APPROXIMATION OF L-ANALYTIC TORSION FOR ARITHMETIC
QUOTIENTS OF THE SYMMETRIC SPACE SL(n,R)/SO(n)

JASMIN MATZ AND WERNER MULLER

ABSTRACT. In this paper we define a regularized analytic torsion for arithmetic quotients
of the symmetric space SL(n,R)/ SO(n). We consider sequences of congruence subgroups
of a fixed arithmetic subgroup.

1. INTRODUCTION

Let X be a compact oriented Riemannian manifold of dimension d. Let p be a finite
dimensional representation of 7 (X) and let £, — X be the associated flat vector bundle.
Pick a Hermitian fiber metric in E,. Let A,(p) be the Laplace operator on E,-valued
p-forms. Let (,(s, p) be its zeta function [Sh]. Let e~*2»(") ¢ > 0, be the heat operator and
let b,(p) = dimker A,(p). Then for Re(s) > d/2 one has

1 *° _ .
(1.1) G5.0) = 75 /0 (Tr (=0 — b, () dt.
Then the analytic torsion Tx(p) € R, introduced by Ray and Singer [RS], is defined by
1 d
(1.2) log Tx(p) := 3 Z(—l)ppgcp(& Py
p=1

The corresponding L2-invariant, the L2-analytic torsion T' )((2 )(p), was introduced by Lott
[Lo] and Mathai [MV]. It is defined in terms of the von Neumann trace of the heat operators

on the universal covering X of X.

The analytic torsion has been used by Bergeron and Venkatesh [BV] to study the growth
of torsion in the cohomology of co-compact arithmetic groups. The approach of [BV] is
based on the approximation of the L?-torsion by the renormalized analytic torsion for
sequences of coverings of a given compact locally symmetric space. Since many important
arithmetic groups are not co-compact, it is desirable to extend these results to the non-
compact case. The first problem is that the analytic torsion is not defined for non-compact
manifolds. To cope with this problem we defined in [MzM] a regularized version of the
analytic torsion for quotients of the symmetric space SL(n, R)/SO(n) by arithmetic groups.
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The goal of the present paper is to extend the result of Bergeron and Venkatesh [BV] on
the approximation of the L?-analytic torsion to this setting.

To begin with we recall the results of Bergeron and Venkatesh. Let GG be a semisimple Lie
group of non-compact type. Let K be a maximal compact subgroup of G and let X=a /K
be the associated Riemannian symmetric space endowed with a G-invariant metric. Let
I' € G be a co-compact discrete subgroup. For simplicity we assume that ' is torsion
free. Let X := F\)? . Then X is a compact locally symmetric manifold of non-positive
curvature. Let 7 be an irreducible finite dimensional complex representation of G. Denote
by Tx (1) (resp. T)(f ) (7)) the analytic torsion (resp. the L2-torsion) taken with respect to
the representation 7|p of I'. Since the heat kernels on X are G-invariant, one has

2 2
(1.3) log T (7) = vol(X)t2 (7).
where tg? (1) is a constant that depends only on X and 7. It is an interesting problem

to see if the L?-torsion can be approximated by the torsion of finite coverings X; — X.
This problem has been studied by Bergeron and Venkatesh [BV] under a certain non-
degeneracy condition on 7. Representations which satisfy this condition are called strongly
acyclic. One of the main results of [BV] is as follows. Let X; — X, i € N, be a sequence of
finite coverings of X. Let 7 be strongly acyclic. Let inj(X;) denote the injectivety radius
of X; and assume that inj(X;) — oo as i — co. Then by [BV, Theorem 4.5] one has

log T, (7)

2
1.4 m =t2(7).
(14) oo vol(X;) x (7

If rankc(G) — ranke(K) = 1, one can show that tﬁ? (1) # 0. Combined with the equality
of analytic torsion and Reidemeister torsion [Mu2], Bergeron and Venkatesh [BV] used
this result to study the growth of torsion in the cohomology of co-compact arithmetic
groups. This makes it desirable to extend these results in various directions. Especially,
one would like to extend (1.4) to the finite volume case. However, due to the presence of
the continuous spectrum of the Laplace operators in the non-compact case, one encounters
serious technical difficulties in attempting to generalize (1.4) to the finite volume case. In
[Ral] J. Raimbault has dealt with finite volume hyperbolic 3-manifolds. In [Ra2] he applied
this to study the growth of torsion in the cohomology for certain sequences of congruence
subgroups of Bianchi groups.

The main purpose of the present paper is to extend (1.4) to arithmetic quotients of
X :=SL(n,R)/SO(n).

In order to define the regularized analytic torsion in the non-compact case, we pass to the
adelic framework. Let G = SL(n). Let A be the ring of adeles and Ay the ring of finite
adeles. Let K, = SO(n) be the usual maximal compact subgroup of G(R) = SL(n,R).
Given an open compact subgroup, Ky C G(Ay), let

(1.5) X(Kp) = GQ\(X x G(Ay)/Ky)
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be the associated adelic quotient. This is the adelic version of a locally symmetric space.
Since SL(n) is simply connected, strong approximation holds for SL(n) and therefore, we
have

(L6) X(Kj) =T\X,

where I' is the projection of (G(R) x Ky) N G(Q) onto G(R). We will assume that Ky
is neat so that X(Ky) is a manifold. Let 7: G(R) — GL(V;) be a finite dimensional
complex representation. The restriction of 7 to I' C G(R) induces a flat vector bundle E.
over X(Ky). By [MM], E; is isomorphic to the locally homogeneous vector bundle over
X (Ky), which is associated to 7|k_. Moreover it can be equipped with a distinguished
fiber metric, induced from an admissible inner product in V,. In this way we get a fiber
metric in ;. Let A,(7) be the twisted Laplace operator on p-forms with values in E,. If
X (Ky) is not compact, A,(7) has continuous spectrum and therefore, the analytic torsion
can not be defined by (1.2). In [MzM] we have introduced a regularized version of the
analytic torsion. The starting point for the definition of the regularized analytic torsion in
the non-compact case is formula (1.1). In [MzM] we introduced a regularized trace of the
heat operator. It is defined as follows. Let EP(T) be the Laplace operator on ET—Valued
p-forms on X. The heat operator e~2»(") is a convolution operator given by a kernel
H": G(R) — GL(APp* ® V;), where g = ¢ @ p is the Cartan decomposition of the Lie
algebra g of G(R). Let h" € C*(G(R)) be defined by

hi*(g) =tr H/"(g9), g€ G(R).

Let Jeo(f), f € CX(G(A)), be the geometric side of the (non-invariant) Arthur trace
formula [Arl]. By [FL1, Theorem 7.1], Jyo(f) is defined for all f € C(G(A), Ky), the
adelic version of the Schwartz space (see section 2 for its definition). Let 1g, be the
characteristic function of Ky in G(Ay). Put

1x
1. = I
(1.7) XK= Sol(K )

Then hy” ® xx, belongs to the Schwartz space C(G(A), Ky), and in [MzM, (13.16)] we
defined the regularized trace of the heat operator by

(1.8) T, (e_tA”(T)) = Jgeo(R1" @ XK, )-

If X(Ky) is compact, this equality is just the content of the trace formula. For the moti-
vation of this definition see [MzM].

In order to be able to use the Mellin transform to define a regularized zeta function
similar to (1.1) one needs to know the asymptotic behavior of the regularized trace of
the heat operator as t — oo and ¢ — 0. Let € be the Cartan involution of G(R). Let
79 := 70of. Assume that 7 2 75. Then by [MzM, Theorem 1.2] there exists ¢ > 0 such that
T, (e727()) = O(e™") as t — oo for all p=0,...,d. Furthermore, by [MzM, Theorem
1.1], Tryeq (e_tAP(T)) admits an asymptotic expansion as t — 0. This expansion contains
logarithmic terms. Using these facts, the zeta function (,(s,7) can be defined as in (1.1)
with the trace of the heat operator replaced by the regularized trace. Due to the presence
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of log-terms in the asymptotic expansion for t — 0, (,(s, 7) may have a pole at s = 0. So
the definition (1.2) of the analytic torsion has to be modified. Let f(s) be a meromorphic
function on C. For s € C let f(s) = >, ax(s — 50)* be the Laurent expansion of f at
so. Put FP._, f(s) := ap. Now we define the analytic torsion T'y(x,)(7) € C\ {0} by

d o
(1.9) log Tx () (T) = %Z(_l)pp (FPSZO Go(s; )) .

S

If the zeta functions are holomorphic at s = 0, this is the same definition as before.

Now we can formulate our main result. Let K (N) C SL(n,Ay) be the principal congru-
ence subgroup of level N > 3. Put X(N) := X(K(N)). Note that X(N) = I'(N)\X,
where I'(N) C SL(n,Z) is the principal congruence subgroup of level N. Then our main
result is the following theorem

Theorem 1.1. Let 7 € Rep(G(R)). Assume that T % 79. Then we have

. lOg TX(N) (T) (2)
1 — L =t )
A Xy w7

We shall now briefly outline our method to prove Theorem 1.1. For technical reasons we
work with GL(n) in place of SL(n). Let Ky C GL(n,Ay) be an open compact subgroup.
Then we define the corresponding adelic quotient Y (K ) as above by

Y(K;) == GL(n, Q\(X x GL(n, A)))/K;.

We note that Y (K) is the disjoint union of finitely many locally symmetric spaces FZ\)Z'
for arithmetic subgroups I'; € GL(n,Q), i = 1,...,l. Now let K(N) C GL(n,Ayf) be
the principal congruence subgroup of level N. Put Y(N) := Y(K(N)). Then Y(N) is
the disjoint union of ¢(N) copies of X(N), where ¢(N) is Euler’s function (see [Ar6, p.
13]). The disjoint union of ¢(N) copies of the flat E, over X(N) is a flat bundle E, over
Y (N). Let A, n(7) be the Laplace operator on E.-valued p-forms on Y (N). We define the
regularized trace of the heat operator e **»~() as above by

Tr (e_tAp’N(T)) = JIEO(h]P @ XK (N));

geo

where Jgg(") is now the geometric side of the trace formula for GL(n, A)' and x (v the

normalized characteristic function of K(N) in GL(n,Af). Using the regularized trace,

we define the analytic torsion Ty (n)(7) in the same way as above. Comparing the trace
formulas for SL(n) and GL(n), it follows that

log Ty (n)(T) = (V) log T'x (3 (7).
Furthermore note that vol(Y (N)) = ¢(IV) vol(X(N)). Hence it suffices to show that

. logTywy (1) (2
(1.10) Jim BSOS~ i)



To establish (1.10) we proceed as follows. Let

d
1 - T
(1.11) Kn(t, 1) := 5 Z(—l)ppTl”mg (e tAp N ( )) _
p=1
As observed above, Ky (t,7) is exponentially decreasing as t — oo and admits an asymp-

totic expansion as t — 0. Thus the analytic torsion can be defined by

1 o
1.12 log T =FPog (|~ [ Ty (e7BevO) 57 1at )
(1.12) og Ty (ny(T) 0 (sF(s)/O I'eg (€ )
Let T > 0. We decompose the integral into the integrals over [0,7] and [T),00). The
integral over [T, 00) is an entire function of s. Hence it follows that

1 T [e%S)
(1.13) log Ty vy (T) = FP=o —/ Ky (t, )t dt +/ Kn(t,7)t"'dt.
sI'(s) Jo T
To deal with the second integral, we show that there exist C, ¢ > 0 such that
1
114 - T —tApyN(T) < —ct
(1.14) Vol () | e (€ )| = Ce

forallt >1,p=0,...,d, and N € N. To prove (1.14) we use the definition (1.8) and the
trace formula, which gives

Troe, (6—tAp,N(T)) — Jspec(hz,p Q XK(N))-

To estimate the right hand side we use the fine spectral expansion of [FLM1] and pro-
ceed as in [MzM]. However, the important new feature is that we need to control the
dependence on N of all constants appearing in the estimations. The main ingredients of
the spectral side of the trace formula are logarithmic derivatives of intertwining operators.
Uniform estimations in N of the relevant integrals containing the logarithmic derivatives
were obtained in [FLM2]. These are essential for our purpose. Using (1.14) it follows that
vol(Y(N))~! times the second integral in (1.13) is O(e=T), where the implied constants
are independent of N.

