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Abstract. Given a number field F with ring of integers OF , one can associate to any
torsion free subgroup of SL(2,OF ) of finite index a complete Riemannian manifold of finite
volume with fibered cusp ends. For natural choices of flat vector bundles on such a manifold,
we show that analytic torsion is identified with the Reidemeister torsion of the Borel-Serre
compactification. This is used to obtain exponential growth of torsion in the cohomology
for sequences of congruence subgroups.
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1. Introduction

Let G be a connected semi-simple algebraic group over Q [Mil18], [BT65] and let G∞ :=
G(R) be the group of real points of G. Let Γ ⊂ G(Q) be an arithmetic subgroup. Then Γ is
a lattice in G∞. Let ρ : G→ GL(V ) be a rational finite-dimensional complex representation.
Suppose that there is a Γ-invariant lattice L ⊂ V with L ⊗Z C = V . The cohomology
groups Hj(Γ;L) are finitely generated abelian groups. Let Hj(Γ;L)free and Hj(Γ;L)tor be
the free and the torsion subgroups, respectively. We have Hj(Γ;L)free ⊗Z C ∼= Hj(Γ;V ). If
the underlying locally symmetric space has an algebro-geometric structure, the Langlands
conjectures predict that there are deep connections between the cohomology groups Hj(Γ;V )
and the theory of automorphic forms and number theory. Recent results show that torsion
classes are also connected to number theory. Ash [Ash92] conjectured that for a congruence
subgroup Γ ⊂ SL(n,Z), any Hecke eigenclass ξ ∈ H∗(Γ;Fp) is attached to a continuous

semisimple Galois representation ρ : Gal(Q/Q)→ GL(n,Fp) such that Frobenius and Hecke
eigenvalues match up. A more general version of this conjecture has been proved by Scholze
[Sch15]. However, much less is known about the structure of the torsion group, for example,
its size. If G is Q-anisotropic, i.e., Γ\G∞ is compact, Bergeron and Venkatesh [BV13]
obtained first results concerning the growth of torsion, if Γ varies in a tower of lattices, and
they also formulated a conjecture predicting the growth of torsion in general.
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To state the results and the conjecture we need to introduce some notation. Let K ⊂ G∞
be a maximal compact subgroup. Let X̃ = G∞/K be the associated global Riemannian sym-
metric space. Let g and k be the Lie algebras of G∞ and K, respectively. The fundamental
rank δ(G) of G is defined by δ(G) := rank(gC) − rank(kC). As explained by Bergeron and
Venkatesh [BV13], when δ(G) = 1, one expects for arithmetic reasons that H∗(Γ;L) should
have a lot of torsion and a small free part. This conjecture is supported by the following
result proved in [BV13] for anisotropic G. Assume that · · · ⊂ Γj ⊂ Γj−1 ⊂ · · · ⊂ Γ is a
decreasing sequence of congruence subgroups such that ∩jΓj = {1}. L is called strongly

acyclic for the family {Γj} if the Laplacians on V -valued i-forms on Γk\X̃ are uniformly
bounded away from 0 for all degrees i and all Γk. In this case, H∗(X;L) is a pure torsion
group. If δ(G) = 1, then by [BV13, Theorem 1.4] one has

(1.1) lim inf
j→∞

∑
q

log |Hq(Γj;L)tor|
[Γ : Γj]

≥ cG,L vol(Γ\X̃) > 0,

where the sum is over the integers q such that q+ dim(X̃)+1
2

is odd and cG,L > 0 is a constant
that depends only on G and L. To establish the lower bound, Bergeron and Venkatesh prove
the following result

(1.2) lim
j→∞

∑
q

(−1)q+
dim(X̃)+1

2
log |Hq(Γj;L)tor|

[Γ : Γj]
= cG,L vol(Γ\X̃).

The proof of (1.2) uses the equality of analytic torsion and Reidemeister torsion. It follows
from (1.1) that for some q, |Hq(Γj;L)tor| grows exponentially as j → ∞. Based on (1.2),
Bergeron and Venkatesh made a conjecture with a precise prediction of the growth of torsion
[BV13, Conjecture 1.3] without any assumption on L. The conjecture states that for each q

(1.3) lim
j→∞

log |Hq(Γj;L)tor|
[Γ : Γj]

exists and equals zero unless δ(G) = 1 and q = dim(X̃)+1
2

. In this case it equals cG,L vol(Γ\X̃)
with cG,L > 0. All this is under the assumption that the Q-rank of G is 0.

Since many important arithmetic groups are not co-compact, it is desirable to extend
these results to groups G with Q-rank > 0. In [AGMY20] the authors made comprehensive
computations of torsion subgroups in Hj(Γ,Z), where Γ ⊂ G(Q) is an arithmetic subgroup
for G = GLn /Q, n = 3, 4, 5, or G = GL2 over specific number fields for which δ(G) = 1 or
2. They use their computations to extend the conjecture (1.3) of Bergeron und Venkatesh
by removing the restriction to the cocompact case and allowing any growth of level, not just
in a tower. These are Conjectures 7.1 and 7.2 in [AGMY20]. In particular, Conjecture 7.2
predicts that for a family {Γj}j∈N of congruence subgroups in a fixed arithmetic groups Γ
with level(Γj)→∞,

(1.4) lim inf
j→∞

log |Hq(Γj;L)tor|
[Γ : Γj]

exists. If G has Q-rank > 0, then the lim-inf equals zero unless δ(G) = 1 and j is the top
degree of the cuspidal range.

The first step beyond Q-rank 0 is the case of hyperbolic manifolds of finite volume which
has been treated in [Pfa14], [MR21]. This is the R-rank 1 case. The method of [BV13] is
based on the equality of analytic torsion and Reidemeister torsion [Che79], [Mül78], [Mül93].
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This equality is not available in the non-compact case. However, for hyperbolic manifolds
of finite volume there is a formula with an explicit defect term [MR20], whose asymptotic
behavior can be controlled for a family of congruence subgroups {Γj}j∈N of a fixed arithmetic
group Γ. There is another obstacle if one wants to apply the result to deduce a formula similar
to (1.2). Even if L strongly acyclic, the cohomology H∗(Γ;L⊗C) does not vanish. Only the
interior cohomology vanishes. In general, there is cohomology coming from the boundary
of the Borel-Serre compactification. This is the Eisenstein cohomology which gives rise to a
non-trivial regulator in the expression of the Reidemeister torsion in terms of the order of
the torsion subgroup in the cohomology H∗(Γ;L) [BV13, § 2]. We were able to cope with
these problems and established a lower bound similar to (1.1) [MR21].

In this paper we consider Q-rank 1 cases with R-rank > 1. The corresponding locally
symmetric space is a manifold with fibered cusps. The semi-simple group G is defined as
follows. Let F be a number field of degree dF over Q. Let OF denote the ring of algebraic
integers of F . We consider SL(2) as an algebraic group over F . Let G0 = SL(2)/F and let

(1.5) G = ResF/Q(G0)

be the algebraic group, which is obtained from G0 by restriction of scalars [Wei82]. Then G
is a semi-simple algebraic group over Q. Moreover, we have

G∞ = G(R) =
∏
v|∞

SL(2, Fv), G(Q) = SL(2, F ).

Let σ1, . . . , σr1 be the embeddings of F in R and let τ1, τ 1, . . . , τr2 , τ r2 denote the remaining
embeddings of F in C, so that dF = r1 + 2r2. Then

G∞ = SL(2, F ⊗Q R) = SL(2,R)r1 × SL(2,C)r2

and K∞ = SO(2)r1×SU(2)r2 is a maximal compact subgroup. The corresponding symmetric
space equals

X̃ := G∞/K∞ = (H2)r1 × (H3)r2 .

Let Γ ⊂ SL(2,OF ) be a torsion free subgroup of finite index. Then Γ is a discrete subgroup
of G∞ via the embedding ι : Γ→ SL(2,R)r1 × SL(2,C)r2 defined by

(1.6)

(
α β
γ δ

)
7→((

σ1(α) σ1(β)
σ1(γ) σ1(δ)

)
, . . . ,

(
σr1(α) σr1(β)
σr1(γ) σr1(δ)

)
,

(
τ1(α) τ1(β)
τ1(γ) τ1(δ)

)
, . . . ,

(
τr2(α) τr2(β)
τr2(γ) τr2(δ)

))
and the quotient

X = Γ \ X̃
is a manifold. As described in [Bor74], it comes with a natural metric. First, the invariant

metric one should consider on X̃ = (H2)r1 × (H3)r2 is

(1.7) g̃ =

r1∑
i=1

dx2
i + dy2

i

y2
i

+ 2

r1∑
j=1

|dzj|2 + dt2j
t2j

.

Since Γ acts by isometries, g̃ descends to a metric g on X. The manifold X has the homotopy
type of a compact manifold with boundary with each boundary component corresponding to
a fibered cusp end. If P1(F ) is the projective line of the number field F , then the fibered cusp
ends are in bijection with Γ \ P1(F ). Let in fact PΓ ⊂ P1(F ) be a set of representatives for
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the classes in Γ\P1(F ), so that PΓ naturally corresponds to the set of fibered cusp ends of X.
Without loss of generality, we will assume that [1 : 0] ∈ PΓ. As described in [Shi63, no.28,
p.69], when Γ = SL(2,OF ), the fibered cusp ends are also naturally identified with the ideal
classes of F .

Thus, X has a natural compactification as a manifold with boundary X with boundary
components Yη labeled by η ∈ PΓ. Each boundary component comes with a natural fiber
bundle

(1.8) φη : Yη → Sη

with base Sη and fibers φ−1
η (y) diffeomorphic to tori,

Sη ∼= Tr1+r2−1, φ−1
η (y) ∼= Tr1+2r2 ∀y ∈ Yη.

In the fibered cusp end associated to η, the metric g, up to scaling, takes the form

(1.9) g =
dr2

r2
+ φ∗ηgSη + r−2κ, r ∈ (Rη,∞),

for some Rη > 0, where gSη is a flat metric on Sη and κ is a 2-tensor inducing a flat metric on
each fiber of (1.8) in such a way that φ∗ηgSη + κ is a flat metric on Yη making (1.8) a locally
trivial Riemannian submersion with respect to the metric gSη on the base. In particular, the
natural connection of (1.8) induced by the metric φ∗ηgSη +κ has trivial curvature and second
fundamental form in the sense of [BGV04, § 10.1]. From (1.9), it can also be inferred that g
is a complete metric of finite volume.

There are natural flat vector bundles associated to the Riemannian manifold (X, g). To
describe them, let V be the standard representation of SL(2,R) and let W be the standard
representation of SL(2,C). Denote also by W the complex conjugate of W , that is, the dual
representation. For q ∈ N, let Vq be the qth symmetric power of V , Wq be the qth symmetric
power of W and W q be the qth symmetric power of W . Then for m = (m1, . . . ,mr1) ∈ Nr10

and n = (n1, n1, . . . , nr2 , nr2) ∈ N2r2
0 , the tensor product representation (Vm1 ⊗ · · · ⊗ Vmr1 )⊗

(Wn1 ⊗W n1 ⊗ · · · ⊗Wnr2
⊗W nr2

) with map

%m,n : SL(2,R)r1× SL(2,C)r2 →
GL((Vm1 ⊗ · · · ⊗ Vmr1 )⊗ (Wn1 ⊗W n1 ⊗ · · · ⊗Wnr2

⊗W nr2
))

(1.10)

is an irreducible representation of G∞. There is a natural flat vector bundle Em,n → X,
associated to %m,n|Γ

Em,n = Γ \ (X̃ × (Vm1 ⊗ · · · ⊗ Vmr1 )⊗ (Wn1 ⊗W n1 ⊗ · · · ⊗Wnr2
⊗W nr2

)).

By [MM63, Sect. 3] this bundle can be equipped with a canonical bundle metric h, which
is defined by an admissible inner product in the representation space [MM63, Lemma 3.1].
The flat connection is not unitary with respect to this metric, but it is at least unimodular.

One central goal of the present paper is to study the analytic torsion T (X,Em,n, g, h)
of (X,Em,n, g, h) as defined in [ARS21] and to relate it with the Reidemeister torsion of
(X,Em,n). Recall that on closed manifolds, such a relation was conjectured by Ray and
Singer [RS71] and subsequently established independently by Cheeger [Che79] and the first
author [Mül78] when the flat connection is unitary. This was extended to unimodular flat
connections by the first author in [Mül93], while the general case was treated by Bismut and
Zhang [BZ92].
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For non-compact manifolds, some relation between analytic torsion and Reidemeister tor-
sion has been obtained on manifolds with cylindrical ends by Hassell [Has98] using the
surgery pseudodifferential calculus of Mazzeo and Melrose [MM95, HMM95]. Developping
instead a surgery pseudodifferential calculus adapted to fibered cusp ends, a corresponding
result was obtained in [ARS21] when the Riemannian manifold has fibered cusp ends with
a sharper result in [ARS18] when there are only cusp ends, that is, fibered cusp ends whose
bases are points. Following [Has98], the strategy of [ARS21,ARS18] consists in considering
the double

M = X
⋃
∂X

X

of X obtained by gluing two copies of X along their boundaries and to consider a family of
smooth metrics gε on M degenerating to the fibered cusp metric of interest on each copy of
X in M as ε↘ 0. Through a uniform construction of the resolvent and of the heat kernel as
ε↘ 0, it was then possible to describe the asymptotic behavior of analytic torsion on M as
ε↘ 0 and identify one of the limiting terms as analytic torsion on each copy of X in M . On
the other hand, through the formula of Milnor [Mil66] for Reidemeister torsions appearing
in a short exact sequence of complexes, one can relate the Reidemeister torsion of M with
the one of X via a suitable Mayer-Vietoris long exact sequence in cohomology. Combining
with the result of [Mül93] on M , one can then obtain a relation between analytic torsion
and Reidemeister torsion.

In general, the limiting behavior of analytic torsion as ε ↘ 0 involves many terms, some
of which possibly not very explicit. However, assuming that the base of each fibered cusp
ends is even dimensional with the vector bundle being acyclic in each fiber, many of these
terms vanish, yielding the simple formula of [ARS21, Theorem 1.3]. In the cusp case, it was
possible in [ARS21] to replace the acyclicity condition by a much weaker Witt condition.
Moreover, in this latter case, instead of the Reidemeister torsion of X, what appears in
the formula is the intersection R-torsion of Dar [Dar87] associated to the stratified space
obtained from X by collapsing each of its boundary component onto a point.

In both [ARS21] and [ARS18], one important restriction is that the bundle metric h
of the flat vector bundle is required to be smooth on the compactification X, excluding
in particular the natural bundle metric of Matsushima et Murakami [MM63] on locally
homogeneous spaces. This is the starting point of [MR20], where it was shown that the
strategy of [ARS21, ARS18], suitably adapted, but still using the same analytical tools,
works to obtain a relation between analytic torsion and Reidemeister torsion on finite volume
hyperbolic manifolds when the flat vector bundle comes from representation theory and is
equipped with the bundle metric of [MM63].

The present paper expand further in this direction by obtaining the following result for
the Riemannian manifold with fibered cusp ends (X, g) described above.

Theorem 1.1. Let F be a number field such that r2 is odd (i.e. dimX is odd) and r1+r2 > 2.
If r1 = 0 suppose also that n1 = · · · = nr2 = 0 and n 6= 0. In this case,

T (X,Em,n, g, h) = τ(X,Em,n, µX),

where τ(X,Em,n, µX) is the Reidemeister torsion of (X,Em,n) associated to µX , an explicit
choice of basis of H∗(X;Em,n) described in (5.2) below.

