∈ PΓ, YPi
≥ Y 0

Pi
(Γ) and λ ∈ C with λ2 + c(σ) /∈ (−∞, ν(ΩK))

and Re(λ) > 0 one has

E(ΦPi
: λ : x) = θ(ΦPi

: YPi
: λ : x)− (∆ν + λ2 + c(σ))−1(H(ΦPi

: YPi
: λ : x)).

Proof. This was proved in general in [Mu1, Proposition 4.7]. For the convenience of the

reader we recall the proof. Denote the right hand side by Ẽ(ΦPi
: λ : x). By definition

it satisfies (∆ν + λ2 + c(σ))Ẽ(ΦPi
: λ : x) = 0. By (3.8), E(ΦPi

: λ : x) satisfies the
same differential equation. By [Mu1, Lemma 4.5], E(ΦPi

: λ) − θ(ΦPi
: YPi

: λ) is square

integrable for Re(λ) > n. Hence, u := E((ΦPi
: λ) − Ẽ(ΦPi

: λ) is square integrable for
Re(λ) > n and satisfies (∆ν+λ

2+c(σ))u = 0. Since ∆ν is essentially self-adjoint, it follows

that E((ΦPi
: λ) = Ẽ(ΦPi

: λ) for Re(λ) > n. The proposition follows by the uniqueness
the analytic continuation. �

Lemma 4.2. There exists a constant C1 which is independent of Γ and PΓ such that
for all λ ∈ C with λ2 + c(σ) /∈ (−∞, ν(ΩK)) and Re(λ) > 0, all YPi

≥ Y 0
Pi
(Γ), and all

ΦPi
∈ EPi

(σ, ν), Pi ∈ PΓ, one has

‖H(ΦPi
: YPi

: λ : x)‖L2(Γ\G) ≤ C1e
Re(λ)(log YPi

+2) ‖ΦPi
‖EPi

(σ,ν) .

Proof. There exists a unique ΦP ∈ EP (σ, ν) such that ΦPi,λ(g) = ΦP,λ(κ
−1
Pi
gκPi

). Since ∆ν

commutes with the right-action of G on Γ\G, it follows from (2.22) that
∫

Γ\G
|H(ΦPi

: YPi
: λ : x)|2dx

=vol(Γ ∩NPi
\NPi

)

∫ log YPi
+1

log YPi

∫

K

e−2nt|(∆ν + c(σ) + λ2)ψPi,YPi
(aPi

(t))ΦPi,λ(aPi
(t)k)|2 dkdt

=vol(Γ ∩NPi
\NPi

)

∫ log YPi
+1

log YPi

∫

K

e−2nt|(∆ν + c(σ) + λ2)ψP,YPi
(a(t))ΦP,λ(a(t)k)|2 dkdt.

Now using (2.7) and (3.8) one obtains

(∆ν + c(σ) + λ2)(ψP,YPi
(a(t))ΦP,λ(a(t)k))

=− e(λ+n)tΦP (k)(φ
′′(t− log YPi

) + 2λφ′(t− log YPi
)).
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This proves the proposition. �

Corollary 4.3. There exists a constant C1 which is independent of Γ and PΓ such that
for all λ ∈ C with Re(λ2) + c(σ) ≥ ν(ΩK) + 1 and Re(λ) > 0, all YPi

≥ Y 0
Pi
(Γ) and all

ΦPi
∈ EPi

(σ, ν), Pi ∈ PΓ, one has

‖(∆ν + λ2 + c(σ))−1H(ΦPi
: YPi

: λ : x)‖L2(Γ\G) ≤ C1e
Re(λ)(log YPi

+2) ‖ΦPi
‖EPi

(σ,ν)

Proof. By [Ka, V,§3.8] one can estimate the operator norm of the resolvent by

‖(∆ν + λ2 + c(σ))−1‖ ≤ 1

dist(−λ2 − c(σ), spec(∆ν))
,

where the estimate holds without any constant. Applying the previous Lemma and (4.1),
the corollary follows. �

In the following proposition we estimate the coefficients of the C-matrix.

Proposition 4.4. There exists a constant C2, which is independent of Γ and PΓ such
that for all Pi, Pj ∈ PΓ, all YPi

, YPj
∈ (0,∞) with YPi

≥ Y 0
Pi
(Γ), YPj

≥ Y 0
Pj
(Γ), all ΦPi

∈
EPi

(σ, ν), ΦPj
∈ EPj

(σ, ν) and all λ ∈ C with Re(λ2) + c(σ) ≥ ν(ΩK) + 1 and Re(λ) > 0,
one has

|
〈
CPi|Pj

(σ, ν, λ)(ΦPi
),ΦPj

〉
EPj

(σ,ν)
| ≤ C2e

Re(λ)(log YPi
+log YPj

+4)‖ΦPi
‖EPi

(σ,ν) · ‖ΦPj
‖EPj

(σ,ν).

Proof. By the definition (3.10) of the constant term it follows that for each t ∈ R and each
k ∈ K one has

CPi|Pj
(σ, ν, λ)(ΦPi

)(k) =e(λ−n)t(CPi|Pj
(σ, ν, λ)(ΦPi

))−λ(aPj
(t)k)

=e(λ−n)t
(
EPj

(ΦPi
: aPj

(t)k : λ)− δi,jΦPi,λ(aPj
(t)k)

)
.

Moreover, by (2.12) and (2.13), for t ≥ log YPj
+ 1 one has

θ(ΦPi
: YPi

: λ : aPj
(t)k) = δi,jΦPi,λ(aPj

(t)k).

Thus by Proposition 4.1 for t ≥ log YPj
+ 1 one has

EPj
(ΦPi

: aPj
(t)k : λ)− δi,jΦPi,λ(aPj

(t)k)

=− 1

vol
(
Γ ∩NPj

\NPj

)
∫

Γ∩NPj
\NPj

(∆ν + c(σ) + λ2)−1(H(ΦPi
: YPi

: λ : nPj
aPj

(t)k)) dnPj
.

Combining these equations, it follows that for each t ≥ log YPj
+ 1 one has

〈
CPi|Pj

(σ, ν, λ)(ΦPi
),ΦPj

〉
EPj

(σ,ν)

=vol(Γ ∩NPj
\NPj

)

∫

K

ΦPj
(k)CPi|Pj

(σ, ν, λ)(ΦPi
)(k)dk = −e(λ−n)t

×
∫

K

ΦPj
(k)

∫

Γ∩NPj
\NPj

(∆ν + c(σ) + λ2)−1(H(ΦPi
: YPi

: λ : nPj
aPj

(t)k)) dnPj
dk.(4.3)
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Now we define a function f̃Pj ,λ on G by

f̃Pj ,λ(nPj
aPj

(t)k) = e(n+λ)tχ[log YPj
, log YPj

+1](t)ΦPj
(k),

where χ[log YPj
, log YPj

+1](t) denotes the characteristic function of the interval [log YPj
, log YPj

+

1]. Then we define a function fPj ,λ on Γ\G by

fPj ,λ(x) =
∑

γ∈Γ∩Pj\Γ
f̃Pj ,λ(γg), x = Γg.

By (2.13), at most one summand in this sum can be nonzero. Integrating equation (4.3)
over t in the interval [log YPj

, log YPj
+ 1] and using (2.22), we obtain

∣∣ 〈CPi|Pj
(σ, ν, λ)(ΦPi

),ΦPj

〉
EPj

(σ,ν)

∣∣

=
∣∣ 〈(∆ν + c(σ) + λ2)−1(H(ΦPi

: YPi
: λ)), fPj ,λ

〉
L2(Γ\G)

∣∣.

Now observe that

‖fPj ,λ‖L2(Γ\G) ≤ eRe(λ)(log YPj
+1)‖ΦPj

‖EPj
(σ,ν).

Applying Corollary 4.3, the Proposition follows. �

Summarizing our results, we obtain the following refinement of [Mu1, Lemma 6.1].

Corollary 4.5. Let d̄(σ, ν) := dim EP (σ, ν). For each Pi ∈ PΓ let YPi
≥ Y 0

Pi
(Γ) be given.

Put

q1 :=

κ(Γ)∏

i=1

e2(log YPi
+2)d̄(σ,ν).

There exists a constant C > 0 which is independent of Γ, PΓ, and YPi
, i = 1, ..., κ(Γ), such

that for all λ ∈ C satisfying Re(λ2) + c(σ) ≥ ν(ΩK) + 1 and Re(λ) > 0, one has

| det(C(σ, ν, λ))| ≤ Cq
Re(λ)
1 .

Proof. If one chooses for each i = 1, . . . , κ(Γ) an orthonormal base of EPi
(σ, ν) resp.

EPi
(w0σ, ν) and applies the preceding proposition, the corollary follows immediately from

the Leibniz formula for the determinant. �

Applying the previous Corollary we can restate the factorization of the C-matrix, [Mu1,
equation 6.8] with an expression for the exponential factor in terms of the truncation
parameters that will be sufficient for our later considerations.

Theorem 4.6. Let σj, j = 1, . . . , l denote the poles of det(C(σ, ν, λ)) in the interval (0, n]
and let η run through the poles of det(C(σ, ν, λ)) in the half-plane Re(λ) ≤ 0, both counted
with multiplicity. Then one has

det(C(σ, ν, λ)) = det(C(σ, ν, 0))qλ
l∏

j=1

λ+ σj
λ− σj

∏

η

λ+ η̄

λ− η
.
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Moreover, if for each Pi ∈ PΓ a YPi
∈ (0,∞) with YPi

≥ Y 0
Pi
(Γ) is given, then q can be

written as

q = ea
κ(Γ)∏

i=1

e2(log YPi
+2)d̄(σ,ν),(4.4)

where a ∈ R, a ≤ 0.

Proof. Using the previous Corollary instead of [Mu1, Lemma 6.1], one can proceed exactly
as in [Mu1, section 6] to obtain the Theorem. �

5. Twisted Laplace operators

Let ν be a finite dimensional unitary representation of K on (Vν , 〈·, ·〉ν). Let

Ẽν := G×ν Vν

be the associated homogeneous vector bundle over X̃ . Then 〈·, ·〉ν induces a G-invariant

metric B̃ν on Ẽν . Let

Eν := Γ\(G×ν Vν)

be the associated locally homogeneous bundle over X . Since B̃ν is G-invariant, it can be
pushed down to a fiber metric Bν on Eν . Let

C∞(G, ν) := {f : G→ Vν : f ∈ C∞, f(gk) = ν(k−1)f(g), ∀g ∈ G, ∀k ∈ K}.(5.1)

Let

C∞(Γ\G, ν) := {f ∈ C∞(G, ν) : f(γg) = f(g), ∀g ∈ G, ∀γ ∈ Γ} .(5.2)

Let C∞(X,Eν) denote the space of smooth sections of Eν . Then there is a canonical
isomorphism

A : C∞(X,Eν) ∼= C∞(Γ\G, ν)

(see [Mi1, p. 4]). There is also a corresponding isometry for the space L2(X,Eν) of L2-
sections of Eν .

Let τ be an irreducible finite dimensional representation of G on Vτ . Let Eτ be the flat

vector bundle associated to the restriction of τ to Γ. Let Ẽτ → X̃ be the homogeneous
vector bundle associated to τ |K . Then by [MtM] there is canonical isomorphism

Eτ
∼= Γ\Ẽτ .