To deal with the first term, we first show that, up to a term which is O(e™T), we

can replace h;” by a function with compact support hZ’:’; with support depending on T
and which coincides with h;” in a neighborhood of 1 € G(R)*. The proof of this result
uses again the fine expansion of the spectral side of the trace formula. Next we use
the geometric side of the trace formula. Let Jy,;, be the unipotent contribution to the
geometric side. Since hZ’:’; has compact support, it follows that for sufficiently large NV,
the geometric side equals Junip(h; 7 @ XK (n))- Next we apply the fine geometric expansion
of [Ar4], which expresses Junip(hZ’:’; ® Xk (n)) as a finite sum of weighted orbital integrals
Iu(O, hip @ xxv) (see (10.10)). Here M € L and O runs over the set of unipotent
elements in M(Q) up to M(Qg)-conjugacy for S = S(N) a suitable finite set of places. (If
G = GL(n), the resulting equivalence classes are just the unipotent M (Q)-conjugacy classes
in M(Q).) The coefficients a (S(N), O) appearing in the fine geometric expansion depend
on a sufficiently large set S(IV) of places of Q. Then by the decomposition formula (8.5) for
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weighted orbital integrals, the study of Jy (O, h; 7 ® XK () can be reduced to the study of
weighted orbital integrals at infinite place and at the finite places in S(/V). At the infinite
place the weighted orbital integrals are of the form Ji;(Ou, (h;})q), where L € L(M),
Q is a parabolic subgroup of G with Levi component L, and (h{7)q is defined by (8.4).
These integrals have been studied in [MzM]. By [MzM, Propostion 12.3], J3;(Ou, (h 7))
has an asymptotic expansion as t — 0. So we can form its partial Mellin transform
(10.16), which is a meromorphic function of s € C. Then the constant term in the Laurent
expansion is the contribution of Ji;(Ou, (h{7)q) to the first term on the right hand side
of (1.13). It is just a constant depending on 7', but not N. We are left with the finite
orbital integrals Ji;(Ogn, (XK (nv))o)- Again using the decomposition formula, the study

of these integrals can be reduced to study of integrals of the form JAL/}’(OP, 1xvy,.0,) at
primes p|N. Now the point is that in the case of GL(n) these integrals can be written as
integrals over N,(Q,) with a certain weight factor, where N, is the unipotent radical of
some parabolic subgroup in L, (see (8.8)). The analysis of the weight factors leads to an
estimation of these integrals, depending on N. For M # G or M = G and O # 1, they
all decay in N like O(N~"=D(log N)?) for some fixed a > 0. The final step is to estimate
the constants a™ (S(N), O) appearing in the fine geometric expansion (10.10). For GL(n)
such estimations were obtained in [Ma2]. The final result is that the contribution to first
term of the right hand side of (1.13) of the weighted orbital integrals Jur (O, iy’ @ X (w))

with M # Q times vol(Y (N))™! decays like N~V (log N)? for some a > 0 independent
of N. For the contribution of (G, 1) we get vol(Y(N))(tg)(T) + O(e=“T) This completes
the proof of Theorem 1.1.

We expect that Theorem 1.1 holds more general for congruence subgroups of classical
groups. The main obstacle to extend the theorem to other groups is the fine geometric
expansion. At the moment, we only know how to estimate the coefficients a* (S(N), U)
for GL(n). Nevertheless, we expect to be able to overcome this problem. Therefore, we
will work in each section with the most general assumptions Thai are possible.

The paper is organized as follows. In section 2 we fix notations and recall some basic
facts. In section 3 we state some facts concerning heat kernels on symmetric spaces. In
section 4 we recall the definition of the regularized trace of the heat operator on Y (Kj)
and we introduce the analytic torsion. In section 5 we review the refined expansion of the
spectral side of the Arthur trace formula. The spectral side of the trace formula is used
in section 6 to study the large time behavior of the regularized trace of the heat operator.
The main point is to derive estimations which are uniform in K. In section 7 we study
the behavior of the regularized trace as t — 0. We use again the spectral side of the
trace formula to show that, up to an exponentially decreasing term, we can replace the
heat kernel by a compactly supported function. In section 8 we use the geometric side,
applied to the modified test function. It turns out that for principal congruence subgroups
K(N) of sufficient high level N € N, only the unipotent contribution to the geometric
side occurs. Then we use Arthur’s fine geometric expansion, which expresses the unipotent
contribution in terms of weighted orbital integrals. In section 9 we derive estimations for
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p-adic weighted orbital integrals. In the section 10 we prove our main result GL(n). Based
on this result, we prove Theorem 1.1 in the final section (11).

Acknowledgment. Section 11 is due to Werner Hoffmann. The authors are very grateful
to him for the permission to include it in the present paper.

2. PRELIMINARIES

Let G be a reductive algebraic group defined over Q. We fix a minimal parabolic subgroup
Py of G defined over Q and a Levi decomposition Py = My - Ny, both defined over Q. If
G = GL(n), we choose P, to be the supgroup of upper triangular matrices of G, Ny its
unipotent radical, and M, the group of diagonal matrices in G.

Let F be the set of parabolic subgroups of G which contain M, and are defined over Q.
Let L be the set of subgroups of G which contain M, and are Levi components of groups
in F. For any P € F we write

P = MpNp,

where Np is the unipotent radical of P and Mp belongs to £. Let M € L. Denote by Ay,
the Q-split component of the center of M. Put Ap = Ay;,.. Let L € £ and assume that
L contains M. Then L is a reductive group defined over Q and M is a Levi subgroup of
L. We shall denote the set of Levi subgroups of L which contain M by LL(M). We also
write FL(M) for the set of parabolic subgroups of L, defined over Q, which contain M,
and PL(M) for the set of groups in FL(M) for which M is a Levi component. Each of
these three sets is finite. If L = G, we shall usually denote these sets by £(M), F(M) and
P(M).

Let X (M)g be the group of characters of M which are defined over Q. Put
(2.15) ay = Hom(X (M)g, R).
This is a real vector space whose dimension equals that of A,,;. Its dual space is
ay, = X(M)g @R.
We shall write,
(2.16) ap = ay,, Ao = Ay, and ayg = apg.

For M € L let Ay(R)? be the connected component of the identity of the group Ay (R).
Let Wy = Ng(q)(Ao)/My be the Weyl group of (G, Ag), where Ng(q)(H) is the normalizer
of H in G(Q). For any s € Wy we choose a representative ws € G(Q). Note that Wy acts
on L by sM = w;Mw;*'. For M € L let W(M) = Ngq)(M)/M, which can be identified
with a subgroup of Wj.

For any L € £(M) we identify a} with a subspace of a},. We denote by a4, the annihilator
of aj in ay,. We set

Li(M)={L € L(M):dima}, =1}
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and

(2.17) A= ] P@).

LelLq(M)

We shall denote the simple roots of (P, Ap) by Ap. They are elements of X (Ap)g and are
canonically embedded in a}. Let Xp C a} be the set of reduced roots of Ap on the Lie
algebra of G. For any a € ¥, we denote by a¥ € ay; the corresponding co-root. Let P;
and P, be parabolic subgroups with Py C FP,. Then ap, is embedded into ap , while ap,
is a natural quotient vector space of ap,. The group Mp, N P, is a parabolic subgroup of
Mp,. Let Af-,f denote the set of simple roots of (Mp, N Py, Ap,). It is a subset of Ap,. For
a parabolic subgroup P with Py C P we write Al := Ap .

Let A be the ring of adeles of Q and Ag, the ring of finite adeles of Q. We fix a maximal
compact subgroup K = [[ K, = K Kjs, of G(A) = G(R)G(Ag,). We assume that the
maximal compact subgroup K C G(A) is admissible with respect to M, [Ar5, §1].

Let Hy : M(A) — ap be the homomorphism given by

(2.18) et = |y (m)|s = [ [Ix(ma)l,

for any x € X (M). Let
M(A) :={m € M(A): Hy(m) = 0}.

Let g and € denote the Lie algebras of G(R) and K, respectively. Let § be the Cartan
involution of G(R) with respect to K. It induces a Cartan decomposition g = p & €. We
fix an invariant bi-linear form B on g which is positive definite on p and negative definite on
. This choice defines a Casimir operator €2 on G(R), and we denote the Casimir eigenvalue
of any m € II(G(R)) by A;. Similarly, we obtain a Casimir operator Qk_ on K., and write
A, for the Casimir eigenvalue of a representation 7 € II(K ) (cf. [BG, §2.3]). The form B
induces a Euclidean scalar product (X,Y) = —B(X,0(Y)) on g and all its subspaces. For
T € [I(K) we define ||7|| as in [CD, §2.2]. Note that the restriction of the scalar product
(-,-) on g to ag gives ag the structure of a Euclidean space. In particular, this fixes Haar
measures on the spaces ak; and their duals (a%,)*. We follows Arthur in the corresponding
normalization of Haar measures on the groups M(A) ([Arl, §1]).

Finally we introduce the space of Schwartz functions C(G(A)') from [FL1]. For any
compact open subgroup K; of G(Ay) the space G(A)'/K is the countable disjoint union
of copies of

(2.19) GR)' = GR)NG(A)*

and therefore, it is a differentiable manifold. Any element X € U(gl ) of the universal en-
veloping algebra of the Lie algebra gl of G(R)! defines a left invariant differential operator
f = f+*X on G(A)!'/K;. Let C(G(A)'; K;) be the space of smooth right K -invariant
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functions on G(A)! which belong, together with all their derivatives, to L'(G(A)'). The
space C(G(A)'; K) becomes a Fréchet space under the seminorms

1f* Xy, X €U(gl)

Denote by C(G(A)') the union of the spaces C(G(A)'; K;) as K varies over the compact
open subgroups of G(A;) and endow C(G(A)') with the inductive limit topology.

3. HEAT KERNELS

Since the heat kernel of the twisted Laplace operators plays a key role in the paper,
we summarize some basic facts about Bochner-Laplace operators on global Riemannian
symmetric spaces and their heat kernels. In this section we assume that G is a connected
semisimple group and G(R) is of noncompact type. Then G(R) is a semisimple real Lie
group of noncompact type. Let K., C G(R) be a maximal compact subgroup and

X =G(R)/Kx

the associated Riemannian symmetric space. Let I' C G(R) be a torsion free lattice and

let X = I'\X. Let v be a finite-dimensional unitary representation of K. on (V,, (-, 3,
Let

E, = G(R) x,V,

be the associated homogeneous vector bundle over X. Then (-, -), induces a G(R)-invariant

metric }~L,, on E,,. Let V¥ be the connection on E,, inducedbe the canonical connection on
the principal K-fiber bundle G(R) — G(R)/ K. Then V* is G(R)-invariant. Let

E,:=T\E,

be the associated locally homogeneous vector bundle over X. Since h, and V¥ are G(R)-
invariant, they push down to a metric h, and a connection V¥ on E,. Let C*(X, E,) resp.

C*(X, E,) denote the space of smooth sections of E,,, resp. F,. Let
(3.1) C*(G(R),v) ={f:GR) = V,: f € C%, f(gk) =v(k™")f(9),
' Vg € G(R), Vk € K.},

Let L?(G(R), v) be the corresponding L?-space. There is a canonical isomorphism
(3.2) A: C®(X,E,) = C™(G(R),v),

(see [Mia, p. 4]). A extends to an isometry of the corresponding L2-spaces. Let
(3.3) CE(M\G(R),v) :={f € C*(GR),v): f(vg) = f(9) Vg € G(R),Vy € I'}

and let L?(I'\G(R), v) be the corresponding L*-space. The isomorphism (3.2) descends to
isomorphisms

(3.4) A: C®(X,E,) = C®(\GR),v), L*X,E,)=L*T\GR),v).
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Let A, = V¥ V" be the Bochner-Laplace operator of E,. This is a G(R)-invariant second
order elliptic differential operator whose principal symbol is given by

oz (2,6) = €2 1dp,,, ve€X, £eTHX).

Since X is complete, E,, with domain the smooth compactly supported sections is essen-
tially self-adjoint [LM, p. 155]. Its self-adjoint extension will be denoted by A, too. Let
Q€ Z(gc) and Qg € Z(£) be the Casimir operators of g and £, respectively, where the
latter is defined with respect to the restriction of the normalized Killing form of g to &.
Then with respect to the isomorphism (3.2) we have

(3.5) A, = —R(Q) +v(Q.,),

where R denotes the right regular representation of G(R) in C*°(G(R), v) (see [Mia, Propo-
sition 1.1]).

Let e‘tg", t > 0, be the heat semigroup generated by A,. It commutes with the action of

G(R). With respect to the isomorphism (3.2) we may regard e~*Av as bounded operator in
L*(G(R),v), which commutes with the action of G(R). Hence it is a convolution operator,
i.e., there exists a smooth map

(3.6) H/: G(R) = End(V})
such that
(00 = [ Hg'9)0() dg. ¢ € LGR).0).
The kernel H} satisfies
(3.7) HY(k™'gk') = v(k)™ o H!(g) ov(k), VK, k' € K,Vg € G.

Moreover, proceeding as in the proof of [BM, Proposition 2.4] it follows that H} belongs to
(€1(G(R))@End(V,))E=>K< for all ¢ > 0, where ¢?(G(R)) is Harish-Chandra’s Schwartz
space of Li-integrable rapidly decreasing functions on G(R).