Remark 1.2. When r1 > 0, notice that our result applies to the trivial line bundle E0,0.
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Compared to [ARS21], notice that we no longer require that dimSη be even, but only that
dimSη > 1. This improvement is relying on the fact that the metric g is exactly given by
the model (1.9) in each fibered cusp end and that (1.8) is locally trivial as a Riemannian
submersion. The case where r1 = 0 and r2 = 1, so in particular with dimSη = 0, is not
covered by Theorem 1.1, but there is a corresponding result in this case, namely [MR20,
Theorem 7.1], this time however with an explicit defect term depending on Em,n. On the
other hand, if r1 = r2 = 1, that is, when dimSη = 1, there seems to be a defect term as well,
but hard to determine or estimate with the current techniques.

Our next goal is to apply this result to study the growth of torsion in the cohomology of
the arithmetic groups Γ as described above. To this end, let

(1.11) % : G→ GL(V )

be a Q-rational representation of G on a finite Q-vector space V . Since % is a Q-rational
representation of G on V , there exists a lattice Λ ⊂ V , i.e., V = Λ⊗Z Q, which is invariant
under Γ. Let %∞ be the representation of G∞ on VC = V ⊗Q C obtained by restriction

of the representation of G(C) to G∞. Let E → Γ\X̃ be the flat vector bundle defined by
%∞|Γ. In analogy with the compact case, we call Λ a L2-acyclic Γ-module if E has trivial

L2-cohomology, namely H∗(2)(Γ\X̃;E) = 0. If in fact H∗(Γ\X̃;E) = 0, we say that Λ is an
acyclic Γ-module.

Now, if n ⊂ OF is an ideal, we can take Γ to be the principal congruence subgroup of
SL(2,OF ) of level n defined by

(1.12) Γ(n) :=

{(
a b
c d

)
∈ SL(2,OF ) | a− 1, d− 1, b, c ∈ n

}
.

This can be seen as a subgroup of G∞ via the embedding (1.6). Let {ni}i∈N be a sequence
of ideals in OF satisfying

(1.13) ni ⊂ n1, i ∈ N, and N(ni)→∞ as i→∞.

The associated sequence of principal congruence subgroups Γ(ni) ⊂ SL(2,OF ), i ∈ N, satis-
fies

Γ(ni) ⊂ Γ(n1), i ∈ N, and [Γ(n1) : Γ(ni)]→∞ as i→∞.

Let Xi := Γ(ni)\X̃. Assuming that Γ(n1) is torsion free will ensure that Xi is a smooth
manifold for each i. Let

Li = Γ(ni)\(X̃ × Λ)

be the local system of free Z-modules on Xi associated to Λ. Let Ei → Xi be the flat vector
bundle, which is defined by %∞|Γ(ni).

Combining Theorem 1.1 with [MM23] allows us to conclude the following result about the
size of H∗(Xi;Li)tor; see Theorems 7.3 and 7.8 below for further details.

Theorem 1.3. Let F be a number field with r2 = 1 and r1 > 1. Let % be a Q-rational
representation of G on V . Let Λ ⊂ V be an arithmetic Γ(n1)-module and let Li be the local
system over Xi, associated to Λ. Suppose that %∞ decomposes into a sum of irreducible
representations τj such that τj � τj ◦ ϑ, where ϑ is the is the standard Cartan involution of
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G∞ with respect to K∞. If Λ is an acyclic Γ(ni)-module for each i, then for the sequence of
principal congruence subgroups {Γ(ni)}i∈N we have

lim inf
i→∞

∑
q+r1 even

log |Hq(X i;Li)|
[Γ(n1) : Γ(ni)]

≥ 2(−1)r1+1t
(2)

X̃
(%∞) vol(X1) > 0,

where t
(2)

X̃
(%∞) is the L2-torsion associated to X̃ and %∞. If we drop the assumption that Λ is

acyclic, but assume that the natural isomorphism V ∗ ∼= V induces an isomorphism Λ∗ ∼= Λ,
then

lim inf
i→∞

∑
q+r1 even

log |Hq(X i;Li)tor|
[Γ(n1) : Γ(ni)]

≥ (−1)r1+1t
(2)

X̃
(%∞) vol(X1) > 0.

Remark 1.4. As explained in Proposition 6.1, the approach of Bergeron and Venkatesh
[BV13, 8.1] yields many examples of acyclic Γ(ni)-modules to which Theorem 1.3 applies.

Remark 1.5. If Λ is L2-acyclic but not self-dual, we can apply Theorem 1.3 to Λ ⊕ Λ∗ ⊂
V ⊕ V ∗ to obtain exponential growth of torsion in cohomology.

Remark 1.6. The condition r2 = 1 is important in the theorem, since when r2 > 1, the

fundamental rank of G∞ is not equal to 1, so t
(2)

X̃
(%) = 0 by [BV13, Proposition 5.2].

Remark 1.7. The case r2 = 1 with r1 = 0 is not covered by this result, but in this case the
exponential growth of torsion was obtained in [Pfa14], see also [MR21, Corollary 1.6].

The paper is organized as follows. In § 2, we give a detailed geometric description of the
metric g and the bundle metric h in the fibered cusp ends. This is used in § 3 to study
the Hodge-deRham operator and its asymptotic behavior under degeneration to fibered cusp
metrics, so that in § 4, we can obtain the corresponding asymptotic behavior of analytic
torsion. This is combined in § 5 with the fine understanding of the asymptotic behavior
of small eigenvalues of the Hodge-deRham operators under a cusp degeneration to prove
Theorem 1.1. In § 6, we explain how to construct acyclic Γ-modules. This provides examples
in § 7 to which we can apply our result to deduce Theorem 1.3 about the exponential growth
of torsion in cohomology.

Acknowledgements. The second author acknowledges support from NSERC.

2. Geometry of the fibered cusp ends

Recall from the introduction that the fibered cusp ends are identified with Γ \ P1(F ) and
PΓ ⊂ P1(F ) is a fixed subset of representatives that include [1 : 0]. Let us first describe
the cusp end corresponding to [1 : 0] ∈ PΓ. Thus, let B ⊂ SL(2) be the standard Borel
subgroup. Set

B∞ = B(F ⊗R C) = B(R)r1 ×B(C)r2

with

B(R) =

{(
λ x
0 λ−1

)
| λ ∈ R∗, x ∈ R

}
and

B(C) =

{(
µ z
0 µ−1

)
| µ ∈ C∗, z ∈ C

}
.
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Let ν : B∞ → (R+)∗ be defined by

(2.1) ν(b) =

(
r1∏
i=1

|λi|

)(
r2∏
j=1

|µj|2
)

for

b =

((
λ1 x1

0 λ−1
1

)
, . . . ,

(
λr1 xr1
0 λ−1

r1

)
,

(
µ1 z1

0 µ−1
1

)
, . . . ,

(
µr2 zr2
0 µ−1

r2

))
∈ B∞.

If
B∞(1) = {b ∈ B∞ | ν(b) = 1} ,

then
B∞(1) ∩K = B∞ ∩K, B∞(1) ∩ Γ = B∞ ∩ Γ,

and
Y := B∞ ∩ Γ \B∞(1)/B∞ ∩K

is the cross-section of the cusp end associated to [1 : 0] ∈ PΓ. In fact, by definition,

B∞ ∩ Γ ⊂ B∞ ∩ SL(2,OF ) =

{
ι

((
λ x1

0 λ−1

))
| λ, λ−1, x1 ∈ OF

}
,

so λ ∈ O∗F . If NF/Q : F → Q is the norm defined by

NF/Q(k) =

(
r1∏
i=1

σi(k)

)(
r2∏
j=1

|τj(k)|2
)
, k ∈ F,

then since λ is a unit, one has that

NF/Q(λ) = ±1,

so that

ν ◦ ι
((

λ x1

0 λ−1

))
= |NR/Q(λ)| = 1,

confirming that B∞ ∩ Γ = B∞(1) ∩ Γ.
The other cusp ends admit a similar description. First, if Γ = SL(2,OF ), the cusp ends

are identified with the ideal classes c1, . . . , ch of F . If a is a representative in the ideal class
cν , pick a, b ∈ OF such that a is the ideal in OF generated by a and b. Without loss of
generality, we can assume that a 6= 0. Then the cusp end associated to cν corresponds to
the point

η := [a : b] ∈ P1(F ).

Since the element (
a 0
b a−1

)
∈ SL(2, F )

sends [1 : 0] onto [a : b], the parabolic subgroup Pη associated to η is given by

Pη =

(
a 0
b a−1

)−1

P0

(
a 0
b a−1

)
,

where

P0 = B(F ) =

{(
λ z
0 λ−1

)
| λ ∈ F ∗, z ∈ F

}
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is the parabolic subgroup of [1 : 0] ∈ P(F ). In particular, a short computation shows that(
a 0
b a−1

)
Γ ∩ Pη

(
a−1 0
−b a

)
=

{(
λ w
0 λ−1

)
| λ ∈ O∗F , w ∈ a−2

}
,

where
a−2 =

{
w ∈ F | uw ∈ OF ∀u ∈ a2

}
.

Thus, the cross-section of the cusp end associated to η ∈ P1(F ) is

(2.2) Yη := Γa \B∞(1)/B∞ ∩K
with

Γa :=

{
ι

(((
λ w
0 λ−1

)))
| λ ∈ O∗F , w ∈ a−2

}
⊂ B∞(1).

More generally, if Γ is a subgroup of SL(2,OF ), the cusp ends are of the form

(2.3) Yη = Γη \B∞(1)/B∞ ∩K
with Γη a finite index subgroup of Γa for some ideal a representing an ideal class of F .

Denote the unipotent radical of B by N . Then T = B/N is a split torus of dimension
r1 + r2 − 1. Set

T∞ := T (F ⊗Q R) = T (R)r1 × T (C)r2

with

T (R) :=

{(
λ 0
0 λ−1

)
| λ ∈ R∗

}
and T (C) :=

{(
µ 0
0 µ−1

)
| µ ∈ C∗

}
.

Let KT (respectively Γη,T ) be the image of K ∩ B∞ (respectively Γη) under the projection
p∞ : B∞ → T∞. Then

(2.4) KT = (T (R) ∩ SO(2))r1 × (T (C) ∩ SU(2))r2

with

T (R) ∩ SO(2) = {± Id} and T (C) ∩ SU(2) =

{(
eiθ 0
0 e−iθ

)
| θ ∈ R

}
,

while

Γη,T ⊂
{
ι

((
u 0
0 u−1

))
| u ∈ O∗F

}
.

In particular, (2.4) shows that

T∞/KT
∼= (((R+)∗)r1+r2 .

If we set
T∞(1) := {t ∈ T∞ | ν(t) = 1},

this means T∞(1)/KT is identified with the kernel of the group homomorphism induced by
ν,

ν : (((R+)∗)r1+r2 → (R+)∗

(λ1, . . . , λr1 , µ1, . . . , µr2) 7→ (
∏r1

i=1 λi)
(∏r2

j=1 µ
2
j

)
,

namely
T∞(1)/KT

∼= (((R+)∗)r1+r2−1.

By the Dirichlet’s Unit Theorem (see for instance [Mar18, Theorem 38]),

Γη,T \ T∞(1)/KT
∼= Tr1+r2−1.
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is a real torus of dimension r1 + r2 − 1. The projection map p∞ : B∞ → T∞ induces a
projection

(2.5) φη : Yη → Γη,T \ T∞(1)/KT
∼= Tr1+r2−1.

This map is a locally trivial fibration with fiber

Γη ∩N∞ \N∞ ∼= Tr1+2r2 = TdF ,

where

N∞ = N(F ⊗R Q) = N(R)r1 ×N(C)r2

with

N(R) =

{(
1 x
0 1

)
| x ∈ R

}
and N(C) =

{(
1 z
0 1

)
| z ∈ C

}
.

To describe the metric g in (1.7) in the cusp end corresponding to η ∈ PΓ, let us make
the following change of variables with respect to the coordinates used in (1.7),

(2.6) log r =
1

dF

(
r1∑
i=1

log yi + 2

r2∑
j=1

log tj

)
, ui = log yi − log y1, vj = log tj − log y1,

if the number field F admits at least one real embedding. If the number field F admits no
real embedding, that is, if r1 = 0, then we define log r as before and set instead

vj = log tj − log t1 ∀j ∈ {2, . . . , r2}.
Using the conventions that u1 = 0 if r1 > 0 and v1 = 0 if r1 = 0, we set

µ :=
1

dF

(
r1∑
i=1

ui + 2

r2∑
j=1

vj

)
,

so that

log yi = log r + ui − µ and log tj = log r + vj − µ.
Setting ũi = ui − µ and ṽj = vj − µ, the metric g̃ becomes

g̃ = dF
dr2

r2
+ dFgSη +

1

r2

(
r1∑
i=1

e−2ũidx2
i + 2

r2∑
j=1

e−2ṽj |dzj|2
)

when r1 > 0, where gSη is a flat metric on the base Sη ∼= Tr1+r2−1 of the fibered bundle (2.5)
and the cusp is when r → ∞. Thus, the metric gSη can be seen as a Euclidean metric in
u2, . . . , ur1 , v1, . . . , vr2 (just in v2, . . . , vr2 if r1 = 0), though not necessarily the canonical one.

To ease the comparison with [MR20], we will divide this metric by dF and let

(2.7) gfc =
dr2

r2
+ gSη +

1

dF r2

(
r1∑
i=1

e−2ũidx2
i + 2

r2∑
j=1

e−2ṽj |dzj|2
)

be the fibered cusp metric we will consider on X. For this metric, a local basis of orthonormal
forms is given by

dr

r
, ν1, . . . , νr1+r2−1,

e−ũ1dx1√
dF r

, . . . ,
e−ũr1dxr1√

dF r
,
e−ṽ1dz1√
dF r

,
e−ṽ1dz1√
dF r

, . . . ,
e−ṽr2dzr2√

dF r
,
e−ṽr2dzr2√

dF r
,

where ν1, . . . , νr1+r2−1 is a basis of orthonormal parallel forms for gSη .
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On the other hand, in terms of these coordinates and the bundle metric of [MM63], a local
basis of orthonormal sections of the flat vector bundle Em,n when |m| := m1 + · · ·+mr1 = 1
with mi = 1 for some fixed i and n = 0 is given by

ei,1 =

(
λ t
0 λ−1

)(
1
0

)
= r

1
2 e

ũi
2

(
1
0

)
,

ei,2 =

(
λ t
0 λ−1

)(
0
1

)
= r−

1
2 e−

ũi
2

(
xi
1

)
,

λ =
√
yi = r

1
2 e

ũi
2 , t =

xi√
yi
.

If instead m = 0 and |n| := n1 + n1 + · · ·+ nr2 + nr2 = 1 with nj = 1 for some fixed j, then
a local basis of sections of Em,n is given by

fj,1 =

(
λ ζ
0 λ−1

)(
1
0

)
= r

1
2 e

ṽj
2

(
1
0

)
,

fj,2 =

(
λ ζ
0 λ−1

)(
0
1

)
= r−

1
2 e−

ṽj
2

(
zj
1

)
,

λ =
√
tj = r

1
2 e

ṽj
2 , ζ =

zj√
tj
.