By [MtM], there exists an inner product 〈·, ·〉 on Vτ such that

(1) 〈τ(Y )u, v〉 = −〈u, τ(Y )v〉 for all Y ∈ k, u, v ∈ Vτ
(2) 〈τ(Y )u, v〉 = 〈u, τ(Y )v〉 for all Y ∈ p, u, v ∈ Vτ .
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Such an inner product is called admissible. It is unique up to scaling. Fix an admissible
inner product. Since τ |K is unitary with respect to this inner product, it induces a fiber

metric on Ẽτ , and hence on Eτ . This fiber metric will also be called admissible. Let
Λp(X,Eτ ) be the space of Eτ -valued p-forms. This is the space of smooth sections of the
vector bundle Λp(Eτ ) := ΛpT ∗X ⊗Eτ . Let

(5.3) dp(τ) : Λ
p(X,Eτ ) → Λp+1(X,Eτ )

be the exterior derivative and let

(5.4) ∆p(τ) = dp(τ)
∗dp(τ) + dp−1(τ)dp−1(τ)

∗

be the Laplace operator on Eτ -valued p-forms. This operator can be expressed in the
locally homogeneous setting as follows. Let νp(τ) be the representation of K defined by

(5.5) νp(τ) := ΛpAd∗⊗τ : K → GL(Λpp∗ ⊗ Vτ ).

There is a canonical isomorphism

Λp(Eτ ) ∼= Γ\(G×νp(τ) (Λ
pp∗ ⊗ Vτ )),(5.6)

which induces an isomorphism

Λp(X,Eτ ) ∼= C∞(Γ\G, νp(τ)).(5.7)

There is a corresponding isometry of the L2-spaces. Let τ(Ω) be the Casimir eigenvalue of
τ . With respect to the isomorphism (5.7) on has

∆p(τ) = −RΓ(Ω) + τ(Ω) Id(5.8)

(see [MtM, (6.9)]). Next we want to show that the discrete spectrum of the operators ∆p(τ)
is greater or equal than 1/4 for each p and each τ ∈ Rep(G) satisfying τ 6= τθ. This was
already stated in [MP2, Lemma 7.3]. However, as it was kindly brought to our attention by
Martin Olbrich, the parametrization of the complementary series used in the proof of that
Lemma was incorrect. Therefore we shall now correct the part of the argument leading
to the proof of [MP2, Lemma 7.3] which involved the complementary series. We let Ĝun

denote the unitary dual of G.

Lemma 5.1. Let τ ∈ Rep(G) such that τ 6= τθ. Let π ∈ Ĝun belong to the complementary
series. Let p ∈ {0, . . . , d}. Then if [π : νp(τ)] 6= 0 one has −π(Ω) + τ(Ω) ≥ 1.

Proof. Let τ be a finite-dimensional irreducible representation of G of highest weight
Λ(τ) = τ1e1 + · · · + τn+1en+1 as in (2.4) and assume that τ 6= τθ. Let p ∈ {0, . . . , d}
and let σ ∈ M̂ such that [νp(τ) : σ] 6= 0. Assume that σ = w0σ. Let Λ(σ) =
k2(σ)e2 + · · · + kn+1(σ)en+1 be the highest weight of σ as in (2.6). It was shown in the
proof of [MP2, Lemma 7.1] that τj−1+1 ≥ |kj(σ)| for every j ∈ {2, . . . , n+1}. Let c(σ) be
as in (2.23) and let l ∈ {1, . . . , n} be minimal with the property that kl+1(σ) = 0. Using
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ρj−1 = ρj + 1 and [MP1, equation 2.20], it follows that one can estimate

c(σ) =

l∑

j=2

(kj(σ) + ρj)
2 −

n+1∑

j=1

ρ2j ≤
l∑

j=2

(τj−1 + ρj−1)
2 −

n+1∑

j=1

ρ2j

=τ(Ω)−
n+1∑

j=l

(τj + ρj)
2.(5.9)

We parametrize the principal series representations as above. Then if π belongs to the
complementary series, by [KS, Proposition 49, Proposition 53] and our parametrization

there exists a σ ∈ M̂ , σ = w0σ and a λ ∈ (0, n − l + 1), where l is minimal with the
property that kl+1(σ) = 0, such that πσ,iλ is unitarizable with unitarization π. We write
π = πc

σ,iλ. If [πc
σ,iλ : νp(τ)] 6= 0, then by Frobenius reciprocity [Kn1, page 208] one

has [νp(τ) : σ] 6= 0. Thus, since σ = w0σ, it follows easily from the branching laws
for restrictions of representations from G to K and from K to M , [GW][Theorem 8.1.3,
Theorem 8.1.4] that all kj(τ) defined as in (2.4) are integral. By [MP1, Corollary 2.4] one
has

−πc
σ,iλ(Ω) + τ(Ω) = −λ2 − c(σ) + τ(Ω)(5.10)

and if we apply equation (5.9) and the condition |τn+1| ≥ 1, it follows that

−πc
σ,iλ(Ω) + τ(Ω) ≥

n+1∑

j=l

(τj + ρj)
2 − (n− l + 1)2 =

n+1∑

j=l

(τj + ρj)
2 − ρ2l ≥ τ 2n+1 ≥ 1

and the Lemma is proved. �

Corollary 5.2. Let τ ∈ Rep(G), τ 6= τθ. For p ∈ {0, . . . , d} let λ0 be an eigenvalue of
∆p(τ). Then one has λ0 ≥ 1

4
.

Proof. Using the preceding Lemma, one can proceed exactly as in the proof of [MP2,
Lemma 7.3] to establish the corollary. �

6. The regularized trace under coverings

Let X = Γ\Hd be a finite-volume hyperbolic manifold. For τ a finite-dimensional ir-
reducible representation of G let e−t∆p(τ) be the heat operator associated to the Laplace
operator (5.4) acting on the locally homogeneous vector-bundle Eτ over X . To begin with
recall the definition of the regularized trace of the heat operators e−t∆p(τ) introduced in
[MP2]. Let

Kτ,p
X (t; x, y) ∈ C∞(X1 ×X1, Eτ ⊠ E∗

τ )

be the kernel of e−t∆p(τ). If a set PΓ of representatives of Γ-cuspidal parabolic subgroups
of X is fixed, then according to (2.17), one obtains compact smooth manifolds XPΓ

(Y )
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with boundary which exhaust X . Using the Maass-Selberg relations, one can show that
there is an asymptotic expansion

∫

XPΓ
(Y )

TrKτ,p
X (t; x, x)dx = α−1(t) log Y + α0(t) + o(1),(6.1)

as Y → ∞. Now recall that on a compact manifold the trace of the heat operator is given by
the integral of the pointwise trace of the heat kernel. Based on this observation one defines
the regularized trace Trreg(e

−t∆p(τ)) as the constant term of the asymptotic expansion (6.1).
However, this definition depends on the choice of the set PΓ of representatives of Γ-cuspidal
parabolic subgroups of G or equivalently on the choice of a truncation parameter on the
manifold X , see [MP2, Remark 5.4]. Therefore, this definition is not suitable if one wants
to study the regularized trace for families of hyperbolic manifolds.

To overcome this problem, we remark that if π : X1 → X0 is a finite covering of X0

and if truncation parameters on the manifold X0 are given, then there is a canonical way
to truncate the manifold X1, putting X1(Y ) := π−1(X0(Y )). Thus one only has to fix
truncation parameters for the manifold X0 or equivalently a set PΓ0 of representatives of
Γ0-cuspidal parabolic subgroups of G. To make this approach rigorous, we first need to
discuss some facts about height functions.

Let Γ0 be a discrete subgroup of G of finite covolume. We emphasize that we do not
assume that Γ0 is torsion-free. Let PΓ0 := {P0,1, . . . , P0,κ(X0)} be a fixed set of Γ0-cuspidal
parabolic subgroups of G. Each P0,l, l = 1, . . . , κ(X0), has a Langlands decomposition
P0,l = N0,lA0,lM0,l. If P ′ is any Γ0-cuspidal parabolic subgroup of G, there exists γ′ ∈ Γ0

and a unique l′ ∈ {1, . . . , κ(Γ0)} such that γ′P ′γ′−1 = P0,l′. Write

γ′ = n0,l′ιP0,l′
(tP ′)k0,l′,(6.2)

n0,l′ ∈ NP0,l′
, tP ′ ∈ (0,∞), ιP0,l′

(tP ′) ∈ AP0,l(P ′)
as above, and k0,l′ ∈ K. Since P0,l′ equals

its normalizer in G, the projection of the element γ′ to (Γ0∩P0,l′)\Γ0 is unique. Moreover,
since P0,l′ is Γ0-cuspidal, one has Γ0 ∩ P0,l′ = Γ0 ∩ NP0,l′

MP0,l′
. Thus tP ′ depends only on

PΓ0 and P ′.
Now we let Γ1 ⊂ Γ0 be a subgroup of finite index. Then a parabolic subgroup P ′ of G

is Γ0-cuspidal iff it is Γ1-cuspidal. We assume for simplicity that Γ1 satisfies (3.1). Let

X0 = Γ0\X̃ , X1 = Γ1\X̃. Let π : X1 → X0 be the covering map and let prX0
: G → X0

and prX1
: G→ X1 be the corresponding projections. Let PΓ1 = {P1, . . . , Pκ(X1)} be a set

of representatives of Γ1-cuspidal parabolic subgroups. Then for each j ∈ {1, . . . , κ(X1)}
let l(j) ∈ {1, · · · , κ(Γ0)}, γj ∈ Γ0, and tj := tPj

be as in (6.2) with respect to Pj. Fix
Y (Γ0) ∈ (0,∞) such that for each P0,l ∈ PΓ0 , l = 1, . . . , κ(Γ0), one has

Y (Γ0) ≥ Y 0
Γ0
(P0,l),(6.3)

where Y 0
Γ0
(P0,l) is defined by (2.14). Then the following Lemma holds.

Lemma 6.1. For each Pj ∈ PΓ1 let Y 0
Pj
(Γ1) be defined by (2.14). Then one has

Y 0
Pj
(Γ1) ≤ t−1

j Y (Γ0).(6.4)
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Let X0(Y ) := X0(P0,1, . . . , P0,κ(X0), Y ). Then for Y sufficiently large one has

π−1(X0(Y )) = X1(P1, . . . , Pκ(X1); t
−1
1 Y, . . . , t−1

κ(X1)
Y ).

Proof. Since P0,l(j) = k0,l(j)Pjk
−1
0,l(j), and since the adjoint action by k0,l(j) is an isometry form

the Lie-algebra of APj
to the Lie-algebra of AP0,l(j)

, it follows that for every j = 1, . . . , κ(X1)
and every g ∈ G one has

yP0,l(j)
(γjgk

−1
0,l(j)) = tjyPj

(g).(6.5)

This implies (6.4). Indeed, if g ∈ G and γ ∈ Γ1 satisfy yPj
(g) > t−1

j Y (Γ0) and yPj
(γg) >

t−1
j Y (Γ0), then by (6.5) and the choice of Y (Γ0) one has γ ∈ γ−1

j (Γ0 ∩ Pl(j))γj = Γ0 ∩ Pj.

To prove the second part of the lemma, let x ∈ X1−X1(P1, . . . , Pκ(X1); t
−1
1 Y, . . . , t−1

κ(X1)
Y ).

By (2.16) there exists j ∈ {1, · · · , κ(Γ1)} such that yΓ1,Pj
(x) > t−1

j Y . Then by (2.15) there

exists g ∈ G satisfying prX1
(g) = x and yPj

(g) > t−1
j Y . Now observe that prX0

(γjgk
−1
0,l(j)) =

x. Using (6.5) and (2.15), it follows that yΓ0,P0,l(j)
(π(x)) > Y , i.e., x ∈ π−1(X0 −X0(Y )).