Let m be a unitary representation of G(R) on a Hilbert space H,. Define a bounded
operator on ‘H, ® V, by

(3.5 W(H () = [ (o) ® HYlg) do
G(R)
Then relative to the splitting

L
He @V = (M @ V) & (He @ V)")
7(H}) has the form
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where m(H?) acts on (H, ® V;,)*>. Assume that 7 is irreducible. Let () be the Casimir
eigenvalue of 7. Then as in [BM, Corollary 2.2] it follows from (3.5) that

(3.9) m(HY) = ! =) 1q,
where Id is the identity on (H, ® V,)*>. Put
(3.10) hi(g) == trH{(g), g€ G(R).

Then hy € €(G(R)) for all ¢ > 0. Let 7 be a unitary representation of G(R). Put
w(h) = [ (o) do.
G(R)

Assume that m(H}) is a trace class operator. Then it follows as in [BM, Lemma 3.3] that
mw(hY) is a trace class operator and

(3.11) Trr(hy) = Trn(HY).

Now assume that 7 is a unitary admissible representation. Let A : H, — H, be a bounded
operator which is an intertwining operator for 7|x. Then A o w(h}) is again a finite rank
operator. Define an operator A on H, ® V, by A := A®Id. Then by the same argument
as in [BM, Lemma 5.1] one has

(3.12) Tr (Aofr(H:)) — Tr(Aon(h?)).
Together with (3.9) we obtain
(3.13) Tr (Ao m(h?)) = e+ Ty (A|(HW®VV)K> .

Next we consider the twisted Laplace operator. Let 7 be an irreducible finite dimensional
representation of G(R) on V,. Let F. be the flat vector bundle over X associated to the

restriction of 7 to I'. Let E, be the homogeneous vector bundle over X associated to Tk,
and let £, = F\ET. There is a canonical isomorphism

(3.14) E.=F,

[IMM, Proposition 3.1]. By [MM, Lemma 3.1], there exists an inner product (-,-) on V;
such that

(1) (t(Y)u,v) = —(u,7(Y)v) for all Y € &, u,v € V;
(2) (t(Y)u,v) = (u,7(Y)v) for al Y € p, u,v € V.

Such an inner product is called admissible. It is unique up to scaling. Fix an admissible
inner product. Since 7|x_ is unitary with respect to this inner product, it induces a metric
on E., and by (3.14) on F;, which we also call admissible. Let AP(F;) = APT*(X) ® F;.
By (3.14) AP(F}) is isomorphic to the locally homogeneous vector bundle associated to the
representation

(3.15) vp(7) == AP Ad" @7 1 Koo — GL(APp* @ V).
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The space of smooth section of AP(F}) is the space AP(X, F,) of F,-valued p-forms. By
(3.3) there is a canonical isomorphism

(3.16) AP(X, F) = C(T\G, vy(7)).

Let A,(7) be the Laplace operator in A?(X, F.). Let Rp be the right regular representation
of G(R) in C(I'\G, v,(7)) and  the Casimir element of G(R). By [MM] it follows that
with respect to the isomorphism (3.16) we have

(3.17) A, (1) = —=Rp(Q) + 7(Q).
Let A,(7) be the lift of A,(7) to the universal covering X. It acts in the space AP(X, F})
of p-forms on X with values in the pull back F, of F,. Then by (3.2) we have

N(X, Fy) = C%(G(R), 1(7)-

and with respect to this isomorphism we also have

Ap(r) = =R(Q) + 7(%),
where R is the regular representation of G(R) in C*(G(R), v,(7)). Using (3.5) we obtain

(3.18) Ap(T) = Ay +7(2) — (7)) (k. )

We note that EP(T) is a formally self-adjoint, non-negative, elliptic second order differential
operator. Regarded as operator in the Hilbert space L?AP(X, F}) of square integrable F-
valued p-forms on X with domain the space of compactly supported smooth p-forms, it
has a unique self-adjoint extension which we also denote by A, (7). This is a non-negative

self-adjoint operator in Af”()? ,157). Let e‘tgp(”, t > 0, be heat semigroup generated by
A, (7). Tt is well known that e *2#(7) is an integral operator with a smooth kernel. Since

A,(T) commutes with the action of G(R), e~ is a convolution operator with kernel
(3.19) H]?: G(R) — End(APp* @ V;),

which belongs to C* N L?, and satisfies the covariance property

(3.20) HP (k™ gk') = vy (7) (k)" H* (g)vp(7) (K')

with respect to the representation (3.15). Moreover, for all ¢ > 0 we have

(3.21) H" € (CY(G(R)) ® End(APp* @ V,)) Koo Kox

where C?(G(R)) denotes Harish-Chandra’s L?-Schwartz space (see [MP2, Sect. 4]). Let
h{* € C*(G(R)) be defined by

(3.22) hi"(g) = tr H"(g9), g € G(R).
Then A" € C1(G(R)) for all ¢ > 0.
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4. ANALYTIC TORSION

We briefly recall the definition of the analytic torsion. For details we refer to [MzM]. Let
G be a reductive algebraic group over Q. Let K., C GR)! be a maximal compact subgroup

and X = G(R)' /K. Let K; C G(Ay) be an open compact subgroup. Let
(4.1) X(Ky) = GQNX x G(Ay))/Ky

be the adelic quotient. It is the disjoint union of finitely many components I';\ X, where
I C G(Q),i=1,...,m, are arithmetic subgroups. Let 7 € Rep(G(R)'). Denote by E,.;
the locally flat vector bundle over I';\ X, associated to 7|r,. Let E. be the disjoint union
of the E.;. Then E; is a flat vector bundle over X (K;). Let A,(7) the Laplace operator
on E,-valued p-forms over X (Ky). Let h{" be the function defined by (3.22) and let xx,
be the normalized characteristic function of Ky in G(Ay) defined by (1.7). Put

(4.2) = B ® X,

Then ¢;” belongs to the adelic Schwartz space C(G(A)'; K;) (see section 2). Let Jy(f),
f € C(G(A)) be the geometric side of the Arthur trace formula [Arl]. The distribution
Jyo extends to C(G(A)Y; Ky) (see [FL1]). In [MzM, (13.17)] we defined the regularized
trace of the heat operator e **+»(7) by

(4.3) Tryee (e727)) i= Jpo(077).

For the motivation for this definition we refer to [MzM]. We only note that if X (K) is
compact, then e~**7(") is a trace class operator and the regularized trace is the usual trace,
which is equal to the spectral side of the trace formula. So in this case, (4.3) is just the
trace formula. To define the zeta function (,(s,7) through the Mellin transform of the
regularized trace of the heat operator, we need to determine the asymptotic behavior of

Tres(e7#»(M) as t — oo and ¢t — 0. This requires additional assumptions.

From now on we assume that G = GL(n) or SL(n). Let 6 be the Cartan involution of
G(R)'. Let 79 = 7 06. Assume that 7 # 75. Then by [MzM, Proposition 13.4] and the
trace formula we have

(4.4) Tr,eq (e_tAP(T)) =0(e™)

ast — 0o. The existence of an asymptotic expansion as t — 0 follows from [MzM, Theorem
1.1]. Assume that K is contained in K () for some N > 3. Then there is an asymptotic
expansion

(4.5) Tr,eq (e_tA”(T)) ~ 2 Z a;t! + ¢~ @-1/2 Z Z bi;t’/*(log t)’
=0 =0 i=0

as t — 0. Thus, under the assumptions above, the integral
1 > — T s—

(4.6) G(5.7) = s /0 Tryey () £t
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converges absolutely and uniformly on compact subsets of the half-plane Re(s) > d/2, and
admits a meromorphic extension to the entire complex plane. Due to the logarithmic terms
in the expansion (4.5), the zeta function (,(s,7) may have a pole at s = 0. The analytic
torsion is then defined by (1.9).

In the case of G = GL(3) we are able to determine the coefficients of the log-terms. This
shows that the zeta functions definitely have a pole at s = 0. However, the combination
Zizl(—l)ppcp(s; 7) turns out to be holomorphic at s = 0 (see [MzM, sect. 14] and we can
define the logarithm of the analytic torsion by

log Tx (rc;)(7) = % (% Z(—l)ppép(8;7)>

p=1

s=0

5. REVIEW OF THE SPECTRAL SIDE OF THE TRACE FORMULA

In this section G is an arbitrary reductive algebraic group over Q. Arthur’s (non-
invariant) trace formula is the equality

(5.1) Jeoo(f) = Jpec(f),  f € CZ(G(A)Y),

of two distributions on G(A)!, namely the equality of the geometric side J,..(f) and the
spectral side Jo,..(f) of the trace formula. In this section we recall the definition of the
spectral side, and in particular the refinement of the spectral expansion obtained in [FLM1],
which we need for our purpose. Combining [FLM1] and [FL1], it follows that (5.1) extends
continuously to f € C(G(A)').

The main ingredient of the spectral side are logarithmic derivatives of intertwining oper-
ators. We briefly recall the structure of the intertwining operators.

Let P € P(M). Let Up be the unipotent radical of P. Recall that we denote by Xp C a}
the set of reduced roots of A, of the Lie algebra up of Up. Let Ap be the subset of simple
roots of P, which is a basis for (af)*. Write a}, | for the closure of the Weyl chamber of
P, ie.

ap, ={reay:(\a’)>0foralla € Xp} ={A€ay:(\a’)>0foralla € Ap}.

Denote by dp the modulus function of P(A). Let Ay(P) be the Hilbert space completion
of

{6 € C(M(QUp(AN\G(A)) : 652 4(x) € Lo (An(R°M(Q\M(A)), Yz € G(A4))

with respect to the inner product

(61, ) = / 61(9)83(9) dy.
Ay R)OM(Q)Up(AN\G(A)

Let a € ). We say that two parabolic subgroups P, Q € P(M) are adjacent along «, and
write P|*Q, if ¥p N =Yg = {a}. Alternatively, P and @) are adjacent if the group (P, Q)
generated by P and @ belongs to Fy(M) (see (2.17) for its definition). Any R € F;(M) is
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of the form (P, Q), where P, (Q are the elements of P(M) contained in R. We have P|*Q
with v € X% N aly. Interchanging P and @ changes o to —a.

For any P € P(M) let Hp: G(A) — ap be the extension of Hy; to a left Up(A)-and right
K-invariant map. Denote by A%(P) the dense subspace of A?(P) consisting of its K- and
3-finite vectors, where 3 is the center of the universal enveloping algebra of g ® (13 That
is, A?(P) is the space of automorphic forms ¢ on Up(A)M(Q)\G(A) such that 6,2 ¢(-k) is
a square-integrable automorphic form on A,/ (R)°M(Q)\M(A) for all k € K. Let p(P,\),
A € @} ¢, be the induced representation of G(A) on A*(P) given by

(p(P, A, y)o) () = play)e™Irlen=Hr@),
It is isomorphic to the induced representation

IS (L3, (An (R M(Q\M(A)) © eXFu0))

For P,QQ € P(M) let
Mgoip(\) : A2(P) = A%(Q), M€ A

be the standard intertwining operator [Ar9, §1], which is the meromorphic continuation in
A of the integral

MarNel(z) = [ B(n)e D) dn, g e AP, @ € GlA),

U (A)NUp(A)\Uq (A)
Given 7 € g (M(A)), let A2(P) be the space of all ¢ € A%(P) for which the func-

tion M(A) 2 = — dp2¢(xg), g € G(A), belongs to the 7-isotypic subspace of the
space L?(Ay(R)°M(Q)\M(A)). For any P € P(M) we have a canonical isomorphism
of G(Af) X (gc, Ko)-modules

jp : Hom(r, L2(Ap(R)°M(Q)\M(A))) @ Ind3) (r) — AZ(P).

If we fix a unitary structure on 7 and endow Hom(7, L?( Ay (R)°M(Q)\M(A))) with the

inner product (A, B) = B*A (which is a scalar operator on the space of 7), the isomorphism
Jp becomes an isometry.