Finally, if m = 0 and |n| := n1 + n1 + · · ·+ nr2 + nr2 = 1 with nj = 1 for some fixed j, then
a local basis of sections of Em,n is given by

f j,1 =

(
λ ζ
0 λ−1

)(
1
0

)
= r

1
2 e

ṽj
2

(
1
0

)
,

f j,2 =

(
λ ζ
0 λ−1

)(
0
1

)
= r−

1
2 e−

ṽj
2

(
zj
1

)
,

λ =
√
tj = r

1
2 e

ṽj
2 , ζ =

zj√
tj
.

Notice in particular that f j,1 and f j,2 are precisely the complex conjugates of fj,1 and fj,2
respectively. Hence, more generally,

wk,l :=

(
r1⊗
i=1

(ekii,1 ⊗ e
mi−ki
i,2 )

)
⊗

(
r2⊗
j=1

(f
lj
j,1 ⊗ f

lj
j,1 ⊗ f

nj−lj
j,2 ⊗ fnj−ljj,2 )

)
,

for k ≤ m ∈ Nr10 and l ≤ n ∈ N2r2
0 , form a local basis of orthonormal sections of Em,n. One

computes that

dei,1 =
1

2

(
dr

r
+ dũi

)
ei,1, dei,2 =

(
e−ũi

dxi
r

)
ei,1 −

1

2

(
dr

r
+ dũi

)
ei,2

and

dfj,1 =
1

2

(
dr

r
+ dṽj

)
fj,1, dfj,2 =

(
e−ṽj

dzj
r

)
fj,1 −

1

2

(
dr

r
+ dṽj

)
fj,2,

so that

(2.8)

dwk,l =

[
(2|k|+ 2|l| − |m| − |n|)

2

dr

r
+

r1∑
i=1

2ki −mi

2
dũi +

r2∑
j=1

2(lj + lj)− nj − nj
2

dṽj

]
wk,l

+

r1∑
i=1

(mi − ki)
(
e−ũi

dxi
r

)
wk+1i,l

+

r2∑
j=1

(
(nj − lj)

(
e−ṽj

dzj
r

)
wk,l+1j + (nj − lj)

(
e−ṽj

dzj
r

)
wk,l+1j

)
,
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where 1i is the r1-tuple with ith entry equal to one and the other entries equal to zero, 1j is
the 2r2-tuple with (2j − 1)th entry equal to 1 and other entries equal to zero and 1j is the
2r2-tuple with (2j)th entry equal to 1 and other entries equal to zero.

Since the representation ρm,n is self-dual, notice that the dual flat vector bundle E∗m,n is
naturally isomorphic to Em,n as a flat vector bundle, as well as a hermitian vector bundle.
This can be seen directly in terms of the local sections wi,j. The orthonormal basis of sections
dual to {ei,1, ei,2} is given by

e1
i = r−

1
2 e−

ũi
2

(
1 −xi

)
and e2

i = r
1
2 e

ũi
2

(
0 1

)
,

while the local orthonormal basis of sections dual to {fj,1, fj,2} is given by

f 1
j = r−

1
2 e−

ṽj
2

(
1 −zj

)
and f 2

j = r
1
2 e

ṽj
2

(
0 1

)
with their complex conjugates f

1

j and f
2

j giving the local orthonormal basis of sections dual

to {f j,1, f j,2}. For these sections, one computes that

de1
i = −1

2

(
dr

r
+ dũi

)
e1
i −

(
e−ũidxi

r

)
e2
i ,

de2
i =

1

2

(
dr

r
+ dũi

)
e2
i ,

df 1
j = −1

2

(
dr

r
+ dṽj

)
f 1
j −

(
e−ṽjdzj

r

)
f 2
j ,

df 2
j =

1

2

(
dr

r
+ dṽj

)
f 2
j ,

so that the natural isomorphisms of flat vector bundles E1i,0 → E∗1i,0, E0,1j → (E0,1j)
∗ and

E0,1j
→ (E0,1j

)∗are induced by

ei,1 7→ e2
i , ei,2 7→ −e1

i , fj,1 7→ f 2
j , fj,2 7→ −f 1

j and f j,1 7→ f
2

j , f j,2 7→ −f
1

j .

3. Cusp degeneration and the Hodge-deRham operator

As in [MR20], X can be compactified to a manifold with boundary X by adding a copy
of Yη at infinity for each cusp end η ∈ PΓ,

X = X ∪ (tη∈PΓ
Yη) , ∂X = tη∈PΓ

Yη.

On X, we can choose a boundary defining function x such that for each η ∈ PΓ, x = 1
r

in
the cusp end (2.7) corresponding to η. If

M = X ∪∂X X
is the double of X along ∂X, then on M , one can consider a family of metric gε parametrized
by ε > 0 which in a tubular neighborhood Yη × (−δ, δ)x of Yη in M takes the form

(3.1) gfc,ε =
dx2

ρ2
+ gSη +

ρ2

dF

(
r1∑
i=1

e−2ũidx2
i + 2

r2∑
j=1

e−2ṽj |dzj|2
)
, ρ :=

√
x2 + ε2

and which on M \ ∂X = X t X converges to gfc on each copy of X as ε ↘ 0. There is a

corresponding flat vector bundle Êm,n corresponding to Em,n on each copy of X. We can
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equip Êm,n with a bundle metric hε depending on ε > 0 and such that hε → h on each copy
of X as ε↘ 0. To describe this metric near Yη, it suffices to give a local basis of orthonormal
sections, which we take to be

ŵk,l :=

(
r1⊗
i=1

(êkii,1 ⊗ ê
mi−ki
i,2 )

)
⊗

(
r2⊗
j=1

(f̂
lj
j,1 ⊗ f̂

lj

j,1 ⊗ f̂
nj−lj
j,2 ⊗ f̂

nj−lj
j,2 )

)
for k ≤ m ∈ Nr10 and l ≤ n ∈ N2r2

0 with

êi,1 := ρ−
1
2 e

ũi
2

(
1
0

)
, êi,2 := ρ

1
2 e−

ũi
2

(
xi
1

)
, f̂j,1 := ρ−

1
2 e

ṽj
2

(
1
0

)
, f̂j,2 := ρ

1
2 e−

ṽj
2

(
zj
1

)
and f̂ j,1, f̂ j,2 the complex conjugates of f̂j,1 and f̂j,2. In terms of these sections, notice that
the following analog of (2.8) holds,

(3.2)

dŵk,l =

[
(|m|+ |n| − 2|k| − 2|l|)

2

x

ρ

dx

ρ
+

r1∑
i=1

2ki −mi

2
dũi +

r2∑
j=1

2(lj + lj)− nj − nj
2

dṽj

]
ŵk,l

+

r1∑
i=1

(mi − ki)
(
e−ũiρdxi

)
ŵk+1i,l

r2∑
j=1

+
(

(nj − lj)
(
e−ṽjρdzj

)
ŵk,l+1j + (nj − lj)

(
e−ṽjρdzj

)
ŵk,l+1j

)
.

Let ðfc,ε be the Hodge-deRham operator associated to (M, Êm,n, gfc,ε, hε). In a tubular
neighborhood Yη × (−δ, δ)x of Yη in M , we can describe ðfc,ε in terms of the decomposition
of forms

(3.3) ω = ω0 +
dx

ρ
∧ ω1

with ω0 and ω1 forms not involving dx
ρ

. To do so, we need to introduce a weight operator W

defined on forms by the number operator in the fibers of the fiber bundle Yη → Sη,

(3.4)
W

(
dx

ρ

)
= W (νq) = 0, q ∈ {1, . . . , r1 + r2 − 1},

W (ω) = ω for ω ∈
{
e−ũiρdxi, e

−ṽjρdzj, e
−ṽjρdzj

}
, i ≤ r1, j ≤ r2,

and on sections of Êm,n by

(3.5) W (ŵk,l) =

(
|m|+ |n|

2
− |k| − |l|

)
ŵk,l.

In terms of this weight and the decomposition (3.3), we have that

(3.6) ðfc,ε =

(
ρ−1ðYη/Sη + ðSη x

ρ
(W − dF )− ρ ∂

∂x

ρ ∂
∂x

+ x
ρ
W −ρ−1ðYη/Sη − ðSη

)
For some vertical and horizontal operators ðYη/Sη and ðSη with respect to the fiber bundle
φη : Yη → Sη of (2.5). Compared to [ARS21], notice that there is no curvature term, which is
due to the fact that the fiber bundle φη : Yη → Sη is locally trivial for the natural connection
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induced by the metric, so that it has trivial curvature and second fundamental form in the
sense of [BGV04].

Let Dv,η be the vertical family of [ARS21] associated to the family of Hodge-deRham
operators ðfc,ε at Yη, that is,

Dv,η =

(
ðYη/Sη 0

0 −ðYη/Sη

)
.

This is a family of operators acting fiberwise on the fibers of the fiber bundle

φη : Yη → Sη.

As in [MR20], in each fiber, it corresponds to the Hodge-deRham operator with respect to
the induced fiberwise metric and trivial flat vector bundle of rank rankEm,n, that is the
trivial vector bundle Em,n with flat structure obtained by declaring the sections ŵi,j to be
flat. Its kernel is naturally a vector bundle over Sη with local sections given by

Λ∗〈dx
ρ
, νq, e

−ũiρdxi, e
−ṽjρdzj, e

−ṽjρdzj | q ≤ r1+r2−1, i ≤ r1, j ≤ r2〉⊗〈ŵk,l | k ≤ m, l ≤ n〉.

The corresponding horizontal operator Db,η of [ARS21] is obtained by letting

(3.7) ρ
dF
2 ðfc,ερ

− dF
2 =

(
ρ−1ðYη/Sη + ðSη x

ρ

(
W − dF

2

)
− ρ ∂

∂x

ρ ∂
∂x

+ x
ρ

(
W − dF

2

)
−ρ−1ðYη/Sη − ðSη

)
acts on such sections extended smoothly off Bsb and then restricting back to Bsb. A com-
putation shows that in terms of the decomposition (3.3),

(3.8) Db,η =

(
ðSη −D(dF

2
−W )

D(W − dF
2

) −ðSη

)
,

where

D(a) = 〈X〉−a〈X〉 ∂
∂X
〈X〉a = 〈X〉 ∂

∂X
+
aX

〈X〉
, a ∈ R, X =

x

ε
, 〈X〉 =

√
1 +X2 ,

and ðSη is the Hodge-deRham operator on Sη (with metric induced by gfc) acting on the flat
vector bundle generated by the space of sections

(3.9) C∗ = Λ∗〈e−ũiρdxi, e−ṽjρdzj, e−ṽjρdzj | i ≤ r1, j ≤ r2〉 ⊗ 〈ŵk,l | k ≤ m, l ≤ n〉.

Let ðC be the natural (Kostant type) Hodge-deRham operator associated with the finite
dimensional complex (3.9) with differential dC defined by

(3.10) dCŵk,l =

r1∑
i=1

(mi − ki)
(
e−ũiρdxi

)
ŵk+1i,l

+

r2∑
j=1

(
(nj − lj)

(
e−ṽjρdzj

)
ŵk,l+1j + (nj − lj)

(
e−ṽjρdzj

)
ŵk,l+1j

)
with natural metric induced by gfc,ε and hε. By Hodge theory, the kernel of ðC corresponds
to the cohomology of the complex C∗. It admits in fact the following explicit description.



TORSION IN THE COHOMOLOGY OF ARITHMETIC GROUPS 15

Lemma 3.1. The kernel of ðC is given by

(3.11) H∗(C) =

(
r1∧
i=1

〈êmii,1 , ê
mi
i,2 e
−ũiρdxi〉

)
∧(

r2∧
j=1

〈f̂njj,1 ⊗ f̂
nj

j,1, f̂
nj
j,1 ⊗ f̂

nj

j,2e
−ṽjρdzj, f̂

nj
j,2 ⊗ f̂

nj

j,1e
−ṽjρdzj, f̂

nj
j,2 ⊗ f̂

nj

j,2e
−2ṽjρ2dzj ∧ dzj〉

)
.

Proof. Notice first that the complex C∗ admits the decomposition into subcomplexes

(3.12) C∗ =

(
r1∧
i=1

C∗i

)
∧

(
r2∧
j=1

D∗j

)
∧

(
r2∧
j=1

D∗j

)
,

where

C∗i = 〈êkii,1 ⊗ ê
mi−ki
i,2 , êkii,1 ⊗ ê

mi−ki
i,2 e−ũiρdxi | ki ∈ {0, 1, . . . ,mi}〉

is the complex with differential given by

dCi ê
ki
i,1 ⊗ ê

mi−ki
i,2 = (mi − ki)eki+1

i,1 ⊗ emi−ki−1
i,2 e−ũiρdxi,

dCi ê
ki
i,1 ⊗ ê

mi−ki
i,2 e−ũiρdxi = 0,

while

D∗j = 〈f̂ ljj,1 ⊗ f̂
nj−lj
j,2 | lj ∈ {0, 1, . . . , nj}〉 ⊗ 〈1, dzj〉

is the complex with differential given by

dDj(f̂
lj
j,1 ⊗ f̂

nj−lj
j,2 ∧ ω) = (nj − lj)f̂

lj+1
j,1 ⊗ f̂nj−lj−1

j,2 e−ṽjρdzj ∧ ω

for ω ∈ 〈1, dzj〉 and D∗j is its complex conjugate. There are corresponding Hodge-deRham
operators ðCi and ðDj∧Dj . A direct computation shows that their kernel are respectively
given by

H∗(Ci) = 〈êmii,1 , ê
mi
i,2 e
−ũiρdxi〉,

H∗(Dj ∧ Dj) = 〈f̂njj,1, f̂
nj
j,2e
−ṽjρdzj〉 ∧ 〈f̂

nj

j,1, f̂
nj

j,2e
−ṽjρdzj〉.

Since

ðC =

r1∑
i=1

ðCi +

r2∑
j=1

ðDj∧Dj

and the various Hodge-deRham operators in this sum anti-commute, the result follows. In
terms of cohomology, this is just the Künneth formula for the decomposition (3.12). �

The differential dSη of the complex

(3.13) Ω∗(Sη; ker ðYη/Sη)

is then of the form

(3.14) dSη = d̃Sη + dC
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with d̃Sη also a differential, namely

(3.15)

d̃Sηŵk,l =

[
r1∑
i=1

2ki −mi

2
dũi +

r2∑
j=1

2(lj + lj)− nj − nj
2

dṽj

]
ŵk,l,

d̃Sηe
−ũiρdxi = −dũi ∧ (e−ũiρdx), i ≤ r1,

d̃Sηe
−ṽjρdzj = −dṽj ∧ (e−ṽjρdzj), j ≤ r2,

d̃Sηe
−ṽjρdzj = −dṽj ∧ (e−ṽjρdzj), j ≤ r2,

and
d̃Sη(ω ∧ ν) = (dω) ∧ ν + (−1)qω ∧ d̃Sην for ω ∈ Ωq(Sη), ν ∈ C∗.

Using the natural metric induced by gfc,ε and hε, the differential d̃Sη has a formal adjoint

d∗Sη . In particular, there is a corresponding Hodge-deRham operator ð̃Sη and we see from

(3.14) that

ðSη = ð̃Sη + ðC.
Since, dSη = d̃Sη + dC is a differential, we see that the differentials d̃Sη and dC anti-commute.

Correspondingly, their formal adjoints d̃∗Sη and d∗C anti-commute. In fact, writing the formal

adjoints in terms of the corresponding Hodge star operators we see that ð̃Sη and ðC anti-
commutes. Hence, we see that

ð2
Sη = ð̃2

Sη + ð2
C.