Thus we have shown that

X1 −X1(P1, . . . , Pκ(X1); t
−1
1 Y, . . . , t−1

κ(X1)
Y ) ⊆ π−1(X0 −X0(Y )).(6.6)

It remains to prove the opposite inclusion. Fix l ∈ {1, . . . , κ(X0)}. Since P0,l equals its
normalizer in G, it follows that

#{Pj ∈ PΓ1 : γjPjγ
−1
j = P0,l} = #(Γ1\Γ0/Γ0 ∩ P0,l)(6.7)

and the γj with γjPjγ
−1
j = P0,l form a set of representatives of equivalence classes in the

double coset (6.7). For each γj with γjPjγ
−1
j = P0,l let µi,j ∈ Γ1\Γ0, i = 1, . . . , r(j), be such

that the orbit of Γ1γj under the action of Γ0 ∩ P0,l is given by the Γ1µi,j, i = 1, . . . , r(j).
Then

[Γ0 : Γ1] =
∑

j∈{1,...,κ(Γ1)}
γjPjγ

−1
j =P0,l

r(j).(6.8)

Write µi,j = γjpi,j with pi,j ∈ Γ0 ∩ P0,l. Choose YPj
∈ (0,∞), j = 1, . . . , κ(X1), such

that (2.12) and (2.13) hold for Γ1. Let Y > max{t−1
j YPj

: j = 1, . . . , κ(X1)}. Let x0 ∈
X0 −X0(Y ). Then there exists a P0,l ∈ PΓ0 such that yΓ0,P0,l

(x0) > Y . Thus there exists
g0 ∈ G such that x0 = prX0

(g0) and yP0,l
(g0) > Y . By (2.10) one has yP0,l

(pi,jg0) > Y . We
claim that

π−1(x0) =
{
prX1

(γ−1
j pi,jg0) : γjPjγ

−1
j = P0,l, : i = 1, . . . , r(j)

}
.(6.9)

Obviously, each prX1
(γ−1

j pi,jg0) is contained in π−1(x0). On the other hand, assume that

prX1
(γ−1

j pi,jg0) = prX1
(γ−1

j′ pi′,j′g0) =: x1, where γjPjγ
−1
j = P0,l = γj′Pj′γ

−1
j′ . By (2.10) and

(6.5) one obtains

yΓ1,Pj
(x1) > t−1

j Y > YPj
, yΓ1,P ′

j
(x1) > t−1

j′ Y > YPj′
.(6.10)
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Applying (2.12), (2.13) one obtains j = j′ and hence i = i′. Thus, since #{π−1(x0)} =
[Γ0 : Γ1], (6.9) follows from (6.8). Applying (6.9) and (6.10) one obtains

π−1(X0 −X0(Y )) ⊆ X1 −X1(P1, . . . , Pκ(X1); t
−1
1 Y, . . . , t−1

κ(X1)
Y ).

and together with (6.6) the lemma follows. �

Let ∆X1,p(τ) be the Laplace operator on Eτ -valued p-forms on X1. Using the preceding
Lemma, we can give an invariant definition of the regularized trace of e−t∆X1,p

(τ) provided
the set PΓ0 is fixed. We fix a set PΓ1 of representatives of Γ1-cuspidal parabolic subgroups
of G. Then by Lemma 6.1 we have

∫

π−1(X0(Y ))

TrKτ,p
X1

(t; x, x)dx =

∫

X1(P1,...,Pκ(X1)
;t−1
1 Y,...,t−1

κ(X1)
Y )

TrKτ,p
X1

(t; x, x)dx.(6.11)

Now arguing exactly as in [MP2, section 5] and applying Lemma 6.1, we obtain

∫

π−1X0(Y )

TrKτ,p
X1

(t; x, x)dx dx =
∑

σ∈M̂
[νp(τ):σ] 6=0

∑

Pj∈PΓ1

e−t(τ(Ω)−c(σ)) dim(σ) log (t−1
j Y )√

4πt
+
∑

j

e−tλj

+
∑

σ∈M̂ ;σ=w0σ
[νp(τ):σ] 6=0

e−t(τ(Ω)−c(σ))Tr(C̃(σ, ν, 0))

4

− 1

4π

∑

σ∈M̂
[ν:σ] 6=0

∫

R

e−t(λ2+τ(Ω)−c(σ)) Tr

(
C̃(σ, ν,−iλ) d

dz
C̃(σ, ν, iλ)

)
dλ+ o(1),

as Y → ∞. Here the λj in the first row are the eigenvalues of ∆X1,p(τ), counted with
multiplicity. It follows that the integral on the left-hand side of (6.11) admits an asymptotic
expansion in Y as Y goes to infinity. Note that, since the factor factor τ(Ω) comes from
equation (5.8), the last equation coincides with [MP2, equation 5.7] up to the occurrence
of the tj ’s in the first sum. This occurrence is caused by the different choices of truncation
parameters. The appearance of the tj ’s is exactly the reason why the above integral is
independent of the choice of PΓ1 and depends only on the choice of PΓ0 .

We assume from now on that the set PΓ0 is fixed. By the above considerations we are let
to the following definition of the regularized trace of the heat operator for finite coverings
of X0.

Definition 6.2. Let X1 = Γ1\X̃ be a finite covering of X0 and assume that Γ1 is torsion
free and satisfies (3.1). Let ∆X1,p(τ) be the Laplace operator on Eτ -valued p-forms on X1.
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For any choice of a set PΓ1 of representatives of Γ1-cuspidal parabolic subgroups we put

(6.12)

Trreg;X1(e
−t∆X1,p

(τ)) := −
∑

σ∈M̂
[νp(τ):σ] 6=0

∑

Pj∈PΓ1

e−t(τ(Ω)−c(σ)) dim(σ) log (tj)√
4πt

+
∑

j

e−tλj +
∑

σ∈M̂ ;σ=w0σ
[νp(τ):σ] 6=0

e−t(τ(Ω)−c(σ))Tr(C̃(σ, ν, 0))

4

− 1

4π

∑

σ∈M̂
[νp(τ):σ] 6=0

e−t(τ(Ω)−c(σ))

∫

R

e−tλ2

Tr

(
C̃(σ, νp(τ),−iλ)

d

dz
C̃(σ, ν, iλ)

)
dλ,

where the notation is as above.

If one expresses Trreg;X1(e
−t∆X1,p

(τ)) using the geometric side of the trace formula, then
it becomes again transparent that the summands log tj compensate the ambiguity caused
by the choice of PΓ1 so that Trreg;X1(e

−t∆X1,p
(τ)) depends only on the choice of PΓ0 . For

further details we refer the reader to section 8, in particular to equations (8.9) and (8.12).

7. Exponential decay of the regularized trace for large time

In this section we estimate the regularized trace for large time and with respect to

coverings. Let Γ0 be a lattice in G and put X0 = Γ0\X̃ . Let X1 = Γ1\X̃ be a finite
covering of X0 such that Γ1 is torsion-free and satisfies (3.1). We assume that a set PΓ0

of representatives of Γ0-cuspidal parabolic subgroups is fixed. We define the regularized
trace according to Definition 6.2. To begin with we establish the following lemma.

Lemma 7.1. For every σ ∈ (0,∞) one has
∫

R

σ

σ2 + λ2
e−tλ2

dλ =
√
4πt etσ

2

∫ ∞

σ

e−tu2

du.

Proof. Put

f(σ) :=

∫

R

σ

σ2 + λ2
e−tλ2

dλ =

∫

R

e−tσ2λ2 1

1 + λ2
dλ.

Then

f ′(σ) =− 2tσ

∫

R

e−tσ2λ2 λ2

1 + λ2
dλ = −2tσ

(∫

R

e−tσ2λ2

dλ−
∫

R

e−tσ2λ2 1

1 + λ2
dλ

)

= −
√
4πt + 2tσf(σ).

The general solution of this differential equation on (0,∞) is given by

y(σ) = etσ
2

(√
4πt

∫ ∞

σ

e−tu2

du+ C

)

and since f satisfies limσ→∞ f(σ) = 0, the Lemma follows. �
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The following proposition is our main result concerning the large time estimation of the
regularized trace of the heat kernel.

Proposition 7.2. Let τ be such that τθ 6∼= τ . There exist constants C, c > 0 such that for
all finite covers X1 of X0 one has

∣∣Trreg;X1

(
e−t∆X1,p

(τ)
)∣∣ ≤ Ce−ct(Trreg;X1(e

−∆X1,p
(τ)) + vol(X1))

for t ≥ 10.

Proof. Let C(σ, νp(τ), s) be as in (3.12). For each σ ∈ M̂ one has c(σ) = c(w0σ). Thus by
Lemma 3.1 the last line of 6.12 can be rewritten as

− 1

4π dim(νp(τ))

∑

σ∈M̂/W (A)
[νp(τ):σ] 6=0

e−t(τ(Ω)−c(σ))

∫

R

e−tλ2

Tr

(
C(σ, νp(τ),−iλ)

d

dz
C(σ, ν, iλ)

)
dλ.

We have

Tr

(
C(σ, νp(τ),−iλ)

d

dz
C(σ, νp(τ), iλ)

)
=

d

dz
log detC(σ, νp(τ), iλ).

Let σ1, . . . , σl ∈ (0, n], n = (d − 1)/2, be the poles of detC(σ, νp(τ), s) in the half-plane
Re(s) ≥ 0. Poles occur only if σ = w0σ. Let η run over the poles of detC(σ, νp(τ), s) in

the half-plane Re(s) < 0, both counted with multiplicity. For σ ∈ M̂ , put

(7.1) σ =

{
σ, σ = w0σ;

σ ⊕ w0σ, σ 6= w0σ.

Let Y (Γ0) be as in (6.3). By Lemma 6.1 we have t−1
j Y (Γ0) ≥ Y 0

Pj
(Γ1) for j = 1, · · · , κ(Γ1).

Using Theorem 4.6 and (3.3) we get

1

dim(νp(τ))
Tr

(
C(σ, νp(τ),−iλ)

d

dz
C(σ, νp(τ), iλ)

)

=2dim(σ)


−

κ(Γ1)∑

j=1

log tj + (Y (Γ0) + 2)κ(Γ1)




+ a(σ, ν) +
1

dim(νp(τ))

(
l∑

j=1

2σj
λ2 + σ2

j

+
∑

η

2Re(η)

(λ− Im(η))2 + Re(η)2

)
,

where a(σ, ν) ∈ R, a(σ, ν) ≤ 0. Let σpp(∆X1,p(τ)) denote the pure point spectrum of
∆X1,p(τ). Then σpp(∆X1,p(τ)) is the union of the cuspidal spectrum σcusp(∆X1,p(τ)) and
the residual spectrum σres(∆X1,p(τ)). For a given eigenvalue λ ∈ σpp(∆X1,p(τ)), let m(λ)
denote its multiplicity. Put

I1(t, νp(τ)) :=
∑

λ∈σcusp(∆X1,p
(τ))

m(λ)e−tλ,
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I2(t, νp(τ)) :=
∑

λ∈σres(∆X1,p
(τ))

m(λ)e−tλ

− 1

2π dim νp(τ)

∑

σ∈M̂ ;σ=w0σ
[νp(τ):σ] 6=0

l∑

j=1

e−t(τ(Ω−c(σ)))

∫

R

e−tλ2 σj
λ2 + σ2

j

dλ,

I3(t, νp(τ)) := −
∑

σ∈M̂/W (A)
[νp(τ):σ] 6=0

e−t(τ(Ω)−c(σ))

(
a(σ, ν)

4
√
πt

+
1√
4πt

κ(Γ1) dim(σ̄)(Y (Γ0) + 2)

+
1

2π dim(νp(τ))

∫

R

e−tλ2
∑

η

Re(η)

Re(η)2 + (λ− Im(η))2
dλ

)
,

and

I4(t, νp(τ)) :=
∑

σ∈M̂ ;σ=w0σ
[νp(τ):σ] 6=0

e−t(τ(Ω)−c(σ))Tr(C̃(σ, ν, 0))

4
.