Suppose that P|*Q. The operator Mg p(7,s) := Mg p(sw@)|42(p), Where @ € aj; is such
that (w, ") = 1, admits a normalization by a global factor n, (7, s) which is a meromorphic
function in s. We may write
(52) MQ\P(Wv S) ojp = na(ﬂ-v 8) “Jgo (Id ®RQ\P(7T7 8))
where Rg|p(m,s) = ®yRgp(my,s) is the product of the locally defined normalized in-
tertwining operators and 7 = ®,m, [Ar9, §6], (cf. [Mu2, (2.17)]). In many cases, the
normalizing factors can be expressed in terms automorphic L-functions [Shal], [Sha2].
For example, let G = GL(n). Then the global normalizing factors n, can be expressed
in terms of Rankin-Selberg L-functions. The known properties of these functions are col-
lected and analyzed in [Mul, §§4,5]. Write M ~ [[;_, GL(n;), where the root « is trivial on
[L>3 GL(n;), and let m ~ ®; with representations 7; € Ilgisc(GL(n;, A)). Let L(s, m X 72)
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be the completed Rankin-Selberg L-function associated to m; and m,. It satisfies the func-
tional equation

1 1
(5.3) L(s,m X y) = e(i,m X 7o) N (my X 79)2 *L(1 — 5,71 X ma)

where |e(3, ™ X 72)| =1 and N(m X 73) € N is the conductor. Then we have
L(S, T X ’ﬁ'g)

6(%,71'1 X ﬁQ)N(?Tl X ﬁg)%_sL(S + 1,7’(’1 X 77('2)

(5.4) Ne (T, s) =

We now turn to the spectral side. Let L O M be Levi subgroups in £, P € P(M),
and let m = dim af be the co-rank of L in G. Denote by Bp; the set of m-tuples
B=(BY,...,0B,) of elements of ¥}, whose projections to ar, form a basis for af. For any

B=(BY,....5)) € Bpy let vol(3) be the co-volume in af of the lattice spanned by g and
let

Z0(8) ={(Q1,...,Qn) € H(M)™: BY €aff,i=1,...,m}
={(P,P),....(Pn, Pp)): BI"F,i=1,...,m}.

For any smooth function f on aj; and u € aj; denote by D, f the directional derivative
of f along p € aj,. For a pair P;|*P, of adjacent parabolic subgroups in P(M) write

(5.5) 0p, Py (A) = Mpyp,(A) D Mpyp, (A) = A*(Pa) = A*(P),

where @ € aj}; is such that (w,a") = 1. ' Equivalently, writing Mp,|p,(\) = ®((\,a"))
for a meromorphic function ® of a single complex variable, we have

S, (V) = DA, 0”) (A 0)).
For any m-tuple X = (Q1,...,Qn) € EL(B) with Q; = (P, F), PP P!, denote by
Ax (P, \) the expression
(5.6)

vol(B) .
T My p(N) 7 0m (N My g (N) -+ 0,y (N Moy, (N0, (A) M 1p(N)-

7

In [FLM1, pp. 179-180] we defined a (purely combinatorial) map Xy : Bp — Fi(M)™
with the property that X;,(8) € Z,(8) for all § € Bp.”

For any s € W(M) let Ly be the smallest Levi subgroup in £(M) containing w,. We
recall that ap,, = {H € ap; | sH = H}. Set

Ls = |det(s — 1)u][\//f|_l.
For P € F(M,) and s € W(Mp) let M(P,s) : A*(P) — A?(P) be as in [Ar3, p. 1309].

M(P, s) is a unitary operator which commutes with the operators p(P, A, h) for A € iaj .
Finally, we can state the refined spectral expansion.

INote that this definition differs slightly from the definition of & p|p, in [FLMI].
2The map X7, depends in fact on the additional choice of a vector i € (ay,)™ which does not lie in an
explicit finite set of hyperplanes. For our purposes, the precise definition of X, is immaterial.
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Theorem 5.1 ([FLM1)). For any h € C>*(G(A)Y) the spectral side of Arthur’s trace
formula 1s given by

(5.7) Topec( Z Topeest

M ranging over the conjugacy classes of Levi subgroups of G (represented by members of
L), where

(5.8) Jpeers(h) = Z > tr(Ax,, 5 (P, M (P, s)p(P, A, h)) dA

seWM geBp L, V105"

with P € P(M) arbitrary. The operators are of trace class and the integrals are absolutely
convergent with respect to the trace norm and define distributions on C(G(A)').

Note that the term corresponding to M = G iS Jpee,c(h) = tr Raisc(h). Next assume that
M is the Levi subgroup of a maximal parabolic subgroup P. Furthermore, let L = M. Let
P be the opposite parabolic subgroup to P. Then up to a constant, the contribution to
the spectral side is given by

> / tr(Mpyp(m, \) diMPP(W ANM (P, s)p(P, 7, A\, h)) dA.
mellgs (M(A)) 7?

6. LARGE TIME BEHAVIOR OF THE REGULARIZED TRACE

The purpose of this section is to improve (4.4) so that the estimations are uniform with
respect to K;. To this end we use the trace formula (5.1). By Theorem 5.1, J.. is a
distribution on C(G(A); Kf) and by [FL1, Theorem 7.1|, J,., is continuous on C(G(A); Ky).
This implies that (5.1) holds for ¢;*. Using the definition (4.3) of the regularized trace
and the trace formula we get

(61) Trreg (6_tAp ) = JSpec( )

Now we apply Theorem 5.1 to study the asymptotic behavior as ¢ — oo of the right hand
side. Let M € £ and P € P(M). Recall that L2, (Ay(R)°M(Q)\M(A)) splits as the
completed direct sum of its 7-isotypic components for 7 € Ily;(M(A)). We have a corre-
sponding decomposition of A?*(P) as a direct sum of Hilbert spaces Grery (ar(a))AZ(P).
Similarly, we have the algebraic direct sum decomposition

Ap)= P AP,

mellqis(M(A))

where A2(P) is the K-finite part of A2(P). For o € Koo let AZ(P)° be the o-isotypic
subspace. Then A2 (P) decomposes as
- @

UGI/(:O\O



18 JASMIN MATZ AND WERNER MULLER

Let A2(P)%s be the subspace of K -invariant functions in AZ(P), and for any o € K
let A2(P)%s° be the o-isotypic subspace of A2(P)Xs. Recall that A2(P)Xs is finite
dimensional. Let Mg p(m, A) denote the restriction of Mg p(A) to AZ(P). Recall that the
operator A, (P, \), which appears in the formula (5.8), is defined by (5.6). Its definition
involves the intertwining operators Mg p(A). If we replace Mgp(A) by its restriction
Mgp(m, A) to AZ(P), we obtain the restriction A, (P, 7, ) of A (P, \) to A2(P). Similarly,
let p.(P, ) be the induced representation in A2(P). Fix 8 € Bp. and s € W(M). Then
for the integral on the right of (5.8) with h = ¢;” we get

(6.2) /( Tr AXL (P, 7 N M(P,,5)px(P, )\,QSZ”’)) d\

7T€Hd1b
Let P,Q € P(M) and v € II(K). Denote by MQ‘p(ﬂ', v, A) the restriction of
Moip(m, ) @ 1d: A2(P)®V, = AZ(P)®V,

to (A2(P)Xs @ V,)E=. Denote by EXLS(@(P,W, v,\) and M(P, 7, v,s) the corresponding
restrictions. Let m(7) denote the multiplicity with which 7 occurs in the regular represen-
tation of M(A) in L2 (M(Q)\M(A)). Then

(6.3) pr(P.N) 2 @7 Ind) (m, 2.

Let m = 7o ® Ty, where T and 7y are irreducible unitary representations of M (R) and
M (Ay), respectively. Then

IndZ) (7, A) = Ind§(3) (oo, A) @ Indp!) (7, ).

Let H(7m) and H(7ms) denote the Hilbert space of 7o, and 7y, respectively. Let w(moo, A)
be the Casimir eigenvalue of the induced representation Indg% (Too, A) and let Ig, be the

orthogonal projection of H(7y) onto the subspace H ()% of K -invariant vectors. Then
by (3.17) it follows that

Ind(jg) (Moo, A, h{7) = ! =me M) I,
where Id is the identity on (H(7s) ® APp* @ V)K=, Furthermore,
IndPEA (75, A xk,) = k-
Let Ik, 4, () denote the orthogonal projection onto AZ(P)%s»(™) Then it follows that
(6.4) pr(PN, G7P) = et(T(Q)_“(“"”\))HKf,yp(T).

Fix positive restricted roots of ap and let p,, denote the corresponding half-sum of these
roots. For £ € II(M(R)) and A € a}, let

7T5’)\ = Indggﬁg (5 ® 6”‘)
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be the unitary induced representation. Let £(€25,) be the Casimir eigenvalue of . Define
a constant ¢(§) by

(6.5) (&) = = (Pap; Pap) + E(r).
Then for A € a} one has

(6.6) e () = —[IAl* + (&)

(see [Kn, Theorem 8.22]). Let

(6.7) T ={vell(Ky): [v(1): v] # 0}.

Using (6.4) and (3.13), it follows that (6.2) is equal to

2. 2

WGHdlb(M( ) VET

05 A2
—t A
AaL) Tr(AX g (P, v, \)M (P7rl/s)> d\.

Using that M (P, m,s) is unitary, it follows that (6.8) can be estimated by

Z Z dim A2 Kf ’”)

mellg;s(M(A)) veT

(6.9) X
) e—t(T(Q)—C(ﬂ'OO))/ eI ||AXLS (@(P, v, A)|| dA.
(af ) B

First we estimate the integral in (6.9). Let 8 = (8),...,8y,) and XL (8) = (Q1,...,Qm) €
E..(8) with with Q; = (P, P)), P|%P!, i = 1,...,m. Using the definition (5.6) of
Ax, 5 (P, v, ), it follows that we can bound the integral by a constant multiple of

m

6.10 di T |16, (A dX.
(6.10) im(v) /z'(ag . e }:[1 PP (A) 2 Py
We introduce new coordinates s; :== (X, 8Y), i = 1,...,m, on (af_¢)*. Using (5.2), we can
write
nlgi(ﬂ-a Si) . —1 ! —1
(611) 5P1|PZ/(>\) = —— _'_jPz, o) (Id ®RP1'\PZ~’(7T7 82‘) RPi|P{(7T’ Sz)) iji, .

ng; (ﬂ-a Si)

In [FLM2, Definition 5.2, Definition 5.9] two conditions, called (TWN) and (BD), for an
arbitrary reductive group have been formulated, which imply appropriate estimations for
the terms on the right. Furthermore, in [FLM2, Prop. 5.5, Prop. 5.15] it was shown
that the conditions (TWN) and (BD) both hold for GL(n) and SL(n). Assume that the
conditions (TWN) and (BD) hold for G. Then as in [FLM2, (22)] this implies that for any
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€ > 0 and sufficiently large £ and m one has
(6.12)

(L+IAD~*

for all v € T. To estimate Ay (7o; Gr) we first recall the definition of Vogan’s definition
of a norm on | - || on II(K). Let x, be the highest weight of an arbitrary irreducible
constituent of o with respect to a maximal torus of K, and the choice of a system
of positive roots. Let p be the half sum of all positive roots with multiplicities. For
p € II(Ky) the norm ||u|| is defined by |u]| = |Ix. + 2p/|*>. A minimal K-type of a
representation of G(R) is then a K -type minimizing || - ||. For = € II(M(A)) denote by
Ar., the Casimir eigenvalue of the restriction of 74, to M(R)'. Let

(6.13) Ay =min /A2 + A2,

where 7 runs over the lowest K -types of the induced representation Indggg(ﬂ'm). Then

by [FLM2, (10)] we have

(6.14) 1< Ap(m;Guy) <1+ A2

Now observe that dim .A2(P)%s" = 0, unless [Indggﬁg (Too) | o : ¥] > 0. Thus for a minimal

K -type T of Indg% (7o) one has A2 < A\2. Since T is finite, there exists C' > 0 such that

(6.15) Ar <O+ [Ars])

for all 7 € Ty (M(A)) with dim A%(P)%s* # 0. Thus it follows that for ¢ > 1, (6.9) can

be estimated by a constant times

(6.16) > ) dim (AZ(P)Fr) e O (1 4 N )™ level (K G )°
m€llgis (M (A)) vET

5Pi|P{()‘)

Az(P,)Kf,yH d\ Ko7 Ay (Too; Gar) ™ level (K p; GT)°.

To continue with the estimation, we need the following lemma.

Lemma 6.1. Let P = MAN be a parabolic subgroup of G and let KM = M(R) N K.
Let (1,V;) € Rep(G(R)). Assume that 7 % 19. There exists § > 0 such that for all

(&, We) € TI(M(R)Y) satisfying dim(We @ APp* @ V,)5% #£ 0 one has
7(8) = e(§) = 0.
Proof. First consider the case P = G. In the proof of Lemma 4.1 in [BV] it is shown that
there exists 0 > 0 such that
(6.17) 7(Q) —7(Q) >0
for each irreducible unitary representation 7 of G(R) for which
Hompg, (APp @ V;,m) # 0.