This implies that an element in the kernel of ðSη will be in the kernels of ð̃Sη and ðC and
vice-versa. Combined with Lemma 3.1, this can be used to obtain the following description
of ker ðSη .

Lemma 3.2. If r1 ≥ 1, the kernel of ðSη is trivial unless m1 = · · · = mr1 and nj ∈
{2m1− nj, 2m1 + 2 + nj, nj − 2m1− 2} for all j ∈ {1, . . . , r2}. In this latter case, the kernel
is given by

(3.16) 〈wm,l

(∧
j∈J

e−ṽjρdzj

)
∧

∧
j∈J

e−ṽjρdzj

 ,

w0,n−l

(
r1∧
i=1

e−ũiρdxi

)
∧

∧
j /∈J

e−ṽjρdzj

 ∧
∧
j /∈J

e−ṽjρdzj

〉 ∧ H∗(Sη),
where J = {j ∈ {1, . . . , r2} | nj = nj − 2m1− 2}, J = {j ∈ {1, . . . , r2} | nj = 2m1 + 2 + nj},

lj =

{
0, j ∈ J,
nj, j /∈ J, lj =

{
0, j ∈ J,
nj, j /∈ J,

and H∗(Sη), which can be identified with the cohomology ring of Sη ∼= Tr1+r2−1, is the
finite dimensional exterior algebra generated by dũ2, . . . , dũr1 , dṽ1, . . . , dṽr2.

Proof. First, in the special case where r1 = 1 and r2 = 0, notice that Sη is a point and
the result is a direct consequence of Lemma 3.1. Otherwise, since we assume r1 ≥ 1, we
must have dimSη ≥ 1 and by the discussion above, ker ðSη corresponds to the kernel of

ð̃Sη acting on Ω∗(Sη; ker ðC). In terms of the differential d̃Sη and the induced metric, we see
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from Lemma 3.1 that ker ðC splits orthogonally into a direct sum of flat line bundles on Sη.

It thus suffices to compute the kernel of ð̃Sη when acting on sections of each of these flat
line bundles. To describe the corresponding differentials, it is convenient to use, instead of
u2, . . . , ur1 , v1, . . . , vr2 , the local coordinates ũ2, . . . , ũr1 , ṽ1, . . . , ṽr2 on Sη. This is possible,
since as readily checked, the corresponding linear change of coordinates has non-vanishing
Jacobian. In terms of these coordinates, notice that

µ =
1

dF

(
r1∑
i=2

ui + 2

r2∑
j=1

vj

)
=

r1∑
i=2

ũi + 2

r2∑
j=1

ṽj,

so the differential d̃Sη is given by

d̃Sηŵk,l =

[
r1∑
i=2

2k̃i − m̃i

2
dũi +

r2∑
j=1

2(l̃j + l̃j)− ñj − ñj
2

dṽj

]
ŵk,l

with k̃i = ki − k1, m̃i = mi −m1, l̃j = lj − k1, l̃j = lj − k1, ñj = nj −m1 and ñj = nj −m1,
while

d̃Sη(e
−ũ1ρdx1) = dµ ∧ e−ũ1ρdx1 =

(
r1∑
i=2

dũi + 2

r2∑
j=1

dṽj

)
∧ e−ũ1ρdx1

and otherwise is described as in (3.15). Now, by Lemma 3.1, assuming that m ∈ Nr1 and
n ∈ N2r2 for the moment, the flat line bundles of the decomposition of kerðC over Sη are
spanned by sections of the form

σ = ŵk,l

( ∧
i,ki=0

e−ũiρdxi

)
∧

 ∧
j,lj=0

e−ṽiρdzj

 ∧
 ∧
j,lj=0

e−ṽiρdzj


for k and l such that ki ∈ {0,mi} for all i and lj ∈ {0, nj}, lj ∈ {0, nj} for all j. In particular,
we compute that

(3.17) d̃Sησ =

[
r1∑
i=2

(
2k̃i − m̃i

2
− δki0 + δk10

)
dũi

+

r2∑
j=1

(
2(l̃j + l̃j)− ñj − ñj

2
+ 2δk10 − δlj0 − δlj0

)
dṽj

]
∧ σ.

Using the Künneth formula in terms of the decomposition induced by the coordinates
ũ2, . . . , ũr1 , ṽ1, . . . , ṽr2 , we see that the cohomology is trivial unless dσ = 0, that is, unless
the line bundle is trivial as a flat vector bundle, in which case the cohomology is isomorphic
to H∗(Sη). A careful inspection of (3.17) then shows that the only way dσ = 0 is if

σ = wm,l

(∧
j∈J

e−ṽjρdzj

)
∧

∧
j∈J

e−ṽjρdzj


or

σ = w0,n−l

(
r1∧
i=1

e−ũiρdxi

)
∧

∧
j /∈J

e−ṽjρdzj

 ∧
∧
j /∈J

e−ṽjρdzj
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with m,n,l, J and J as in the statement of the lemma, yielding the result. When we allow
m ∈ Nr10 and n ∈ Nr20 , the formula (3.17) must be modified appropriately, but again the
same conclusion can be reached. �

When r1 = 0, the kernel of ðSη can be computed as follows.

Lemma 3.3. If r1 = 0, suppose that n1 = · · ·nr2 = 0 and assume without loss of generality
that n1 ≥ · · · ≥ nr2 ≥ 0. If n1 > 0, then the kernel is trivial unless nj ∈ {n1, n1 − 2} for all
j, in which case the kernel is given by

(3.18) 〈w0,n(e−ṽρdz)α, w0,0

(
r2∧
j=1

e−ṽjρdzj

)
∧ (e−ṽρdz)β〉 ∧ H∗(Sη),

where α, β ∈ {0, 1}r2 are such that

nj = n1 =⇒ αj = α1, βj = β1,

nj = n1 − 2 =⇒ αj = 0, α1 = 1, βj = 1, β1 = 0.

In particular, if nj = n1 − 2 for some j, then α and β are uniquely determined by these
conditions, while otherwise α, β ∈ {(0, . . . , 0), (1, . . . , 1)}. If instead n1 = · · · = nr2 = 0,
then the kernel is of the form

(3.19) 〈(ρdz)α ∧ (ρdz)β | αj + βj = α1 + β1 ∀j〉 ∧ H∗(Sη).

with

(3.20) (e−ṽρdz)β = (e−ṽ1ρdz1)β1 ∧ · · · ∧ (eṽr2ρdz)
βr2
r2

and similarly for (e−ṽρdz)α.

Proof. If r2 = 1, then Sη is a point and the result is a direct consequence of Lemma 3.1.
Otherwise, we can still follow the strategy of the proof of Lemma 3.2. We will only highlight
the changes needed. First, we can use the local coordinates ṽ2, . . . , ṽr2 on Sη instead of
v2, . . . , vr2 . In terms of these coordinates,

µ =
2

dF

r2∑
j=2

vj =

r2∑
j=2

ṽj

and the differential d̃Sη takes the form

d̃Sηŵ0,l =

[
r2∑
j=2

(
2l̃j − ñj

2

)
dṽj

]
ŵ0,l

with now l̃j = lj − l1 and ñj = nj − n1, while

d̃Sη(e
−ṽ1ρdz1) = dµ ∧ e−ṽ1ρdz1 =

(
r2∑
j=2

dṽj

)
∧ e−ṽ1ρdz1,

d̃Sη(e
−ṽ1ρdz1) = dµ ∧ e−ṽ1ρdz1 =

(
r2∑
j=2

dṽj

)
∧ e−ṽ1ρdz1,
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and otherwise is as in (3.15). Now, ker ðC still splits into flat line bundles. Assuming that
n ∈ Nr2 , it is spanned by sections of the form

σ = ŵ0,l

 ∧
j,lj=0

e−ṽjρdzj

 ∧ (e−ṽρdz)β

for l such that lj ∈ {0, nj} for all j and with dzβ as in (3.20). We compute in this case that

(3.21) d̃Sησ =

[
r2∑
j=2

(
2l̃j − ñj

2
+ δl10 − δlj0 + δβ11 − δβj1

)
dṽj

]
∧ σ.

Again, to have non-trivial kernel, we must have that d̃Sσ = 0. Looking at (3.21), we see that
the kernel must be of the claimed form (3.18). If more generally n ∈ Nr20 , formula (3.21)
must be suitably modified, but again the same conclusion can be reached, except in the case
where n1 = 0, that is, when n = (0, . . . , 0) and E0,n is a trivial flat line bundle, in which case
the kernel is instead described by (3.19). �

Remark 3.4. The assumption that n1 = · · · = nr2 = 0 in Lemma 3.3 can be removed, but
then the result has a more complicated description.

These results can be used to study the operator Db,η. To see this, we need the following
lemma.

Lemma 3.5. The operator ðSη commutes with the weight operator W .

Proof. From their definitions, the differential dC and d̃Sη clearly commute with the weight

operator W . Since W is self-adjoint, this means that d∗C and d̃∗Sη also commute with W .

Hence, so do ðC, ð̃Sη and ðSη = ðC + ð̃Sη .
�

Using Lemma 3.5, we see that the operator Db,η of (3.8) is such that

(3.22)

D2
b,η =

(
ð2
Sη
−D(dF

2
−W )D(W − dF

2
) 0

0 ð2
Sη
−D(W − dF

2
)D(dF

2
−W )

)
=

(
ð2
Sη

+D(W − dF
2

)∗D(W − dF
2

) 0

0 ð2
Sη

+D(dF
2
−W )∗D(dF

2
−W )

)
.

Hence, as in [MR20], Db,η can possibly be non-Fredholm or have a non-trivial L2-kernel only
if ðSη has a non-trivial kernel.

Proposition 3.6. The operators Db,η and D2
b,η are Fredholm as b-operators for the b-density

dX
〈X〉 for X ∈ R if r1 > 0 or if r1 = 0, n 6= 0 and n1 = · · · = n2 = 0. When r1 > 0 the

L2-kernel of Db,η (and D2
b,η) is trivial unless m1 = · · · = mr1 and

nj ∈ {2m1 − nj, 2m1 + 2 + nj, nj − 2m1 − 2}
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for all j ∈ {1, . . . , r2}, in which case it is given by

(3.23) 〈wm,l

(∧
j∈J

e−ṽjρdzj

)
∧

∧
j∈J

e−ṽjρdzj

 ∧ 〈X〉− dF2 − |m|−|n|2
−|l|+|J |+|J | dX

〈X〉
,

w0,n−l

(
r1∧
i=1

e−ũiρdxi

)
∧

∧
j /∈J

e−ṽjρdzj

∧
∧
j /∈J

e−ṽjρdzj

 〈X〉− dF2 − |m|+|n|2
+|l|+|J |+|J |〉∧H∗(Sη)

with J, J and l as in Lemma 3.2. If instead r1 = 0, but n1 = · · · = nr2 = 0, n1 ≥ 1 and we
assume without loss of generality that n1 ≥ · · · ≥ nr2, then the L2-kernel of Db,η is trivial
unless nj ∈ {n1, n1 − 2} for all j, in which case it is given by
(3.24)

〈w0,n(e−ṽρdz)α ∧ 〈X〉−
dF
2
− |n|

2
+|α| dX

〈X〉
, w0,0

(
r2∧
j=1

e−ṽjρdzj

)
∧ (e−ṽρdz)β〈X〉−

|n|
2
−|β|〉 ∧ H∗(Sη),

with α, β ∈ {0, 1}r2 such that

nj = n1 =⇒ αj = α1, βj = β1,

nj = n1 − 2 =⇒ αj = 0, α1 = 1, βj = 1, β1 = 0.

Proof. By [Mel93], it suffices to check that the indicial family of I(D2
b,η, λ) is invertible for

all λ ∈ R. As shown in [ARS18, (2.12)],

I(D(a), λ) = ±(a− iλ)

at X = ±∞, hence

I(D2
b,η, λ) =

(
ð2
Sη

+ (W − dF
2

)2 + λ2 0

0 ð2
Sη

+ (W − dF
2

)2 + λ2

)
at both ends. Clearly, this is invertible for λ 6= 0, while at λ = 0, it is invertible provided
W− dF

2
6= 0 when acting on kerðSη . By the explicit description of kerðSη given in Lemmas 3.2

and 3.3 and the definition of W in (3.4) and (3.5), this is indeed the case unless r1 = 0 and
n = 0. To describe the L2-kernel of Db,η and D2

b,η, notice from (3.22) that it corresponds to
the kernel of (

0 −D(dF
2
−W )

D(W − dF
2

) 0

)
acting on sections of the trivial vector bundle kerðSη ⊕ kerðSη over R. Since the L2-kernel
of D(a) is non-trivial and spanned by 〈X〉−a if and only if a > 0, the description of the
L2-kernel of Db,η and D2

b,η therefore follows from Lemmas 3.2 and 3.3 and the definition of
W .

�

When Db,η is Fredholm, we can apply the uniform construction of the resolvent of [ARS21,
Theorem 4.5] to ðfc,ε as ε↘ 0.

Theorem 3.7. Suppose that either r1 6= 0 or r1 = 0 with n1 = · · · = nr2 = 0 and n 6= 0.
Then the family of operators Dfc,ε has finitely many small eigenvalues, that is, there are
finitely many eigenvalues of Dfc,ε tending to 0 as ε↘ 0. Furthermore, the projection Πsmall
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on the eigenspace of small eigenvalues is a polyhomogeneous operator of order −∞ in the
surgery calculus of [MM95] and

(3.25) rank Πsmall = 2 dim ker2
L ðfc +

∑
η∈PΓ

dim kerL2
b
Db,η.

Proof. As already noticed, kerDv,η is a vector bundle over Sη, which ensures that Assump-
tion 1 of [ARS21, Theorem 4.5] holds, while Assumption 2 of this theorem holds thanks to
Proposition 3.6. Hence, the result follows from [ARS21, Theorem 4.5 and Corollary 5.2], cf.
the proof of [MR20, Theorem 3.5]. �

4. Cusp degeneration of analytic torsion

Let T (M, Êm,n, gfc,ε, hε) be the analytic torsion of (M, Êm,n, gfc,ε, hε). In this section, we

will study the limiting behavior of T (M ; Êm,n, gfc,ε, hε) as ε↘ 0. To do so, we need first to
give a better description of the small eigenvalues occurring in Theorem 3.7. First, on the
fibered cusp end (T,∞)r×Yη, we can compute L2-cohomology as follows. As in [MR20], we
can use polyhomogeneous forms, so the L2-cohomology can be computed using the complex

(4.1) L2A′phgΩq((T,∞)r × Yη;Em,n) =

{ν ∈ L2AphgΩq((T,∞)r × Yη;Em,n) | dν ∈ L2AphgΩq+1((T,∞)r × Yη;Em,n)},
where L2AphgΩq((T,∞)r × Yη;Em,n) is the space of smooth L2-forms admitting a polyho-
mogeneous expansion in x = 1

r
in the sense of [Mel93]. The differential of this complex

decomposes as
d = dr + dYη

with dr the differential in the (T,∞)r factor and dYη the differential in the Yη factor. Using
that the natural connection of the fibered bundle φη : Yη → Sη is flat, we see that the
differential dYη further decomposes as

dYη = dC + d̃Sη + dYη/Sη

where dC is the differential of the complex (3.9) with ρ = 1, dYη/Sη is corresponding to the
vertical differential of the smooth coefficients in front of the basis generating the complex
C and dSη is the remaining horizontal differential. Using this decomposition, we can in
particular induce a double complex out of (4.1) with differentials dA := dYη/Sη and dB :=

dr + d̃Sη + dC with bi-degree given by (W,Nr + NSη + NYη/Sη −W ), where W is the weight
operator defined earlier on and Nr, NSη and NYη/Sη are the number operators in the factors
(T,∞)r the base an the fibers of the fiber bundle Yη → Sη. The first page of the corresponding
spectral sequence is

E1 = L2A′phgΩ∗((T,∞)r × Sη; kerDv,η)

with d1 = dB = dr + d̃Sη +dC. In fact, this spectral sequence degenerates at the second page,
which is just the cohomology of (E1, d1). We can again decompose this differential by

d1 = d1,A + d1,B with d1,A = d̃Sη + dC and d1,B = dr,

inducing on (E1, d1) a structure of double complex with bi-degree (NSη + NYη/Sη , Nr). The
corresponding spectral sequence has first page

E ′1 = L2A′phgΩ((T,∞)r, kerðSη)
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with differential d′1 = d1,B = dr, where a basis for kerðSη is given by Lemmas 3.2 and 3.3.
This spectral sequence degenerates at the second page E ′′1 so that the L2-cohomology of the
fibered cusp end is identified with E ′′1 , that is, with the cohomology of the complex

L2A′phgΩ∗((T,∞)r; ker ðSη)

with differential d′1 = dr. By [HHM04, p.501], we deduce the following.