Then it follows from (6.12) that we have

Trreg;X1(e
−t∆X1,p

(τ)) = I1(t, νp(τ)) + I2(t, νp(τ)) + I3(t, νp(τ)) + I4(t, νp(τ)).(7.2)

To estimate I1(t, νp(τ)) we apply Corollary 5.2. It follows that for t ≥ 2 we have

|I1(t, νp(τ))| ≤ e−
t
8 I1(1, νp(τ)).(7.3)

To deal with I2(t, νp(τ)) observe that to each λj ∈ σres(∆p(τ)) there correspond a σ ∈ M̂
satisfying σ = w0σ and [νp(τ) : σ] 6= 0, and a pole σj of detC(σ, νp(τ), s) in (0, n] such that

λj = −σ2
j + τ(Ω)− c(σ).(7.4)

Moreover, the multiplicity of σj divided by dim(νp(τ)) equals the multiplicity of the eigen-
value λj. Let µj be the sequence of the σj ’s, where the multiplicity of each µj is the
multiplicity of σj divided by dim(νp(τ)). Put

hµj
(t) := 1−

√
t√
π

∫ ∞

µj

e−tu2

du = 1− 1√
π

∫ ∞

√
tµj

e−u2

du.
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Using Lemma 7.1, we get

I2(t, νp(τ)) =
∑

σ∈M̂ ;σ=w0σ
[νp(τ):σ] 6=0

e−t(τ(Ω)−c(σ))
∑

j

(
etµ

2
j − 1

2π

∫

R

e−tλ2 µj

λ2 + µ2
j

dλ

)

=
∑

σ∈M̂ ;σ=w0σ
[νp(τ):σ] 6=0

∑

j

e−t(τ(Ω)−c(σ)−µ2
j )hµj

(t).

Now observe that 1 ≥ hµj
(t) ≥ 1

2
. Moreover, by Corollary 5.2 it follows that for every µj

we have

−µ2
j + τ(Ω)− c(σ) ≥ 1

4
.(7.5)

Thus for each t ≥ 10 we get

|I2(t, νp(τ))| ≤ e−
t
8

∑

σ∈M̂ ;σ=w0σ
[νp(τ):σ] 6=0

∑

j

e−
t(τ(Ω)−c(σ)−µ2j )

2 hµj
(t)

≤ e−
t
8

∑

σ∈M̂ ;σ=w0σ
[νp(τ):σ] 6=0

∑

j

e−(τ(Ω)−c(σ)−µ2
j )e−1hµj

(t)

≤ e−
t
8

∑

σ∈M̂ ;σ=w0σ
[νp(τ):σ] 6=0

∑

j

e−(τ(Ω)−c(σ)−µ2
j )hµj

(1) = e−
t
8 I2(1, νp(τ)).(7.6)

Next we deal with I3(t, νp(τ)). By [MP2, Lemma 7.1] we have

τ(Ω)− c(σ) ≥ 1

4
(7.7)

for all σ ∈ M̂ with [νp(τ) : σ] 6= 0. Then since a(σ, ν) ≤ 0, Re(η) < 0, for each t ≥ 2 we
can estimate

|I3(t, νp(τ))| ≤ e−
t
8

∑

σ∈M̂/W (A)
[νp(τ):σ] 6=0

e−(τ(Ω)−c(σ)) dim(σ̄)κ(Γ1)(Y (Γ0) + 2)
1√
4π

− e−
t
8

∑

σ∈M̂/W (A)
[νp(τ):σ] 6=0

e−(τ(Ω)−c(σ))

(
a(σ, ν)

4
√
π

+
1

2π dim(νp(τ))

∫

R

e−λ2
∑

η

Re(η)

Re(η)2 + (λ− Im(η))2
dλ

)

= 2e−
t
8

∑

σ∈M̂/W (A)
[νp(τ):σ] 6=0

e−(τ(Ω)−c(σ)) dim(σ̄)(Y (Γ0) + 2)κ(Γ1)
1√
4π

+ e−
t
8 I3(1, νp(τ)).
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By [Ke, Proposition 3.3] there exists C(d) > 0 such that

(7.8) κ(X) ≤ C(d) vol(X)

for all complete hyperbolic manifolds of finite volume and dimension d. Thus for each t ≥ 2
we obtain

|I3(t, νp(τ))| ≤ e−
t
8 (I3(1, νp(τ)) + C2 vol(X1)),(7.9)

where C2 depends only on Γ0 and PΓ0 . To estimate I4(t, νp(τ)) we recall that C̃(σ, ν, 0)2 =
Id. Hence there exist natural numbers c1(Γ, σ, ν), c2(Γ, σ, ν) such that

c1(Γ1, σ, ν) + c2(Γ1, σ, ν) = dim (E(σ, ν)⊗ Vν)
K = κ(X1) dim(σ),

and

Tr(C̃(σ, ν, 0)) = c1(Γ1, σ, ν)− c2(Γ1, σ, ν).

Using (7.7) and (7.8) we obtain for t ≥ 2:

|I4(t, νp(τ))|
≤ e−

t
8 (I4(1, νp(τ)) + 2c2(Γ1, σ, ν)) ≤ e−

t
8 (I4(1, νp(τ)) + 2C(d) dim(σ) vol(X1)).(7.10)

Combining (7.2), (7.3), (7.6), (7.9) and (7.10), the proof of the proposition is complete. �

8. Geometric side of the trace formula

To study the behaviour of the analytic torsion under coverings we will apply the trace
formula to the regularized trace of the heat operator. In this section we recall the structure
of the geometric side of the trace formula and study the parabolic contribution.

Let the assumptions be the same as at the beginning of the previous section. Let
τ ∈ Rep(G) and assume that τ 6= τθ. Let Ẽτ be the homogeneous vector bundle over

X̃ = G/K, associated to τ |K , equipped with an admissible Hermitian metric (see section

5). Let ∆̃p(τ) be the Laplace operator on Ẽτ -valued p-forms. The on C∞(G, νp(τ)) one
has

∆̃p(τ) = −Ω + τ(Ω),(8.1)

see [MtM, (6.9)] Let

(8.2) Hτ,p
t : G→ End(Λpp∗ ⊗ Vτ )

be the kernel of the heat operator e−t∆̃p(τ). Let

(8.3) hτ,pt = trHτ,p
t .

We apply the trace formulas in [MP2, section 6] to express the regularized trace as a sum
of distributions evaluated at hτ,pt . The terms appearing on the geometric side of the trace
formula are associated to the different types of Γ-conjugacy classes. We briefly recall their
definition. For further details, we refer the reader to [MP2, section 6] and the references
therein. In order to indicate the dependence of the distributions on the manifold X1, we
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shall use X1 as a subscript. The contribution of the identity to the trace formula is given
by

(8.4) IX1(h
τ,p
t ) := vol(X1)h

τ,p
t (1).

The hyperbolic contribution is given by

HX1(h
τ,p
t ) :=

∫

Γ1\G

∑

γ∈Γ1,s−{1}
hτ,pt (x−1γx) dx,(8.5)

where Γ1,s are the semisimple elements of Γ1. By [Wa, Lemma 8.1] the integral converges
absolutely. Moreover, arguing as in the cocompact case [Wal], if Gγ resp. (Γ1)γ denote the
centralizers of γ in G resp. Γ1, one has

HX1(h
τ,p
t ) =

∑

[γ]∈C(Γ1)s−[1]

vol((Γ1)γ\Gγ)

∫

Gγ\G
hτ,pt (x−1γx)dx,

where C(Γ1)s are the Γ1-conjugacy classes of semisimple elements of Γ1. Now the latter
sum can also be written as a sum over the set C(Γ0)s of non elliptic semisimple conjugacy
classes of the group Γ0 as follows. For each γ ∈ Γ0 let cΓ1(γ) be the number of fixed points
of γ on Γ0/Γ1. This number clearly depends only on the Γ0-conjugacy class of γ. Then if
Γγ is the centralizer of γ in Γ0, one has

HX1(h
τ,p
t ) =

∑

[γ]∈C(Γ0)s−[1]

cΓ1(γ) vol(Γγ\Gγ)

∫

Gγ\G
hτ,pt (x−1γx)dx,(8.6)

see [Co, page 152-153]. This expression will be used when we treat the Hecke subgroups
of the Bianchi groups.

Next we describe the distributions associated to the parabolic conjugacy classes. Firstly
let

(8.7) T ′
X1
(hτ,pt ) := κ(X1)

∫

K

∫

N

hτ,pt (knk−1) log ‖logn‖ dkdn.

We note that T is a non-invariant distribution which depends on X1 only via the number
of cusps of X1. Now let P ′ be any Γ0-cuspidal parabolic subgroup of G, or equivalently
a Γ1-cuspidal parabolic subgroup of G. Let nP ′ denote the Lie algebra of NP ′ . Then
exp : nP ′ → NP ′ is an isomorphism and we denote its inverse by log. We equip nP ′ with
the inner product obtained by restriction of the inner product in (2.3). By ‖·‖ we denote
the corresponding norm. Let

ΛP ′(Γ1) := log(Γ1 ∩NP ′); Λ0
P ′(Γ1) := vol(ΛP ′(Γ1))

− 1
2nΛP ′(Γ1).

Then ΛP ′(Γ1) and Λ0
P ′(Γ1) are lattices in nP ′ and Λ0

P ′(Γ1) is unimodular. Then for Re(s) > 0
the Epstein-type zeta function ζP ′;Γ1 , defined by

ζP ′;Γ1(s) :=
∑

η∈ΛP ′ (Γ1)−{0}
‖η‖−2n(1+s),(8.8)
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converges and ζP ′;Γ1 has a meromorphic continuation to C with a simple pole at 0. Let
C(ΛP ′(Γ1)) be the constant term of ζP ′;Γ1 at s = 0. Now as before let PΓ1 be a set of
representatives of Γ1-cuspidal parabolic subgroups and for each Pj ∈ PΓ1 let tj be as in
the previous sections. Then put

SX1(h
τ,p
t ) :=

∑

Pj∈PΓ1

(
C(ΛPj

(Γ1))
vol(ΛPj

(Γ1))

vol(S2n−1)

∑

σ∈M̂

dim(σ)

2π

∫

R

Θσ,λ(h
τ,p
t ) dλ

−
∑

σ∈M̂
[νp(τ):σ] 6=0

e−t(τ(Ω)−c(σ)) dim(σ) log (tj)√
4πt

)
.

Comparing the Definition 6.2 and [MP2, Definition 5.1], it follows from [MP2, Theorem
6.1] that

Trreg;X1(e
−t∆X1,p

(τ)) = IX1(h
τ,p
t ) +HX1(h

τ,p
t ) + T ′

X1
(hτ,pt ) + SX1(h

τ,p
t ).(8.9)

We now study the distribution SX1(h
τ,p
t ) in more detail. By [MP2, Proposition 4.1] we

have

Θσ,λ(h
τ,p
t ) = e−t(λ2+τ(Ω)−c(σ))

for [νp(τ) : σ] 6= 0, and Θσ,λ(h
ν
t ) = 0 otherwise. Thus we can rewrite

SX1(h
τ,p
t ) :=

∑

σ∈M̂
[νp(τ):σ] 6=0

e−t(τ(Ω)−c(σ)) dim(σ)√
4πt




∑

Pj∈PΓ1

C(ΛPj
(Γ1))

vol(ΛPj
(Γ1))

vol(S2n−1)
− log (tj)



 .

Let Λ be a lattice in R2n. The associated Epstein zeta function

ζΛ(s) :=
∑

λ∈Λ−{0}
‖λ‖−2n(1+s)(8.10)

converges for Re(s) > 0 and admits a meromorphic extension to C. Let C(Λ) denote the
constant term of the Laurent expansion of ζΛ(s) at s = 0. The following lemma describes
the behaviour of C(Λ) under scaling.