In fact, the proof goes through for every unitary representation 7 of G(R) such that 7(£2)
is a scalar (see [BV, §IL.6].
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Now let P = MAN be a proper parabolic subgroup of G. Let ¢ € II(M(R)!) with
dim(We @ APp* ® VT)K&{ # 0 and A € a*. Consider the induced representation m¢ . By
Frobenius reciprocity and the assumption on £ we have

dim (W @ APp* ® V,)5% = dim (He, ® APp* @ V)5 £ 0.
Recall that m¢ \(€2) is a scalar given by (6.6). Thus by (6.17) it follows that
T(Q) — me A (Q2) > 6.
Using (6.6) we obtain
7(Q) —c(§) > 5 — [|A]I?
for every A € a*. Hence 7(2) — ¢(§) > 0, which proves the lemma. O

Given A > 0, let
My (M(A); A) i= {1 € Tgio(M(A)): |Ar] < A}
Let d = dim M(R)' /K. Asin [Mul, Proposition 3.5] it follows that for every v € I1(K,)
there exists C' > 0 such that
(6.18) > dim A2(P)Fr < C(1+ X?)
m€llgis (M (A))x

for all A > 0.

Put

AP = P AP,
veT

where T is defined by (6.7).

Lemma 6.2. For every R > 0 we have

> dim(A2(P)f7) < 0.

mEllgis(M(A))
Ao <R

Proof. By passing to a subgroup of finite index, we may assume that Ky = Hp oo Kp. Let
Kyyp= KN M(Ay) and Kyoo = Koo N M(R). For m € II(M(A)) and 7 € II(K 1) let
H...(7) denote the 7-isotypical subspace of the representation space H,_. Let

(6.19) my = dim Hom (7, L2 (Ap (R)°M(Q)\M(A)),

i.e., m, is the multiplicity with which 7 occurs in regular representation of M(A) in
L*(Ay(R)°M(Q)\M(A)). Arguing as in the proof of Proposition 3.5 in [Mul], it suffices
to show that for every 7 € II(K s o0)

> mpdim(He") - dim(Hy, (7)) < o0.

mellgs(M(A))

T A\Too =
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Let I'yy € M(R) be an arithmetic subgroup. Let Qy gy be the Casmir element of M(R)?
and let A; be the differential operator in C*°(I'y,\M (R)'; 7) which is induced by —Q(r).
Let A, be the self-adjoint extension of A, in L2. Proceeding as in the proof of Lemma 3.2
of [Mul], it follows that it suffices to show that for every R > 0, the number of eigenvalues
\; of A, (counted with multiplicities), satisfying \; < R, is finite. Let A, be the Bochner-
Laplace operator and let A\, be the Casimir eigenvalue of 7. Then by 7 we have

(6.20) A=A, =\ 1d.
Using that A, > 0 and the counting function of the eigenvalues of A, has a polynomial
bound (see [Mu3]), the lemma follows. O

Let § > 0 be as in Lemma 6.1. Put ¢ = §/2. It follows from Lemma 6.1 that for t > 1,
(6.16) can be estimated by

(621) e Y Y dim (AZ(P)rY) e T2 (1 4N )™ level (K3 G ),
mellqi(M(A)) veT

where m € N is sufficiently large. Now observe that 7(£2) > 0. Thus by (6.5) we get

(6.22) T(Q) — e(Too) = —Aroy

By Lemma 6.2, there are only finitely many 7 € Ilg(M(A)) with A2(P)Es7 # 0 and
—Ar., < 0. Decompose the sum over 7 in (6.21) in two summands () and ¥5(t), where
in ¥;(t) the summation runs over all 7 with —\, < 0. Using (6.22) it follows that for
—Ar.. > 0 we have

7(2) = c(Too) = [Arc|
Thus for every [ € N, Ky and t > 1 we have

(623)  No(t) < e D> dim (ALP)Y) (14 [Ar|) T level (K, G ).
WEHdlb(M( ) veT
Too >
To estimate X (¢) we note that it follows from the proof of Lemma 6.2 that there exists
C; € R, which depends on 7, but is independent of K, such that C; < —A\;_ for all
7 € My (M(A)) with A2(P)%s7T #£ 0. Thus for every | € N, Ky, and t > 1 we get

(624) ()< e Y > dim (ALP)Y) (14 [An|) T level (K, G, ).
m€llg;s(M(A)) vET
_‘ﬂ'oo_o

Putting everything together we obtain the following lemma.

Lemma 6.3. Suppose that G satisfies properties (TWN) [FLM2, Definition 5.2] and (BD)
[FLM2, Definition 5.9]. Let 7 € Rep(G(R)). Assume that T % 19. Let M be a proper Levi
subgroup of G. There exists ¢ > 0, independent of K¢, and for everyl € N and € > 0 there
exists C' > 0, which is independent of Ky, such that

| Jopeert (07F)| < Ce™t Z Zdim (AZ(P)Sr) (14 |Ar ) level(Ky, Gip)°

el gig(M(A)) vET
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fort>1andp=0,...,d.

We now specialize to the case of principal congruence subgroups. Fix a faithful Q-rational
representatlon p: G — GL(V) and a lattice A in the representation space V such that the

stabilizer of A = Z ® A C Ay ®V in G(Ay) is the group K. Since the maximal compact
subgroups of GL(A;® V') are precisely the stabilizers of lattices, it is easy to see that such
a lattice exists. For N € N let

K(N)={g9€ G(Af): p(¢g)v=v mod NA, veV}

be the principal congruence subgroup of level N, which is a factorizable normal open
subgroup of K;. Let

(6.25) Y(N) = GQ\(X x G(Ay)/K(N)
be the adelic quotient associated to K(N). Fix P =M -U € P(M). By (6.3) have
dim A2 (P)X™) = .. dim Ind %) \(m YN

P(A)
(6.26) B o Ghp), KN
= My dim Ind ) (7o) dim Indp(A (7f) .

Note that dim Indpﬁ (TTso)” is bounded by (dimv)?. Let K; C G(A;) be the standard
maximal compact subgroup. Let A be a set of coset representatives for the double cosets
(P(Ap)NK)\K;/K(N). Since K(N) is a normal subgroup of K of finite index, it follows

from [Re, Lemme, II1.2] that the map ¢ — (¢(g)),c, defines an isomorphism

Ind (Wf)K(N) o @QGA(ﬂf)P(Af)ﬂK(N)_
Thus we get
dim Ind 57} () < K+ (K7 0 P(Ag) K(V)] dim (™).
Using the factorization Ky N P(Af) = (KN M(Ap))(KyNU(Ay)), we can write
Ky (KNP(Ap))K(N)] = vol(Ky(N)) vol(K (N)) ™ [Ky NU(Ay): K(N)NU(A)]™
[K(N) N P(Ag): (K(N) O M(Ap)) (K (N) N U(Af)].

The index [K(N)NP(As): (K(N)NM(Ay))(K(N)NU(Ay)] is bounded independently of
N. Furthermore, identifying U with its Lie algebra u via the exponential map, which is an
isomorphism of affine varieties, it follows that there exist C, Cy > 0 such that

CYN~ Y < (K, NU(As): K(N)NU(Ap)]™" < CyN~—4mU
for all N € N. Therefore there exist C' > 0, independent of N, such that
Indg&if (ﬂ.f)K(N) < CN~ dim U VOl(K(N))_l VOI(KM(N)) dim ch(M(N).
Let

(6.27) N =i ® Xxw)-
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Then ¢,y € C(G(A)', K(N)). Combined with Lemma 6.3 and (6.26) it follows that there
exists C' > 0 such that

(6.28)
1

TP\ < —ctN— dim U+e
VOI(Y(N)) |JSPCC,M( t,N)| —Ce

VOl(Kp (V) Y ma(l+ [Ar ) dim Y
m€llgis(M(A)T

for all t > 1 and N € N. For an open compact subgroup Ky, r C M(Ay) let u%f be the
measure on I[I[(M(R)') defined by

M VOl(KMJ)

MO ol (M(@\M(A))
> dimHomygay(m, L2 (M(Q)\M(A)Y)) dim ™/ 6,
rET(M(A))
It follows from [FLM2, Lemma 7.7], together with [FLM2, Proposition 5.5] and [FLM2,

Theorem 5.15] that the collection of measures {M]\K/[M( Ny Nen is polynomially bounded in

the sense of [FLM2, Definition 6.2]. For I € N let g, 7 be the non-negative function on
II(G(R)) defined by

1+ X7, if m € (G(R)),
gi7(m) = .
0, otherwise.

Then it follows from [FLM2, Proposition 6.1, (4)] that there exists [ € N, which depends
only on 7, such that

vol( K (N) 1 . Ku(N)
6.29 Wi (gur) = T+ M ])"'my dim ™
620 i) = Sar@aray 2 (D f

is bounded independently of N € N. Together with (6.28) we obtain the following lemma.

Lemma 6.4. Suppose that G satisfies properties (TWN) [FLM2, Definition 5.2] and (BD)
[FLM2, Definition 5.9]. Let M € L, M # G. Let P = M -U € P(M) and let T €
Rep(G(R)) such that T #= 1y. There exist C,c,0 > 0 such that

1
J' . TP
VO].(Y(N))| spe 7M( t,N)
forallt>1,p=0,...,d, and N € N.

(6.30) | < Ce N

Now we consider the case M = . Then by definition of gb; N we have

T, T, . K(N T,
(6.31) Tweec(97R) = Yo omeTer(gpR) = Y madim(rf ) Trag (7).
m€llgis(G(A)!) m€llyis(G(A)!)
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Now observe that by [MP2, (4.18), (4.19)] we have
Tr oo (hy?) = ! T=O=7D) qim(H,._ @ APp* @ V)K=,
Furthermore, for v € II(K ) we have
[Toolik s V] < (dimv)
(see [Kn, Theorem 8.1]). Thus there exists C' > 0 such that

; ‘. L K(N) b (@) -7 (2
W\me,a( RS CvOl(K(N)) Y mpdim(a] )l =r(@)
mell o (G(A))T

for all t > 0 and N € N. As above, put A\, := 7 (). If we argue as in the proof of
Lemma 6.3, it follows that there exists ¢ > 0 and for all [ € N there exist C; > 0 such that

1

oLy (V) Jeec(9un) <Cie™* vol (K (N))

(6.32) S (14 e dim(r )

mEllgis(G(A)H)T
forall ¢t > 1 and N € N. Using that (6.29) for M = G , we get

Lemma 6.5. Let 7 € Rep(G(R)) such that 7 % 19. There exist C,c > 0 such that
1
vol(Y(NV))
forallt>1,p=0,...,d, and N € N.

(6.33) [ Tipee.c(S3)| < Ce™

Combining Lemmas 6.4, Lemma 6.5 and (7) it follows that there exist C, ¢ > 0 such that
1
vol(Y'(N))

forallt>1,p=0,...,d,and N € N.
Let A, n(7) be the Laplace operator on E;-valued p-forms. By (6.1) we have

Troe, (6—tAp,N(T)> = Jopeel Zzlif)

(6.34) [ Tipec(@1R)] < Ce™

and by (6.34) we obtain
Proposition 6.6. Suppose that G satisfies properties (TWN) [FLM2, Definition 5.2] and
(BD) [FLM2, Definition 5.9]. There exist C,c > 0 such that
1
vol(Y(N))
forallt>1,p=0,...,d, and N € N.

| Tty (e 2r¥ D) | < Cem!

Recall that by [FLM2, Prop. 5.5, Prop 5.15] the properties (TWN) and (BD) are satisfied
for GL(n) and SL(n). Hence we get the following corollary.
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Corollary 6.7. Let G = GL(n) or SL(n). There exist C,c > 0 such that
1

vol(Y(N))

forallt>1,p=0,...,d, and N € N.

‘Trmg (e—tApyN(T)) | < Ce—ct

7. MODIFICATION OF THE HEAT KERNEL

In order to study the short time behavior of the regularized trace of the heat operator with
the help of the trace formula, we need to show that we can replace h{’ by an appropriate
compactly supported test function without changing the asymptotic behavior as t — 0.
We introduced such a modification of h;” already in [MzM]. The main purpose of this
section is to establish estimations which are uniform in the lattice.

In this section we assume that G = GL(n). Let G(R)! be defined by (2.19). Let d(z,y)
denote the geodesic distance of z,y € X. On G(R)! we introduce the function r by

r(9) == d(gKw, Kx), g€ GR)".
For R > 0 let
(7.1) Br:={9€ GR)': r(g) < R}.
We need the following auxiliary lemma.

Lemma 7.1. There exist C,c > 0 such that
/ e/t gy < Ot
G(R)!
fort > 0.

Proof. Note that 7(g) is bi-K-invariant. Thus using the Cartan decomposition G(R)! =

K ATK, we get
/ e_’"z(g)/tdg = / e_’"z(“)/té(a)da,
G(R)! A+

S(expH) = [ (sinhoa(H))™, H€a®
acA+
(see [He, Chapt. I, Theorem 5.8]). Let a = diag(\i,...,A\,) € AT. Then \; > 1,
j=1,...,n,and

where

r(a)® =) (log\;)*.
j=1
Furthermore, note that

/ e~ (08 N)?/t geX 7y @ exp(c2t)(1 — erf(C\/E)),

0
where erf(z) is the error function (see [GR, 3.322,2]. This proves the claim. O
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Let f € C*(R) such that f(u) = 1, if |u] < 1/2, and f(u) = 0, if |[u| > 1. Let
or € C®(G(R)') be defined by

r
(72) ente) =1 (2.
Then we have supp pr C Bgr. Extend ¢r to G(R) by
QOR(QOOZ) = QOR(goo)a Jo € G(R)la S AG(R)O
Define %, € C*(G(R)) by
(73) hy(9) = @r(9)h"(9s0):  goo € G(R).