Proposition 4.1. When r1 > 0, the L2-cohomology of (T,∞)r × Y ×Em,n) is trivial unless
m1 = · · · = mr1 and nj ∈ {2m1 − nj, 2m1 + 2 + nj, nj − 2m1 − 2} for all j ∈ {1, . . . , r2}, in
which case it is given by

H∗(2)((T,∞)r × Yη;Em,n) ∼= 〈wm,l

(∧
j∈J

e−ṽjdzj

)
∧

∧
j∈J

e−ṽjdzj

〉 ∧ H∗(Sη)
with J, J and l as in Lemma 3.2 and wk,l is wk,l with r = 1. If instead r1 = 0, but n1 =
· · · = nr2 = 0 and n1 ≥ 1, then assuming without loss of generality that n1 ≥ · · · ≥ nr2, the
L2-cohomology of ((T,∞)r × Y,Em,n) is trivial unless nj ∈ {n1, n1 − 2} for all j, in which
case it is given by

H∗(2)((T,∞)r × Yη;Em,n) ∼= 〈w0,n(e−ṽdz)α〉 ∧ H∗(Sη)

with α ∈ {0, 1}r2 such that

nj = n1 =⇒ αj = α1, nj = n1 − 2 =⇒ αj = 0, α1 = 1.

If we forget about the factor of (T,∞)r, notice that the above spectral sequence argument
also shows that

(4.2) H∗(Yη;Em,n) ∼= kerðSη ,

so Lemmas 3.2 and 3.3 give an explicit description of H∗(Yη;Em,n). It also induces a natural
orthogonal decomposition

(4.3) H∗(Yη;Em,n) = H∗+(Yη;Em,n)⊕H∗−(Yη;Em,n),

when the cohomology is not trivial, where
(4.4)

H∗−(Yη;Em,n) = w0,n−l

(
r1∧
i=1

e−ũiρdxi

)
∧

∧
j /∈J

e−ṽjρdzj

 ∧
∧
j /∈J

e−ṽjρdzj

 ∧H∗(Sη),
H∗+(Yη;Em,n) = wm,l

(∧
j∈J

e−ṽjρdzj

)
∧

∧
j∈J

e−ṽjρdzj

 ∧H∗(Sη)
in the setting of Lemma 3.2, while in the setting of (3.18),

(4.5)
H∗−(Yη;Em,n) = w0,0

(
r2∧
j=1

e−ṽjρdzj

)
∧ (e−ṽρdz)β ∧H∗(Sη),

H∗+(Yη;Em,n) = w0,n(e−ṽρdz)α ∧H∗(Sη).
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Consequently, this induces a decomposition

(4.6) H∗(∂X;Em,n) = H∗+(∂X;Em,n)⊕H∗−(∂X;Em,n)

with
H∗±(∂X;Em,n) =

⊕
η∈PΓ

H∗±(Yη;Em,n).

Let pr± : H∗(∂X;Em,n) → H∗±(∂X;Em,n) be the induced projections. Lemmas 3.2 and 3.3
yields the following description of these spaces.

Lemma 4.2. When r1 > 0, the cohomology of (∂X,Em,n) is trivial unless m1 = · · · = mr1

and nj ∈ {2m1 − nj, 2m1 + 2 + nj, nj − 2m1 − 2} for all j ∈ {1, . . . , r2}, in which case it is
given by

H∗−(∂X;Em,n) ∼=
⊕
η∈PΓ

〈w0,n−l

(
r1∧
i=1

e−ũidxi

)
∧

∧
j /∈J

e−ṽjdzj

 ∧
∧
j /∈J

e−ṽjdzj

〉 ∧ H∗(Sη)
H∗+(∂X;Em,n) ∼=

⊕
η∈PΓ

〈wm,l

(∧
j∈J

e−ṽjρdzj

)
∧

∧
j∈J

e−ṽjρdzj

〉 ∧ H∗(Sη),
for J = {j ∈ {1, . . . , r2} | nj = nj + 2m1 + 2} and J = {j ∈ {1, . . . , r2} | nj = 2m1 + 2 +nj}.
If instead r1 = 0, but n1 = · · · = nr2 = 0, n1 ≥ 1 and we assume without loss of generality
that n1 ≥ · · ·nr2, then the cohomology of (∂X,Em,n) is trivial unless nj ∈ {n1, n1 − 2} for
all j, in which case it is given by

H∗−(∂X;Em,n) ∼=
⊕
η∈PΓ

〈w0,0

(
r2∧
j=1

e−ṽjdzj

)
∧ (e−ṽdz)β〉 ∧ H∗(Sη),

H∗+(∂X;Em,n) =
⊕
η∈PΓ

〈w0,n(e−ṽρdz)α〉 ∧ H∗(Sη).

where α, β ∈ {0, 1}r2 is such that

nj = n1 =⇒ αj = α1, βj = β1,

nj = n1 − 2 =⇒ αj = 0, α1 = 1, βj = 1, β1 = 0.

We can use this information to compute the cohomology group H∗(X;Em,n) using known
results and the Mayer-Vietoris long exact sequence in L2-cohomology
(4.7)

· · ·Hq
(2)(X;Em,n) // Hq

(2)((T,∞)r × ∂X;Em,n)⊕Hq(X;Em,n) // Hq(∂X;Em,n) · · · .

This yields the following.

Theorem 4.3. Suppose that r1 > 0 or that r1 = 0 with n1 = · · · = nr2 = 0 and n 6= 0. Then
there is an isomorphism

(4.8) H∗(X;Em,n) ∼= H∗(2)(X;Em,n)⊕H∗−(∂X;Em,n).

Furthermore, if nj 6= nj for some j ∈ {1, . . . , r2}, then

(4.9) H∗(2)(X;Em,n) = {0}
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and this simplifies to

(4.10) H∗(X;Em,n) ∼= H∗−(∂X;Em,n).

Proof. By a result of Harder [Har75, Remark (3), p.159], we know that the image of the
restriction map

ι∗
∂X

: H∗(X;Em,n)→ H∗(∂X;Em,n)

is identified with H∗−(∂X;Em,n) via the projection pr− : H∗(∂X;Em,n)→ H∗−(∂X;Em,n),

(4.11) ι∗
∂X
H∗(X;Em,n) ∼= H∗−(∂X;Em,n).

Combining with Proposition 4.1 and the decomposition (4.6), this means that the boundary
homomorphism of the long exact sequence (4.7) is trivial, yielding the isomorphism (4.8).
To prove (4.9), let τ : G∞ → GL(Vτ ) be an irreducible finite dimensional representation. Let
Eτ → X be the flat vector bundle which is associated to τ |Γ. Equip Eτ with the Hermitian
fibre metric defined in [MM63]. Let

∆q(τ) : Λq(X,Eτ )→ Λq(X,Eτ )

be the Laplacian acting in the space of Eτ -valued q-forms. Let L2
disΛ

q(X,Eτ ) be the sub-
space of L2Λq(X,Eτ ) which is spanned by the square integrable eigenforms of ∆q(τ). Let
L2

dis(Γ\G∞) be the subspace of L2(Γ\G∞), which is spanned by the irreducible subrepresen-
tations of the right regular representation of G∞ on L2(Γ\G∞). Then we have

(4.12) L2
disΛ

q(X,Eτ ) ∼=
(
L2

dis(Γ\G∞)⊗ Vτ
)K∞

.

Let ∆q,dis(τ) be the restriction of ∆q(τ) to L2
disΛ

q(X,Eτ ). Now assume that τ 6∼= τ ◦ ϑ where
ϑ is the standard Cartan involution of G∞ with respect to K∞. Using (4.12) it follows as in
the proof of [BV13, Lemma 4.1] that there exists c > 0 such that

(4.13) Spec(∆q,dis(τ)) ⊂ [c,∞)

for all q = 0, ..., n. In particular, it follows that

(4.14) H∗(2)(X,Eτ ) = H∗(2)(X,Eτ ) = 0,

where the right hand side denotes the space of square integrable harmonic forms. Now
assume that r2 > 0 and that there exists j ∈ {1, ..., r2} with nj 6= nj. Then %m,n is not
self-conjugate, that is, %m,n � %m,n ◦ ϑ, so (4.9) follows from (4.14). �

Remark 4.4. Comparing (4.7) with the long exact sequence in cohomology for the pair
(X, ∂X), we can also deduce from (4.11) that

H∗(2)(X;Em,n) ∼= Im (H∗c (X;Em,n)→ H∗(X;Em,n)) .

Using the Mayer-Vietoris long exact sequence in cohomology
(4.15)

· · ·
∂q−1 // Hq(M ;Em,n)

iq // Hq(X;Em,n)⊕Hq(X;Em,n)
jq // Hq(∂X;Em,n)

∂q // · · ·

and Proposition 3.6, we deduce the following.
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Lemma 4.5. If r1 > 0 or r1 = 0 with n1 = · · · = nr2 = 0 and n 6= 0, then

H∗(M ; Êm,n) ∼= H∗(2)(X;Em,n)
⊕

H∗(2)(X;Em,n)
⊕(⊕

η∈PΓ

kerL2
b
Db,η

)
,

∼= kerL2 ðfc,0

⊕(⊕
η∈PΓ

kerL2
b
Db,η

)
,

where ðfc,0 is the operator corresponding to ðfc on each copy of X in M \ ∂X.

We deduce from this lemma and Theorem 3.7 that the eigenspaces associated to small
eigenvalues are cohomological, that is, all the small eigenvalues are zero. As in [MR20],
this allows us to apply [ARS21, Corollary 11.3]. However, one important hypothesis in this
corollary is that the base Sη of the fiber bundle φη : Yη → Sη has to be even dimensional
to ensure that some terms in the short time asymptotic expansion of the trace of the heat
kernel vanish. Our setting, in the other hand, is very special within the framework considered
in [ARS21, Theorem 11.2]. This will allow us to establish directly the vanishing of the these
terms in the asymptotic expansion of the trace of the heat kernel without assuming that Sη
is even dimensional.

The first useful special feature of our setting is that the family of metric gfc,ε is not

just asymptotic to the model (3.1). It is in fact exactly given by (3.1) for ρ =
√
x2 + ε2

sufficiently small. Moreover, as already observed, the fiber bundle φη : Yη → Sη is locally
trivial for the natural connection induced by the metric, so it has trivial curvature and second
fundamental form in the sense of [BGV04]. Consequently, there is no curvature term in the
asymptotic model (3.6) of the corresponding Hodge-deRham operator in the limit ρ → 0
and this operator is in fact exactly given by (3.6) in a small region near ρ = 0.

To study the asymptotic behavior of the heat kernel near ρ = 0 in the limit t → 0, this
means that we can use the model operator (3.7), namely

(4.16) D̂fc,ε =

(
ρ−1ðYη/Sη + ðSη x

ρ

(
W − dF

2

)
− ρ ∂

∂x

ρ ∂
∂x

+ x
ρ

(
W − dF

2

)
−ρ−1ðYη/Sη − ðSη

)
seen as defined on Yη×Rx for ε small. Since ðSη commutes with W and anti-commutes with
ðYη/Sη , we see that

(4.17) D̂2
fc,ε = D̂2

c,ε + ð2
Sη ,

where

D̂c,ε :=

(
ρ−1ðYη/Sη x

ρ

(
W − dF

2

)
− ρ ∂

∂x

ρ ∂
∂x

+ x
ρ

(
W − dF

2

)
−ρ−1ðYη/Sη

)
is an operator anti-commuting with ðSη . The corresponding heat kernel is therefore given
by

e−tD̂
2
fc,ε = e−tD̂

2
c,εe
−tð2

Sη .

For analytic torsion, we are in fact interested in the weighted version

(−1)NNe−tD̂
2
fc,ε = (−1)NN

(
e−tD̂

2
c,εe
−tð2

Sη

)
,
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where N is the number operator multiplying a form (of pure degree) by its degree. This can
be rewritten

(4.18) (−1)NNe−tD̂
2
fc,ε = (−1)Nx+NYη/Sη+NSη (Nx +NYη/Sη +NSη)

(
e−tD̂c,εe

−tð2
Sη

)
,

where Nx is the number operator in the factor Rx, while as before NYη/Sη and NSη are
the number operators in the fibers and the base of the fiber bundle φη : Yη → Sη. To
understand this operator, it suffices to understand it when acting on each of the eigenspaces
of (Nx + NYη/Sη) and W . On the other hand, since ðYη/Sη is the Hodge-deRham operator
associated to a trivial flat Hermitian vector bundle on a flat torus, we see that

ker(ðYη/Sη − ν) ∼= ker(ðYη/Sη)

whenever ν is an eigenvalue of ðYη/Sη . Correspondingly, the restriction of ðSη acting on the
vector bundle ker(ðYη/Sη − ν)→ Sη is still given by

ðSη ∼= ðC + ð̃Sη =⇒ ð2
Sη
∼= ð2

C + ð̃2
Sη .

Hence, to understand the pointwise trace of (4.18), it suffices to understand the sum

(4.19)

r1+r2−1∑
q=0

(−1)p+q(p+ q) tr
(

(e
−tð̃2

Sη )Ωq(Sη ;L)

)
,

where L→ Sη is a flat line bundle on Sη, seen as a subbundle of C∗ → Sη, which corresponds
to a common eigenspace of ðC and W contained in {ω | (Nx + NYη/Sη)ω = pω}. But in a
local trivialization of such a flat line bundle L,

(4.20) d̃Sη = d+ aL

for some parallel 1-form aL ∈ Ω1(Sη), so

(4.21) tr
(
e
−tð̃2

Sη |Ωq(Sη ;L)

)
= e−t∆e−t|aL|

2

(
r1 + r2 − 1

q

)
,

where ∆ is the scalar Laplacian of (Sη, gSη) and |aL| is the pointwise norm of aL with respect
to the metric gSη . Hence the sum (4.19) will vanish provided we can show that

(4.22)

r1+r2−1∑
q=0

(−1)p+q(p+ q)

(
r1 + r2 − 1

q

)
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vanishes. When r1 + r2 − 1 > 1, the vanishing of (4.22) is a consequence of the binomial
theorem, since

r1+r2−1∑
q=0

(−1)p+q(p+ q)

(
r1 + r2 − 1

q

)
= (−1)pp

r1+r2−1∑
q=0

(−1)q
(
r1 + r2 − 1

q

)

+ (−1)p
r1+r2−1∑
q=0

(−1)qq

(
r1 + r2 − 1

q

)
= (−1)pp(1− 1)r1+r2−1

+ (−1)p
r1+r2−1∑
q=1

(−1)qq

(
r1 + r2 − 1

q

)

= 0 + (−1)p
r1+r2−1∑
q=1

(−1)q(r1 + r2 − 1)

(
r1 + r2 − 2
q − 1

)

= (−1)p(r1 + r2 − 1)

r1+r2−1∑
q=1

(−1)q
(
r1 + r2 − 2
q − 1

)

= (−1)p(r1 + r2 − 1)

r1+r2−2∑
q=0

(−1)q+1

(
r1 + r2 − 2

q

)
= (−1)p+1(r1 + r2 − 1)(1− 1)r1+r2−2 = 0.