Lemma 8.1. Let Λ be a lattice in R2n. Let µ ∈ (0,∞) and put Λ′ := µΛ. Then one has

C(Λ′) = µ−2n

(
C(Λ)− vol(S2n−1) logµ

vol(Λ)

)
.

Proof. Let R(Λ) be the residue of ζΛ at 0. Then one has

C(Λ′) = µ−2n(C(Λ)− R(Λ)2n logµ).

Moreover, by [Ter, Chapter 1.4, Theorem 1] one has

R(Λ) =
vol(S2n−1)

2n vol(Λ)

and the lemma follows. �
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Now we let P ′ be any Γ0-cuspidal parabolic subgroup of G. Following section 6, we let
l′ ∈ {1, . . . , κ(X0)} such that there exists γ′ ∈ Γ0 with γ′P ′γ′−1 = P0,l′. As in (6.2) we
write γ′ = n0,l′a0,l′(log tP ′)k0,l′. If Γ1 is a finite index subgroup of Γ0, we define a lattice

Λ̃P ′(Γ1) in nP0,l(P ′)
as

Λ̃P ′(Γ1) := log(γ′(Γ1 ∩NP ′)γ′−1).

If Γ1 is normal in Γ0, one has Λ̃P ′(Γ1) = ΛP0,l′
(Γ1). Since γ

′ is unique in Γ0/(Γ0 ∩ P ′) and

Γ0 ∩ P ′ = Γ0 ∩ (MP ′NP ′), the isometry class of Λ̃P ′(Γ1) is independent of the choice of

γ′ having the required property. Let Λ̂P ′(Γ1) be the unimodular lattice corresponding to
Λ̃P ′(Γ1), i.e.

Λ̂P ′(Γ1) := (vol(Λ̃P ′(Γ1))
− 1

2n · Λ̃P ′(Γ1).

With respect to the norms induced by the Killing form, the lattice ΛP ′(Γ1) in nP ′ is
isometric to the lattice t−1

P ′ Λ̃P ′(Γ1) in nP0,l(P ′)
. Thus the preceding Lemma implies that

C(ΛPj
(Γ1)) vol(ΛPj

(Γ1))

vol(S2n−1)
=
C(Λ̃Pj

(Γ1)) vol(Λ̃Pj
(Γ1))

vol(S2n−1)
+ log tj.

Now define

α(X1) := α(Γ1) :=

κ(X1)∑

j=1

C(Λ̃Pj
(Γ1)) vol(Λ̃Pj

(Γ1))

vol(S2n−1)
.(8.11)

Then, putting everything together, we can write

SX1(h
τ,p
t ) = α(X1)

∑

σ∈M̂
[νp(τ):σ] 6=0

e−t(τ(Ω)−c(σ)) dim(σ)√
4πt

.(8.12)

Finally, for each l = 1, . . . , κ(Γ0), we let P(nP0,l
) be the set of isometry classes of unimod-

ular lattices in nP0,l
equipped with the standard topology, i.e., with the topology induced

by identification of P(nP0,l
) with SO(2n)\ SL2n(R)/ SL2n(Z). Now in order to control the

constant α(Γi) for sequences of finite coverings, we make the following definition.

Definition 8.2. Let Γi be a sequence of finite index subgroups of Γ0. Let PΓ0 be a fixed
set of representatives Γ0-cuspidal parabolic subgroups of Γ0. Then the sequence Γi is called
cusp uniform if for each l = 1, . . . , κ(Γ0) there exists a compact set Kl in P(nP0,l

) such that

for each Γ0-cuspidal parabolic P
′ the lattices Λ̂P ′(Γi), i ∈ N, belong to Kl.

We can reformulate the condition of cusp-uniformity in a simpler way as follows. We
let P(n) be the space of isometry classes of unimodular lattices in n, equipped with the
topology as above. For each parabolic subgroup P ′ of G there exists a gP ′ ∈ G with
gP ′P ′g−1

P ′ = P . Let Γ be a discrete subgroup of G of finite covolume. If P ′ is Γ-cuspidal,
we let

ΛP |P ′(Γ) := vol
(
log(gP ′(Γ ∩NP ′)g−1

P ′ )
) 1

2n log(gP ′(Γ ∩NP ′)g−1
P ′ ).(8.13)
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This a unimodular lattice in n and since the image of gP ′ in P\G is unique, the isometry
class of ΛP ′(Γ) is independent of the choice of gP ′ with gP ′P ′g−1

P ′ = P .

Lemma 8.3. The following conditions are equivalent:

(1) The sequence Γi is cusp-uniform.
(2) For each Γ0-cuspidal parabolic subgroup P ′ of G there exists a compact set KP ′ in

P(nP ′) such that Λ0
P ′(Γi) ∈ KP ′ for every i.

(3) There exists a compact set KP in P(nP ) such that for each Γ0-cuspidal parabolic
subgroup P ′ of G one has ΛP |P ′(Γi) ∈ KP for each i ∈ N.

Proof. By the preceding arguments all lattices are isometric. �

Lemma 8.4. Let K be a compact set of unimodular lattices in R2n. Then the constant
term of the Laurent expansion of the Epstein zeta functions ζΛ(s) at s = 0 is bounded on
K.

Proof. By [Ter, Chapt.I, §1.4, Theorem 1] the analytic continuation of ζΛ(s) is given by

π−sΓ(s)ζΛ(s) =
2

ns
− 2

n(1 + s)
+



∫ ∞

1

(t
n
2
(1+s)−1 + t−

n
2
s−1)

∑

λ∈Λ−{0}
e−tπ‖λ‖2 dt


 .(8.14)

Now for a lattice Λ in R2n, let λ1(Λ) denote the smallest norm of a non-zero vector in
Λ. Let B(R) denote the ball in R2n around the origin of radius R. Then it follows from
[BHW, Theorem 2.1] that for each R > 0 we have

#{B(R) ∩ Λ} ≤
(

2R

λ1(Λ)
+ 1

)2n

.

If K is a compact set of unimodular lattices in R2n, then by Mahler’s criterion there exists
a constant µ such that λ1(Λ) ≥ µ for each Λ ∈ K. Thus for each Λ ∈ K and for each
t ∈ [1,∞) we have

∑

λ∈Λ−{0}
e−tπ‖λ‖2 ≤ e−

tπµ2

2

∑

λ∈Λ−{0}
e−

π‖λ‖2

2 ≤ e−
tπµ2

2

∞∑

k=1

e−
π(µk)2

2 #{B(µ(k + 1)) ∩ Λ}

≤ e−
tπµ2

2

∞∑

k=1

e−
π(µk)2

2 (2k + 3)2n =: C1e
−tπµ2

2 ,

where C1 is a constant which is independent of Λ. Applying (8.14), the Lemma follows. �

Now we can control the behaviour of the constants, appearing in the definitions of the

terms T ′
Xi
(hτ,pt ) and SXi

(hτ,pt ), under sequences of coverings Xi = Γi\X̃ ofX0. As always we
assume that a set PΓ0 of representatives of Γ0-cuspidal parabolic subgroups of G is fixed.
For each i we let PΓi

= {Pi,j, j = 1, . . . , κ(Γi)} be a set of representatives of Γi-conjugacy
classes of Γi-cuspidal parabolic subgroups. We can estimate α(Γi) as follows.



33

Proposition 8.5. Let Γi be cusp-uniform sequence of finite index subgroups of Γ0. Then
there exists a constant c1(Γ0) such that

|α(Γi)| ≤ c1(Γ0)κ(Γi) + c1(Γ0)

κ(Γi)∑

j=1

log[Γ0 ∩NPi,j
: Γi ∩NPi,j

].

In particular, there exists a constant c2(Γ0) such that we have

|α(Γi)| ≤ c2(Γ0)κ(Γi) log [Γ0 : Γi].

Proof. By Lemma 8.1, for each Pi,j ∈ PΓi
one has

C(Λ̃Pi,j
(Γi)) vol(Λ̃Pi,j

(Γi)) = C(Λ̂Pi,j
(Γi))−

vol(S2n−1) log vol(Λ̃Pi,j
(Γi)

2n
.

By assumption the lattices Λ̂Pi,j
(Γi), i ∈ N, lie in a compact subset of P(nP0,l(j)

). Thus

by Lemma 8.4 there exists a constant c′1(Γ0) such that for each i one has |C(Λ̂Pi,j
(Γi))| ≤

c′1(Γ0). Since Λ̃Pi,j
(Γ0) = ΛP0,l(j)

(Γ0), the lattice Λ̃Pi,j
(Γi) is a sublattice of ΛP0,l(j)

(Γ0) of

index [Γ0 ∩NPi,j
: Γi ∩NPi,j

]. Therefore one has

vol(Λ̃Pi,j
(Γi)) = vol(ΛP0,l(j)

(Γ0))[Γ0 ∩NPi,j
: Γi ∩NPi,j

] ≤ c′′1(Γ0)[Γ0 ∩NPi,j
: Γi ∩NPi,j

],

where c′′1(Γ0) is a constant which is independent of i. This proves the first estimate. The
second estimate follows immediately from the first one. �

In the next proposition we estimate the number of cusps and the behaviour of the
constant α(Γi) under sequences of normal coverings.

Proposition 8.6. Let Γi be a sequence of normal subgroups of Γ0 of finite index [Γ0 : Γi]
such that [Γ0 : Γi] → ∞ as i → ∞ and such that each γ0 ∈ Γ0, γ0 6= 1, belongs only to
finitely many Γi. Assume that each Γi satisfies assumption (3.1). Then one has

lim
i→∞

κ(Γi)

[Γ0 : Γi]
= 0.

If in addition the sequence Γi is cusp-uniform, then one has

lim
i→∞

|α(Γi)|
[Γ0 : Γi]

= 0.

Proof. Using that each Γi, i ≥ 1, satisfies (3.1) and Γi is normal in Γ0, one has

#{Γi\Γ0/Γ0 ∩ P0,l} =
[Γ0 : Γi]

[Γ0 ∩ P0,l : Γi ∩ P0,l]
≤ [Γ0 : Γi]

[Γ0 ∩NP0,l
: Γi ∩NP0,l

]

for each l = 1, . . . , κ(Γ0). Thus using (6.7), one can estimate

κ(Γi)

[Γ0 : Γi]
=

∑
P0,l∈PΓ0

#{Γi\Γ0/Γ0 ∩ P0,l}
[Γ0 : Γi]

≤
∑

P0∈PΓ0

1

[Γ0 ∩NP0,l
: Γi ∩NP0,l

]
.
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Moreover, for each l = 1, . . . , κ(Γ0) and each j = 1, . . . , κ(Γi) one has

Γ0 ∩NPi,j
= γj(Γ0 ∩NP0,l(j)

)γ−1
j , Γi ∩NPi,j

= γj(Γi ∩NP0,l(j)
)γ−1

j ,

where the second equality is due to the assumption that Γi is normal in Γ0. Thus applying
(6.7), one can estimate

1

[Γ0 : Γi]

κ(Γi)∑

j=1

log[Γ0 ∩NPi,j
: Γi ∩NPi,j

]

=

∑
P0,l∈PΓ0

#{Γi\Γ0/Γ0 ∩ P0,l} log [Γ0 ∩NP0,l
: Γi ∩NP0,l

]

[Γ0 : Γi]

≤
∑

P0∈PΓ0

log [Γ0 ∩NP0,l
: Γi ∩NP0,l

]

[Γ0 ∩NP0,l
: Γi ∩NP0,l

]
.