Then the restriction of %;’g ® xkv) to G(A)! belongs to C°(G(A)'). Let K(N) C
GL(n,Ay) be the principal congruence subgroup of level N and let Y (V) be the adelic
quotient defined by (6.25).
Proposition 7.2. There exist constants C, Csy, C3 > 0 such that
_
vol(Y(N))
forall NeN, p=0,...,d,t>0and R > 1.

Jspcc(hz—’p X XK(N)) — JSPCC(/}VI’Z’}% (29 XK(N))‘ S Cle—CQRQ/t—l—Cgt

Proof. Let ¢g :== 1 — pg. Then

Jspcc(hgp & XK(N)) — Jspcc(h;}g & XK(N)) = Jspcc(quhgp ® XK(N))

Now we use the refined spectral expansion (5.8). Let M € L and let J,..m be the
distribution on the right hand side of (5.8), which corresponds to M. Let

Ag = —Q+ 20,

where © (resp. Q. ) denotes the Casimir operator of G(R)!(resp. K,). Observe that
Yrhy? ® Xk(v) belongs to C(G(A)') and the proof of Lemma 7.2 and Corollary 7.4 in
[FLM1] extends to h € C(G(A)'). Thus there exists k > 1 such that for any € > 0 we have

(7.4)
1 1

- - BT _
VOI(Y(N)) Jspcc,M(wR ¢ @ XK(N)) Vol(G(@)\G(A)1)
< 101+ D) (rhi™) | sy N MmO+

fOl" allNEN,p:O”d7t>O’ aIldR>O

Let g be the Lie algebra of G(R)! and let Y7, ..., Y, be an orthonormal basis of g. Then
Ag = =Y. Y2 Denote by V the canonical connection on G(R)!. Then it follows that
there exists C' > 0 such that

Jspee i (VrRIT @ Li(ny)

(d+A6) h(g)l < C Y IV'R()Il, g€ GR)',
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for all h € C*(G(R)"). Let m = dim G(R)'. By [Mul, Proposition 2.1] it follows that for
every T'> 0 and j € N there exist C5, C's > 0 such that

IVIR?(g)|| < Cot= 4D 2e=Cor* @/t g e G(R)Y,

for all 0 < ¢t < T. Using the semigroup property and arguing as in the proof of Corollary
1.6 in [Do2], it follows that there exist A;, Ag, A3 > 0 such that

(7.5) IVIR{P(g)|| < Agt=mD2emAri@tsdst g € G(R)Y,
for all t > 0. Now observe that for every j € N there exists C; > 0 such that
IV7yr[l < C;

for all R > 1. Since 1g vanishes on Bg, it follows from (7.5) that there exist Cy, C5, Cg > 0
such that

2%k
Z Hvl(thZ,p)(gw < C4e—C5R2/t+A3te—Car2(g)/t
1=0
for all ¢ € G(R)!, t > 0, and R > 1. Using Lemma 7.1, it follows that there exist
C1,Cy, C5 > 0 such that
(76) ||(Id +AG)k(¢RhZ7p)HL1(G(R)1) < Cle—C'zR?/t-i-C'gt

for all ¢ > 0 and R > 1. Combined with (7.4) it follows that for every ¢ > 0 we have

1
vl () et

foral Ne N, p=0,...,d,and t > 0. and R > 1. Especially, there exist C;,C5,C5 > 0
such that

(7.7)

¢Rhf’p ® XK(N)) <. e—cRZ/tN(dimM—dimG)/2+s

1
vol(Y(N))
foral NeN, p=0,...,d,and t >0, and R > 1.

|Jspec,M(¢RhZ’p X XK(N))| < 016—02R2/t+03t

It remains to consider the case M = (. Then we have

Jspee, (VRN @ XK (V) = Z my Trw(Yrhy” @ X))
nellyig(G(A)Y)

=Y () T (A7),
mellyig(G(A)Y)

For v € II(K ) denote by H,_ (v) the v-isotypic subspace. Let

”H;rroo = Z Haoo (V).

veT
Then for every k € N we have

| T oo (VA7) < 1A 4700 (A6)) ™ 1z 1A +26)* (VRAT) |16 an)-
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Now observe that mo(Ag) acts on H,(v) by the scalar —\,_ + 2\, where A\, and A,
are the Casimir eigenvalues of 7, and 7, respectively. Furthermore, by [Mu2, Lemma 6.1]
we have

for Hfé(N) # 0 and H,_(v) # 0. Moreover A\, > 0. Thus 1 — A, + 2), > 0 and we get

1Id +70 (Ac)) F iz, <Y dim(v)(1 = Ary +2X,) 7%,
veT

Using (7.8) we get

(1= A+ 20 2 J4 X X 2 2 (14 A2

RSy

Thus we get
10 +7o (D) inz, < 7 dim(H )1+ a7
Together with (7.6) it follows that for every k € N there exists Cy > 0 such that
| T oo (07 7)| < Cre™ F/HOUL 4 A )7

for all t > 0 and R > 1. This gives
1
vol(Y(N))

A~ =

| Jepee.c (VR Y @ XK (V)|

< Crem @Ol (K(N)) Y mpdim(af ™) (14 A )7
melldis(G(A)1)
for all t > 0 and R > 1. As above it follows from [FLM2, Proposition 6.1, (4)] that there

exists k& € N, which depends only on 7, such that vol(K(N)) times the sum is bounded
independently of N € N. Hence there exist C, Cy, C3 > 0 such that

1
m"]spcc,(;(

forallt >0,p=0,...,d, N € N, and R > 1. This completes the proof of the proposition.
O

Yrhy? @ Xx(wy)| < Cre” /0t

Proposition 7.2 allows us to replace h{’” by a compactly supported function.

8. THE GEOMETRIC SIDE OF THE TRACE FORMULA

In this section we assume that G = GL(n). To study the behavior of the regularized
trace for small time, we use the geometric side J,, of the Arthur trace formula. Consider
the equivalence relation on G(Q) defined by v ~ 4/ whenever the semisimple parts of v and
v are G(Q)-conjugate, and denote by Og the set of all resulting equivalence classes. They
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are indexed by the conjugacy classes of semisimple elements of G(Q). Then the coarse
geometric expansion of J,, is

(8.1) Tl F) =D Jlf), [ EC(GA)),

where the distributions are the value at T = 0 of a polynomial J!(f) defined in [Arl].
When o consists of the unipotent elements of G(Q), we write Jynip(f) for Jo(f).

Fix R > 1 and put ¢ := pg. Put
(8.2) hI? = @hl?.
Lemma 8.1. There exists Ny € N such that

Jgeo(’ﬁ?p ® XK(N)) = Junip(’ﬁ?p ® XK (N))
for all N > Nj.

Proof. By definition, the support of k" is contained in Bg. Then the support of A" ®x ()
is contained in BrK(N) C BgrK, and therefore there are only finitely many classes o €
O¢ that contribute to the geometric side of the trace formula (8.1) for the the functions
hi? ® Xk (n). Moreover, the only class 0 € Og for which the union of the G/(A)-conjugacy
classes of elements of 0 meets G(R)K () for infinitely many N € N is the unipotent class.
For assume that o has this property. Let 7 € o0 and let ¢ € Q[X] be the characteristic
polynomial of the linear map v — Id € End(C™). The assumption on o implies that every
coefficient of ¢, except the leading coefficient 1, is either arbitrarily close to 0 at some prime
p or has absolute value < 1 at infinitely many places. Therefore, necessarily, ¢ = X", and
7 is unipotent. Therefore, the geometric side reduces to Junip(hy” ® xx () for all but
finitely many N € N. O

To analyze Jyniy(f) we use Arthur’s fine geometric expansion [Ar4, Corollaries 8.3] to
express Junip(f) in terms of weighted orbital integrals. To state the result we recall some
facts about weighted orbital integrals. Let S be a finite set of places of Q containing oc.
Set

Qs =[[Q, and G(Qs)=]]G(@Q).
vES vES
Let M € £ and v € M(Qg). The general weighted orbital integrals Jy, (7, f) defined in
[Arb] are distributions on G(Qg). If 7 is such that M, = G, then, as the name suggests,
Ju (7, f) is given by an integral of the form

Ty, f) = | D) /G oy, S )

where D(7) is the discriminant of v [Ar5, p. 231] and vy (z) is the weight function asso-
ciated to the (G, M)-family {vp(\,z): P € P(M)} defined in [Arb, p.230]. For general
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the definition is more complicated. In this case, Jy/(7, f) is obtained as a limit of a linear
combination of integrals as above. For more details we refer to [Ar8]. Let

G(Qs)' = G(Qs) NG(A)!
and write C°(G(Qs)!) for the space of functions on G(Qg)' obtained by restriction of

functions in C>°(G(Qg)). If v belongs to the intersection of M(Qg) with G(Qg)!, one can
obviously define the corresponding weighted orbital integral as linear form on C>°(G(Qg)*).

Since for GL(n) all conjugacy classes are stable (in the sense that for any finite set S,
two unipotent elements in G(Q) are conjugate in G(Qg) if and only if they are conjugate
in G(Q)), the expression of Junip(f) in terms of weighted orbital integrals simplifies. For
M € L let (Uy(Q)) be the (finite) set of unipotent conjugacy classes of M(Q). Let
F € C*(G(Qs)') and denote by 1gs the characteristic function of the standard maximal
compact subgroup of G(A®). Then by [Ar4, Corollary 8.3] there exist constants a(S, O)
which depend on the normalization of measures such that

(83)  Jup(F ®1gs) = vol GQNGA))FM) + Y a¥(S,0)Ju(0, F),
(M.0)A(G{1})

where M runs over £ and O over (Up(Q)). To deal with the S-adic integral, we note that

Ju (O, f) can be decomposed into a sum of products of integrals at co and at the finite
places Sy = S\ {oo}. Suppose that F = F, @ [y = Lo @ Q) F, with F, € C*(G(Q,)).
Let L € L(M) and Q = LV € P(L). Define

(8.4) Fog(m) = 5Q(m)1/2/ /V(R) Foo(k™'muk)dkdv, m € M(R),

pESf

and define Fyq in a similar way. Then for every pair of Levi subgroups Li, Ly € L(M)
there exist constants d$;(Li, Ly) € C such that

(85) JM(OvF) = Z d]C\:/[(L17L2)JZ\L41(0007FOO,Ql)JJ\I;IZ(OfvFf,QQ)
Ly,LaeL(M)

(see [Ar3],[Ar10, (18.7)]) where @Q; € P(L;), and O = (O,)ves,, where for each v €
S, O, € M(Q,) denotes the M(Q,)-conjugacy class of O. The coefficients d$,(L1, L)
are independent of S and they vanish unless the natural map aﬁ/} P aﬁj — af; is an
isomorphism. In case the coefficient does not vanish, it depends on the chosen measures
on af}, ab? and af;.

We shall apply (8.3) and (8.5) with test functions F' satisfying Fy = 1k (). In this case

we can choose the set of places S = S(NN) quite explicitly and also have a good upper
bound for the global coefficients a* (S(N), O) that occur in (8.3). Namely we have

Lemma 8.2. (1) Let S(N) = {oo} U{p: p|N}. Then (8.3) with S = S(N) holds for
F=F_® ]-K(N)-
(2) There exist constants a,b > 0 such that for all N, all M and all unipotent orbits O
in M we have

|a™(S(N),0)| < a(1l +log N)°
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with S(N) as in the first part.

Proof. The first statement is contained in [Ar4, Corollary 8.3]. The second statement
follows from [Mal], see also [Ma2, §6]. O

In the following we write

N:Hpep

p

for the prime factorization of N. Then 1xv) = @, 1k ) with K(p®) the principal
congruence subgroup of level p» in K, = GL,,(Z,).

If Ly = G (we can always reduce to the case of GL(n)), we split the finite orbital integral
J5(Oy, 1k (ny) further, until we arrive at

Ly
(8.6) TiOn k) = > d5L) I 70 (Op 11, a0)s
LEE(M)‘S(N)JI‘ pES(N)f

where L runs over all tuples (Ly)pesv), of Levi subgroups L, € L(M), and df;(L) are
certain constants satisfying d§;(L) = 0 unless the natural map

(8.7) @ ar” — af
is an isomorphism. Moreover, the parabolic subgroups ), € P(L,) are unique and chosen
as explained in [Ar10, §17-18].