If r1 + r2 − 1 = 1, this argument does not show that (4.22) vanishes. However, we should
notice that the flat line bundles L→ Sη arising in (4.19) come in pairs using the Hodge star
operator of C∗ and Rx. Namely, if L→ Sη is such that

(4.23) (W − dF
2

)(σ) = νσ (Nx +NYη/Sη)σ = pσ

for each of its sections, then there is a dual line bundle L∗ also arising in the decomposition
(4.19) such that

(4.24) (W − dF
2

)(σ) = −νσ (Nx +NYη/Sη)σ = (dF + 1− p)σ.

If the flat connection of L is locally given by (4.20), then the one of L∗ is given by

(4.25) d− aL

since L∗ is the dual of L. Alternatively this can be seen directly from the description of d̃Sη
in (3.15), see also (3.17) and (3.21). In particular, from (4.21), we see that

(4.26) tr
(
e
−tð̃2

Sη |Ωq(Sη ;L∗)

)
= tr

(
e
−tð̃2

Sη |Ωq(Sη ;L)

)
.

However, since (4.23) is replaced by (4.24) for sections of L∗, we see from (3.22) that the
contribution (4.22) coming from L, namely

(4.27)
1∑
q=0

(−1)p+q(p+ q)

(
r1 + r2 − 1

q

)
= (−1)pp+ (−1)p+1(p+ 1) = (−1)p+1
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since r1 + r2 − 1 = 1, becomes the contribution

(4.28)
1∑
q=0

(−1)dF+1−p+q(dF + 1− p+ q)

(
r1 + r2 − 1

q

)
= (−1)dF+1−p+1 = (−1)dF+p.

for L∗. Therefore, if dF is even, we see that (4.28) exactly cancel (4.27).
To summarize the discussion so far, provided r1 + r2 − 1 > 1 or that r1 + r2 − 1 = 1 and

dF is even (i.e. r1 = 2 and r2 = 0 or r1 = 0 and r2 = 2), we see that the pointwise trace of
(4.18) identically vanishes,

(4.29) tr
(

(−1)NNe−tD̂
2
fc,ε

)
= 0.

This implies the following result for the heat kernel of D2
fc,ε.

Theorem 4.6. Suppose that r1 > 0 or that r1 = 0 with n1 = · · · = nr2 = 0 and n 6= 0.
Suppose also that r1 + r2 − 1 > 1 or that (r1, r2) ∈ {(2, 0), (0, 2)}. Then as ε ↘ 0, the

logarithm of the analytic torsion of (M, Êm,n, gfc,ε, hε) has a polyhomogeneous expansion and
its finite part is given by

FP
ε=0

log T (M ; Êm,n, gfc,ε, hε) = 2 log T (X;Em,n, gfc, h),

where T (X;Em,n, gfc, h) is the analytic torsion of (X;Em,n, gfc, h).

Proof. By the discussion above, in a region near ρ = 0, the heat kernel of D2
fc,ε has the same

short time asymptotic expansion as the heat kernel of the model (4.17). In particular, we
see from (4.29) that

tr
(

(−1)NNe−tD
2
fc,ε

)
has a trivial short time expansion near ρ = 0, in particular at the front face Btff of the

surgery heat space of [ARS21]. Thus, by [ARS21, Theorem 11.2], T (M ; Êm,n, gfc,ε, hε) has a
polyhomogeneous expansion as ε↘ 0 with finite part given by

FP
ε=0

log T (M ; Êm,n, gfc,ε, hε) = 2 log T (X;Em,n, gfc, h) +
∑
η∈PΓ

log T (D2
b,η),

where T (D2
b,η) is the analytic torsion defined by

log T (D2
b,η) =

1

2
ζ ′D2

b,η
(0)

with

ζD2
b,η

(s) :=
1

Γ(s)

∫ ∞
0

(ts)R Tr
(

(−1)NN
(
e−tD

2
b,η − ΠkerL2 D2

b,η

)) dt
t
, Re(s) >

r1 + r2

2
,

admitting a meromorphic extension to the complex plane which is holomorphic near s = 0.
Here, N is the number operator giving the form degree, but also including the vertical degree
of the forms e−ũiρdxi, e

−ṽjρdzj and e−ṽjρdzj seen as sections of kerDv,η when multiplied by
ŵk,l for some k and l. The vanishing of (4.29) however implies that

ζD2
b,η

(s) = 0. ∀s > r1 + r2

2
,

so log T (D2
b,η) = 0 and the result follows.

�
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5. Small eigenvalues

When kerL2 Db,η 6= 0, there are small eigenvalues. However, assuming that r1 > 0 or that
r1 = 0 with n1 = · · · = nr2 = 0 and n 6= 0, all these small eigenvalues are zero by Lemma 4.5,
which will allow us to obtain a formula relating analytic torsion and Reidemeister torsion.
We will in fact closely follow the argument in [MR20].

First, Lemma 4.5 can be used to compute the fibered cusp degeneration of Reidemeister
torsion using the long exact sequence in cohomology (4.15). This requires choosing suitable
bases for the spaces involved in this long exact sequence. When the cohomology on the
boundary is not trivial, we can pick an orthonormal basis

(5.1) µ∂X = (µ+, µ−)

for H∗(∂X;Em,n), compatible with the orthogonal decomposition (4.6) with µ± an orthonor-
mal basis (with each element of pure degree) for H∗±(∂X;Em,n). Without loss of generality,

we can assume that µ+ is Poincaré dual to µ−. On H∗(X;Em,n), we can then just take the
basis µX = (µX,(2), µX,inf) compatible with the decomposition (4.8) and such that

(5.2) pr− ◦ι∗∂XµX = pr− ◦ι∗∂XµX,inf = µ−,

where µX,(2) is an orthonormal basis of H∗(2)(X;Em,n) ∼= kerL2 ðfc. On H∗(M ; Êm,n), there is
a natural decomposition

(5.3) Hq(M ; Êm,n) = Im ∂q−1 ⊕ Im iq

in terms of the long exact sequence (4.15), so we can choose a basis µM compatible with this
decomposition and the previous choices of bases, namely

(5.4) µ∗M = (∂∗(µ+), µM,i).

More precisely, if µX = {ν1, . . . , νK} with µX,(2) = {ν1, . . . , νK′}, then µM,i will be chosen
such that

i∗(µM,i) = {(ν1, 0), (0, ν1), . . . (νK′ , 0), (0, νK′), (νK′+1, νK′+1), . . . , (νK , νK)}.

Now, on H∗(X;Em,n) ⊕ H∗(X;Em,n), we can consider, instead of µX ⊕ µX , the equivalent
basis

(5.5) {ν1, 0), (0, ν1), . . . (νK′ , 0), (0, νK′),

(
νK′+1√

2
,
νK′+1√

2

)
,

(
νK′+1√

2
,−νK

′+1√
2

)
, . . . ,(

νK√
2
,
νK√

2

)
,

(
νK√

2
,− νK√

2

)
}

obtained by an orthonormal transformation. It is such that

ker j∗ = span{ν1, 0), (0, ν1), . . . (νK′ , 0), (0, νK′),

(
νK′+1√

2
,
νK′+1√

2

)
, . . . ,

(
νK√

2
,
νK√

2

)
},

jq{
(
νK′+1√

2
,−νK

′+1√
2

)
, . . . ,

(
νK√

2
,− νK√

2

)
} =
√

2 ι∗
∂X

(µX)

and

iq(µM) =
√

2 {
(
νK′+1√

2
,
νK′+1√

2

)
, . . . ,

(
νK√

2
,
νK√

2

)
}.
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In particular, in terms of these bases, we see that

| det(jq)⊥| = | det(iq)⊥|.
Using the formula of Milnor applied to the long exact sequence (4.15) therefore yields the
following.

Theorem 5.1. If r1 > 0 or r1 = 0 with n1 = · · · = nr2 = 0 and n 6= 0, then

τ(M ;Em,n, µM) =
τ(X;Em,n, µX)2

τ(∂X;Em,n, µ∂X)
= τ(X;Em,n, µX)2.

Proof. The result would follow from the discussion above if instead of µ∂X , we would have
chosen the basis

µ′
∂X

= (µ+, ι
∗
∂X
µX).

However, since the change of basis from µ∂X to µ′
∂X

is not orthonormal, but has determinant
1, we can simply replace µ′

∂X
by µ∂X to obtain the result. Since we assume that the basis

µ∂X is self-dual, we also know from [Mül93, Corollary 1.9] that

τ(∂X;Em,n, µ∂X) = 1.

�

To relate analytic torsion and Reidemeister torsion on X when dimX is odd, that is, when
r2 is odd, the idea is to start with the formula of [Mül93]

(5.6) log τ(M ;Em,n, µM) = log T (M,Em,n, gfc,ε, hε)− log

(∏
q

[µqM |ω
q](−1)q

)
for ε > 0, where ωq is an orthonormal basis of harmonic forms in degree q with respect to
gfc,ε and hε, while [µqM |ωq] = | detW q| with W q the matrix describing the change of bases

(µqM)i =
∑
j

W q
ijω

q
j .

Taking the finite part at ε = 0 of the formula (5.6) shall lead to a formula on X. First,
assuming that r1 + r2 − 1 > 1, we know by Theorem 4.6 that

(5.7) FP
ε=0

T (M, Êm,n, gfc,ε, hε) = 2 log T (X,Em,n, gfc, h).

By Theorem 5.1, we can express τ(M,Em,n, µM) in terms of the torsion on X. So, what
remains to be done is to take the finite part of

log

(∏
q

[µqM |ω
q](−1)q

)
as ε↘ 0.

By the definition of cb in [MR20, (4.16)] and our definition of µ∂X in (5.1), we see that an
orthonormal basis of

⊕
η∈PΓ

ker2
LDb,η is given by

(5.8)

(
1√c dF
2
−W
〈X〉W−

dF
2 ρWµ+

dX

〈X〉
,

1√c
W− dF

2

〈X〉
dF
2
−WρWµ−

)
.
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As in [MR20], this can be extended to a polyhomogeneous basis of harmonic forms on

(Xs, Êm,n) with respect to Dfc,ε := ρ
dF
2 ðfc,ερ

− dF
2 . Let (ω(2), ω+, ω−) be a corresponding

orthonormal basis of harmonic forms with respect to ðfc,ε, where ω(2) corresponds in the

limit ε↘ 0 to an orthonormal basis of kerL2
b
Dfc,0 with Dfc,0 = ρ

dF
2 ðfc,0ρ

− dF
2 , ω+ corresponds

to
1√c dF
2
−W
〈X〉W−

dF
2 ρWµ+

dX

〈X〉

and ω− corresponds to
1√c
W− dF

2

〈X〉
dF
2
−WρWµ−.

If εµw for µ > 0 is a higher order term in the expansion of ω ∈ ω+ as ε ↘ 0, then

since Dfc,ε commutes with multiplication by ε, we see that ρ
dF
2 w ∈ kerDfc,ε, so in particular

its restriction ρ
dF
2 wsb to Bsb, the front face of the single surgery space Xs considered in

[ARS21, MR20], is in
⊕

η∈PΓ
Db,η. As in [MR20], we can check that cohomologically, these

terms are negligible, so that in the limit ε↘ 0,

(5.9)

ω+ ∼
1√c dF
2
−W

(〈X〉ρ)W−
dF
2 µ+

dx

ρ

= εW−
dF
2 〈X〉2W−dF 1√c dF

2
−W

µ+
dX

〈X〉
.

Since ∫ ∞
−∞

εW−
dF
2√c dF

2
−W
〈X〉2W−dF dX

〈X〉
= εW−

dF
2

√
c dF

2
−W

when acting on the negative eigenspaces of W − dF
2

, we see that cohomologically,

(5.10) [ω+] ∼ εW−
dF
2

√
c dF

2
−W ∂∗[µ+]

as ε↘ 0. On the other hand, if εµw for some µ > 0 is a higher order term in the expansion

of ω ∈ ω−, then again ρ
dF
2 w ∈ kerDfc,ε, so its restriction ρ

dF
2 wsb to Bsb is in

⊕
η∈PΓ

Db,η. As

in [MR20], though such a term is negligible in L2-norm, it could still give a contribution in
cohomology. More precisely, if

ρ
dF
2 wsb = 〈X〉

dF
2
−WρWψ

for some ψ ∈ span〈µ∂X,m,n〉, then cohomologically

[εµι∗Yw] ∼ εµι∗Y

[(
〈X〉
ρ

) dF
2
−W

ψ

]
= εµ+W− dF

2 [ψ].

As in [MR20, (6.18) and (6.19)] and keeping in mind [MR20, Remark 6.1], we expect in
general a non-trivial contribution in cohomology from some lower order terms and we can
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deduce that

(5.11) [ι∗
∂X
ω−] ∼ εŴ−

dF
2√c

Ŵ− dF
2

[ι∗
∂X
µX ] as ε↘ 0,

where the weight operator Ŵ is defined by

ŴΞ = νΞ

if Ξ ∈ ι∗
∂X
µX is such that

Ξ = Ξ̂ mod span〈µ+〉
with Ξ̂ ∈ µ∂X,0,0 such that W Ξ̂ = νΞ̂.

Combining (5.10) and (5.11) yields the following.

Lemma 5.2. When r1 + r2 − 1 > 0,

(5.12) FP
ε=0

log

(∏
q

[µqM |ω
q](−1)q

)
= 0

in the limit ε↘ 0.

Proof. From (5.10) and (5.11), we see that

FP
ε=0

log

(∏
q

[µqM |ω
q](−1)q

)
=
∑
η∈PΓ

Bηχ(Sη),

where χ (Sη) is the Euler characteristic of Sη and Bη is a certain sum of terms. Our as-
sumption that dimSη = r1 + r2 − 1 > 0 ensures that χ (Sη) = 0, from which the result
follows. �

This yields our main result.

Theorem 5.3. . Suppose that r1 > 0 or that r1 = 0 with n1 = · · · = nr2 = 0 and n 6= 0. If
r2 is odd (i.e. dimX is odd) and r1 + r2 − 1 > 1, then

log T (X,Em,n, gfc, h) = log τ(X,Em,n, µX).

Proof. Theorem 4.6, Theorem 5.1 and Lemma 5.2 allow us to obtain the result by taking the
finite part at ε = 0 of (5.6). �

In many cases, the long exact sequence (4.15) is trivial, in which case this result simplifies
as follows.