The condition that each γ0 ∈ Γ0 − {1}, γ0 6= 1, belongs only to finitely many Γi implies
that [Γ0 ∩ NP0,l

: Γi ∩ NP0,l
] goes to ∞ as i → ∞. Thus the first statement and together

with the previous proposition also the second one are proved. �

9. Proof of the main results

We keep the assumptions of the previous sections. So Γ0 is a lattice in G and Γ1 is

a torsion-free subgroup of finite index of Γ0, which satisfies (3.1). We let X0 := Γ0\X̃
and Xi := Γi\X̃ . We assume that a set PΓ0 of representatives of Γ0-conjugacy classes
of Γ0-cuspidal parabolic subgroups of G is fixed. Then for each τ ∈ Rep(G), τ 6= τθ, let
Trreg;X1(e

−t∆X1,p
(τ)) be the the regularized trace of e−t∆X1,p

(τ), as defined by 6.2. It follows
from Proposition (7.2) that there exist constants C, c > 0 such that

∣∣Trreg;X1

(
e−t∆X1,p

(τ)
) ∣∣ ≤ Ce−ct,(9.1)

for t ≥ 1. Applying [Proposition 6.9][MP2], it follows immediately from the definition of
Trreg;X1(e

−t∆X1,p
(τ)) that there is an asymptotic expansion

Trreg;X1(e
−t∆X1,p

(τ)) ∼
∞∑

j=0

ajt
j− d

2 +
∞∑

j=0

bjt
j− 1

2 log t +
∞∑

j=0

cjt
j

as t→ +0. Put

KX1(t, τ) :=
1

2

d∑

p=1

(−1)ppTrreg;X1

(
e−t∆X1,p

(τ)
)
.

Then it follows that we can define the analytic torsion TX1(τ) by

log TX1(τ) =
d

ds

(
1

Γ(s)

∫ ∞

0

KX1(t, τ)t
s−1 dt

) ∣∣∣∣∣
s=0

,
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where the integral converges in the half-plane Re(s) > d/2 and is defined near s = 0 by
analytic continuation. Let T > 0. Then it follows from (9.1) that

∫∞
T
KX1(t, τ)t

s−1 dt is
an entire function of s. Therefore we have

(9.2) log TX1(τ) =
d

ds

(
1

Γ(s)

∫ T

0

KX1(t, τ)t
s−1 dt

) ∣∣∣∣
s=0

+

∫ ∞

T

KX1(t, τ)t
−1 dt.

To proceed further, we first need to estimate the integrand of the hyperbolic term (8.5).
Recall that for a lattice Γ in G we denote by ℓ(Γ) the length of the shortest closed geodesic

of Γ\X̃ .

Lemma 9.1. Let hτ.pt ∈ C∞(G) be defined by (8.3). For each T ∈ (0,∞) there exists
a constant C > 0, depending on T and X0 only, such that for all hyperbolic manifolds
X1 = Γ1\X̃, which are finite coverings of X0, and all g ∈ G one has

∣∣∣∣∣∣

∑

γ∈Γ1,s−{1}
hτ,pt (g−1γg)

∣∣∣∣∣∣
≤ Ce−

ℓ(Γ0)
2

32t e−
ℓ(Γ1)

2

8t

for all t ∈ (0, T ].

Proof. Let νp(τ) be the representation of K defined by (5.5). Let Ẽνp(τ) be the associated

homogeneous vector bundle over X̃ equipped with the canonical metric connection [MP2,

section 4]. Let ∆̃νp(τ) be the Bochner-Laplace operator acting on C∞(X̃, Ẽνp(τ)). Then on
C∞(G, νp(τ)), the action of this operator is given by

∆̃νp(τ) = −R(Ω) + νp(τ)(ΩK),

where ΩK is the Casimir eigenvalue of k with respect to the restriction of the normalized
Killing form g to k, see [Mi1, Proposition 1.1]. Thus by (8.1) there exists an endomorphism
Ep(τ) of Λ

pp∗ ⊗ Vτ such that

∆̃p(τ) = ∆̃νp(τ) + Ep(τ).

Moreover Ep(τ) commutes with ∆̃νp(τ). Let

H
νp(τ)
t : G→ End(Λpp∗ ⊗ Vτ )

be the kernel of the heat operator e−t∆̃νp(τ). Then it follows that

(9.3) Hτ,p
t = e−tEp(τ) ◦Hνp(τ)

t .

Let H0
t (g) be the heat kernel for the Laplacian on functions on X̃ . Using (9.3) and [MP1,

Proposition 3.1] it follows that there exist constants C > 0 and c ∈ R such that

‖Hτ,p
t (g)‖ ≤ CectH0

t (g), g ∈ G, t > 0.

Hence we get

|hτ,pt (g)| ≤ C dim(τ)ectH0
t (g), g ∈ G, t > 0.
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By [Do1] there exists C1 > 0 which depends only on T such that for each t ∈ (0, T ] one
has

H0
t (g) ≤ C ′

1t
−d/2 exp

(
−d

2(gK,K1)

4t

)

for 0 < t ≤ T . The constant C ′
1 depends only on T . Thus we get

∑

γ∈Γ1,s−{1}
|hτ,pt (g−1γg)| ≤ C2t

−d/2ecT
∑

γ∈Γ1,s−{1}
e−d2(γgK,gK)/(4t)

≤ C3e
−ℓ(Γi)

2/(8t)e−ℓ(Γ0)2/(32t)
∑

γ∈Γ0,s−{1}
e−d2(γgK,gK)/(16T ),

(9.4)

where C2, C3 are constants which depend only on T . It remains to show that the last sum
converges and can be estimated independently of g . For r ∈ (0,∞) and x ∈ X̃ we let
Br(x) be the metric ball of radius r around x. There exists a constant C > 0 such that

vol(Br(x)) ≤ Ce2nr(9.5)

for all r ∈ (0,∞). It easily follows from (2.12) and (2.13) that there exists an ǫ > 0 such

that for all x ∈ X̃ and all γ ∈ Γ0,s, γ 6= 1 one has Bǫ(x)∩γBǫ(x) = ∅. Thus for each x ∈ X̃
the union

⊔

γ∈Γ0,s : d(x,γx)≤R

γBǫ(x)

is disjoint and contained in Bǫ+R(x). Using (9.5) it follows that there exists a constant

CX0 > 0, depending on X0, such that for all R ∈ (0,∞) and all x ∈ X̃ one has

#{γ ∈ Γ0,s : d(x, γx) ≤ R} ≤ CX0e
2nR.

Applying (9.4) the Lemma follows. �

Applying the preceding lemma we obtain the following estimate for the regularized trace
which is uniform with respect to coverings.

Proposition 9.2. There exists a constant C > 0 such that for each hyperbolic manifold

X1 = Γ1\X̃, which is a finite covering of X0, and for which Γ1 satisfies (3.1), one has

|Trreg;X1

(
e−∆X1,p

(τ)
)
| ≤ C(vol(X1) + κ(X1) + α(X1)),

where κ(X1) is the number of cusps of X1 and α(X1) is as in (8.11).

Proof. We put t = 1 in (8.9) and estimate the terms on the right hand side. The identity
contribution (8.4) can be estimated by C1 vol(X1). By (8.7), the third term can be esti-
mated by C2κ(X1). Using (8.12), it follows that the forth term is bounded by C3α(X1).
Finally, (8.5) and Lemma 9.1 imply that the hyperbolic term is bounded by C4 vol(X1).
The constants Ci > 0, i = 1, · · · , 4, are all independent of X1. This finishes the proof. �
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Now we can deal with the second integral in (9.2). Using Proposition 7.2, Proposition
9.2, assumption (1.7) and Proposition 8.5, it follows that there exists a C, c > 0 such that
for all finite coverings π : X1 → X0 as above we have

(9.6)
1

vol(X1)

∣∣∣∣
∫ ∞

T

KX1(t, τ)t
−1 dt

∣∣∣∣ ≤ Ce−cT

for all T ≥ 10.
It remains to treat the first term on the right hand side of (9.2). For this purpose we

use the geometric side of the trace formula as it is given in (8.9). Therefore, put

(9.7) kτt :=
1

2

d∑

p=1

(−1)pphτ,pt .

It follows from [MP2, section 9] that the Mellin transform
∫∞
0
kτt (1)t

s−1 dt converges ab-
solutely and uniformly on compact subsets of Re(s) > d/2, and admits a meromorphic
extension to C, which is holomorphic at s = 0. Let

(9.8) t
(2)

X̃
(τ) :=

d

ds

(
1

Γ(s)

∫ ∞

0

kτt (1)t
s−1 dt

) ∣∣∣∣
s=0

.

Then in analogy to the compact case (1.2), the L2-torsion T
(2)
X1

(τ) ∈ R+ is given by

log T
(2)
X1

(τ) = vol(X1)t
(2)

X̃
(τ).

For details we refer to [MP2, section 9]. Furthermore, it follows from [MP2, equation 9.4]
that there exist C, c > 0 such that

∣∣∣∣
∫ ∞

T

kτt (1)t
−1 dt

∣∣∣∣ ≤ Ce−cT

for T > 0. Hence we get

(9.9)
d

ds

(
1

Γ(s)

∫ T

0

IX1(k
τ
t )t

s−1 dt

) ∣∣∣∣
s=0

= vol(X1) · (t(2)X̃
(τ) +O

(
e−cT

)
).

Now let Γi, i ∈ N, be a sequence of torsion-free subgroups of finite index of Γ0, which
satisfy the assumptions of Theorem 1.1. Firstly, by (9.9) we have

(9.10) lim
i→∞

1

[Γ0 : Γi]

d

ds

(
1

Γ(s)

∫ T

0

IXi
(kτt )t

s−1 dt

) ∣∣∣∣
s=0

= vol(X0) · (t(2)X̃
(τ) +O

(
e−cT

)
).

Let (Γi)s be the set of semi-simple elements in Γi. By (8.5) the hyperbolic contribution is
given by

HXi
(kτt ) =

∫

Γi\G

∑

γ∈(Γi)s−{1}
kτt (g

−1γg) dġ.

It follows from Lemma 9.1 that

d

ds

(
1

Γ(s)

∫ T

0

HXi
(kτt )t

s−1 dt

) ∣∣∣∣
s=0

=

∫ T

0

HXi
(kτt )t

−1 dt
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and that there exists a constant C2, depending on T , such that
∣∣∣∣
∫ T

0

HXi
(kτt )t

−1 dt

∣∣∣∣ ≤ C2 vol(Xi)e
− ℓ(Γi)

2

8T .

Hence if ℓ(Γi) → ∞ as i→ ∞, one has

(9.11) lim
i→∞

1

[Γ0 : Γi]

d

ds

(
1

Γ(s)

∫ T

0

HXi
(kτt )t

s−1 dt

) ∣∣∣∣
s=0

= 0.

Next we study the term associated to T ′
Xi
(kτt ), defined in (8.7). We let JXi

(kτt ) and
IXi

(kτt ) be defined according to [MP2, (6.13), (6.15)], where the subindex Xi indicates
that these distributions depend on the manifold Xi. Then by definition we have

T ′
Xi
(kτt ) = κ(Xi)IXi

(kτt ) + JXi
(kτt ).

Using the results of [MP2, section 6], it follows that there is an asymptotic expansion

T ′
Xi
(kτt ) ∼

∞∑

k=0

akt
k−(d−2)/2 +

∞∑

k=0

bkt
k−1/2 log t+ c0

as t→ 0. Thus for Re(s) > (d− 2)/2, the integral
∫ T

0

T ′
Xi
(kτt )t

s−1 dt

converges and has a meromorphic extension to C, which at s = 0 has at most a simple
pole. Applying the definition of T ′

Xi
it follows that there exists a function φ(T, τ) such that

d

ds

(
1

Γ(s)

∫ T

0

T ′
Xi
(kτt )t

s−1 dt

) ∣∣∣∣
s=0

= φ(T, τ) · κ(Xi).

Thus if limi→∞ κ(Xi)/[Γ0 : Γi] = 0, we obtain

(9.12) lim
i→∞

1

[Γ0 : Γi]

d

ds

(
1

Γ(s)

∫ T

0

T ′
Xi
(kτt )t

s−1 dt

) ∣∣∣∣
s=0

= 0.