It follows from [Ar5] (see also [LM]) that each local integral can be written as (using that
K (p°?) is normal in K,)

Lyp Lyp
(88) JM (O;m 1K(pep)va> = /N @) 1K(pep)va (n>wM,(9p (n) dn,

where P, = M,N, C L, is a standard parabolic subgroup with M, C M such that O, is
induced from the trivial orbit in M, to M, i.e., P, is a Richardson parabolic for O, in M.

The function wﬁop is a certain weight function on N,(Q,) of the form

L

(8.9) wiro, = QUog g1 (X)llp, - - -, 1og [|¢-(X)|l,),

where n = Id +X with X a nilpotent upper triangular matrix, ¢, ..., ¢, are polynomials
in X with image in some affine space, and () is a polynomial. Note that @, ¢, ...,q. only

depend on O, M, and L, (as a Levi subgroup of G defined over @), but not on the place p.
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9. BOUNDS FOR p-ADIC ORBITAL INTEGRALS

In this section we still assume that G = GL(n). We deal with the orbital integrals of the
form J§ (0, 1kn)q), @ € P(L), which arise in (8.5) for our type of test functions.

We first make the following observation: Let @ = LV be a semistandard parabolic
subgroup. Since K(N)NV(Ay) = V(NZ), we have
(9.1) / Licow) (v) dv = N=4mV.

V(Af)

By the definition (8.4) and the fact that K (V) is a normal subgroup in K; we have

Lx(v)q(m) = dg(m)'/? / 1w (mv) dv
V(Ay)

for any m € L(Ay). Hence 1x(nyq(m) = 0 unless m € K*(N) = K(N) N L(Ay). Now if
m € K¥(N), we have mv € K(N) if and only if v € K(N). Hence
(92) ]-K(N),Q(m) = N_dimv]_KL(N)(m).

It therefore suffices to bound JI (0,1 kz(n))- Moreover, since L is isomorphic to a direct
product of finitely many smaller GL(m)’s, it suffices to consider the case Q3 = G = GL(n).
Moreover, the formulas similar to (9.1) and (9.2) hold for the local integrals at p for the
functions 1xyer) with the necessary adjustments.

We now use (8.6) to find an upper bound for the orbital integrals.

Lemma 9.1. If d§;(L) # 0, then at most dim a$;-many elements of L are not equal to M.
Moreover, if L, = M, then

(93) It Oy Lk .@,) = Tif (Op: Licgrnyq,) = p7 # 0

Proof. The first assertion is clear from the fact that the map in (8.7) is an isomorphism if
¢ (L) # 0. For the second assertion let @, = MV be the Iwasawa decomposition of @,

and let PM = LMUM be a Richardson parabolic in M for O, with Ty € LM that is, O

is induced from the trivial orbit in L™ to M. Then LMUMV =: LMU% is a Richardson

parabolic for the induced orbit IndJ\G/[ O,. Since K (p) is a normal subgroup in K),, we can
compute the invariant orbital integral J3] (O, 1xper o,) as (see [LM] for the first equality)

I (O, 1kper)0,) :/ Lr(per),0 du-/ / per) (uv) dv du
UM(Qp) UM(Qp) JV(Qp)

_ / 1 (1) du.
U%(Qp)

Since dim U = dim Ind§; ©/2, the equation (9.3) follows from (9.1). O
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It follows from (8.8) that each of the local weighted orbital integrals can be written as
(again using that K (p®) is normal in K,)

L L
i (O, 1k q,) = / 1k per),Q, (N)Wyf o(n) dn
Np(Qp)

where P, = M,N, C L, is a semistandard parabolic subgroup with M, C M such that P,
is a Richardson parabolic for O in M. The function wy, ¢ is a certain weight function on
N,(Q,) of the form

wyto(n) = Qog [l (X)p, - - - log g (X)]l).

where n = Id+X with X € Mat,«,(Q,) a nilpotent matrix, ¢, ..., ¢ polynomials in X
with image in some finite dimensional affine space, and @ is a polynomial. The polynomials
Q. q,-..,q onlydepend on O, M, and L, (as a Levi subgroup of G defined over Q), but not
on the prime p. Hence there are overall only finitely many possibilities for those polynomials
independent of the level N. Now if n € K(p®) N N,(Q,) we can write n = Id +pY with
Y € Mat, «,(Z,) a nilpotent matrix. Hence setting n’ = Id +Y we get

(0, 1K(pep),Q,,)) < prdmb / Lty oy (1) |03 ()| d

Np(Qp)
< p—ep dim Vpp—ep dim N, /

o 1,2, ()@ (log p, [log [qr (V) o, - - - [1og [l (V)| ]) dr’
Np(Qp !

with @)’ a suitable polynomial only depending on @, ¢, ..., ¢, and n but not on N.

Lemma 9.2. There exist absolute constants r,p > 0 (independent of p, N ) such that

/ . 1,1, ()@ (log p, [ log [ (V) Iy, - - -, [1og [|gp(Y) [p]) dn” < C(1 + log p)".
NP P P

Proof. There exists another polynomial Q and some integer j > 0 such that

Q' (logp, [log lgs (Y[l - - -, [1og llgp(Y) [,])
< (1 +1logp™ )’ Q([og lgs (Y) Iy, - - -, [1og llgp(Y) [l])

for all n’. We can assume that @ is independent of p and does only depend on Q. But
now by [Ma2, §10] there exists a constant C' > 0 such that

/ o Lt ()Q008 7, 108 s (V) 108 (Vo) ' < ©
NP Qp i
and C can be chosen to depend only on Q and n but not on p. O

Together with the discussion previous to the lemma this immediately implies:
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Corollary 9.3. With the notation as before, we have
J]\I;[p(07 1K(pep),Qp) < C’p—%plnd% (9(1 + logpep)r
with v and C' chosen to depend only on n but not on p or N.

Proof. It remains to note that dim V,, + dim N, equals half the dimension of the induced
class Ind§; O. O

The estimate in the corollary can also be written as
im Ind§ r
IO, 1crma,)| < CINE™ 50 (1~ 1og | N,
Combining this with the second assertion of Lemma 9.1 we get
: G
< CIN[™ M1~ log |N,)"if L, # M,
: G
= |NJp™ " @ if L, = M.

Further using the first assertion of Lemma 9.1 we have for any tuple L = {L,},cs(v), with
d§;(L) # 0 that

L
‘JMP (O, 1xpr).a,)

H J]f/[p(o’ 1KLP(pEP)7Qp) <N~ dimInd§; O/2cdima% H (1 . lOg |N|p)7’
PES(N)y PES(N)p:Lp#M
< CN—dimIndAG/I O/2(1Og N)r(n—l)
for some absolute constant ¢ > 0 independent of N. The first assertion of Lemma 9.1 also
implies that the number of tuples L with d$;(L) # 0 is bounded by |S(N)|9™ . Since

the number of elements in S(NN); is equal to the number w(N) of prime factors of N, and
w(N) <log, N <2log N, we get that for any N > 2 we have

(94) }Jj\l/’[? ((’)7 1K(N),Q2)‘ < IN™ dimInd§; (9/2(10g N)(T—I—l)(n—l)

for some absolute constant ¢ > 0.

10. PROOF OF THE MAIN RESULT FOR GL(n)

Let G = GL(n). Let K(N) C GL(n,Ay) be the principal congruence subgroup and
Y(N) := X(K(N))
the associated adelic quotient (4.1). Let 7 € Rep(G(R)') satisfying 7 % 75. Let E, be
the associated flat vector bundle over Y(IV) as defined in section (4). Let A,y n(7) be
the Laplace operator on E,-valued p-forms on Y (N). For t > 0 let e~**»v (™) he the

heat operator. The regularized trace Tr,, (e *2»¥ (M) of the heat operator e~*Ary (™) ig
defined by (4.3). By (4.4) and (4.5) the zeta function ¢, y(s;7) is defined by

1 o0
(10.1) e T G )
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The integral converges absolutely and uniformly on compact subsets of the half-plane
Re(s) > d/2, and admits a meromorphic extension to the entire complex plane. Then the
analytic torsion Ty(n)(7) € RT is defined by

1< Gy () (8 7)
(10.2) log Ty (1) = 5 ) _(=1)"p (FPs:O %)

p=0

(see [MzM, (13.38)]). Let T" > 0. We write

00 T
/ Trreg (6—tAp,Y(N)(T)) B 4 = / Tryeq (e—tAp,Y(N)('r)) 510t
(10.3) 0 OOO
+ / Tty (e Ary (™) 14y,
T

We first deal with the second integral on the right hand side. Note that the integral is an
entire function of s. Therefore, we have

1 = - T 5— - - T -
FP.—o (SF—(S)/ Tr e (e EApy () ))t 1dt> :/ Treq (e tApy () ))t Ldt.

T T
Using Proposition 6.6 it follows that there exist C', ¢ > 0 such that

1 o0
- T o —tApyy(N)(T) t_ldt < C —CT
vol(Y (N)) /T A C ) = e

forall T>1,p=0,...,d,and N € N.
Now we turn to the first integral on the right hand side of (10.3). Recall that
Trreg (e—tAp,Y(N)(T)> — Jspec(htT’p ® XK(N))-

For R > 0 let pr € C°(G(R)') be the function defined by (7.2). By Proposition 7.2 we
have

(10.4)

(10.5) Trreq (6—tAp,y(N)(T)) = Jopec(PrI Y @ XK (V) + TR(T),
where 7 () is a function of ¢ € [0, 7] which satisfies

1
(10.6) |Pa(t)] < Crem @R /10t

vol(Y(N))
for 0 <t < T. This implies that fOT rr(t)t*~1dt is holomorphic in s € C and

FP,_, (%(8) /OTTR(t)ts_ldt) :/OTrR(t)t—ldt.

T T
/ ,,,,R(t)t—ldt‘ S Cl / 6—CZR2/t+C3tt—ldt
0 0

Moreover
1
vol(Y'(N))

(10.7) 2 e
S Cle_C4R /T+03T / 6_04/tt_1dt.
0
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Now put R = T2 and let

(10.8) hit = orhy™.
Then it follows from (10.5) and (10.7) that there exist C, ¢ > 0 such that
1 I

————FPeg | —— Tr,. Ay (1)) 51 gy

P (g ) T )
(10.9) L

~FPy—p [ —— wpec( 1T ttdt || < Cet
—0 (sF(s) /0 Jopec (M7 @ X () )’ < Ce

forT>1,p=0,...,d, and N € N. Using the trace formula, we are reduced to deal with

1 T
FP,_o | —— w(hTP A
=0 (SF(S)/O Jgeo t,T®XK(N)) )

Let o € C>°(G(R)!) be such that ¢(g) = 1 in a neighborhood of 1 € G(R)!. Put
hy? = ohy”.
We consider test functions with %Z’p at the infinite place. By Lemma 8.1 there exists
Ny € N such that B B
cho(h?p b2y XK(N)) = ']unip(h?p X XK(N))

for N > Ny. Let S(IV) be as in Lemma 8.2. By the fine geometric expansion (8.3) and the
definition of hy7, we have

Junip(zz’p ® XK (N)) = vol(G(Q)\G(A)' /K (N))RIP(1)
(M, 0)#(G,{1})

Concerning the volume factor, we used that xx(n) = L1xv)/ vol(K(N)). To begin with we

consider the first term on the right hand side. Note that h;”(1) = h;"(1). Furthermore,
by [MP2, (5.11)] there is an asymptotic expansion

(10.11) hiP(1) ~ Z ajt= Y
=0
as t — 0. Furthermore, by [MP2, (5.16)] there exists ¢ > 0 such that
(10.12) hyP(1) = O(e™)
as t — oo. From (10.11) and (10.12) follows that the integral
(10.13) /Oo RIP(1)t5dt
0

converges in the half-plane Re(s) > d/2 and admits a meromorphic extension to C which
is holomorphic at s = 0. The same is true for the integral over [0, 7] and we get

I d (1 [
10.14)  FPeo(—— [ AP ) = — (== / hyP (1) O(e="
0019)  #Puo (e [ a0 ) = (g [ e | ol
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Recall the definition of the L(-analytic torsion [Lo], [MV]. For t > 0 let
d

KO (t,7) = 3 (~1)"phi? (1),

p=1

(2) — li 1 /Oo 2) s—1
t}Z(T). 5 s (— K@Y (t, )" dt .

Then by [MP2, (5.20)], the L®-analytic torsion T, 2()1\/ (1) € RT is given by

log Ty (7) = vol(Y (W) -2 (r).

To summarize, we get

(10.15) %Z VPpFP, (s%(S) /0 hgp(w—ldt) — () + O™

for T"> 1.