Theorem 5.4. Suppose that m,n are chosen in Proposition 3.6 with nj 6= nj for some j
and in such a way that Db,η is Fredholm and has trivial L2-kernel. If r1 + r2 − 1 > 1 or
(r1, r2) ∈ ((2, 0), (0, 2)), then

T (X,Em,n, gfc, h) = τ(X,Em,n),

where T (X,Em,n, gfc, h) is the analytic torsion of (X,Em,n, gfc, h) and τ(X,Em,n) is the Rei-
demeister torsion of (X,Em,n).

In particular, if dimX = 2r1 + 3r2 is even, the formula simplifies to

T (X,Em,n, gfc, h) = 1.
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Proof. If dimX is odd, this is just Theorem 5.3 when the long exact sequence (4.15) is trivial.

If dimX is even, the result then follows from Theorem 4.6 due to the fact that Êm,n is self-
dual as a flat vector bundle and as a Hermitian vector bundle, so by [Mül93, Proposition 2.9],

T (M, Êm,n, gfc,ε, hε) = 1 ∀ε ≥ 0.

�

6. Construction of acyclic bundles

Following [BV13, sect. 8.1], we explain in some detail how acyclic Γ-modules are con-
structed in our case. To construct the corresponding representations we proceed as follows.
Let G0 = SL(2)/F and let T0 ⊂ G0 be the standard maximal torus. Let T := ResF/Q(T0) be
the corresponding maximal torus of G. Let Gm be the multiplicative group. We select an
isomorphism Gm/F ∼= T0/F , given by

a 7→
(
a 0
0 a−1

)
for a ∈ Gm(F ). This gives rise to an identification

ResF/Q(Gm) = ResF/Q(T0) = T.

Let E/Q be a Galois extension splitting T such that Hom(F,E) 6= 0. Such a Galois extension
always exists [BT65, Prop. 1.5]. We denote by {σ : F → E} the set of embeddings of F into
E on which the Galois group Gal(E/Q) acts transitively. Note that

#{σ : F → E} = [F : Q].

Let G×QE and T ×QE be the groups obtained from G and T , respectively, by extension of
scalars [Mil11, I, 4c]. We have

(6.1) G×Q E =
∏

σ : F→E

G0 ×σ E =
∏

σ : F→E

SL(2)/F ×σ E.

Hence an irreducible representation ρ of G×Q E is a tensor product

ρ =
⊗

σ : F→E

ρσ,

where ρσ is the irreducible representation of SL(2)/E on theE-vector spaceWσ := Symdσ(E2)
of homogeneous polynomials of degree dσ in two variables. Thus we have an E-rational rep-
resentation

(6.2) ρ : G×Q E → GL(W ),

where

(6.3) W =
⊗

σ : F→E

Wσ =
⊗

σ : F→E

Symdσ(E2).

The base change T ×Q E is a split torus, i.e., we have

(6.4) T ×Q E =
∏

σ : F→E

T0 ×F,σ E =
∏

σ : F→E

T0.
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Let X∗(T×QE) = Hom(T×QE,Gm) be the group of characters of T×QE and let X∗+(T×QE)
be the dominant characters. By (6.4) we have

(6.5) X∗(T ×Q E) =
⊕

σ : F→E

X∗(T0 ×F,σ E) =
⊕

σ : F→E

X∗(T0).

Remark. If E ′ is another Galois extension of F with injection ι : E → E ′, then ι induces
an isomorphism X∗(T × E)→ X∗(T × E ′) by λ 7→ λι := ι ◦ λ.

By (6.5) the highest weight λρ ∈ X∗+(T ×Q E) of ρ is given by

(6.6) λρ = (dσ1 , ..., dσn).

and to every highest weight as above there is associated a unique irreducible finite dimen-
sional rational representation of G×Q E defined over E.

Now observe that the functor “restriction of scalars” is right adjoint to the functor “ex-
tension of scalars” [Mil11, I, 4d]. Thus we have

(6.7) HomQ(G,ResE/Q(GL(W ))) ∼= HomE(G×Q E,GL(W )).

Hence the representation (6.2) corresponds to a representation

(6.8) ρ̃ : G→ ResE/Q(GL(W ))

which is defined over Q. Since ResE/Q is a functor, there is a canonical homomorphism

(6.9) ResE/Q(GL(W ))→ GL(ResE/Q(W )).

Let V = ResE/Q(W ) which is just W considered as Q-vector space. Combining (6.8) and
(6.9), we obtain a representation

(6.10) % : G→ GL(V ),

which is defined over Q. Now recall that by (6.3), W is the tensor product of the E-vector
spaces Symdσ(E2), σ : F → E, and Symdσ(E2) is the space of homogeneous polynomials of
degree dσ in two variables with coefficients in E. Choose an integral basis e1, ..., eq of E over
Q, where q = [E : Q]. Expressing the coefficients of the polynomials in this basis, we obtain
a vector space over Q. So

(6.11) Wσ = Res
E/Q

Symdσ(E2) =

q⊕
i=1

Wi,

where Wi consists of homogeneous polynomials

dσ∑
k=1

akieiX
kY dσ−k, aki ∈ Q.

Correspondingly, the tensor product W becomes a vector space over Q, which is denoted by
V .

Next we determine how V ⊗QC decomposes into irreducible representations of G(C). Let
S∞ denote the set of Archimedean places of F . For v ∈ S∞ let Fv be the completion of F
with respect to v. Let Gv/R := ResFv/R(SL(2)/Fv). We have

(6.12) G×Q R =
∏
v∈S∞

Gv.
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Fix an embedding ι : E → C. Then

W ⊗E,ι C =
⊗
v∈S∞

Wv.

If v is a real place, it corresponds to an embedding σ : F → R and if v is complex then it
corresponds to a pair of conjugate embeddings

σ, σ : F → C,

which are viewed as the two continuous isomorphisms σ, σ : Fv ∼= C. In the first case, we
have Wv = Wσ ⊗E C, and in the second case

Wv
∼= (Wσ ⊗E C)⊗ (Wσ ⊗E C).

Let σ1, ..., σr1 denote the real embeddings and (ν1, ν1), ..., (νr2 , νr2) the complex embeddings
of F in C. Then the highest weight λρ of ρ takes the form

(6.13) λρ = (dσ1 , ..., dσr1 , (dν1 , dν1), ..., (dνr2 , dνr2 )).

An embedding τ : E → C induces an isomorphism X∗(T × E) ∼= X∗(T × C). From (6.11)
follows that V ⊗Q C is the direct sum of irreducible representations whose highest weights
are obtained from λρ by applying the various embeddings E ↪→ C. Now assume that r2 ≥ 1
and the highest weight λρ = (dσ1 , ..., dσn) of the representation ρ of G×Q E satisfies

(6.14) dσi 6= dσj , i 6= j.

Then it follows from the considerations above that V ⊗Q C decomposes in the direct sum of
irreducible, non-selfconjugate representations with respect to the standard Cartan involution
ϑ of G∞ with respect to K∞.

We summarize the properties of the representation % : G → GL(V ) which is defined as
(6.10).

Proposition 6.1. Assume that the highest weight of ρ satisfies (6.14). Then % has the
following properties:

(1) Let %m,n be defined by (1.10). The irreducible constituents of %∞ : G∞ → GL(V ⊗QC)
are of the form %m,n, where mi 6= mj for i 6= j and nj 6= nj, j = 1, ..., r2.

(2) Let Γ ⊂ G(Q) be a congruence subgroup. There exists a Γ-stable lattice Λ ⊂ V .

(3) Let Γ ⊂ G(Q) be a torsion free congruence subgroup. Let X = Γ\X̃ and let E% → X be
the flat vector bundle associated to %∞|Γ. Assume that r2 > 0. Then H∗(2)(X, E%) = 0.

Moreover, if r1 > 0 as well, then in fact H∗(X, E%) = 0.

Proof. The irreducible representations of G∞ are of the form %m,n. It follows from (6.11)
that the highest weights of the irreducible constituents are permutations of (6.13). Then (1)
follows from (6.14). By [Mil11, Chapter VII, Prop 5.1, p.400] there exists a lattice Λ ⊂ V ,
which is stable under Γ. This proves (2).

Now assume that r2 > 0. By (1) every irreducible constituent of %∞ is of the form %m,n
with nj 6= nj, j = 1, ..., r2 and mi 6= mk for i, k ∈ {1, . . . , r1} distinct. Hence %m,n is not
self-conjugate. Then by (4.9) it follows that H∗(2)(X;Em,n) = 0, while H∗(X;Em,n) = 0 if

r1 > 0 by (4.10) and Lemma 4.2. This implies (3). �
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7. Exponential growth of torsion in cohomology

To prove Theorem 1.3 we follow the approach of [BV13]. Recall that in [BV13] only the case
of co-compact arithmetic groups is considered. The method is based on the approximation

of the L2-torsion of X = Γ\X̃ by the renormalized logarithm of the analytic torsion of the
compact manifolds Xi as i → ∞. Since in our case the manifolds are not compact, we
use a regularized version of the analytic torsion, which for a general reductive group G has
been defined in [MM23]. The approximation of the L2-analytic torsion has been studied
in [MM23]. We recall the definition in our case. To define the regularized analytic torsion,
one has to define the regularized trace of the heat operator. The definition of the regularized
trace of the heat operator, given in [MM23], uses the adelic framework. Let A be the ring
of adeles, Af the ring of finite adeles, G(A) the group of adelic points, and Kf ⊂ G(Af ) an
open compact subgroup. Then the adelic space is defined as X(Kf ) = G(Q)\G(A)/K0

∞ ·Kf .
Now observe that G is simply connected and Q-simple. Therefore G satisfies the strong
approximation property with respect to the infinite place and we have

X(Kf ) ∼= ΓKf\X̃,

where ΓKf := G(R)∩Kf . In [MM23] the truncation of X(Kf ) is used to define a regularized
trace of the heat operators. For the truncation we need a height function. Recall that X(Kf )
is the union of a compact manifold with a finite number of fibered cusps ends (2.3). On the
fibered cusp ends, one can use the radial variable r of the coordinates (2.6) to define a height
function. A height function is not unique. For our purpose we chose the height function h as
in [Har87, p. 46]. Sufficiently far in a given fibered cusp end, this corresponds to the square

of the function ν of (2.1). On the other hand, the function r in (2.6) corresponds to ν
2
dF , so

for r sufficiently large in a given fibered cusp end, we have the identification r = h
1
dF , that

is, h = x−dF in terms of the boundary defining function x = 1
r

introduced at the beginning
of § 3. For T � 0 let X(T ) = {x ∈ X : h(x) ≤ T}. Let τ be an irreducible finite dimensional
representation of G∞. Let Kp,τ (t, x, y) be the kernel of the heat operator e−t∆p(τ) of the
Laplacian on p-forms with values in the flat vector bundle Eτ associated to τ . Then one can
show that there exist functions a(t), b(t) of t > 0 such that

(7.1)

∫
X(T )

trKp,τ (t, x, x)dx = a(t) log(T ) + b(t) +O(T−1)

as T →∞. In general this follows from the work of Arthur related to the trace formula. In
the present case, however, this can be worked out explicitly, using the spectral expansion of
the kernel Kp,τ (t, x, y) as in the case of hyperbolic manifolds of finite volume [MP12, § 5].
This regularization of the heat kernel is the Hadamard regularization, which was introduced
by Melrose in the case of manifolds with cylindrical ends. In the present paper we use the
regularization considered in [ARS21, Sect. 9]. This is the Riesz regularization of the heat
kernel. The relation between the two is discussed in [Alb09]. By [ARS21, (7.1)], seen as
a b-density, the expansion of the pointwise trace of heat kernel at infinity for fixed t only
has nonnegative integer powers of the boundary defining function x, so in particular the
expansion contains no logarithmic terms. By [Alb09, p. 146], for a fixed choice of boundary
defining function, Hadamard and Riesz regularizations agree. Similarly, replacing x by a
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positive power u = xλ yields the same Riesz or Hadamard regularization, e.g.

(7.2)

H∫ δ

0

dx

x
=

H∫ δλ

0

du

λu
= log δ =

R∫ δλ

0

du

λu
=

R∫ δ

0

dx

x
.

This implies that the the regularization used here and the one used in [MM23] give exactly
the same regularized trace.

Remark 7.1. We note that in [MR21] we also used two different regularizations of the trace
of the heat operators. On the one hand, we use the main result of [MR20], relating analytic
torsion and Reidemeister torsion. In this case, we use the Riesz regularization of the trace
of the heat operator as defined in [ARS21]. On the other hand, we use [MP14, Theorem
1.1], which is equivalent to (7.3). This result is based on the Hadamard regularization of the
trace of the heat operator. As above, it can be shown that the two methods lead to the same
regularized trace.

Let Xi = Γ(ni)\X̃, i ∈ N, be the sequence of manifolds associated to a sequence {ni}i∈N
of ideals in OF satisfying (1.13). Then we have

Proposition 7.2. Let τ ∈ Rep(G∞) be irreducible and assume that τ 6∼= τ ◦ϑ. Let Eτ → Xi

be the flat vector bundle over Xi which is associated to τ |Γ(ni). Then

(7.3) lim
i→∞

log T (Xi, Eτ , gfc, h)

vol(Xi)
= t

(2)

X̃
(τ).

Proof. Assume that there exists a finite set S of primes such that p - N(ni) for all p 6∈ S and
i ∈ N. Then (7.3) follows from [MM23, Theorem 1.5]. However, in our case one can eliminate
the additional assumption on the ni’s as follows. The analogous result for G = SL(n)/Q
and principal congruence subgroups of SL(n,Z) was proved in [MM20, Theorem 1.1]. The
proof can be extended to G = SL(n)/F for any number field F . The reason is the following.
The proof of (7.3) involves the use of the Arthur trace formula, in particular the unipotent
part of the geometric side of the trace formula. Arthur’s fine expansion of the unipotent
contribution [MM23, (8.1)] involves global coefficients, for which appropriate bounds are
needed. The existence of such bounds is not known in general. However, for GL(n)/F J.
Matz [Mat15] has obtained suitable bounds for these coefficients. Using these bounds one
can proceed as in [MM20] and prove (7.3) for G = SL(n)/F , which implies the corresponding
result for G = ResF/Q(SL(n)/F ). �

Following [BV13], we can use the identification of analytic torsion with Reidemeister
torsion to prove Theorem 1.3 about the exponential growth of torsion in cohomology for the
sequence {Γ(ni)}i∈N of principal congruence subgroups. Let

(7.4) % : G→ GL(V%)

be a Q-rational representation over a finite dimensional Q-vector space V% and let E% → X
be the flat vector bundle associated to %∞ : G∞ → GL(V% ⊗Q C). We will suppose that %∞
decomposes into a sum of irreducible representations which are not self-conjugate, so that
Proposition 7.2 implies that

(7.5) lim
i→∞

log T (Xi, E%, gfc, h)

vol(Xi)
= t

(2)

X̃
(%∞).
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By (4.13), E% has trivial L2-cohomology. Let us first focus on the case where the flat bundle
E% is acyclic. Assuming r1 > 1 and r2 > 0, Proposition 6.1 provides many instances where
this is the case. Let Λ% ⊂ V% be a SL(2,OF )-invariant lattice, which by [Mil11, Chapter VII,
Prop 5.1, p.400] exists. Let L% be the associated local system of free Z-modules over X.
Then H∗(X;L%) entirely consists of torsion elements, namely

H∗(X;L%) = H∗tor(X;L%).

In this case, Theorem 1.3 asserts the following.