Finally, by (8.12) the integral
∫ T

0

ts−1SXi
(kτt )dt

converges absolutely for s ∈ C with Re(s) > 1
2
and has a meromorphic extension to C with

an at most a simple pole at s = 0. Moreover, it follows from (8.12) that there exists a
function ψ(T, τ) such that

d

ds

(
1

Γ(s)

∫ T

0

SXi
(kτt )t

s−1 dt

) ∣∣∣∣
s=0

= ψ(T, τ) · α(Γi),

where α(Γi) is as in (8.11). By assumption (1.7) and Proposition 8.5 it follows that

lim
i→∞

1

[Γ0 : Γi]

d

ds

(
1

Γ(s)

∫ T

0

SXi
(kτt )t

s−1 dt

) ∣∣∣∣
s=0

= 0.
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Combined with (9.10), (9.11), and (9.12) we get

(9.13) lim
i→∞

1

[Γ0 : Γi]

d

ds

(
1

Γ(s)

∫ T

0

KX1(t, τ)t
s−1 dt

) ∣∣∣∣
s=0

= vol(X0) · (t(2)X̃
(τ) +O(e−cT )).

Finally, combining (9.13), (9.2) and (9.6), and using that T > 0 is arbitrary, Theorem 1.1
follows. �

Now assume that Γi is normal in Γ0 and each γ ∈ Γ0 belongs only to finitely many
Γi. Note that ℓ(γ) depends only on the Γ0-conjugacy class. Since by (2.19), for each
R > 0 there are only finitely many conjugacy classes [γ] ∈ C(Γ0,s) with ℓ(γ) ≤ R, one
has limi→∞ ℓ(Γi) = ∞. Thus, if one applies Proposition 8.6 and the preceding arguments,
Theorem 1.2 follows.

10. Principal congruence subgroups of SO0(d, 1)

In this section we apply Theorem 1.2 to the case of principal congruence subgroups of
SO0(d, 1) and prove Corollary 1.3. Therefore, throughout this section we let G := SO0(d, 1),
d odd, d = 2n + 1. Let K = SO(d), regarded as a subgroup of G. Then K is a maximal
compact subgroup of G.

We realize the standard parabolic subalgebra p of g as follows. Denote by Ei,j the matrix
in g whose entry at the i-th row and j-th column is equal to 1 and all of whose other entries
are equal to 0 and let H1 := E1,2 + E2,1. Let a := RH1 and let

n =




X(v) :=



0 0 vt

0 0 vt

v −v 0


 , v ∈ Rd−1




 .(10.1)

Then for the standard ordering of the restricted roots of a in g, n is the direct sum of the
positive restricted root spaces. We let

g = n⊕ a⊕ k

be the associated Iwasawa decomposition. Let N be the connected Lie group with Lie
algebra n and let A := exp(a). Let M be the centralizer of A in K. Then

P =MAN

is a parabolic subgroup of G.
For v ∈ Rd−1 one has

exp(X(v)) = 1 +X(v) +
X2(v)

2
=



1 + ‖v‖2/2 −‖v‖2/2 vt

‖v‖2/2 1− ‖v‖2/2 vt

v −v Id−1


 ,(10.2)

where Id−1 denotes the unit-matrix and where ‖ · ‖ denotes the Euclidean norm on Rd−1.
We have N = exp(n).
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The group G is an algebraic group defined over Q and we let Γ0 := G(Z) be its integral
points. By [BoHa], Γ0 is a lattice in G. It follows from (10.2) that

log (Γ0 ∩N) =







0 0 vt

0 0 vt

v −v 0


 , v ∈ Zd−1, ‖v‖2 ∈ 2Z



 .(10.3)

In particular, P is a Γ0-cuspidal parabolic subgroup of G.
Now for q ∈ N we let Γ(q) be the principal congruence subgroup of level q, i.e.

Γ(q) = {A ∈ Γ0 : A ≡ I mod(q)} .
Then Γ(q) coincides with the kernel of the canonical map Γ0 → G(Z/qZ). In particular,
Γ(q) is a normal subgroup of Γ0. If q ≥ 3, then the group Γ(q) is neat in the sense of Borel,
see [Bo, 17.4]. In particular, Γ(q) is torsion free and satisfies (3.1).

In the following Lemma we verify the cusp-uniformity of the groups Γ(q). The Lemma is
just a special case of Lemma 4 of the paper [DH] of Deitmar and Hoffmann who treated the
more general case of families of strictly bounded depth in algebraic Q-groups of arbitrary
real rank. However, for the convenience of the reader we shall now recall the proof of
Deitmar and Hoffmann in our situation.

Lemma 10.1. Let P ′ be a Γ0-cuspidal parabolic subgroup defined over Q with nilpotent
radical NP ′. Let nP ′ be the Lie-algebra of NP ′. Then there exists a lattice Λ+

nP ′
in nP ′ such

that

qΛ+
nP ′

⊆ log (Γ(q) ∩NP ′) ⊆ q

4
Λ+

nP ′

for each q ∈ N. In particular, the sequence Γ(q), q ∈ N, is cusp-uniform.

Proof. Let Mat(d+1)×(d+1)(Z) be the integral (d + 1) × (d + 1)-matrices. Then by (10.1)
n ∩Mat(d+1)×(d+1)(Z) is a lattice in n. We choose g ∈ G(Q) such that P ′ = gPg−1. Then
nP ′ = gng−1 and thus

Λ+
nP ′

:= 2(nP ′ ∩Mat(d+1)×(d+1)(Z))

is a lattice in nP ′ . By (10.2), one has exp(Y ) = 1 + Y + Y 2

2
for each Y ∈ nP ′ and thus the

first inclusion is clear. Moreover, by (10.1), if k ≥ 3 one has Y k = 0 for each Y ∈ nP ′ and
thus for each nP ′ ∈ NP ′ one has

log nP ′ = (nP ′ − 1)− 1

2
(nP ′ − 1)2

and this gives the second inclusion. The second statement follows from Mahler’s criterion
and Lemma 8.3. �

It is obvious that every γ0 ∈ Γ0 belongs only to finitely many Γ(q). If we use equation
(10.3), we easily see that [Γ0 ∩ N : Γ(q) ∩ N ] goes to infinity if q does and so [Γ0 : Γ(q)]
goes to infinity if q → ∞. Thus applying Lemma 10.1, Corollary 1.3 follows from Theorem
1.2.
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11. Principal congruence subgroups and Hecke subgroups of Bianchi

groups

We finally turn to the proofs of Corollary 1.4 and Theorem 1.5. We let F := Q(
√
−D),

D ∈ N square-free, be an imaginary quadratic number field. Let OD be the ring of integers

of F , i.e. OD = Z +
√
−DZ if D ≡ 1, 2 modulo 4, OD = Z + 1+

√
−D

2
Z if D ≡ 3 modulo

4. We let Γ(D) := SL2(OD) be the associated Bianchi-group. Then XD := Γ(D)\H3 is of
finite volume. More precisely, one has

vol(XD) =
|δF |

3
2 ζF (2)

4π2
,

where ζF is the Dedekind zeta function of F and δF is is the discriminant of F , see [Hu],
[Sa, Proposition 2.1]. Let a be any nonzero ideal in OD and let N(a) denote its norm.
Then the associated principal congruence subgroup Γ(a) is defined as

Γ(a) :=

{(
a b
c d

)
∈ Γ(D) : a− 1 ∈ a; d− 1 ∈ a; b, c ∈ a

}
.

Moreover, the associated Hecke subgroup Γ0(a) is defined as

Γ0(a) :=

{(
a b
c d

)
∈ Γ(D) : c ∈ a

}
.

Let P be the parabolic subgroup given by the upper triangular matrices in SL2(C). Then
the Langlands decomposition P =MAN is given by

M =

{(
eiθ 0
0 e−iθ

)
, θ ∈ [0, 2π)

}

and

A =

{(
λ 0
0 λ−1

)
, λ ∈ R, λ > 0

}
; N =

{(
1 b
0 1

)
, b ∈ C

}
.

We recall that by [Ba, Corollary 5.2] the canonical map from SL2(OD) to SL2(OD/a) is
surjective. Thus the sequence

1 → Γ(a) → Γ(D) → SL2(OD/a) → 1

is exact and taking the prime-decomposing of a it follows as in [Sh, Chapter 1.6] for the
SL2(R)-case that

[Γ(D) : Γ(a)] = N(a)3
∏

p|a

(
1− 1

N(p)2

)
.(11.1)

It also follows that the sequence

1 → Γ(a) → Γ0(a) → P (OD/a) → 1
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is exact. Moreover the order of P (OD/a) is N(a)φ(a), where

φ(a) := #{(OD/a)
∗} = N(a)

∏

p|a

(
1−N(p)−1

)
.(11.2)

Thus one obtains

[Γ(D) : Γ0(a)] = N(a)
∏

p|a
(1 +N(p)−1).(11.3)

Here the products in (11.1), (11.2) and (11.3) are taken over all prime ideals p in OD

dividing a.
Let P1(F ) be the one-dimensional projective space over F . As usual, we write ∞ for the

element [1, 0] ∈ P1(F ). Then SL2(F ) acts naturally on P1(F ) and by [EGM, Chapter 7.2,
Proposition 2.2] one has

κ(Γ(D)) = #
(
Γ(D)\P1(F )

)
.

Using [EGM, Chapter 7.2, Theorem 2.4], it follows that κ(Γ(D)) = dF , where dF is the
class number of F . The group P is the stabilizer of ∞ in SL2(C). For each η ∈ P1(F ) we
fix a Bη ∈ SL2(F ) with Bηη = ∞. We let B∞ = Id. Then Pη := B−1

η PBη is the stabilizer
of η in SL2(C) and the Γ(D)-cuspidal parabolic subgroups of G are given as Pη. We let
Nη := B−1

η NBη. If η ∈ P1(F ), we let Γ(D)η, Γ(a)η, Γ0(a)η be the stabilizers of η in Γ(D)
resp. Γ(a) resp. Γ0(a).

The following Proposition is an immediate consequence of the finiteness of the class
number.

Proposition 11.1. The set of all principal congruence subgroups Γ(a) and all Hecke sub-
groups Γ0(a), a a non-zero ideal in OD, is cusp-uniform.

Proof. Let JF be the ideal group of F , i.e. the group of all finitely generated non-zero
OD-modules in F . We regard F ∗ as a subgroup of JF by identifying F ∗ with the group of
fractional principal ideals. Let IF := JF/F

∗ be the ideal class group. Then #IF = dF <

∞, see [Ne, chapter I.6]. Now for η ∈ P1(F ), Bη as above, write Bη =

(
α β
γ δ

)
∈ SL2(F )

and let u be the OD-module generated by γ and δ and let b := u−2 ∩ γ−2a. It is easy to
see that b 6= 0. Then proceeding as in [EGM, Chapter 8.2, Lemma 2.2], one obtains

BηΓ(a)ηB
−1
η ∩N =

{(
1 ω′

0 1

)
; ω′ ∈ au−2

}
; BηΓ0(a)ηB

−1
η ∩N =

{(
1 ω′′

0 1

)
; ω′′ ∈ b

}
.

Let P ′ be a Γ(D)-cuspidal parabolic subgroup of G and let ΛP |P ′(Γ(a)) and ΛP |P ′(Γ0(a))
denote the set of lattices defined as in (8.13). Since au−2 and b belong to JF , and IF

is finite, it follows that ΛP |P ′(Γ(a)), and ΛP |P ′(Γ0(a)) are finite sets. Applying the third
criterion of Lemma 8.3, the proposition follows. �

The groups Γ(a) are torsion-free and satisfy (3.1) for N(a) sufficiently large. This was
shown for example in the proof of Lemma 4.1 in [Pf2]. Since [Γ(D) : Γ(a)] tends to ∞
if N(a) tends to ∞ and since each γ0 ∈ Γ(D), γ0 6= 1, is contained in only finitely many
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Γ(a), Corollary 1.4 follows from Proposition 11.1 and Theorem 1.2.