Next we consider the weighted orbital integrals on the right hand side of (10.10). Note

that by definition of x g (n) we have
1

vol(K(N))
To deal with the integral on the right hand side, we use the decomposition formula (8.5).
For L € L(M), Q € P(L), and O € (Un(Q)) consider the integral Jﬁ(@l(hZ’p)Q). Un-
folding the definition (h{”)g, the local weighted orbital integral J%((O,h;?)g) can be
written as a non-invariant integral over the unipotent radical of a suitable semistandard
parabolic subgroup in G. More precisely, there is a semistandard parabolic subgroup

R = MrUgr C M which is a Richardson parabolic for O in M. If Q = LV is the Levi
decomposition of @), we get

JE(O, (R]7)g / / hy? (uv)w(u) du dv
V(R) JUR(R

where w is a certain weight function depending on the class O, and the groups M and L.
This weight function on Ug(R) satisfies a certain “log-homogeneity” property as explained
in [MzM, §6-7]. Note that MrURrV =: MrV"’ is a Richardson parabolic for the induced
class Ind$; © in G. Extending w trivially to all of V'(R) (and writing w for the extension
again), we get

(O, 077 @ X)) = Tn(O, B @ 1)

%w@mwzf R (w)w(v) dv

'(R)
and this extended w is again log-homogeneous. It follows from [MzM, §12] that this integral
admits an asymptotic expansion as t — 0. This implies that the integral

T
(10.16) / Je (O, (hyP))t*~tdt
0
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converges absolutely and uniformly on compact subsets of Re(s) > d/2 and admits a
meromorphic extension to s € C. Put

(10.17) Ar (Ou,T) :=FP,— <sr1( )/T J (0, (E[J’)Q)ts—ldt).

By (8.5) it follows that the Mellin transform of Jy (O, hf* ® 1 Kk(n)) as a function of ¢ is a
meromorphic function on C, and we get

1 T ~
FP._o —— 1 sl
s=0 <SF(S) /0 Ju(O, hi? @ 1wyt dt)

= Z d]?/[(leL2)AJL\/[l(0007T>JZ\L42(Of71K(N)7Q2>‘

L1,LoeL(M)

(10.18)

Denote by Junip— {1}(h ® 1k (n)) the sum on the right hand side of (10.10) with the

term vol(G(Q)\G(A)! /K (N))hT*(1) removed. Combining (10.18), Lemma 8.2, and (9.4),
we obtain

Proposition 10.1. For every T' > 1 there exist constants C'(T),a > 0, a independent of
T, such that for all N > 2 we have

1 ! T - —(n— a
'FPS 0<5F( )/ Junip—{13 (M @ L))t 1dt>' < C(T)N~"Y(log N)“.

Now we can turn to the proof of the main Theorem. Let

Z p Trrcg tAp’Y(N)(T)) :

p=1

[\DlH

Let "> 0. By (10.1), (10.2) and (10.3) we have
1 T %
(10.19) log Ty (ny(T) = FP—g <SF—(S)/O KN(t,T)tS_ldt) +/T Kn(t,7)t'dt.
By (10.4) there exist C, ¢ > 0 such that

(10.20) >/ KN(t,T)t_ldt‘SCe_CT
T

vol (Y (N

for all T'> 1 and N € N. Let h;p € C°(G(R)") be defined by (10.8). Put

d
1 T
Ky(t,7;T) 52 )P geo (AL T ® XE())-

p=1
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By (10.9) and the trace formula it follows that there exist C, ¢ > 0 such that

W‘FR:O(%@ /OT KN(t,T)tS_ldt)

1 T
—FP,o | —— Kyt Tt )| < Ce=T
—°<sr<s>/o vt T) )‘—Ce

(10.21)

forall 7> 1 and N € N. Let

l\DI»—t
M&

(10.22) Kinip — {1}N (t,7;7T) pJunip—{l}(hZ”? ®XK(N))-

p=1

By Lemma 8.1 and (10.10) it follows that for every T > 1 there exists No(7') € N such
that

vol(Y(N))
2

M~

Ky(t,7;T) = (—1)pph;’:’;(1) + Kunip iy (6, 75T

1

for N > No(T'). Using (10.15) and (10.21) it follows that for every 7" > 1 there exists
No(T) € N such that

3
Il

m =0 (%(S) /OT Kx(t, T)ts‘ldt)

T
G P b - =
= T,X (7') + Vol(Y(N)) FPS:(] <SF(8) /0 Kunlp —{1},N(t7 T>t dt)
+O0(e™ ).

(10.23)

for N > No(T'). Applying Proposition 10.1 we get that for every 7' > 1 there exist constants
C1(T),Cq,a,c >0 and No(T') € N such that

L 1 ’ s—1 2
(10.24) WFPS:O(WS)/@ Kn(t,7)t dt) —t2(r)
< CT)N D (og NY + o™

for N > Ny(T'). Combined with (10.19) and (10.20) it follows that

10g Ty(N)(T) o t(g)

(10.25) oy k)

11. PROOF OF THE MAIN RESULT FOR SL(n)

The following section is due to Werner Hoffmann. In order to deduce Theorem 1.1 from
(10.25), we need to compare the trace formulas for GL(n) and SL(n). This is the purpose
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of the current section. Let Ky C GL ( A ) be an open compact subgroup. Consider the
action of SL(n, A)K; on GL( ,Q\ G A)!. Then we get
(11.1) GL(n,Q)\ GL(n, A)' = U 1GL (n,Q)g N SL(n, A)K;)\ SL(n, A) K},

g

where g runs over a set of representatives of
GL(n,Q)\ GL(n,A)'/SL(n, A)K; = GL(n, Q) SL(n, A)\ GL(n, A)'/K;.
Let
U={detk: ke K} = K;/(K;NSL(n,A)).
The determinant induces a bijection
(11.2) det: GL(n,Q)SL(n,A)\ GL(n,A)' /K = Q*\A'/U.
Comparing the archimedean components we get
g ' GL(n,Q)g NSL(n,A)K = g ' SL(n,Q)g.
Factorizing both sides of (11.1) by Ky, we get
(11.3) GL(n,Q)\ GL(n,A)!/K; = U g7 ' SL(n,Q)g\ SL(n, A)/(SL(n, A) N K}).
9

Now recall that for SL(n) strong approximation holds, i.e., for every open compact sub-
group K of SL(n, As) we have
SL(n,A) = SL(n, Q) K} SL(n, R).
Put K} = SL(n,A) N gKyg~" and conjugate both sides with g~". It follows that
SL(n,A) = g~ SL(n,Q)g(SL(n, A) N K;) SL(n, R).

Thus SL(n,R) acts transitively from the right on each component of the decomposition
(11.3). The stabilizer of the double coset of e in the g-component is

(11.4) Lo r, = {95 Voooo | 7 € SL(n, Q), g5 yr9r € Ky},
where SL(n, Q) is embedded diagonally in SL(n, A). Thus we get an isomorphism of right
SL(n,R)-spaces
(11.5) GL(n, Q)\ GL(n, A)'/K; = | J(Ty x,\ SL(n, R)),

9
and the union is disjoint. This isomorphism induces an isomorphism of SL(7, R)-modules
(11.6) L*(GL(n,Q)\ GL(n, A)' /K;) = @ L*(Ty k,\ SL(n, R)),

gel
where I is a set of representatives of GL(n,Q)SL(n,A)\ GL(n,A)!/K; and a given ¢
corresponds to (¢,)ger with ¢, defined by

¢g($) = (b(gx)v VS SL(an)



42 JASMIN MATZ AND WERNER MULLER

Now note that the right regular representation R of GL(n, A)! in L*(GL(n, Q)\ GL(n, A)!)
induces a representation of the convolution algebra L*(K;\ GL(n,A)'/K}) in the Hilbert
space L*(GL(n,Q)\ GL(n,A)!/K;). For h € L*(K;\ GL(n,A)!/K/) let

Kp(z,y) = ) bz ).
v€GL(n,Q)

Then we have

(R(h))(x) = / Kz, 9)(y)dy.

GL(n,Q)\ GL(n,A)! /K
With respect to the isomorphism (11.5) the kernel K, is given by the components
Ly &, \SL(n, R) x I'y, x,\ SL(n,R) > (z,y) = Ku(g12, g29).

If h acts on the right hand side of (11.6) by these integral kernels, (11.6) becomes an
isomorphism of L'(K;\ GL(n,A)'/Ky)-modules. Especially assume that h = ho ® Xk, -
Then it follows from (11.4) that

gz, gy) = > heolz ).
’YEFgKf

Now we turn to the trace formula. We briefly recall the definition of the distribution
JT(f), f € C=(G(A)Y). For details see [Arl]. Let P = MpNp be a standard parabolic
subgroup of G and let () be a parabolic subgroup containing P. Let 7‘5 and 75 denote the
characteristic functions of the set

{X €ap: (a,X) > 0forall o € AQ}

and
{X €ap: (@, X) >0forall w e AY},

respectively If Q = G, we will suppress the superscript. Moreover we put 7y := 7§ and
7o :=75 . Let

117)  Kpley) = /
N(Q)\N(A)

For T € aj Arthur’s distribution is defined by

> e = [ fa )y
~eP(Q) N(A)P(Q)

JT(h) = (—1)"=dm AP [ (2, 0)Fp (Hp() — Tp)da,

/GLm,@)\GL(n,A)l/Kf Iz

where P runs over all Q-rational parabolic subgroups of GL(n) and the truncation param-
eter Tp is chosen in such a way that

Ad(é)(HP(SL’) — Tp) = H(;p(;—l(l’) — T5p51

for all § € GL(n,Q). Note that this definition differs from the usual definition, but it is
easy to check that it agrees with the usual definition. Furthermore, for d(T") > dy, the sum
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over P is finite. Using the decomposition (11.5), it follows that
JE(h) = Z/ Z(—l)”_dimAPKp(gx,gx)?p(Hp(gx) — Tp)dzx.
g “YTgx \SL(nR) p

Now assume that h = he ® xk,. Then the integrand f(g~'z~'pzg) in Kp(gz, gz) is
nonzero, only if p € N(A)P(Q) N G(R)gK;g~'. We may decompose the integral (11.7)
into a sum over P(Q) N gK;g~' and an integral over

PQ) NgK;g "\NA)PQ)NgK; 2 N(Q)NgK;g "\N(A)NgKsg~".

Put
Py =g (P(R) NSL(n,R))goo, Ny = g5 N(R)goo-
Then we get
HOEDY / > (=0 AL K ke (w,2) 7, (Hp, () — Tp,)da,
g /Tqx\SL(n.R) “p
where
Kryac (o) = | S (e yny)dn
Fg'Kmeg\Ng 'yEFg’KfﬁPg
and

Ad(g9e0)(Hp, () — Tp,) = Hp(z) — Tp.

Now let K,,(N) C GL(n, Af) be the principal congruence subgroup of level N. In this case

we have U = K;(N) and the components of GL(n, Q)\ GL(n, A)! /K, (N) are parametrized
by
(11.8) Q\A'/K,(N) = (Z/NZ)*.
The isomorphism (11.8) is explicitly given as follows. Let a € N with (a, N) = 1. Then
its residue class a + NZ corresponds to the idele class a with components a., = a and for
each prime p, @, € Q, equals p'?, where a =[] p'*. Let § = diag(a, 1,...,1) € GL(n, A)!
be the representative that corresponds to a and let g = (a,1,...,1) € GL(n,Q). Then for
v € SL(n,Q) we have

3 iy € Kn(N)p <= ((g7"v9) ")y € Kn(N),.
Thus
Fg,Kn(N) — F(N)

for all g, where I'(N) C SL(n,Z) is the principal congruence subgroup of level N. Thus
we have an isomorphism of right SL(n, R)-spaces

(11.9) GL(n,Q)\ GL(n,A)'/K,(N) = | | T(N)\SL(n,R).
(Z/NZ)*
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Let o(N) = #(Z/NZ)*). Then for h = ho, ® Xk, it follows that

where

Let

JT( @(N) / ( 1) Ar K (2, 2)7p (Hp () — Tp)da,
N)\ SL(n,R)

Kpn(z,y) :/ Z hoo (2™ yny )dn.
D(N)NN(R)\N(R)

R) yer(nnp(R)

X(N) =T(N)\SL(n,R)/SO(n)

and let A, x(n)(7) be the Laplace operator on E -valued p-forms on X (N). Then it follows
from the definition of the regularized trace (4.3) that

Treq (e—tAp,Y(N)(T)) — o(N) Tr,eq (e—tAp’X(N) (7))

for all N > 3. Using the definition (1.9) of the analytic torsion, we obtain

(11.10)

log Ty (ny(7) = ¢(N) log Tx (n) (7).

Furthermore, by (11.9) we have

(11.11)

vol(Y (N)) = o(N) vol(X(N)).

Combining (10.25), (11.10), and (11.11), we obtain Theorem 1.1.
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