Theorem 7.3. Let F be a number field with r2 = 1 and r1 > 1. Let (7.4) be a Q-rational
representation and assume that %∞ decomposes into a sum of irreducible representations that
are not self-conjugate. Let Λ% ⊂ V% be a SL(2,OF )-invariant lattice. If for a sequence of
congruence subgroups Γ(ni) with ideals ni satisfying (1.13), Λ is an acyclic Γ(ni)-module for
each i, then

lim inf
i→∞

∑
q+r1 even

log |Hq(X i;L%)|
[Γ(n1) : Γ(ni)]

≥ 2(−1)r1+1t
(2)

X̃
(%∞) vol(X1) > 0,

where t
(2)

X̃
(%∞) is the L2-torsion associated to X̃ and %∞.

Proof. Let τ(Xj, E%) be the Reidemeister torsion of Xj and E%. By assumption H∗(Xj; E%) =
0 for all j ∈ N, so no choice of a basis of the cohomology is needed to define the Reidemeister
torsion. By Proposition 7.2 and Theorem 5.4 we have

(7.6) lim
j→∞

τ(Xj, E%)
[Γ(n1) : Γ(nj)]

= t
(2)

X̃
(%∞) vol(X1).

By [BV13, Proposition 5.2], t
(2)

X̃
(%∞) 6= 0 if and only if δ(X̃) = 1, where δ(X̃) = δ(G∞) is the

fundamental rank of G∞. Since we assume that r2 = 1, this is indeed the case by [BV13, §
1.2]. Moreover, still by [BV13, Proposition 5.2], we know that

(−1)
dim X̃−1

2 t
(2)

X̃
(%∞) > 0.

Since dim X̃ = 2r1 + 3r2 = 2r1 + 3, this means that

(7.7) (−1)r1+1t
(2)

X̃
(%∞) > 0.

On the other hand, by a result of Cheeger [Che79, (1.4)], we know that

(7.8) τ(X i, E%)2 =
∏
q

|Hq(X i;L%)|(−1)q+1

.

By (7.6) we thus conclude that

lim
i→∞

∑
q(−1)q+1 log |Hq(X i;L%)|

[Γ(n1) : Γ(ni)]
= 2t

(2)

X̃
(%∞).

Using (7.7), this implies the result.
�
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If the flat vector bundle E% → Xi is not acyclic, but L2-acyclic, we can still obtain ex-
ponential growth of torsion following the approach of [MR21]. In this case, there is also
non-trivial cohomology groups on the boundary. The decomposition (3.9) induces in fact a
decomposition

(7.9) H∗(∂Xi; E%) = H∗+(∂Xi; E%)⊕H∗−(∂Xi; E%).

Proposition 7.4. Assume that the number field F is such that r2 = 1 and r1 > 0. Then

H∗free,±(∂Xi;L%) := H∗±(∂Xi; E%) ∩H∗free(∂Xi;L%)

induces a lattice in H∗±(∂Xi; E%).

Proof. Since we assume that r2 = 1 and r1 > 0, we see from Lemma 4.2 that the space
H∗−(∂Xi; E%) corresponds to the subspace of forms in H∗(∂Xi; E%) of vertical degree greater
or equal to r1+r2 with respect to the fiber bundle (2.5) induced on each boundary component
of ∂Xi, while H∗+(∂Xi; E%) corresponds to forms in H∗(∂Xi; E%) of vertical degree less than
or equal to r2. By Leray’s theorem [BT82, Theorem 15.11], the vertical degree still makes
sense on H∗free(∂Xi;L%), hence H∗free,−(∂Xi;L%) corresponds to cohomology classes of vertical
degree greater or equal to r2 + r1, while H∗free,+(∂Xi;L%) corresponds to cohomology classes
of vertical degree at most r2. This gives the decomposition

H∗free(∂Xi;L%) = H∗free,+(∂Xi;L%)⊕H∗free,−(∂Xi;L%).

Since H∗free(∂Xi;L%) is a lattice in H∗(∂Xi; E%), this means that H∗free,±(∂Xi;L%) is a lattice
in H∗±(∂Xi; E%).

�

For ηi ∈ PΓ(ni), let [ηi] be the induced element in PΓ(n1) and let πi : Yηi → Y[ηi] be the
induced covering map, where

Yηi = Γ(ni)ηi \B∞(1)/B∞ ∩K and Y[ηi] = Γ(n1)[ηi] \B∞(1)/B∞ ∩K.

By the previous proposition,

H∗free,±(Yηi ;L%) := H∗free(Yηi ;L%) ∩H∗±(Yηi ; E%)

is a lattice in H∗±(Yηi ; E%) and

H∗free,±(Y[ηi];L%) := H∗free(Y[ηi];L%) ∩H∗±(Y[ηi]; E%)

is a lattice inH∗±(Y[ηi]; E%). The covolume vol(Hq
free,±(Yηi ;L%)) ofHq

free,±(Yηi ;L%) inHq
±(Yηi ; E%)

can be estimated in terms of the covolume vol(Hq
free,±(Y[ηi];L%)) of Hq

free,±(Y[ηi];L%) in

Hq
±(Y[ηi]; E%). More precisely, the following estimate will be useful.

Proposition 7.5. Suppose that the natural isomorphism V ∗ ∼= V induces an isomorphism
Λ∗ ∼= Λ. Then for each i ∈ N,

[Γ(n1)[ηi] : Γ(ni)ηi ]
−
bq,±

2

vol(H2r1+2−q
free,∓ (Yηi ;L%))

≤ vol(Hq
free,±(Yηi ;L%))

≤ vol(Hq
free,±(Y[ηi];L%))[Γ(n1)[ηi] : Γ(ni)ηi ]

bq,±
2 ,

(7.10)

where bq,± := dimRH
q
±(Yηi ; E%).
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Proof. Since π∗iH
q
free,±(Y[ηi];E%) is a sublattice of Hq

free,±(Yηi ;L%), we see that
(7.11)

vol(Hq
free,±(Yηi ;L%) ≤ vol(π∗iH

q
free,±(Y[ηi];E%)) =

(
vol(Yηi)

vol(Y[ηi])

) bq,±
2

vol(Hq
free,±(Y[ηi];L%))

= [Γ(n1)[ηi] : Γ(ni)ηi ]
bq,±

2 vol(Hq
free,±(Y[ηi];L%)),

giving the inequality on the left. For the inequality on the left, recall that the representations
%m,n are self-dual, hence the flat vector bundle E% is naturally self-dual both as a flat vector
bundle and as a Hermitian vector bundle. Using our assumption that L∗i

∼= Li, Poincaré
duality therefore induces an isomorphism

H2r1+2−q
free,∓ (Yηi ;L%)

∗ = Hq
free,±(Yηi ;L%)

as well as an isometry

H2r1+2−q
∓ (Yηi ; E%)∗ = Hq

±(Yηi ; E%),
where we recall that dimYηi = 2r1 + 3r2 − 1 = 2r1 + 2 since we assume that r2 = 1. Hence,
we see that

vol(H2r1+2−q
free,∓ (Yηi ;L%)

∗) = vol(Hq
±(Yηi ;L%)).

Since essentially by definition,

vol(H2r1+2−q
free,∓ (Yηi ;L%)

∗) = vol(H2r1+2−q
free,∓ (Yηi ;L%))

−1,

we see from (7.11) that

vol(Hq
free,±(Yηi ;L%)) =

1

vol(H2r1+2−q
free,∓ (Yηi ;L%))

≥ 1

vol(H2r1+2−q
free,∓ (Y[ηi];L%))[Γ(n1)[ηi] : Γ(ni)ηi ]

b2r1+2−q,∓
2

,

so the result follows by noticing that b2r1+2−q,∓ = bq,± by Poincaré duality.
�

We also need to control the number of cusp ends. Proceeding as in [MP14, Proposition 8.6],
this can be achieved as follows.

Proposition 7.6. The sequence (1.13) is such that

(7.12) lim
i→∞

#PΓ(ni) +
∑

ηi∈PΓ(ni)
log[Γ(n1)[ηi] : Γ(ni)ηi ]

[Γ(n1) : Γ(ni)]
= 0.

Proof. Since Γ(ni) is a normal subgroup of Γ(n1), notice that for η ∈ PΓ(n1),

(7.13) #{ηj ∈ PΓ(ni) | ∃γj ∈ Γ(n1) such that ηj = γjη} = #{Γ(ni) \ Γ(n1)/(Γ(n1) ∩ Pη)}

and

(7.14) #{Γ(ni) \ Γ(n1)/(Γ(n1) ∩ Pη)} =
[Γ(n1) : Γ(ni)]

[Γ(n1) ∩ Pη : Γ(ni) ∩ Pη]
,
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so

(7.15)

#PΓ(ni)

[Γ(n1) : Γ(ni)]
=

∑
η∈PΓ(n1)

#{Γ(ni) \ Γ(n1)/(Γ(n1) ∩ Pη)}
[Γ(n1) : Γ(ni)]

=
∑

η∈PΓ(n1)

1

[Γ(n1) ∩ Pη : Γ(ni) ∩ Pη]
−→ 0 as i→∞

and

(7.16)

∑
η∈PΓ(ni)

log[Γ(n1)[η] : Γ(ni)η]

[Γ(n1) : Γ(ni)]

=
∑

η∈PΓ(n1)

#{Γ(ni) \ Γ(n1)/(Γ(n1) ∩ Pη)} log[Γ(n1) ∩ Pη : Γ(ni) ∩ Pη]
[Γ(n1) : Γ(ni)]

=
∑

η∈PΓ(n1)

log[Γ(n1) ∩ Pη : Γ(ni) ∩ Pη]
[Γ(n1) ∩ Pη : Γ(ni) ∩ Pη]

−→ 0 as i→∞.

�

Now, consider the long exact sequence in cohomology

(7.17) · · · ∂ // Hq(X i, ∂X i;L%) // Hq(X i;L%) // Hq(∂Xi;L%)
∂ // · · ·

associated to the pair (X i, ∂X i), as well as its version tensored over the reals

(7.18) · · · ∂ // Hq(X i, ∂X i; E%) // Hq(X i; E%) // Hq(∂Xi; E%)
∂ // · · · .

The choices of orthonormal bases in § 5 for the bundles Em,n induce corresponding bases
for the cohomology groups of the bundle E%. Trusting this will lead to no confusion, we
will still denote by µXi , µ∂Xi = (µi,+, µi,−), µi,+ and µi,− the bases we obtain in this way
for H∗(X i; E%), H∗(∂Xi; E%), H∗+(∂Xi; E%) and H∗−(∂Xi; E%). By Poincaré-Lefshetz duality
[Mil62], we know that

(7.19) τ(X i, E%, µXi) = τ(X i, ∂X i, E%, µXi,∂Xi
),

where µXi,∂Xi is the basis of H∗(X i, ∂X i; E%) dual to µXi . As in [MR21, Lemma 4.1], the
basis µXi,∂Xi admits a simpler description compared to µXi .

Lemma 7.7. In terms of the boundary homomorphism of the long exact sequence (7.18),

µXi,∂Xi = ∂(µi,+).

Proof. Since Poincaré duality induces the identification

(H∗±(∂Xi; E%))∗ ∼= H∗∓(∂Xi; E%),

the result follows by observing that the map pri,− ◦ι∂Xi : H∗(X i; E%) → H∗−(∂Xi; E%) is an
isomorphism (this is in agreement with [Har75, Theorem 4.6.3]), where

pri,− : H∗(∂Xi; E%)→ H∗−(∂Xi; E%)
is the orthogonal projection induced by the orthogonal decomposition (7.9). �
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By [Che79, (1.4)], we know that

(7.20) τ(X i, ∂X i, E%, µXi,∂Xi)2 =
∏
q

(
|Hq

tor(X i, ∂X i;L%)|
volµRXi,∂Xi

(Hq
free(X i, ∂X i;L%))

)(−1)q+1

,

where µRXi,∂Xi = {µXi,∂Xi ,
√
−1 µXi,∂Xi} is the real basis associated to the complex basis

µXi,∂Xi and volµRXi,∂Xi
(Hq

free(X i, ∂X i;L%)) is the covolume of the lattice Hq
free(X i, ∂X i;L%) in

Hq(X i, ∂X i; E%) with respect to the basis µRXi,∂Xi . Since µXi,∂Xi = ∂(µi,+), this covolume can
be rewritten

(7.21) volµRXi,∂Xi
(Hq

free(X i, ∂X i;L%)) =
volµRi,+(Hq−1

free,+(∂Xi;L%))

[Hq
free(X i, ∂X i;L%) : ∂Hq−1

free,+(∂Xi;L%)]

with µRi,+ = {µi,+,
√
−1 µi,+} the real basis associated to the complex basis µi,+. On the

other hand, from the long exact sequence (7.17), we see that

1 ≤ [Hq
free(X i, ∂X i;L%) : ∂Hq−1

free,+(∂Xi;L%)] ≤ |Hq
tor(X i;L%)|

= |H2r1+4−q
tor (X i, ∂Xi;L%)|,

where in in the second line we have used the fact that

(7.22) Hq
tor(X i;L%) ∼= Hq−1(X i;L%)tor

∼= H2r1+4−q
tor (X i, ∂X i, L%),

which is itself a consequence of the universal coefficient theorem and Poincaré-Lefshetz du-
ality. Consequently, we deduce that

(7.23)
volµRi,+(Hq−1

free,+(∂Xi;L%))

|H2r1+4−q
tor (X i, ∂X i, L%)|

≤ volµRXi,∂Xi
(Hq

free(X i, ∂X i;L%)).

Therefore, using (7.19) and inserting the above inequalities in (7.20) using (7.22) and the
fact that |H2r1+4−q

tor (X i, ∂X i, L%)| ≥ 1, we see that

(7.24)

τ(X i, E%, µXi)2(−1)r1+1

= τ(X, ∂X, E%, µXi,∂Xi
)2(−1)r1+1

≤

(∏
q+r1 even |H

q
tor(X i, ∂X i;L%)|2

)
(∏

q volµRi,+(Hq−1
free,+(∂Xi;L%))(−1)q+r1

) .
Combined with Theorem 5.3 and Proposition 7.2, this inequality yields the following result,

namely Theorem 1.3 when the flat vector bundle E% is not necessarily acyclic.

Theorem 7.8. Let F be a number field with r2 = 1 and r1 > 1. Let (7.4) be a Q-rational rep-
resentation and assume that %∞ decompose into a sum of irreducible representations that are
not self-conjugate. Let Λ% ⊂ V% be a SL(2,OF )-invariant lattice. If the natural isomorphism
V ∗%
∼= V% induces an isomorphism Λ∗%

∼= Λ%, then

(7.25) lim inf
i→∞

∑
q+r1 even log |Hq

tor(X i;L%)|
[Γ(n1) : Γ(ni)]

≥ (−1)r1+1t
(2)

X̃
(%∞) vol(X1) > 0.
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Proof. As in the proof of Theorem 7.3, we know that (7.5) holds, while by [BV13, Proposi-
tion 5.2]

(−1)r1+1t
(2)

X̃
(%∞) vol(X1) > 0.

On the other hand, combining Proposition 7.5 with Proposition 7.6, we see that

(7.26) lim
i→∞

∑
q(−1)q+r1 log(volµRi,+(Hq

free,+(∂Xi;L%)))

[Γ(n1) : Γ(ni)]
= 0.

We note that by (4.2) and Lemmas 3.2 and 3.3 the exponent bq,± occuring in (7.10) does
not depend on i. Hence, (7.25) follows by combining (7.24) with Theorem 5.3 together with
(7.5) and (7.26).

�
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