We finally turn to Theorem 1.5. The Hecke groups Γ0(a) are never torsion-free and never
satisfy (1.5). However, we may take a finite index subgroup Γ′ of ΓD, for example a fixed
principal congruence subgroup of sufficiently high level, which is torsion free and satisfies
assumption (1.5). Then for each non zero ideal a of OD we let

Γ′
0(a) := Γ0(a) ∩ Γ′.

This group satisfies now the required assumptions and if n0 := [Γ(D) : Γ′], then

[Γ0(a) : Γ
′
0(a)] ≤ n0(11.4)

for each non-zero ideal a. Thus since the set of all Γ0(a) is cusp uniform by the preceding
lemma, also the set of all Γ′

0(a), a a non-zero ideal in OD, is cusp uniform. Now, as in [AC,
page 15], for an ideal b of OD we let

φu(b) := #((OD/b)
∗/O∗

D).

Then by [AC, Theorem 7] one has

κ(Γ0(a)) = dF
∑

b|a
φu(b+ b−1a).(11.5)

Now as in [FGT, Lemma 5.7], on the set of ideals in OD, we introduce the multiplicative
function κ given by

κ(pk) :=

{
N(p)

k
2 +N(p)

k
2
−1 k ≡ 0(2),

2N(p)
k−1
2 k ≡ 1(2),

where p is a prime ideal of OD. Using (11.5), it easily follows that

κ(Γ0(a)) ≤ dFκ(a),

where one has equality if one replaces φu by φ in (11.5). Now observe that

κ(a) ≤ 2N(a)1/2
∏

p|a

(
1 +N(p)−1

)
.

Using (11.3), we obtain

κ(Γ0(a))

[Γ(D) : Γ0(a)]
≤ 2dF√

N(a)
.

Now by (11.3) we have the trivial bound [Γ(D) : Γ0(a)] ≤ N(a)2. It follows that

lim
N(a)→∞

κ(Γ0(a)) log[Γ(D) : Γ0(a)]

[Γ(D) : Γ0(a)]
= 0.
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Thus every sequence Γ0(a) satisfies assumption (1.8) forN(a) → ∞. As above, if P0,1, . . . , P0,dF

are fixed representatives of Γ(D)-cuspidal parabolic subgroups of SL2(C), then

κ(Γ′
0(a)) =

dF∑

j=1

#{Γ0(a)
′\Γ(D)/Γ(D) ∩ P0,j}

and there is a similar formula for κ(Γ0(a)). Thus one has κ(Γ′
0(a)) ≤ n0κ(Γ0(a)) and

putting everything together, it follows that the sequence Γ′
0(a) satisfies condition (1.8).

It remains to prove that the contribution of the semisimple conjugacy classes to the
analytic torsion goes to zero for towers of Hecke subgroups. In order to prove this, we
consider the formula (8.6). According to section 8, for γ ∈ Γ(D) we let cΓ0(a)(γ) be the
number of fixed points of γ on Γ(D)/Γ0(a). To begin with, as in [FGT] we let

Γ̃(a) :=

{(
a b
c d

)
: a− d ∈ a : b, c ∈ a

}
.

Now we define a multiplicative function c(·, ·) on the ideals of OD by putting

c(pk, pr) :=





N(p)(k+r)/2, k − r odd, k − r > 0

2N(p)(k+r−1)/2, k − r even, k − r > 0

N(p)k +N(p)k−1, k ≤ r,

if p is a prime ideal and k, r ∈ N0. Then the following proposition and its proof were kindly
provided by Tobias Finis.

Proposition 11.2. Let γ ∈ Γ(D) and let b be the largest divisor of a such that γ ∈ Γ̃(b).
Then one has

cΓ0(a)(γ) ≤ c(a, b).

In particular, if ν(a) denotes the number of prime divisors of a, one can estimate

cΓ0(a)(γ) ≤ 2ν(a)
√
N(a)N(b).

Proof. We can identify the quotient Γ(D)/Γ0(a) with the projective line P1(OD/a) and for
a given γ ∈ Γ(D) we have to estimate the number of its fixed points N(γ, a) on P1(OD/a).
By the strong approximation theorem we have

N(γ, a) =
∏

p

N(γ, pνp(a)), a =
∏

p

pνp(a).

So it suffices to study N(γ, pk) for a prime ideal p of OD. First assume that γ is scalar
modulo pk. Then every point of P1(OD/p

k) is a fixed point of γ. The number of elements
of the projective line P1(OD/p

k) equals N(p)k +N(p)k−1. Thus in this case the lemma is
proved. Next assume that γ is not scalar modulo pk. Let r < k be the maximal integer
such that γ is scalar modulo pr. We work over the completion Op of O at p. Let π be the
corresponding prime element. Then we have Op/π

l ∼= O/pl for every l. Over Op we have
the decomposition

γ = a+ πrη,
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where a is a scalar matrix and η is not scalar modulo π. A vector v ∈ O2
p which is not

divisible by π is an eigenvector of γ modulo πk if and only if it is an eigenvector of η modulo
πk−r. If we consider the canonical map P1(O/pk) → P1(O/pk−r), then the preimage of each
element in P1(O/pk−r) has N(p)r elements. Thus if n denotes the number of eigenvalues
of η in P1(O/pk−r), we have N(γ, pk) = N(p)rn. It remains to estimate n.

To this end, we may assume that η has an eigenvalue. Otherwise there is nothing to
prove. Then adding a scalar matrix and performing a base change over Op, which does not
change the number n, we may assume that η has the eigenvalue 0 with eigenvector (1, 0)t.
Since we assumed that η is not scalar modulo π, after a base change we may assume that
η is of the form

η =

(
0 1
0 d

)
,

where d ∈ Op. Now a set of representatives of eigenvectors in P1(O/pk−r) of this matrix
is given by all classes of vectors represented by (1, y), where y is chosen modulo pk−r and
satisfies y2 − dy ≡ 0 modulo pk−r. Thus n is the number of solutions of the quadratic
congruence for y ∈ O/pk−r. Let νp be the valuation corresponding to p. Then this congru-
ence is equivalent to νp(y) + νp(y − d) ≥ k − r. This implies that at least one summand
is ≥ (k − r)/2. We distinguish two cases. First, we assume that νp(d) < (k − r)/2. Then
exactly one summand is ≥ (k − r)/2 and the other has the valuation νp(d). Thus in this
case n is 2 times the number of all representatives whose valuation is ≥ k − r − νp(d),
i.e. n = 2N(p)νp(d). Secondly, we assume that νp(d) ≥ (k − r)/2. Then the congruence is

equivalent to νp(y) ≥ (k − r)/2. Thus in this case one has n = N(p)⌊
k−r
2

⌋. In all cases we
obtain n ≤ N(p)(k−r)/2 if k − r is even and n ≤ 2N(p)(k−r−1)/2 if k − r is odd. Putting ev-
erything together, the first estimate follows. This estimate immediately implies the second
one. �

Remark 11.3. Proposition 11.2 also follows from more general estimates which are the
content of a paper of Tobias Finis and Erez Lapid that is in preparation. Related results
are also obtained in [A++].

The following Lemma is due to Finis, Grunewald and Tirao.

Lemma 11.4. For every δ > 0 there is a constant C > 0 such that for all non zero ideals
b of OD and all R > 0 the number of elements in [γ] ∈ C(Γ(D))s which satisfy ℓ(γ) ≤ R

and which belong to Γ̃(b) is bounded by N(b)−2e(2+δ)R.

Proof. This follows directly from [FGT, Lemma 5.10]. �

Now we take a sequence ai of ideals such that N(ai) tends to infinity with i and we
let Γi := Γ′

0(ai), Xi := Γi\H3. We need to estimate the hyperbolic contribution HXi
(hτt ).

We use formula (8.6), and apply the Fourier inversion formulas of Harish-Chandra to the
invariant orbital integrals using that the Fourier transform of hτt can be computed explicitly.
This was carried out in [MP2]. If we combine [MP2, (10.4)] for the special case of dimension
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3 with equation (8.6), we obtain:

HXi
(hτt ) =

1∑

k=0

(−1)k+1e−tλ2
τ,k

∑

[γ]∈C(Γ(D))s−[1]

cΓi
(γ)

ℓ(γ)

nΓ(γ)
Lsym(γ; στ,k)

e−ℓ(γ)2/4t

(4πt)
1
2

.(11.6)

Here the λτ,k ∈ (0,∞) are as in [MP2, (8.4)] and the στ,k ∈ M̂ are determined by their
highest weight Λστ,k

given as in [MP2, (8.5)]. Moreover, nΓ(γ) is the period of the closed
geodesic corresponding to γ and Lsym(γ; στ,k) is as in [MP2, (6.2), (10.3)]. By [MP2,
(10.11)] and the definition of Lsym(γ; στ,k), there exists a constant C0 such that for all
γ ∈ Γ(D)s − {1} one has

ℓ(γ)

nΓ(γ)
|Lsym(γ; στ,k)| ≤ C0.

Thus together with equation (11.4), Proposition 11.2 and Lemma 11.4, it follows that there
exist constants C1, C2 such that for each i we can estimate

HXi
(hτt ) ≤ C12

ν(a)
∑

b|a

√
N(b)N(a)

∑

[γ]∈C(Γ(D))s−[1]

γ∈Γ̃(b)

e−
ℓ(γ)2

4t

(4πt)
1
2

≤ C12
ν(a)
∑

b|a

√
N(ab)

∞∑

k=1

(
e−

(kℓ(Γ(D)))2

4t

(4πt)
1
2

×#{[γ] ∈ C(Γ(D))s : γ ∈ Γ̃(b) : kℓ(Γ(D)) ≤ ℓ(γ) ≤ (k + 1)ℓ(Γ(D))}
)

≤ C22
ν(a)
√
N(a)

∑

b|a
N(b)−

3
2

∞∑

k=1

ke−
(kℓ(Γ(D)))2

4t

(4πt)
1
2

e(2+δ)kℓ(Γ(D)).

Let a = pk11 · · · · · pkν(a)ν(a) be the prime ideal decomposition of a. Then we have

2ν(a)
∑

b|a
N(b)−

3
2 ≤ 2ν(a)

ν(a)∏

j=1

1

1−N(pj)
− 3

2

≤ 4ν(a).

Now note that there are only finitely many prime ideals with a given norm. This implies
that for every ǫ > 0 there exists C(ǫ) > 0 such that for all a we have 2ν(a) ≤ C(ǫ)N(a)ǫ.
Hence the right hand side is O(N(a)ǫ) as N(a) → ∞ for any ǫ > 0, where the implied
constant depends on ǫ. Thus there exist constants c, C3, C4 > 0 such that we have

HXi
(hτt ) ≤ C32

ν(a)
√
N(a)

∑

b|a
N(b)−

3
2 e−

c
t ≤ C4N(a)

3
4 e−

c
t .(11.7)

Applying (11.3), it follows that for ever T ∈ (0,∞) one has

lim
i→∞

1

[Γ(D) : Γi]

∫ T

0

t−1HXi
(hτt )dt = 0.(11.8)
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Thus the analog of equation (9.11) is also verified for the present sequence Γi of subgroups
derived from Hecke subgroups. Since it was shown above that this sequence is cusp uniform
and satisfies condition 1.8, the proof of Theorem 1.1 given in section 9 can be carried over
to the present case. Thus also Theorem 1.5 is proved.
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